【北师大版】七年级数学上《3.3整式》课件
七年级数学上册 第3章 整式的加减 3.3 整式 3.3.3 升幂排列与降幂排列课件
第九页,共十八页。
6.已知多项式 7x2y2-xy3+3x4y-2y5+x3. (1)它是几次几项式? (2)字母 x 的最高次数是多少? (3)字母 y 的最高次数是多少? (4)将多项式按 x 进行升幂排列; (5)将多项式按 y 进行降幂排列. 解:(1)它是五次五项式; (2)字母 x 的最高次数是 4 次; (3)字母 y 的最高次数是 5 次; (4)-2y5-xy3+7x2y2+x3+3x4y; (5)-2y5-xy3+7x2y2+3x4y+x3.
第3章 整式(zhěnɡ shì)的加减
3.3 整式(zhěnɡ shì) 3. 升幂(shēnɡ mì)排列和降幂排列
学习指南 知识管理 归类探究 当堂测评 分层作业
第一页,共十八页。
学习指南
教学目标 了解升幂排列与降幂排列的意义,能把一个多项式按要求进行升幂或降幂排列. 情景问题引入
第二页,共十八页。
第八页,共十八页。
4.多项式 x5y2+2x4y3-3x2y2-4xy 是( B )
A.按 x 的升幂排列
B.按 x 的降幂排列
C.按 y 的升幂排列
D.按 y 的降幂排列
5.把多项式12x2y-13x3y2-3+6xy3 按字母 x 的降幂排列是 _____-__13_x_3_y_2+__12_x_2_y_+__6_x_y_3-__3________.
8.已知一个多项式是关于 x、y 的,每一项都是四次式,且系数都为-1 的五项 式,请你构造出这一多项式,并按 x 的降幂排列.
解:这五个四次式分别为-y4、-x2y2、-xy3-x3y、-x4,按 x 的降幂排列为 -x4-x3y-x2y2-xy3-y4.
第十六页,共十八页。
3.3 探索与表达规律 课件 (共26张PPT) 北师大版数学七年级上册
27 28 29 30 31
探究2:日历图的套色方框中的 9 个数之和与该方框 正中间的数有什么关系?
套色方框 9 个数之和是 90,是正中间的数 10 的 9 倍。
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 “X”形
20 21 22 23 24 25 26
27 28 29 30 31
归纳总结
探索规律的一般步骤:
具
观
体
察
问
、 比
题
较
猜
表
想
示
规
规
律
律
回头 重新
得 出 结 论 验 证 成立 规 律 不成立
27 28 29 30 31
探究2:这个关系对任何一个月的日历都成立吗? 为什么? 成立
猜想: 绿色方框中九个数之和 = 9×正中间的数
用代数式表示: a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8 (a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
我的结果是27。
你心里想的数 是78。
3.3整式北师大版七年级数学上册习题ppt
0既不是单项式也不是多项式
因为3x2ny5-m的次数也是6,所以2n+5-m=6,所以n=2.
(1)这组单项式的系数的符号规律是(-1)n(或负号、正号依次出现),系数的绝对值规律是
2n-1(或从1开始的连续奇数) ;
(1)这组单项式的系数的符号规律是(-1)n(或负号、正号依次出现),系数的绝对值规律是
C.3
D.4
5.对于多项式3x2-y+3x2y3+x4-1,下列说法正确的是( C )
A.次数为12
B.常数项为1
C.项数为5
D.最高次项为x4
-3-
3. 3 整
式
知识要点基础练
综合能力提升练
拓展探究突破练
知识点 3 整式
6.下列各式中,不是整式的是( B )
A.6ab
B.
C.a+1
7.(改编)在代数式 2xy,0,3
3. 3 整
式
知识要点基础练
综合能力提升练
拓展探究突破练
16.已知多项式x4-y-3xy-2xy2-5x2y3-1,按要求解答下列问题:
(1)写出该多项式的各项;
解:各项分别是x4,-y,-3xy,-2xy2,-5x2y3,-1.
(2)该多项式的次数是 5 ,三次项的系数是 -2 ;
(3)若|x+1|+|y-2|=0,试求该多项式的值.
已知多项式x4-y-3xy-2xy2-5x2y3-1,按要求解答下列问题:
下列说法中,正确的是( D )
(2)各项分别为3x2,-38x4y,-2.
(2)这组单项式的次数的规律是 从1开始的连续自然数 ;
3.3 整式(七年级数学课件)
新知探究
1.多项式x2+y-z是单项式_x_2_,__y_,_-_z_的
和,它是_二__次_三__项式.
