《有理数》拓展提优试卷(含答案)解析

合集下载

七年级数学试卷有理数解答题试题(含答案)

七年级数学试卷有理数解答题试题(含答案)

七年级数学试卷有理数解答题试题(含答案)一、解答题1.观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB= .根据以上信息回答下列问题:已知多项式的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为 .(1)A,B两点之间的距离是________.(2)若满足AM = BM,则 ________.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是________.(4)若满足AM + BM =12,则 ________.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数 ________.2.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

(1)PA=________,PC=________(用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇.3.在学习绝对值后,我们知道,表示数在数轴上的对应点与原点的距离. 如:表示5在数轴上的对应点到原点的距离.而,即表示5、0在数轴上对应的两点之间的距离.类似的,有:表示5、3在数轴上对应的两点之间的距离;,所以表示5、在数轴上对应的两点之间的距离. 一般地,点A、B在数轴上分别表示有理数、,那么A、B之间的距离可表示为.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和5的两点之间的距离是________;数轴上表示1和-3的两点之间的距离是________;(2)数轴上P、Q两点的距离为3,且点P表示的数是2,则点Q表示的数是________. (3)点A、B、C在数轴上分别表示有理数、、1,那么A到B的距离与A到C的距离之和可表示为________;(4)满足的整数的值为________.(5)的最小值为________.4.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。

{word试卷}七年级上册苏科版第二章《有理数》中的动点问题培优训练(一)(有答案)(仅供参考)

{word试卷}七年级上册苏科版第二章《有理数》中的动点问题培优训练(一)(有答案)(仅供参考)

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:2020七上苏科版第二章《有理数》中的动点问题培优训练(一)班级:___________姓名:___________得分:___________一、解答题1.如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.当时,P,Q两点对应的有理数分别是______,______,______;当时,求t的值.2.已知数轴上有A、B、C三个点,分别表示有理数、、10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.用含t的代数式表示P到点A和点C的距离:______ ,______ ;当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q 点到达C点后,再立即以同样的速度返回,运动到终点在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请求出此时点P表示的数;如果不能,请说明理由.3.如图,已知A,B分别为数轴上的两点,点A表示的数是,点B表示的数是50.请写出线段AB中点M表示的数是_________.现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇,求点C对应的数是多少?若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁Q恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?4.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为,点B表示的数为表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为,点N所表示的数为4.数______所表示的点是【M,N】的好点;如图3,A、B为数轴上两点,点A所表示的数为,点B所表示的数为现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当运动时间t为何值时,P、A和B中恰有一个点为其余两点的好点?5.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.如图1,点A表示的数为,点B表示的数为表示1的点C到点A的距离是2,到点B 的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D_______【A,B】的好点,但点______【B,A】的好点.请在横线上填是或不是运用:如图2,M、N为数轴上两点,点M所表示的数为,点N所表示的数为则数________所表示的点是【M,N】的好点;如图3,A、B为数轴上两点,点A所表示的数为,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当经过________________秒时,P、A和B中恰有一个点为其余两点的好点?6.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足.______,______,______.若将数轴折叠,使得点A与点C重合,则点B与数______表示的点重合;点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则______,______用含t的代数式表示请问:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为,点B表示的数为表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为,点N所表示的数为4.数______所表示的点是【M,N】的好点;如图3,A、B为数轴上两点,点A所表示的数为,点B所表示的数为现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?8.先阅读材料:如图,在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为线段AB的长可以用右边的数减去左边的数表示,即解决问题:如图,数轴上点A 表示的数是,点B表示的数是2,点C表示的数是6.若数轴上有一点D,且,则点D表示的数为________;点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为则点A表示的数是用含t的代数式表示,_________用含t的代数式表示.请问:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.。

拓展训练 2020年人教版数学七年级上册一课一练 1.2.1 有理数试卷(含答案)

拓展训练  2020年人教版数学七年级上册一课一练  1.2.1 有理数试卷(含答案)

七年级数学上册 1.2.1 有理数三年模拟全练1.在下列各数:65-,+1,6.7,-14,0,227,-5,25 %中,属于整数的有 () A.2个 B.3个 C.4个 D.5个2.下列说法错误的是 ( )A .-2是负有理数B .0不是整数C .52是正有理数 D .-0.25是负分数 3.在-1,32,0.618,0,-5%,2017,0.5中,整数有_________个,分数有__________个. 4.在下列选项中,所填的数正确的是 ( )A .正数:{2,1,5,21,…} B .非负数:{0,-1,-2.5…}C .分数:{ -2.5,5,31,…) D .整数:{213,-5,…) 5.已知下列各数:7,-9. 25,109-,-301,274,-3.5,0,2,215,-7,1. 25,37-,-3,43-.把它们填入相应的大括号内.正整数集合:{ …};正分数集合:{ …};负整数集合:{ …};负分数集合:{ …};正数集合:{ …};负数集合:{ …}.能力提升全练1.在-8,2014,313,0,-5 ,+13,41-,-7.2中,正整数和负分数共有 ( )A.3个B.4个C.5个D.6个2.(2018河北石家庄二月月考)下列说法:①-2.5既是负数、分数,也是有理数;②-7既是负数也是整数,但不是自然数;③0既不是正数也不是负数;④0是非负数.其中正确的个数是( )A.1B.2C.3 D .43.已知下列各数:-3.14,24,+27,217-,165,-0.01,0,其中正数为________________,非正数为____________,整数有____个.4.观察下列各组数的排列有什么规律,接着写出后面的三个数.(1) -2,4,-6,8,- 10,________,______,_______,…;(2) -1,2,3,-4,5,6,-7,8,9,____,____,_______,….三年模拟全练一、选择题.1.(2019吉林德惠三中月考,1,★☆☆)在数0,2,-3,-1.2中,属于负整数的是 ( )A.0 B .2 C.-3 D.- 1.22.(2018广东深圳百合外国语学校月考,2,★☆☆)在下列各数:21,-7,313-,0.56,0,-0.01,25中,负分数有( )A.1个B.2个C.3个D.4个二、填空题3.(2018江西景德镇一中期中,7,★☆☆)下列各数:5,0.5,0,-3.5,-12,43,10%,27-中,属于整数的有________,属于分数的有________,属于负数的有_________.三、解答题4.(2017江苏淮阴中学月考,18,★☆☆)把下列各数填入相应的大括号里。

人教版初中七年级数学上册第一章《有理数》模拟检测卷(含答案解析)(24)

人教版初中七年级数学上册第一章《有理数》模拟检测卷(含答案解析)(24)

一、选择题1.(0分)[ID :67653]丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道A .1道B .2道C .3道D .4道2.(0分)[ID :67648]如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12B .112C .12D .-1123.(0分)[ID :67640]如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④4.(0分)[ID :67635]下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位D .2.708×104精确到千分位5.(0分)[ID :67632]已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .26.(0分)[ID :67626]已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a 7.(0分)[ID :67622]下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)-8.(0分)[ID :67617]下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数9.(0分)[ID :67613]正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B10.(0分)[ID :67609]下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|11.(0分)[ID :67606]在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,312.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 13.(0分)[ID :67578]把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .61200014.(0分)[ID :67577]下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数 D .两数之和一定大于每一个加数15.(0分)[ID :67576]计算 -2的结果是( )A .0B .-2C .-4D .4二、填空题16.(0分)[ID :67757]若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__. 17.(0分)[ID :67686]把35.89543精确到百分位所得到的近似数为________.18.(0分)[ID :67681]用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.19.(0分)[ID :67679]一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数.20.(0分)[ID :67677]某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元. 21.(0分)[ID :67675]校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利.22.(0分)[ID :67674]如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.23.(0分)[ID :67669]有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.24.(0分)[ID :67660]截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.25.(0分)[ID :67749]如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.26.(0分)[ID :67721]已知2x =,3y =,且x y <,则34x y -的值为_______. 27.(0分)[ID :67708]计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 三、解答题28.(0分)[ID :67955]体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒. -1.2+0.7-1-0.3+0.20.3+0.529.(0分)[ID :67932]计算:(1)[]2(2)18(3)24-+--⨯÷(2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦30.(0分)[ID :67872]计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.A 3.D 4.C 5.C 6.D 7.A 8.D9.B10.D11.A12.C13.C14.C15.A二、填空题16.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=17.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答18.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-4019.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度20.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语21.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取22.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n23.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法24.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可26.-6或-18【分析】先依据绝对值的性质求得xy的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握27.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A . 【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.2.A解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.D解析:D 【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可. 【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确. 故选:D .本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.4.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.5.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.6.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A符合题意,-=,故选项B不符合题意,|1|1(2)75-+=,故选项C不符合题意,2-=,故选项D不符合题意,(1)1故选:A.【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.9.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.10.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.11.A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.12.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法二、填空题16.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000= 解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.18.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.19.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.20.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.21.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】⨯-=,离胜利还差根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.30246(cm)【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.⨯-=.当喊到第6次时,一共拉过了6(73)24(cm)-=,离胜利还差30246(cm)所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.22.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.23.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.24.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n ,n 为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.26.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 27.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.三、解答题28.9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】 解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.29.(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.30.①-2;②458-;③-10;④-9;⑤-13.【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可.⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171 236 =+--38617 6666 =+--2=-.②原式327 4()(3)()48 =-⨯-⨯---2798 =-+458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(共10题;每题2分,共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣13102.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2-B .3-C .0D .1-3.(2分)(2021七上·丽水期末)|-4|的相反数是( ) A .4B .14C .-4D .14-4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0bd< 5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( ) A .7.5×103B .75×103C .7.5×104D .7.5×1056.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a cbcd a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次8.(2分)(2021七上·平阳期中)将1,2,3,4...,60这60个自然数,任意分成30组,每组两个数,将每组的两个数中的任意一个数记做a ,另一个数记做b ,代入代数式(|a-b|+a+b)中进行计算,求出结果,30组分别代入后可求出30个结果,则这30个值的和的最大值是( ) A .1365B .1565C .1735D .18309.(2分)(2021七上·江津期中)a ,b ,c 大小关系如图,下列各式①0a b c --<②1b ca ab c++=③0ac b ->④a c a b c b --+=+ ,其中错误的个数为( ).A .1个B .2个C .3个D .4个10.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数D .任意一个非负数(共10题;每题2分,共20分)11.(2分)(2021七上·紫金期末)若|a ﹣2020|+|b +2021|=0,则|a +b|= .12.(2分)(2021七上·宜宾期末)有理数a ,b 在数轴上的位置如图所示,化简 a b b a +-- 的结果是 .13.(2分)(2021七上·衡阳期末)比较两数大小: - 67 - 76(用“<”,或“>”,或“=”填空)14.(2分)(2021七上·普陀期末)设a ,b ,c 为不为零的实数,且 0abc > ,那么b a cx a b c=++ ,则x 的值为 . 15.(2分)(2021七上·余姚期末)计算: 34ππ-+-= .16.(2分)(2021七上·云梦期末)一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距 米.17.(2分)(2021七上·青岛期中)若 0x y z ++= ,且x ,y ,z 均不为零,则 y x zx y z++ 的值为 .18.(2分)(2021七上·苏州期中)如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .19.(2分)(2021七上·黔西南期中)若a ,b ,c 为整数,且|a -b|+|c -a|=1,则|c -a|+|a -b|+|b -c|的值为20.(2分)(2020七上·龙山期末)我们知道: 52- 表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离; 52+ 也可以看成 5(2)-- ,表示5与 2- 之差的绝对值,也可理解为数轴上表示5与 2- 两数在数轴上所对应的两点之间的距离事实上,数轴上表示有理数 ,a b 的点 ,A B 的距离均可以用 a b - 来计算.根据以上材料,则使 347x x ++-= 的所有整数x 的和是 .第Ⅱ卷 主观题(共8题;共61分)21.(9分)(2022七上·句容期末)计算: (1)(3分)10(5)(9)--+-(2)(3分)1251631248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)(3分)20211113269⎛⎫--÷-⨯+- ⎪⎝⎭22.(4分)(2021七上·孝义期中)把以下各数填入表示它所在的数集的集合里:2, 0.3⋅- ,0.1,32-,-100,0, 13- .-,23.(10分)(2021七上·韶关期末)如图,点A,B是数轴上两点,点A表示的数为16AB=.动点P,Q分别从A,B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 20t t>秒.以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)(1分)数轴上点B表示的数是.(2)(3分)求数轴上点P,Q表示的数(用含t的式子表示).(3)(3分)若点P和Q同时出发,t为何值时,这两点相遇?(4)(3分)若点Q比点P迟2秒钟出发,则点Q出发几秒时,点P和点Q刚好相距5个单位长度?24.(9分)(2021七上·黄埔期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)(1分)a= ,b= ,并在数轴上面标出A、B两点;(2)(3分)若PA=2PB,求x的值;(3)(4分)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA 的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.25.(6分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)(1分)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)(5分)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;26.(7分)(2021七上·海珠期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)(3分)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)(4分)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?27.(7分)(2020七上·仁寿期末)2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:180+,33-,75+,25-,40+,55+,42-,150+.(1)(3分)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)(4分)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气m 升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含m 的代数式表示)28.(9分)(2022七上·句容期末)某快递公司规定每件体积不超标的普通小件物品的收费标准如表:例如:寄往省内一件1.6千克的物品,运费总额为: 85(0.50.5)13+⨯+= 元. 寄往省外一件2.3千克的物品,运费总额为: 126(10.5)21+⨯+= 元. (下面问题涉及的寄件按上表收费标准计费)(1)(4分)小明同时寄往省内一件3千克的物品和省外一件2.8千克的物品,各需付运费多少元? (2)(1分)小明寄往省内一件重 ()m n + 千克,其中m 是大于1的正整数,n 为大于0且不超过0.5的小数(即 00.5n <≤ ),则用含字母m 的代数式表示小明这次寄件的运费为 ; (3)(4分)小明一次向省外寄了一件物品,用了36元,你能知道小明这次寄件物品的重量范围吗?2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分(共10题;每题2分,共20分)8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0, 解得:x=16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0,据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2- B .3-C .0D .1-【答案】A【完整解答】解:设点A 表示的数是x. 依题意,有640x +-=, 解得2x =-, 即点A 表示的数是2-. 故答案为:A.【思路引导】 设点A 表示的数是x ,根据向右移动用加法,向左移动用减法,列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C 【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数,再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<< ,因为 0a c << 且 a c > ,所以 0a c +< ,故 A 正确,不符合题意;因为 0a b << ,所以 0b a -> ,故 B 正确,不符合题意;因为 0a < , 0c > ,所以 0ac < ,故 C 错误,符合题意,因为 0b < , 0d > ,所以0b d < ,故 D 正确,不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d ,且|a|>|c|,据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105 【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.6.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为 m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a c b c d a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C 【完整解答】解:①如图,当 D 在 A 点的右侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当 D 在 A 点的左侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图,当 D 在 A 点的右侧时,②如图,当 D 在 A 点的左侧时,据此分别解答即可.7.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒) 从第2此相遇起,相遇路程变成了正方形的周长,也就是24×4=96(厘米)因此,之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以,在第一次相遇后还有252此相遇因此,总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间,再根据周期规律,求解出相遇次数。

专题02《有理数》达标检测卷-2020年暑假小升初数学衔接(北师大版)(解析版)

专题02《有理数》达标检测卷-2020年暑假小升初数学衔接(北师大版)(解析版)

考试时间:100分钟 试卷满分:100分姓名:___________班级:___________得分:一.选择题(共8小题,满分24分,每小题3分)1.(2020•承德二模)《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入120元记作120+,则40-元表示( ) A .收入40元B .收入80元C .支出40元D .支出80元【解析】若收入120元记作120+,则40-元表示支出40元.故选:C .2.(2020•西乡塘区模拟)如果收入1000元记作1000+元,那么支出300元记作( ) A .300- 元B .300+ 元C .1300 元D .1300+ 元【解析】如果收入1000元记作1000+元,那么支出300元记作300- 元. 故选:A .3.(2019秋•沙坪坝区校级期末)下列各数不是有理数的是( ) A .0B .12-C .2-D .π【解析】A 、是有理数,故A 不符合题意;B 、是有理数,故B 不符合题意;C 、是有理数,故C 不符合题意;D 、是无理数,不是有理数,故符合题意.故选:D .4.(2019秋•永城市期末)如图所示的是图纸上一个零件的标注,30Φ±表示这个零件直径的标准尺寸是30mm ,实际合格产品的直径最小可以是29.98mm ,最大可以是( )A .30mmB .30.03mmC .30.3mmD .30.04mm【解析】由零件标注0.030.0230ϕ±可知,零件的直径范围最大300.03mm +,最小300.02mm -,∴最大可以是300.0330.03()mm +=.故选:B .5.(2019秋•浦东新区期末)在17的后面添上百分号,则新的数( ) A .扩大到原来的100倍 B .缩小到原来的1100C .与原来的大小相等D .无法判断 【解析】在17后面添上一个百分号, 这个数由17变成了17%, 又因为17%0.17=, 所以这个数缩小到原来的1100. 故选:B .6.(2020•岐山县二模)如果体温上升0.1C ︒记作0.1C ︒+,那么体温下降0.5C ︒记作( ) A .0C ︒B .0.5C ︒+C .0.5C ︒-D .1C ︒-【解析】体温上升0.1C ︒记作0.1C ︒+,∴体温下降0.5C ︒记作0.5C ︒-.故选:C .7.(2018秋•鼓楼区校级期末)如图,在一个88⨯的方格棋盘的A 格里放了一枚棋子,如果规定棋子每步只能向上、下或向左、右走一格,那么这枚棋子走如下的步数后能到达B 格的是( )A .7B .14C .21D .28【解析】将棋子走的步数分为奇数步和偶数步.首先看A 选项:7步,按照最近的路线即:左,上,左,上,左,上,左,上,上.也要9步,故A 错误; 观察到B ,C ,D 三项都超过最小步数,且B ,D 为偶数,C 为奇数,若选择答案B ,即也可选择答案D , 故按照逆向思维,只能选择奇数步的C .再验证可得结果正确. 故选:C .8.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( )A.12B.1118C.76D.59【解析】这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.二.填空题(共7小题,满分21分,每小题3分)9.(2020春•南岗区期末)如果上升2米记作2+米,下降5米记作5-米.【解析】如果上升2米记作2+米,下降5米记作5-米.故答案为:5-.10.(2019秋•嘉兴期末)小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额810元.【解析】86042006482100810-+---=(元),故答案为810.11.(2019秋•海伦市期末)在0.32:0.4中,化简成最简整数比是4:5,比值是.【解析】在0.32:0.432:404:5==,∴最简整数比是4:5,比值是0.8,故答案为4:5,0.8.12.(2020•通州区一模)举出一个数字“0”表示正负之间分界点的实际例子,如 0C ︒可以表示温度正负分界等(答案不唯一) .【解析】在实际中,数字“0”表示正负之间分界点,如:0C ︒可以表示温度正负分界等(答案不唯一). 故答案为:0C ︒可以表示温度正负分界等(答案不唯一).13.(2020•昆明一模)王大伯为响应脱贫致富的政策,科学种植了两块实验田,A 田今年相比去年增产8吨,B 田今年相比去年减产5吨,若增产8吨记作8+吨,则减产5吨记作 5- 吨. 【解析】粮食产量若增产8吨记作8+吨,则减产5吨记作5-吨. 故答案为:5-.14.(2019秋•呼和浩特期末)某同学计划在假期每天做6道数学题超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:3-,5,4-,2,1-,1,0,3-,8,7,那么他十天共做的数学题有 72 道. 【解析】354211038712-+-+-++-++=, 61060⨯=, 601272+=;故答案为72.15.2+,3-,0,132-, 1.414-,17-,23.负数:{ }; 正整数:{ }; 整数:{ }; 负分数:{ }; 分数:{ }.【解析】负数有:3-,132-, 1.414-,17-;正整数有:2+;整数有:2+,3-,0,17-; 负分数有:132-, 1.414-; 分数有:132-, 1.414-,,23故答案为:3-,132-, 1.414-,17-;2+;2+,3-,0,17-;132-, 1.414-;132-, 1.414-,,23三.解答题(共9小题,满分55分)16.(4分)(2020•宁波模拟)上午8点整汽车从甲地出发,以每小时20千米的速度在东西走向的道路上连续行驶,全部行程依次如下所示:(掉头时间忽略不计,规定向东为正,单位:千米)5+,4-,3+,6-,2-,10+,3-,7-(1)这辆汽车共行驶多少千米?(2)这辆汽车每次经过甲地时分别是几点几分?【解析】(1)54362103740l l l l l l l l l l l l l l l l ++-+++-+-+++-+-=(千米) (2)8点48分,9点12分,9点48分17.(5分)(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨.)若经过这一周,该粮仓存有大米88吨(1)求m 的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 【解析】(1)13232262316422188m -+--++-=, 解得20m =-;(2)(|32||26||23||16||20||42||21|)152700-+++-+-+-+++-⨯= 答:这一周该粮仓需要支付的装卸总费用为2700元.18.(6分)(2019秋•娄底期末)猕猴桃是湖南省张家界的一大特产,现有30筐猕猴桃,以每筐20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)30筐猕猴桃中,最重的一筐比最轻的一筐重多少千克? (2)与标准重量比较,30筐猕猴桃总计超过或不足多少千克? (3)若猕猴桃每千克售价5元,则这30筐猕猴桃可卖多少元? 【解析】(1)1.5(2) 3.5--=(千克).答:最重的一筐比最轻的一筐重3.5千克.⨯-+⨯-+⨯-+⨯+⨯+⨯=---+++=(千克).(2)2(2)4(1)4(0.5)50511015442051510答:30筐猕猴桃总计超过10千克.⨯⨯+=(元).(3)5(302010)3050答:这20筐猕猴桃可卖3050元.19.(6分)(2020春•道里区期末)超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,3-,2,0.5-,1,2-.-,2-, 2.5(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?【解析】(1)1.5320.5122 2.5 5.5-+-+---=-(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5320.5122 2.5 5.5-+-+---=-(千克),258 5.5194.5⨯-=(千克),答:这8筐白菜一共194.5千克;(3)194.53583.5⨯=(元),583.5(10.9)58.35⨯-=(元).答:这8筐白菜现价比原价便宜了58.35元.20.(8分)(2020春•南岗区期末)2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?+-++⨯=(个).【解析】(1)(100200400)3500015300故前三天共生产15300个口罩;+--=(个).(2)400(200)600故产量最多的一天比产量最少的一天多生产600个;⨯+-+--++=(个),(3)50007(100200400100100350150)35600⨯=(元).0.2356007120故本周口罩加工厂应支付工人的工资总额是7120元.21.(8分)(2020春•香坊区期末)现有15箱苹果,以每箱25kg为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?--=(千克).【解析】(1)3(2)5答:最重的一箱比最轻的一箱重5千克;-+-⨯+-⨯+⨯+⨯+⨯+⨯+⨯=(千克).(2)2( 1.53)(12)02(02)22 2.54318.5答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;⨯+=(千克)(3)25158.5383.5⨯=(元).383.583068答:这15箱苹果全部售出共可获利3068元.22.(8分)(2019秋•五常市期末)(1)小明爸爸上周买进某种股票1000股,每股27.3元,下表为本周每天该股票的涨跌情况:①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?③若小明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗? (2)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: ①稿费不高于800元的不纳税:②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税; ③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税; 若王老师获得稿费后纳税420元,求这笔稿费是多少钱? 【解析】(1)①27.31 1.5 1.528.3++-=元, 答:星期三收盘时,每股是28.3元;②27.31 1.529.8++=元,27.31 1.5 1.5 2.525.8++--=元, 答:本周内最高价是每股29.8元,最低价是每股25.8元; ③27.31 1.5 1.5 2.50.526.3++--+=元, 26.327.3<,∴周五的收盘价时卖出,不会获利,会亏本;(2)(4000800)14%448-⨯=元420>元,∴王老师获得稿费少于4000元,设稿费为x 元,由题意得,(800)14%420x -⨯=, 解得,3800x =,答:王老师的稿费是3800元.23.(6分)(2019秋•东莞市期末)检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A 地出发,到收工时行程记录为(单位:千米)8+,9-,4+,7-,2-,10-,11+,3-,7+,5-;(1)收工时,检修工在A 地的哪边?距A 地多远?(2)若每千米耗油0.3升,从A 地出发到收工时,共耗油多少升?【解析】(1)(8)(9)(4)(7)(2)(10)(11)(3)(7)(5)++-+++-+-+-+++-+++-89472101137584117972103530366=-+---+-+-=+++------=-=-(千米), 答:收工时,检修工在A 地的西边,距A 地6千米;(2)|8||9||4||7||2||10||11||3||7||5|++-+++-+-+-+++-+++-89472101137566=+++++++++=(千米)660.319.8⨯=(升)答:从A 地出发到收工时,共耗油19.8升.24.(4分)(2019秋•石城县期末)某粮库3天内进出库的吨数如下( “+”表示进库,“-”表示出库): 26+,32-,15-,34+,38-,20-(1)经过这3天,仓库管理员结算发现库里还存480吨粮,那么3天前库里存放粮有多少吨? (2)如果进出库的装卸费用是每吨5元,那么这3天要付多少装卸费? 【解析】(1)26(32)(15)34(38)(20)45+-+-++-+-=-, 3∴天前库里存放粮有:480(45)525--=(吨),答:3天前库里存放粮有525吨; (2)由题意可得,这3天要付的装卸费为:5(|26||32||15||34||38||20|)5165825⨯+-+-++-+-=⨯=(元), 答:这3天要付825元装卸费.。

上海民办新北郊初级中学人教版初中七年级数学上册第一章《有理数》模拟测试题(答案解析)

上海民办新北郊初级中学人教版初中七年级数学上册第一章《有理数》模拟测试题(答案解析)

一、选择题1.(0分)[ID :67656]若12a = ,3b =,且0ab <,则+a b 的值为( )A .52B .52-C .25±D .52±2.(0分)[ID :67655]下列各组运算中,其值最小的是( ) A .2(32)--- B .(3)(2)-⨯- C .22(3)(2)-+- D .2(3)(2)-⨯- 3.(0分)[ID :67652]13-的倒数的绝对值( ) A .-3B .13-C .3D .134.(0分)[ID :67642]有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <05.(0分)[ID :67627]下列各数中,互为相反数的是( ) A .+(-2)与-2 B .+(+2)与-(-2) C .-(-2)与2 D .-|-2|与+(+2) 6.(0分)[ID :67618]计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .07.(0分)[ID :67609]下列各组数中,不相等的一组是( ) A .-(+7),-|-7| B .-(+7),-|+7| C .+(-7),-(+7) D .+(+7),-|-7| 8.(0分)[ID :67607]-1+2-3+4-5+6+…-2011+2012的值等于 A .1 B .-1 C .2012 D .1006 9.(0分)[ID :67604]用计算器求243,第三个键应按( ) A .4 B .3 C .y x D .= 10.(0分)[ID :67598]绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .411.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( )A .2±B .±1C .2±或0D .±1或012.(0分)[ID :67561]一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .213.(0分)[ID :67559]某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日C .11月6日D .11月7日14.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < 15.(0分)[ID :67571]计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018二、填空题16.(0分)[ID :67740]在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.17.(0分)[ID :67699]绝对值不大于2.1的所有整数是____,其和是____. 18.(0分)[ID :67694]计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.19.(0分)[ID :67685]计算:3122--=__________;︱-9︱-5=______. 20.(0分)[ID :67670]等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.21.(0分)[ID :67666]阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目: (1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__. 22.(0分)[ID :67662]若m ﹣1的相反数是3,那么﹣m =__.23.(0分)[ID :67659]下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____; (2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____; (3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.24.(0分)[ID :67723]如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________. 25.(0分)[ID :67722]已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.26.(0分)[ID :67718]若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()aa b cd b++-=___________.27.(0分)[ID :67702]某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则: (1)一月份比三月份多获利润____万元; (2)第一季度该工厂共获利润____万元.三、解答题28.(0分)[ID :67954]小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 29.(0分)[ID :67888]计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 30.(0分)[ID :67885]计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.A 3.C 4.C 5.D 6.C 7.D 8.D 9.C 10.C 11.C 12.C 13.C14.C15.C二、填空题16.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟17.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值18.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法19.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的21.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即22.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=23.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(24.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数25.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数26.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=三、解答题 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【分析】 根据ab判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0ab∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b =故选D . 【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据ab判断出a 和b 异号. 2.A解析:A 【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可. 【详解】A ,()23225---=-; B ,()()326-⨯-=; C ,223(3)(2)941=++=-- D ,2(3)(2)9(2)18-⨯-=⨯-=- 最小的数是-25 故选:A . 【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键.3.C解析:C 【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可. 【详解】13-的倒数为-3,-3绝对值是3, 故答案为:C . 【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.4.C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.5.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 6.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.8.D解析:D 【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.9.C解析:C 【解析】用计算器求243,按键顺序为2、4、y x 、3、=. 故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.10.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .11.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.12.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意; 故选:C . 【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.C解析:C 【分析】运用减法算出每一天的温差,再进行比较即可. 【详解】11月4日的温差为19415-=(℃); 11月5日的温差为12(3)15--=(℃); 11月6日的温差为20416-=(℃); 11月7日的温差为19514-=(℃). 所以温差最大的一天是11月6日. 故选C . 【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.14.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误. 故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.15.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题16.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.17.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.18.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.19.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的 解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.21.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.22.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.23.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.24.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.25.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.26.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.三、解答题28.(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.(1)19-;(2) 3.-【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.30.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。

有理数 重难点检测卷(解析版)—2024-2025学年七年级数学上册重难点专题提升精讲精练(苏科版)

有理数 重难点检测卷(解析版)—2024-2025学年七年级数学上册重难点专题提升精讲精练(苏科版)

有理数 重难点检测卷注意事项:本试卷满分100分,考试时间120分钟,试题共28题。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3-B .1C .2D .3【答案】B【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最近的点,即绝对值最小的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.(2024·江苏南京·一模)与()2n -(n 为实数)的值相等的是( )A .2n -B .2n C .()3n -D .3n【答案】B【分析】本题考查绝对值、乘方运算,根据()220n n -=³化简绝对值即可.【详解】解:()222n n n -==,故选B .3.(2024·江苏扬州·二模)如图,数轴上A 、B 两点在原点两侧,且=OA OB ,若=4AB ,那么点A 表示的数是( )A .4B .4-C .2D .2-【答案】D【分析】本题考查数轴上点表示有理数,数轴上两点的距离.根据数轴可得2OA OB ==,进而即可求解.【详解】解:∵4AB OA OB ==,,∴2OA OB ==,∴点A 表示的数为2-.故选:D .4.(23-24七年级下·江苏南通·阶段练习)2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全球知识产权的北斗导航系统全面建成,据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%,其中,3450亿元用科学记数法表示为( )A .103.4510´B .93.4510´C .33.4510´D .113.4510´【答案】D【分析】本题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3450亿11345000000000 3.4510==´.故选:D .5.(23-24七年级下·江苏连云港·期末)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.一位母亲在从右到左依次排列的绳子上打结,采取满七进一的方式,用来记录孩子自出生后的天数.如图1,孩子出生后的天数是10472730´+´=(天),那么图2所表示孩子出生后的天数是( )A .1234天B .466天C .396天D .284天【答案】B【分析】本题考查有理数混合运算的应用,理解题意,根据题中计算方法列式计算即可.【详解】解:由题意,图2所表示孩子出生后的天数是321017273747´+´+´+´34398214=+++466=(天),故选:B6.(2024·江苏徐州·模拟预测)“坎宁安数”是以英国数学家坎宁安的名字命名的,能写成1n a ±形式的数字,2024是一个坎宁安数,因为22024451=-.下列各数中均含有“2024”,其中最小的是( )A .2024B .2024-C .12024D .12024-【答案】D【详解】此题考查的是有理数的比较大小及绝对值的概念,熟练掌握有理数大小比较方法是解题的关键;根据有理数的比较大小,即可找出最小的数.解:∵12024204=-,102024>,102024-<,\112014202420242024-<<=-\最小的数是12024-.故选:D.7.(21-22七年级上·河北·期末)如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是( )A .1B .3-C .1或5-D .1或4-【答案】C【分析】本题考查了数轴,分类讨论思想是解题的关键.先根据两点间的距离公式求出点A 落在对应点表示的数,在利用中点公式求出C 点表示的数.【详解】设A ¢是点A 的对应点,由题意可知点C 是A 和A ¢的中点当点A 在B 的右侧,6BA ¢=,A ¢表示的数为10616+=,那么C 表示的数为:(1416)21-+¸=,当点A 在B 的左侧,6BA ¢=,A ¢表示的数为1064-=,那么C 表示的数为:(144)25-+¸=-,故选:C .8.(22-23七年级上·江苏盐城·期末)实数a 、b 在数轴上的对应点位置如图所示,下列结论中不正确的是( )A .2b <-B .||b a >C .0a b ->D .0a b +>【答案】D【分析】本题主要考查数轴与绝对值,掌握数轴上点的意义以及绝对值的含义是解题的关键.先根据数轴估计出a 、b 的大致范围,然后根据有理数的加减运算法则逐项判断即可.【详解】解:A 、由数轴可知数表示的点b 在2-左侧,即2b <-,故A 选项正确,不符合题意;B 、由数轴可知b a a >=,故B 选项正确,不符合题意;C 、由数轴可知a b >,则0a b ->,故C 选项正确,不符合题意;D 、由数轴可知0b a b a ><<,,则0a b +<,故D 选项错误,符合题意;故选:D .9.(23-24七年级上·江苏南通·阶段练习)设[)m 表示不大于m 的最大整数,如[5.5)5=,[ 3.2)4-=-,则[9.8)[12)--=( )A .21-B .22-C .23-D .24-【答案】B【分析】本题考查新定义运算,有理数的减法运算,根据[)m 的定义求出[9.8)-和[12),再计算减法即可.【详解】解:由题意知[9.8)10-=-,[12)12=,\[9.8)[12)101222--=--=-,故选B .10.(22-23七年级上·浙江温州·期中)如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6-----这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a 的值为( )A .4-B .3-C .3D .4【答案】B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,--这一行最后一个圆圈数字应填3,所以5,1,5则a所在的横着的一行最后一个圈为3,--这一行第二个圆圈数字应填4,2,1,1--,目前数字就剩下4,3,0,6--中的4,01,5这一行剩下的两个圆圈数字和应为4-,则取4,3,0,6-,--中的4,6-,-这一行剩下的两个圆圈数字和应为2,则取4,3,0,62,2这两行交汇处是最下面那个圆圈,应填4-,所以1,5这一行第三个圆圈数字应为0,-则a所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a为3故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.二、填空题(8小题,每小题2分,共16分)11.(2024·江苏连云港·中考真题)如果公元前121年记作121-年,那么公元后2024年应记作年.+【答案】2024【分析】本题考查正负数的意义,根据正负数表示一对相反意义的量,公元前为负,则公元后为正,进行作答即可.+年;【详解】解:公元前121年记作121-年,那么公元后2024年应记作2024+.故答案为:202412.(23-24七年级下·江苏镇江·期末)如图,数轴上点A表示的数为x,点B表示的数为1-,则x的取值范围是.x<-【答案】1【分析】本题考查数轴,数轴上左边的点表示的数小于右边的点表示的数,由此可得答案.【详解】解:Q数轴上点A在点B的左边,点B表示的数为1-,\x的取值范围是1x<-,x<-.故答案为:113.(23-24六年级下·上海闵行·期末)比较大小:243-344--.(填“>”、“<”或“=”)【答案】>【分析】本题考查有理数的大小比较,去绝对值等知识,先去绝对值,再化成同分母比较大小即可,掌握有理数大小比较的常见方法是解题的关键.【详解】解:∵2145643312-=-=-,3319574444412--=-=-=-,∵7 5612512 -->∴23 4434 ->--故答案为:>14.(23-24七年级下·黑龙江绥化·阶段练习)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则下图2表示的算式是.【答案】132310-+=【分析】本题考查了有理数的加减运算.由白色算筹表示正数,黑色算筹表示负数,即可列式计算.【详解】解:由题意得白色算筹表示正数,黑色算筹表示负数,\图中表示的计算过程为132310-+=.故答案为:132310-+=.15.(2024·陕西西安·二模)如图,在数轴上点A表示的数是2,点B被墨水遮住了,已知4AB=,则点B 表示的数为.【答案】2-【分析】本题考查的是数轴上两点距离,在数轴上表示有理数,有理数的减法;由数轴可知,点B在点A的左侧,根据题意并结合两点间的距离公式计算即可.【详解】解:由数轴可知,点B 在点A 的左侧,Q 点A 表示的数是2,4AB =,\点B 表示的数为:242-=-,故答案为:2-.16.(2024·黑龙江哈尔滨·二模)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为()11x x +=--,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离.则代数式35x x ++-的最小值是 .【答案】8【分析】此题考查了运用数形结合思想进行实数运算的能力.根据题目中3x +与5x -的几何意义进行求解.【详解】解:Q 35(3)5x x x x ++-=--+-,\(3)x --的几何意义就是数轴上x 所对应的点与3-所对应的点之间的距离,5x -的几何意义就是数轴上x 所对应的点与5所对应的点之间的距离,\ 35x x ++-的几何意义就是数轴上x 所对应的点与3-、5所对应的点之间的距离之和,Q 当35x -££时,数轴上x 所对应的点与3-、5所对应的点之间的距离之和最短为:()538--=,\ 35x x ++-的最小值是8.故答案为:8.17.(23-24七年级上·河南新乡·期末)如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当线段PA 和PB 的大小关系满足32PA PB =时,点P 表示的数是 .【答案】26或70-/70-或 26【分析】本题考查了数轴上的动点问题,数轴上两点间的距离,根据题意可得该问题可分为两种情况,即可得到等式,求解即可得到结果,根据数轴得到两点间的距离是解题的关键.【详解】解:在点P 运动过程中,32PA PB =,即:2:3PA PB =,分两种情况:①当点P 运动到点A 右侧时,()2250101655PA AB ==´-=,此时点P 表示的数是101626+=;②当点P 运动到点A 左侧时,设2PA x =,则3PB x =,∵PB PA AB -=,∴325010x x -=-,则40x =,80PA =,∴点P 表示的数是108070-=-,综上所述,点P 表示的数是26或70-,故答案为:26或70-.18.(23-24七年级上·江苏苏州·阶段练习)下列说法正确的序号是 .①已知a ,b ,c 是非零的有理数,且1abc abc=-时,则a b c abc++的值为1或3-;②已知a ,b ,c 是有理数,且0a b c ++=,0abc <时,则b c a c a ba b c+++++的值为1-或3;③已知4x £时,那么34x x +--的最大值为7,最小值为7-;④若a b =且23a b -=,则式子21a b abb +-+的值为110;⑤如果定义{}()()(),0a b a b a b a b b a a b ì+>ï==íï-<î,当0ab <,0a b +<,a b >时,{},a b 的值为b a -.【答案】①③④⑤【分析】本题考查绝对值的意义,有理数的运算法则;根据绝对值的意义以及题中条件,逐个分析论证即可.熟知绝对值的意义是解题的关键.【详解】解:①已知a ,b ,c 是非零的有理数,当||1abc abc=-时,则<0abc ,分两种情况:一是a 、b 、c 皆为负数,此时||||||1113a b c a b c++=---=-;二是a 、b 、c 中只有一个负数,令a<0,0b >、0c >此时||||||1111a b c a b c++=-++=,故①正确;②0a b c ++=Q ,a b c \+=-,b c a +=-,a c b +=-,则b c a c a b a b ca b c a b c+++---++=++,由于<0abc 时,当a 、b 、c 皆为负数,此时0a b c ++<与0a b c ++=矛盾,故不存在;a \、b 、c 中只有一个负数,令a<0,0b >,0c >,原式1a b ca b c---=++=--,故②错误;③当4x £时,分两种情况:当3x £-时,|3||4|3(4)7x x x x +--=----=-,当34x -<£时,|3||4|347x x x x +--=++-=,故4x £时|3||4|x x +--的最大值为7,最小值为7-,故③正确;④由||||a b =且2||3a b -=,a \、b 互为相反数,a b \+=a b \=-,2|2|3a \=,不妨13a =,13b =-,则b 则式子21a b abb +-+2110()331()13-´-=-+11910109==,故④正确;⑤当0ab <时,a \、b 异号,又0a b <Q +,\负数的绝对值大于正数的绝对值,又||||a b >Q ,<0a \,0b >,a b \<,根据{a ,b}()()0()a b a b a b b a a b +>ìï==íï-<î,{a \,}b b a =-,故⑤正确.故答案为:①③④⑤.三、解答题(10小题,共64分)19.(23-24七年级下·江苏南通·阶段练习)将下列有理数填入适当的集合内:2-,5,12-,23,0.05-,243,0,3--,8,312æö-ç÷èø.正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};非负整数集合:{ …}【答案】见详解【分析】本题主要考查了有理数的分类,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和分分数,根据有理数的分类方法进行求解即可.【详解】解:2-为负有理数,5,8为正有理数,也是整数,12-为负分数,23为正分数,也是正的有理数,0.05-为负分数,243为正有理数,0为有理数,也为正数,33--=-为负有理数,31128æö-=-ç÷èø为负分数,∴正有理数集合:225,,4,833ìü×××íýîþ,整数集合:{}2,5,0,3,8---×××,负分数集合:311,0.05,22ìüïïæö---×××íýç÷èøïïîþ,非负整数集合:{}5,0,8×××,20.(23-24七年级上·江苏无锡·期中)计算:(1)(18)(9)(5)(7)-++---+;(2)132124236æö¸´-+-ç÷èø;(3)1221523530æöæö--+¸-ç÷ç÷èøèø;(4)()()323211432333éùæöæö¸---´-+-êúç÷ç÷èøèøêúëû.【答案】(1)11-(2)56-(3)12(4)143【分析】本题主要考查了有理数的混合运算,解题关键是熟练掌握混合运算法则和加减乘除法则.各个小题均根据有理数混合运算法则,先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的,进行计算即可.【详解】(1)解:原式(18)(9)(5)(7)=-+++++-18957=-++-18795=--++2514=-+11=-;(2)原式9221()4336=´´-+116=-+56=-;(3)原式1225()(30)235=--+´-1225303030235=+´-´+´5152012=+-+202012=-+12=;(4)原式81164(32)(9)273=¸---´-8112()33=----192()3=---1263=-+143=.21.(23-24六年级下·黑龙江绥化·期中)有理数a b c ,,在数轴上的位置如图所示,化简||||||a c a b c b +----.【答案】2c-【分析】本题考查了根据数轴上的点判断式子的正负、化简绝对值,由数轴得出0a b c <<<,b c a <<,从而得到0a c +<,0a b -<,0c b ->,再根据绝对值的性质化简即可.【详解】解:由数轴可得:0a b c <<<,b c a <<,0a c \+<,0a b -<,0c b ->,||||||a c abc b \+----()()a c abc b =--+---a c a b c b=--+--+2c =-.22.(23-24八年级上·江苏徐州·阶段练习)为了创建文明城市,一辆城管汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始它所行走的记录为(长度单位:千米):3+,7-,4+,6+,5-,8-,10-(1)此时这辆城管汽车的司机应如何向队长描述它的位置?(2)如果队长命令他马上返回出发点,那么这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.1升).【答案】(1)此时这辆城管汽车在出发点西方17千米处(2)6升【分析】本题主要考查了有理数的混合运算和正负数的实际应用:(1)把所有的数相加,即可求解;(2)求出所有的数的绝对值的和再加上17,然后乘以0.1,即可求解.【详解】(1)解:3746581017+-++---=-千米,答:此时这辆城管汽车在出发点西方17千米处;(2)解:374658101760++-+++++-+-+-+=千米,0.1606´=升,答:这次巡逻(含返回)共耗油6升.23.(23-24七年级上·贵州铜仁·阶段练习)已知6个有理数:52,0,4-,1()2--,32-,4-,按要求完成下列各小题.(1)互为相反数的一组数是________;(2)将上述的6个有理数表示在如图所示的数轴上,并用“<”将上面的数连接起来.【答案】(1)4-,4-;(2)画图见解析,315404 222æö-<-<<--<<-ç÷èø【分析】本题考查的是化简双重符号,求解绝对值,在数轴上表示有理数,利用数轴比较有理数的大小;(1)先化简双重符号,求解绝对值,再利用相反数的定义可得答案;(2)先在数轴上表示各有理数,再利用数轴右边的数大于左边的数,从而可得答案.【详解】(1)解:∵11()22--=,44-=,∴互为相反数的一组数是4-,4-;(2)如图,在数轴上表示各数如下:∴315404222æö-<-<<--<<-ç÷èø;24.(23-24七年级上·江苏连云港·阶段练习)今年喜迎双节“国庆逢中秋”,30日开始各地迎来旅游高峰,无锡三国水浒风景区其中七天每天旅客人数变化情况如下表(正号表示人数比前一天多,负号表示人数比前一天少),已知9月29日的游客人数为12万人.日期30日1日2日3日4日5日6日人数变化/万人 1.8+0.6-0.2+0.7- 1.3-0.5+0.7-(1)今年10月4日的游客人数为__________万人;(2)七天内游客人数最多的一天比最少的一天多__________万人;(3)若每万人带来的经济收入约为200万元,则黄金周七天该景区旅游总收入约为多少万元?【答案】(1)11.4(2)2.6(3)黄金周七天该景区旅游总收入约为17520万元.【分析】本题考查了正负数的应用,有理数混合运算的应用,正确理解题意是解题关键.(1)根据正负数意义列式计算,即可得到答案;(2)根据表格分别求出黄金周七天每天的游客人数,再用游客人数最多的一天减最少的一天,即可得到答案;(3)将(2)所得的每天的游客人数相加,再乘以200,即可得到答案.【详解】(1)解:12 1.80.60.20.7 1.311.4+-+--=(万人),即10月4日的游客人数为11.4万人,故答案为:11.4;(2)解:根据表格可知,9月30日游客人数为:12 1.813.8+=(万人),10月1日游客人数为:13.80.613.2-=(万人),10月2日游客人数为:13.20.213.4+=(万人),10月3日游客人数为:13.40.712.7-=(万人),10月4日游客人数为:12.7 1.311.4-=(万人),10月5日游客人数为:11.40.511.9+=(万人),10月6日游客人数为:11.90.711.2-=(万人),则七天内游客人数最多的一天比最少的一天多13.811.2 2.6-=(万人),故答案为:2.6;(3)解:()13.813.213.412.711.411.911.2200++++++´87.6200=´17520=(万元),答:黄金周七天该景区旅游总收入约为17520万元.25.(23-24七年级上·湖北·周测)若0a >,则||a a =__________;若a<0,则||a a =_________;思考:(1)若a 、b 为有理数,且0ab ¹,则||||a b a b +=__________;(2)若0abc ¹,则||||||a b c a b c ++=__________;(3)若a 、b 为有理数,且0||||a b a b +=,则||ab ab =-__________.【答案】1,1-;0,2,2-;1,3-,1-,3;1【分析】根据0a >和a<0两种情况进行计算即可;(1)若a 、b 为有理数,且0ab ¹,分为a 、b 是一正一负,两正,两负三种情况分别进行计算即可;(2)若0abc ¹,分为0abc >和<0abc 情况下,a 、b 、c 中有一个负数,a 、b 、c 中有三个负数,a 、b 、c 中有一个正数,a 、b 、c 中有三个正数几种情况分别计算即可;(3)根据题意判断出a 、b 异号,进行计算得出结果.【详解】解:0a >Q ,a a \=,1a a \=,0a <Q ,a a =-1a a\=-; (1)若a 、b 为有理数,且0ab ¹,当a 、b 是一正一负时,则0||||a b a b +=,当a 、b 是两正时,则2||||a b a b +=,当a 、b 是两负时,则2||||a b a b +=-;(2)若0abc ¹,当<0abc 时,a 、b 、c 中有一个负数时,1||||||a b a b c c ++=,当<0abc 时,a 、b 、c 中有三个负数时,3||||||a b c a b c ++=-,当0abc >时,a 、b 、c 中有一个正数时,1||||||a b c a b c ++=-,当0abc >时,a 、b 、c 中有三个正数时,3||||||a b c a b c ++=;(3)0||||a b a b +=Q ,a \、b 异号, ||1ab ab\=-.故答案为:1,1-;0,2,2-;1,3-,1-,3;1.【点睛】本题考查了绝对值的知识,注意掌握绝对值的性质及其定义,并能熟练运用到实际当中,熟练掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,是解答本题的关键.26.(23-24七年级下·山东聊城·期中)阅读材料:求2342013122222++++++L 的值.解:设234201220131222222S =+++++++L ,将等式两边同时乘2得:23452013201422222222S =+++++++L 将下式减去上式得2014221S S -=-即201421S =-即2342013201412222221++++++=-L 请你仿照此法计算:(1)2342024122222++++++L (2)234133333n ++++++L (其中n 为正整数).【答案】(1)202521-(2)()11312n +-【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设2342024122222S =++++++L ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++L ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【详解】(1)解:设2342024122222S =++++++L ,将等式两边同时乘2得:234202420252222222S =++++++L ,将下式减去上式得:2025221S S -=-,即202521S =-,则2342024202512222221++++++=-L ;(2)解:设234133333n S =++++++L ①,两边同时乘3得:23413333333+=++++++L n n S ②,②-①得:1331n S S +-=-,即1213n S +=-,则()11132n S +-=则()23411133333312n n +++++++=-L .27.(23-24七年级上·江苏无锡·期中)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),如图,以两车之间的某点O 为原点,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是c ,8a +与2(16)c -互为相反数.(忽略两辆火车的车身及双铁轨的宽度.)(1)求此时刻快车头A 与慢车头C 之间相距 单位长度.(2)从此时刻开始,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶 秒两列火车的车头A 、C 相距8个单位长度.(3)在(2)中快车、慢车速度不变的情况下,此时在快车AB 上有一位爱动脑筋的七年级学生乘客P ,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA PC PB PD+++为定值).则这段时间t 是 秒,定值是 单位长度.【答案】(1)24(2)4或8(3)0.5,6【分析】(1)根据非负数的性质求出8a =-,16c =,再根据两点间的距离公式即可求解;(2)根据时间=路程和¸速度和,列式计算即可求解;(3)由于2PA PB AB +==,只需要PC PD +是定值,从快车AB 上乘客P 与慢车CD 相遇到完全离开之间都满足PC PD +是定值,依此分析即可求解;【详解】(1)解:∵8a +与2(16)c -互为相反数,∴208(16)a c ++=-,∴80a +=,160c -=,解得8a =-,16c =,∴此时刻快车头A 与慢车头C 之间相距16(8)24--=单位长度,故答案为:24;(2)解:①当相遇前相距8个单位长度有,(248)(22)1644-¸+=¸=(秒),②当相遇后相距8个单位长度有,(248)(22)3248+¸+=¸=(秒)答:再行驶4秒或8秒两列火车行驶到车头AC 相距8个单位长度;故答案为:4或8;(3)解:∵2PA PB AB +==,当P 在CD 之间时,PC PD +是定值4,3(42)0.5t =¸+=(秒),此时()()246PA PC PB PD PA PB PC PD +++=+++=+=(单位长度),故这个时间是0.5秒,定值是6单位长度.故答案为:0.5,6;28.(23-24七年级上·江苏镇江·期中)华罗庚先生说;“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.【知识储备】点M 、N 在数轴上分别表示有理数m 、n ,则M 、N 两点之间的距离可表示为||m n -.【初步运用】(1)数轴上表示3与4-的两点之间的距离为______;(2)已知数轴上某个点表示的数为x .①若|1|2x -=,则x =______;②若|3||5|x x +=-,则x =______;【深入探究】(3)如图,数轴上每相邻两点之间的距离为1个单位长度,点A 、B 、C 表示的数分别为a 、b 、c .①||||a b b c -+-=______;②若|2|4b a -=,则点C 表示的数为______;③若该数轴上另有两个点P 、Q ,它们分别表示有理数p 、q ,其中点Q 在线段AC 上,当||||8p a p c -+-=且||||||q a q b q c -+-+-最小时,P 、Q 两点之间的距离为______.【答案】(1)7;(2)①3或1-;②1;(3)①6;②4或12;③3或5【分析】本题考查了数轴上两点之间的距离,绝对值.解题的关键在于对知识的熟练掌握与正确运算.(1)根据两点之间的距离公式列式计算即可求解;(2)①②根据两点之间的距离公式列出方程即可求解;(3)①由数轴知,c b a >>,去绝对值符号即可求解;②由数轴知,2b a -=,结合|2|4b a -=,求得2a =-或6a =,据此求解即可;③分情况讨论,求得q b =,1p a =-或7p a =+,据此求解即可.【详解】解:(1)数轴上表示3与4-的两点之间的距离为()347--=,故答案为:7;(2)①若|1|2x -=,则12x -=或12x -=-,解得3x =或=1x -,故答案为:3或1-;②若|3||5|x x +=-,则35x x +=-(舍去)或35x x +=-,解得1x =,故答案为:1;(3)①由数轴知,c b a >>,∴0a b -<,0b c -<,∴||||6a b b c b a c b c a -+-=-+-=-=;故答案为:6;②由数轴知,2b a -=,即2b a =+,结合|2|4b a -=,即|22|4a a +-=,∴|2|4a -=,∴24a -=或24a -=-,解得2a =-或6a =;根据数轴知,6c a -=,∴点C 表示的数为4或12;故答案为:4或12;③由题意可知,点Q 在线段AC 上,可得a q c ££,则0q a -³,0q c -£,∴q a q a -=-,q c c q -=-,当a q b ££时,0q b -£,∴q b b q -=-,故||||||6q a q b q c q a b q c q c a b q b q -+-+-=-+-+-=-+-=+-,当b q c <£时,0q b ->,则q b q b ->-,故||||||6q a q b q c q a q b c q c a b q q b -+-+-=-+-+-=--==+-,∵||||||q a q b q c -+-+-最小,故q b =时,取值最小;当p a £时,0p a -£,0p c -<,∴22628p a p c a p c p a c p a p -+-=-+-=+-=+-=,即1a p -=;当a p c <<时,0p a ->,0p c -<,∴8p a p c p a c p c a -+-=-+-=-=(不成立,舍去);当p c ³时,0p a ->,0p c -³,∴22268p a p c p a p c p a c p a -+-=-+-=--=--=,即7p a -=,综上,q b =,1p a =-或7p a =+,当1p a =-时,P 、Q 两点之间的距离为()11213b a b a --=-+=+=;当7p a =+时,P 、Q 两点之间的距离为()77275b a b a -+=--=-=;∴P 、Q 两点之间的距离为3或5.故答案为:3或5.。

七年级数学试卷有理数解答题训练经典题目(附答案)100

七年级数学试卷有理数解答题训练经典题目(附答案)100

七年级数学试卷有理数解答题训练经典题目(附答案)100一、解答题1.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)2.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.3.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.4.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.5.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.6.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。

浙教版七年级上册数学第一单元《有理数》培优检测卷(含解析)

浙教版七年级上册数学第一单元《有理数》培优检测卷(含解析)

2023年7月2日初中数学作业学校:___________姓名:___________班级:___________考号:___________A .B .. . ..,,,则下列不等关系式中正确的是( )342018a =2019b =2020c =则翻转2022次后,点C 所对应的数是( )A .2020B .2021C .2022D .202310.一只小球落在数轴上的某点处,第一次从处向右跳1个单位到处,第二次从向左跳2个单位到处,第三次从向右跳3个单位到处,第四次从向左跳4个单位到处…,若小球按以上规律跳了次时,它落在数轴上的点处所表示的数恰好是,则这只小球的初始位置点所表示的数是( )A .B .C .D .二、填空题15.已知、均为数轴上的点,到原点的距离为长度,且在的左边,则点表示的数为18.如果物体从A 点出发,按照A→B (第1步)→C (第二步)0P 0P 1P 1P 2P 2P 3P 3P 4P ()23n +23n P +3n -0P 4-5-6n +3n +A B A B A B三、解答题21.有20筐红萝卜,以每筐25千克为标准,超过记正不足记负来表示,记录如下:(1)求m、n的值;(2)①情境:有一个玩具火车如图1所示,放置在数轴上,将火车沿数轴左右水平移AB参考答案:故选:D .【点睛】本题主要考查了绝对值的应用,数轴上两点之间的距离,理解绝对值的意义,掌握距离的求法是解题的关键.4.B【分析】由图可知,和实数之间的距离是6,因此要知道的值,只需要加6即可.【详解】解:将刻度尺放在数轴上(数轴的单位长度是),刻度尺上的和分别对应数轴上表示和实数的两点,∵0到6之间是6个单位,∴,∴,故答案为:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.5.C【分析】分别根据有理数的分类以及正数和负数的定义逐一判断即可.【详解】解:A .整数分为正整数、零和负整数,原说法错误,故本选项不合题意;B .有理数包括分数,原说法错误,故本选项不合题意;C .正分数和负分数统称为分数,说法正确,故本选项符合题意;D .不带“-”号的数就是正数,说法错误,如0既不是正数,也不是负数,故本选项不合题意.故选:C .【点睛】本题考查了正数和负数以及有理数,掌握相关定义是解答本题的关键.6.C【分析】用加上时差,再根据有理数的加法运算求解,然后解答即可.【详解】解:∵,∴如果北京时间是月日,那么巴黎时间是月日故选:C .【点睛】本题考查了有理数的加法,理解时差的正、负的意义是解题的关键.2-x x 2-1cm 0cm 6cm 2-x (2)6x --=4x =5()572+-=-1026500:102522:00【点睛】本题主要考查了数轴的知识、绝对值的知识,难度不大,分情况讨论是解答的关键.13.【分析】根据正负数的实际意义,利用有理数加法运算法则求解即可得到答案.【详解】解:根据题意得:,冰箱冷冻室的温度为℃,调高了℃后的温度是℃,故答案为:.【点睛】本题考查正负数的实际意义解决实际问题,掌握有理数加法运算法则是解决问题的关键.14./【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【详解】解:由题意,该圆沿数轴向左滚动1周的距离为个单位长度,则该圆沿数轴向左滚动1周时,点A 的对应点表示的数是,故答案为:.【点睛】本题考查实数与数轴、圆的周长公式,理解数与数轴上的点的对应关系是解答的关键.15.或【分析】根据题意得到点所表示的数是,根据两点间的距离,求得点所表示的数.【详解】∵点到原点的距离等于,∴点所表示的数是,∵点到点的距离是,且在的左边,∴点表示的数是:或,综上所述,点表示的数是或,故答案为:或.【点睛】此题考查数轴,解题的关键是数形结合思想,进行分类讨论.16.6【分析】在数轴上找出点和,找出两点之间的整数即可得出结论.【详解】解:依照题意,画出图形,如图所示.1-321-+=-3-21-1-1π-1π-+πA '1π-1π-15-A 3±B A 3A 3±B A 2B A B 321-=325--=-B 15-15- 2.1- 3.3在和两点之间的整数有:,,0,1,2,3,共6个,故答案为:6.【点睛】本题考查了数轴,解题的关键是画出数轴,利用数形结合的方法解答.17.4或5或6【分析】由线段总长度及三条线段的长度之比,可得三条线段的长度,再分情况讨论即可.【详解】解:∵线段长为8,这三条线段的长度之比为,,∴这三条线段的长度分别为2,2,4,若剪下的第一条线段长为2,第2条线段长度也为2,则折痕表示的数为:;若剪下的第一条线段长为2,第2条线段长度为4,则折痕表示的数为:;若剪下的第一条线段长为4,第2条线段长度为2,则折痕表示的数为:;∴折痕表示的数为4或5或6,故答案为:4或5或6.【点睛】本题考查数轴与线段综合,列出三条线段所有可能的顺序是解题的关键.18.252【分析】先求出由A 点开始按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,再用2013除以此步数即可.【详解】解:∵如图物体从点A 出发,按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动,此时一个循环为8步,即一个循环经过B 一次,∴2013÷8=251…5.即2013=251×8+5∴经过第2013步后物体共经过B 处252次.故答案为:252.【点睛】本题考查的是根据运动顺序找规律的题目,理解题意是解题的关键,找到规律是本题的重点.2.1-3.32-1-1:1:2()81122∴÷++=1214++=1225++=1416++=,。

北京育英中学人教版初中七年级数学上册第一章《有理数》模拟测试题(含答案解析)

北京育英中学人教版初中七年级数学上册第一章《有理数》模拟测试题(含答案解析)

一、选择题1.(0分)[ID:67654]下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个2.(0分)[ID:67644]计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.123.(0分)[ID:67643]在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.244.(0分)[ID:67636]下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|5.(0分)[ID:67635]下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600 C.6.610精确到千分位D.2.708×104精确到千分位6.(0分)[ID:67634]若,则化简|-2|+|1-|的结果是()A.-1 B.1 C.+1 D.-37.(0分)[ID:67624]若一个数的绝对值的相反数是17-,则这个数是()A.17-B.17+C.17±D.7±8.(0分)[ID:67617]下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数9.(0分)[ID:67611]下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个10.(0分)[ID:67607]-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.100611.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.412.(0分)[ID:67590]一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A .少5B .少10C .多5D .多1013.(0分)[ID :67580]据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m14.(0分)[ID :67565]6-的相反数是( ) A .6B .-6C .16D .16-15.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2±B .±1C .2±或0D .±1或0二、填空题16.(0分)[ID :67742]一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.17.(0分)[ID :67740]在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.18.(0分)[ID :67738]在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.19.(0分)[ID :67728]绝对值小于2018的所有整数之和为________.20.(0分)[ID :67727]在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.21.(0分)[ID :67693]我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)22.(0分)[ID :67687]已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.23.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.24.(0分)[ID :67670]等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.25.(0分)[ID:67666]阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.26.(0分)[ID:67664]气温由﹣20℃下降50℃后是__℃.27.(0分)[ID:67662]若m﹣1的相反数是3,那么﹣m=__.三、解答题28.(0分)[ID:67889]阅读下列材料:(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,即当0x<时,1xx xx==--.用这个结论可以解决下面问题:(1)已知a,b是有理数,当0ab≠时,求a ba b+的值;(2)已知a,b,c是有理数,0a b c++=,0abc<,求b c a c a ba b c+++++的值.29.(0分)[ID:67862]计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.30.(0分)[ID:67915]在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.B4.B5.C6.B7.C8.D9.A10.D11.C12.D13.B14.B15.C二、填空题16.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟18.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的19.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+220.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识21.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:22.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:23.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶24.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的25.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即26.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的27.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.3.B解析:B 【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大. 【详解】∵乘积最大时一定为正数 ∴-1,-3,4的乘积最大为12 故选B . 【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.4.B解析:B 【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解. 【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=- ∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=- ∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=- 故选B . 【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.6.B解析:B 【解析】 【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案. 【详解】 ∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B. 【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.7.C解析:C 【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可. 【详解】 ∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C. 【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.8.D解析:D 【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可. 【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意. 故选:D . 【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.9.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.10.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.11.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.13.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.B解析:B 【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可. 解:∵|-6|=6,6的相反数是-6, ∴|-6|的相反数是-6. 故选B .15.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.二、填空题16.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解. 【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12, ∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-. 【点睛】本题考查数轴上两点间的距离,得到C为A,A 中点是解题的关键.17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.18.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.19.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.20.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.21.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.23.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.24.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.25.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.26.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 27.2【分析】根据只有符号不同的两个数互为相反数可得关于m 的方程根据解方程可得m 的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.三、解答题28.(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-,综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.30. 图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.。

初中数学试卷有理数解答题题分类汇编(含答案)

初中数学试卷有理数解答题题分类汇编(含答案)

初中数学试卷有理数解答题题分类汇编(含答案)一、解答题1.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.4.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.5.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.6.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.7.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)8.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.10.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.11.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?12.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)13.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________14.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.15.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.16.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值17.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)18.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:19.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .20.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是________;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)解: |x|=3 ,在数轴上与原点距离为3的点的对应数为-3和3,即 x 的值为-3和3 (2)解: |x+2|=4 ,在数轴上与-2距离为4的点的对应数为-6和2,即 x 的值为-6和2;解析:(1)解:,在数轴上与原点距离为3的点的对应数为-3和3,即的值为-3和3(2)解:,在数轴上与-2距离为4的点的对应数为-6和2,即的值为-6和2;(3)解:有最小值,最小值为3,理由是:∵理解为:在数轴上表示到3和6的距离之和,∴当在3与6之间的线段上(即)时:即的值有最小值,最小值为.【解析】【分析】(1)由阅读材料中的方法求出的值即可;(2)由阅读材料中的方法求出的值即可;(3)根据题意得出原式最小时的范围,并求出最小值即可.2.(1)-9(2)5或-3(3)解: b+5 为负号,理由如下:∵点 A 在点 B 的右边且 ab<0 ,∴ b<0,a>0 ,∵ AB=8 ,∴,∴,∵ |a|<3解析:(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.3.(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为−1,∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2(2)解:设每改变一次方向为一次运动,解析:(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为−1,∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2(2)解:设每改变一次方向为一次运动,分析动点Q的移动规律可知,第一次到达数轴上表示数1的位置,第3次到达数轴上表示数2的位置,第5次到达数轴上表示数3的位置,…,所以第2n-1次到达数n的位置,所以第19次到达数轴上表示数10的位置,此时运动的总路程为:,∴Q运动的时间t=190÷2=95秒(3)解:∵3秒时,动点Q所在的位置为2,∴5秒时,动点Q所在位置为−2,①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5+ ×0.1=,设点P激活后第一次与继续运动的点Q相遇时用的时间为t1,则(2−0.1)t1=,解得:t1=,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2+ ×0.1+ ×0.1)=;②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5− ×0.1=,设点P激活后第一次与继续运动的点Q相遇时用的时间为t2,则(2+0.1)t2=,解得:t2=,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2− ×0.1− ×0.1)=;综上所述,点P激活后第一次与继续运动的点Q相遇时所在的位置是或 .【解析】【分析】(1)根据动点Q的移动规律,分析得出0.5秒和3秒时所在位置,即可求出答案;(2)分析动点Q的移动规律,求出到达数轴上表示数10的位置时所走的总路程,然后根据时间=路程÷速度进行计算即可;(3)首先求出5秒时,动点Q所在位置为−2,然后分情况讨论:①P点向左运动,②P点向右运动,分别列出方程求出相遇时用的时间,然后再计算点Q相遇时所在的位置即可.4.(1)-8;-6;12;16(2)解:AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,∴BD=|16解析:(1)-8;-6;12;16(2)解:AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,∴BD=|16−t−(−6+3t)|=|22−4t|AC=|12−t−(−8+3t)|=|20−4t|∵BD=2AC,∴22−4t=±2(20−4t)解得:t=或t=当t=时,此时点B对应的数为,点C对应的数为,此时不满足题意,故t=(3)解:当点B运动到点D的右侧时,此时−6+3t>16−t∴t>,BC=|12−t−(−6+3t)|=|18−4t|,AD=|16−t−(−8+3t)|=|24−4t|,∵BC=3AD,∴|18−4t|=3|24−4t|,解得:t=或t=经验证,t=或t=时,BC=3AD【解析】【解答】(1)∵|x+7|=1,∴x=−8或−6∴a=−8,b=−6,∵(c−12)2+|d−16|=0,∴c=12,d=16,故答案为:−8;−6;12;16.【分析】(1)根据方程与非负数的性质即可求出答案.(2)AB、CD运动时,点A对应的数为:−8+3t,点B对应的数为:−6+3t,点C对应的数为:12−t,点D对应的数为:16−t,根据题意列出等式即可求出t的值.(3)根据题意求出t的范围,然后根据BC=3AD 求出t的值即可.5.(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴解析:(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R(3)解:线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.6.解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x解析:解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.7.(1)解:根据材料,设M= ①,∴将等式两边同时乘以3,则3M= ②,由② ①,得:,∴;∴ .(2)解:根据材料,设N= ③,∴将等式两边同时乘以5,解析:(1)解:根据材料,设M= ①,∴将等式两边同时乘以3,则3M= ②,由② ①,得:,∴;∴ .(2)解:根据材料,设N= ③,∴将等式两边同时乘以5,④,由④ ③,得:,∴;∴ .【解析】【分析】(1)设M= ,将等式两边同时乘以3,然后按照材料中的方法进行计算,即可得到答案;(2)设N= ,将等式两边同时乘以5,然后按照材料中的方法进行计算,即可得到答案.8.(1)-1;1;5(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 < 0则|x+1|﹣|x﹣1|+2|x-5|=x+1﹣(1﹣x)+2(5-x)=x+1﹣1+x+10-2x解析:(1)-1;1;5(2)解:当0≤x≤1时x+1>0,x﹣1≤0,x-5 0则|x+1|﹣|x﹣1|+2|x-5|=x+1﹣(1﹣x)+2(5-x)=x+1﹣1+x+10-2x=10(3)解:BC﹣AB的值不随的变化而改变,总为2秒时,点A表示的数为,点B表示的数为,点C表示的数为,此时,BC=()-()= ,AB=()-()= ,所以BC-AB=()-()=2∴BC﹣AB的值不随着时间t的变化而改变,总为2.【解析】【解答】解:(1)∵是最大的负整数,∴ =﹣1∵(c﹣5)2+| +b|=0∴c-5=0;a+b=0∴b=1;c=5【分析】(1)根据绝对值和完全平方式的非负性求值即可;(2)由0≤x≤1得出x+1>0;x﹣1≤0;x-5 0,然后根据绝对值的意义进行化简;(3)分别表示出t秒后,点A,B,C 所表示的数,然后根据两点间的距离求得BC,AB的长度,然后进行计算并化简. 9.(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ |x+4| = |x-(-4)| 表示x与-4两数在数轴上所对应的两点之间的距离, |x-2|解析:(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.10.(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2C解析:(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解11.(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:解析:(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:3t+2t=140,解得:t=28所以AP=56点P、Q重合时对应的数为56-20=36(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,即3t+2t=140-50,解得:t=18②当P、Q相遇之后,BP+AQ=140+50,即3t+2t=140+50,解得:t=38当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,分别求出t的值,即可解决问题.12.(1)解:∵a是最大的负整数,∴a=-1,∵|b-3|+(c+4)2=0,∴b-3=0,c+4=0,∴b=3,c=-4.表示在数轴上为:(2)解:BC=3-(-4)=7,则运解析:(1)解:∵a是最大的负整数,∴a=-1,∵|b-3|+(c+4)2=0,∴b-3=0,c+4=0,∴b=3,c=-4.表示在数轴上为:(2)解:BC=3-(-4)=7,则运动时间为秒(3)解:设点M表示的数为x,使P到A、B、C的距离和等于13,①当M在点B的右侧,x-(-4)+x-(-1)+x-3=13.解得x= ,即M对应的数是 .②当M在C点左侧,(-4)-x+(-1)-x+3-x=13.解得x=-5,即M对应的数是-5.综上所述,点M表示的数是或-5【解析】【分析】(1)根据最大的负整数是1,可得到a的值,再利用几个非负数之和为0,求出b,c的值,然后根据a,b,c的值在数轴上标出A、B、C的位置。

七年级数学试卷有理数解答题试题(含答案)100

七年级数学试卷有理数解答题试题(含答案)100

七年级数学试卷有理数解答题试题(含答案)100一、解答题1.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.2.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.3.如图,点A从原点出发沿数轴向左运动,同时点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒)(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上点A时,C点立即停止运动,若C点一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?4.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.5.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)6.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.7.如图,在数轴上A点表示的数是-8,B点表示的数是2。

七年级数学试卷有理数解答题练习题(含答案)

七年级数学试卷有理数解答题练习题(含答案)

七年级数学试卷有理数解答题练习题(含答案)一、解答题1.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.2.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值4.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.5.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.6.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.7.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。

七年级数学试卷有理数解答题试题(含答案)

七年级数学试卷有理数解答题试题(含答案)

七年级数学试卷有理数解答题试题(含答案)一、解答题1.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.2.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”) (2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.3.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.4.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.5.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.6.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.7.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.8.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有理数》拓展提优试卷【单元综合】1. 下列说法正确的个数是( )①一个有理数不是整数就是分数; ②无限循环小数是无理数;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.A.1B.2C. 3D. 4 2. 已知n 为正整数,则221(1)(1)nn +-+-=( )A.2-B.1-C.0D.2 3. 16--的相反数是( ) A.16 B.16- C.6 D.6- 4. 下列等式成立的是( )A.88-=B.(1)1--=-C.11(3)3÷-=D.236-⨯= 5. 某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000用科学记数法可表示为( )A. 46010⨯B. 5610⨯ C. 4610⨯ D. 60.610⨯6. 数学家发明了一个魔术盒,当任意有理数对(,)a b 进入其中时,会得到一个新的有理数:21a b +-+ b -.例如,把(3,2)-放入其中,就会得到23(2)16+--=.现将有理数对(1,3)-放入其中,得到有理数m ,再将有理数对(,1)m 放入其中后,得到的有理数是( )A.3B.6C.9D.12 7. 观察图中正方形四个顶点所标的数字规律,可知数2 017应标在( )A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角8. 0.2-的倒数的绝对值是 .9. 在数轴上,大于 2.5-且小于3. 2的整数有 . 10. :时,输出的数据是 .11. 如图所示,数轴的单位长度为1,,,,P A B Q 是数轴上的4个点,其中点,A B 表示的数互为相反数.(1)点P 表示的数是 ,点Q 表示的数是 ;(2)若点P 向数轴的正方向运动到点B 右侧,且以线段BP 的长度为边长作正方形,当该正方形的周长为12时,点P 在数轴上表示的数是 ;(3)若点A 以每秒1个单位长度的速度向数轴的正方向运动,点B 也以每秒1个单位长度的速度向数轴的负方向运动,且两点同时开始运动.则当运动时间为 秒时,,A B 两点之间的距离恰好为1.12. 计算:(1)222223()4(1)8()333-⨯--⨯--÷(2)153(8)()1561210-⨯--+⨯13. 先化简,再在数轴上表示下列各数,并用“<”号连接起来.2017231243,0,3,(2),(2),28------+--14. 小军在计算6(42)67-÷时,使用运算律解题过程如下:解:66116116(42)6(42)427677667677-÷=-+⨯=-⨯+⨯=-+=- 他的解题过程是否正确?如果不正确,请你帮他改正.15. 小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为,,,A B C D ,学校位于小明家西150米,邮局位于小明家东100米,图书馆位于小明家西400米. (1)用数轴表示,,,A B C D (以小明家为原点);(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明约在什么位置?距图书馆和学校各约多少米?16. 某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入.下表是某周的生产情况(增产记为正、减产记为负):(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;(3)该厂实行每日计件工资制,每生产一盏景观灯可得60元,若超额完成任务,则超过部分每盏另奖20元,若未能完成任务,则少生产一盏扣25元,那么该厂工人这一周的工资总额是多少元?【拓展训练】1. 定义:(,)(,)f a b b a =,(,)(,)g m n m n =--,例如(2,3)(3,2)f =,(1,4)(1,4)g --=,则((5,6))g f -等于( )A.(6,5)-B.(5,6)--C.(6,5)-D.(5,6)- 2. 一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15……按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A.18升 B. 19升 C. 110升 D.111升 3. 法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算8⨯9和7⨯8的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7⨯9,左、右手依次伸出手指的个数是( )A.2,3B. 3 ,3C. 2 ,4D. 3 ,4 4. 如图,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示1-的点重合,则表示2-的点与表示 的点重合; 操作二:(2)折叠纸面,使表示1-的点与表示3的点重合,回答下列问题: ①表示5的点与表示 的点重合;②若数轴上,A B 两点之间的距离为9(A 在B 的左侧),且折叠后,A B 两点重合,则点A 表示的数为 ,点B 表示的数为 .5. 小明在电脑上设计了一个有理数运算程序:输入a ,按*键,再输入b ,得到31*[2(1)]()a b a b a a b b=----÷-的值.(1)求12*()3-的值;(2)小艳在运用此程序进行计算时,屏幕显示“该程序无法操作”,你猜小艳在输入数据时,可能是出现了什么情况?为什么?6. 已知,A B 在数轴上分别表示数,a b ,给出如图所示的数轴.试用含,a b 的式子表示,A B 两点间的距离.【模拟精练】1. 与2-的和为0的数是( )A.2-B.12-C.12D.2 2. 计算36---的结果为( )A.9-B.3-C.3D.93. 与a b -互为相反数的是( )A.a b +B.a b -C.b a --D.b a - 4. 下列式子中成立的是( )A.54-->B.33-<-C.44--=D. 5.55-< 5. 下列关于1的说法中,错误的是( )A.1的绝对值是1B.1的倒数是1C.1的相反数是1D.1是最小的正整数6. 如图,数轴上有,,,A B C D 四个点,其中绝对值为2的数对应的点是( )A.点A 与点CB.点A 与点DC.点B 与点CD.点B 与点D 7. 检查4个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:则质量较好的篮球的编号是( )A.1B. 2C. 3D.48. 如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个……按此规律,则第6个图形中面积为1的正方形的个数为( )A.20B.27C.35D.40 9. 计算:(3)24-⨯+= .10. 观察给出的一列数,按某种规律填上适当的数:1,2,4,8,- , . 11. 在计一数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:将二进位制数10101010写成十进位制数为 . 12. 把下列各数分别填入相应的集合里:4224,,0,, 3.14,2017,(5),0.56737-----+… (不循环),0.202200220002…(1)整数集合:{ …} (2)分数集合:{ …} (3)无理数集合:{ …} (4)有理数集合:{ …} 13. 画一条数轴,并在数轴上表示:3. 5和它的相反数、12-和它的倒数、绝对值等于3的数、最大的负整数和最小的正整数,并把这些数用“<”号连接起来.14. 计算:(1)75125[()]18126936--+--÷(2)3[2(8)(0.125)]-----⨯-(3)222222(2)(3)()443---+-⨯--÷-15. 现有一组有规律排列的数: 1,1,2,2,3,3,1,1,2,2,3,3------,…,其中1,1,2,2,3,3---这六个数按此规律重复出现.问:(1)第50个数是什么?(2)把从第1个数开始的前2 015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,若和为510,则共有多少个数的平方相加?【真题强化】1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收人100元记作100+,那么80-元表示( ) A.支出20元 B.收入20元 C.支出80元 D.收入80元2. 如果a 与3互为倒数,那么a 是( )A.3-B.3C.13-D. 133. 杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B. 19. 9千克C.20.1千克D. 20. 3千克 4. 在实数2-,2,0,1-中,最小的数是( )A. 2-B. 2C. 0D. 1- 5. 若等式011=-成立,则内的运算符号为( )A.+B.-C. ⨯D. ÷ 6. 数轴上点,A B 表示的数分别是5,3-,它们之间的距离可以表示为( ) A.35-+ B.35-- C.35-+ D.35-- 7. 下列说法正确的是( )A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是18. 如图.数轴上点P 对应的数为p ,则数轴上与数2p-对应的点是( )A.点AB.点BC.点CD.点D9. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为( )A.32.810⨯ B.32810⨯ C.42.810⨯ D.50.2810⨯10. 如图,四个有理数在数轴上的对应点,,,M P N Q ,若点,M N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点PD.点Q 11. 若有理数,m n 满足22(2014)0m n -+-=,则m n += . 12. 按照如图所示的操作步骤,若输入的值为3,则输出的值为 .13. 定义一种新运算2*x y x y x +=,如:2212*122+⨯==,则(4*2)*(1)-= . 14. 观察下列各式:3211=332123+= 33321236++=33332123410+++=猜想333312310++++=… .15. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1,2,3,4,接着甲报5,乙报6……后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为 . 16. 计算:2122(3)-+⨯-17. 计算:3423(5)-++⨯- 18.请你参考黑板中老师的讲解,用运算律简便计算: (1)999(15)⨯- (2)413999118999()99918555⨯+⨯--⨯参考答案【单元综合】1.B2.C3.A4.A5.C6.C7.D8. 59. -2,-1,0,1,2,3 10.86511.(1)-4 5 (2)6 (3)52或7212.(1)2203- (2)34 13. 在数轴上表示如下用“<”号连接为22017312433(2)0(2)28--<--<+-<<<---14.不正确.正解: 61(42)6777-=-÷ 15.(1)如图所示:(2)小明从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,走的路程约为50×8 = 400(米),由图知,C,D 之间相距500米,此时小明在学校与图书馆之间,距图书馆约100米,距学校约150米.16. (1)(3-5-2 +9-7+12-3 ) + 300×7=2 107(盏).(2)产量最多的一天生产景观灯300+12=312(盏),产量最少的一天生产景观灯300-7=293(盏), 312-293=19(盏).产量最多的一天比产量最少的一天多生产景观灯19盏 (3) 2 107×60+(3+9+12) ×20-(5+2+7+3) ×25 = 126 475(元). 该厂工人这一周的工资总额是126 475元. 【拓展训练】1.A2.D3.C4.(1)2(2)①-3②-3. 5 5.5 5.(1)20421- (2) 有两种可能,输入的数据有0b =或a b =的情况,此时分母或除数为0. 6.(1)表中从左到右依次填:1,5,3,1.对照数轴,表示2,3的点均在原点的右侧,距原点的距离分别为22,33==,因为321-=,所以当2,3a b ==时,A,B 两点间的距离为1.同理可求得其他对应的数值依次为5,3,1.(2)由(1)知,113223,53(2)23=-=-=--=--,30330,=-=-12(3)3(2)=---=---所以用含,a b 的式子表示A,B 两点间的距离为a b -或b a -.【模拟精练】1.D2.A3.D4.B5.C6.B7.D8.B9. -210. 16 -32 11. 17012.(1)整数集合:{ 4,0,2017,(5),--+⋅⋅⋅}(2)分数集合:{ 422,, 3.14,37---⋅⋅⋅} (3)无理数集合:{ 0.567⋅⋅⋅(不循环 ),0.202200220002… , …} (4)有理数集合:{ 4224,,0,, 3.14,2017,(5),37-----+…} 13. 3. 5的相反数是-3.5,12-的倒数是-2,绝对值等于3的数是+3和-3, 最大的负整数是-1, 最小的正整数是1.画出数轴,表示出题中各数如图所示:把这些数用“<”号连接起来为13.532113 3.52-<-<-<-<-<<<14.(1)-3 (2)0 (3)-1815. (1)因为50÷6 =8……2,所以第50个数是-1.(2)因为2 015÷6=335……5,1+(-1) +2+(-2) +3+(-3) =0,1+(-1)+2+(-2) +3=3,所以从第1个数开始的前2 015个数的和是3.(3)因为12+(-1)2+22+(-2)2 +32 +(-3)2=28,510÷28=18……6,且12+(-1)2+22 =6,18×6+3=111,所以共有111个数的平方相加.【真题强化】1.C 2.D 3.C 4.A 5.B6.D7.D8.C9.C 10.C11. 201612. 5513. 014. 55215. 416. 1717. -318. (1)-14985 (2)999001。

相关文档
最新文档