2.多项式3m3-2m-5+m2的常数项是__-_5_,二次
项是__m_2__,二次项的系数是___1__.
新知探究
多项式的应用 例5 如图所示,用式子表示圆环的面积.当R 15 cm,
新知探究
例6 小红和小兰房间窗户的装饰物如图所示,它 们分别由两个四分之一圆和四个半圆组成(半径 分别相同).
π ab b2
8
a b
a
π ab b2
32
b
(1)窗户中能射进阳光的部分的面积分别是多少? (2)你能指出其中的单项式或多项式吗?它们
的次数分别是多少? 都是多项式,次数都是2次
做一做
③-ab3c2的次数是0+3+2;(× )
④-a3的系数是-1; (√ )
勿遗漏a的
⑤-32x2y3的次数是7;(× )
指数1
⑥1 3πr2h的源自数是1 3.( ×
)
-32是系数
π是系数 的一部分
新知探究
归纳总结
1.单项式的系数:单项式中的数字因数.若一个单 项式只含有字母因数,那么它的系数就是1或-1;若 单项式是单独一个数,则系数就是它本身.
(2)整个操场的面积是多少?
π
b 2
2
ab
这两个式子都是代数式,那么不同的代数式之
间又有哪些区别和联系呢?
新知探究
单项式的相关概念
用含有字母的式子填空
1. 棱长为a的正方形的表面积为_6_a_2_ ;体积为_ a_3_. 2. 铅笔的单价为x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是 2.5x 元. 3. 一辆汽车的速度是vkm/h,它t小时的行驶路程为 vt km. 4. 一个圆的半径是r cm,它的周长是 2πr cm.
北师大版数学七年级上册3.3《整式》教案
北师大版数学七年级上册3.3《整式》教案一. 教材分析《北师大版数学七年级上册3.3《整式》》这一节主要讲述了整式的概念、分类和运算法则。
整式是初等代数中的基本概念,对于学生来说,理解整式的概念和掌握整式的运算法则是非常重要的。
本节课的内容是学生学习更复杂代数式的基础,对于提高学生的数学思维能力和解决实际问题具有重要意义。
二. 学情分析七年级的学生已经掌握了实数和代数式的基本知识,对于代数式的运算也已经有一定的了解。
但是,学生对于整式的概念和分类可能还存在一定的困惑,需要通过实例和讲解来加深理解。
此外,学生对于整式的运算法则的掌握可能还不够熟练,需要通过大量的练习来巩固。
三. 教学目标1.理解整式的概念,能够正确判断一个代数式是否为整式。
2.掌握整式的分类,能够正确区分单项式、多项式等。
3.掌握整式的运算法则,能够进行整式的加减乘除运算。
4.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.整式的概念和分类。
2.整式的运算法则。
五. 教学方法采用讲解法、实例分析法、练习法、小组合作法等教学方法。
通过讲解和实例分析,使学生理解整式的概念和分类;通过练习,使学生掌握整式的运算法则;通过小组合作,培养学生的合作意识和解决问题的能力。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入整式的概念。
例如,某商店进行打折活动,原价为100元,打8折后的价格为80元,求打折后的价格。
引导学生思考,如何用数学表达式来表示这个问题。
从而引出整式的概念。
2.呈现(10分钟)讲解整式的概念和分类。
整式是由数字、变量和运算符组成的代数式。
根据整式中变量的个数和次数,可以分为单项式、多项式等。
单项式是只有一个变量或常数的整式,例如3x、-5、2x2等。
多项式是有两个或两个以上变量或常数的整式,例如x2+2x-1、3a+4b-5等。
3.操练(15分钟)进行整式的加减乘除运算。
原七年级数学上册3.3整式课件(新版)北师大版
11.代数式①-56bc;②15x-x2+1;③-x2yz;④2x2-1;⑤x2+2xy +y2;⑥x+2 y;⑦m-3 n;⑧5+a b中,是单项式的是①__③__,是多项式的 是___②__④__⑤__⑥__⑦______,是整式的是__①__②__③_④__⑤__⑥_⑦______.(填序号)
第七页,共13页。
15.若一个多项式的次数是 5,则这个多项式的任何一项的次数( A ) A.都不大于 5 B.都不小于 5 C.都等于 5 D.都小于 5 16.(2015·临沂)观察下列关于 x 的单项式,探究其规律:x,3x2,5x3, 7x4,9x5,11x6,…,按照上述规律,第 2016 个单项式是( C ) A.2016x2016 B.4031x2015 C.4031x2016 D.4032x2016 17.已知多项式 x2+12xy4-xm+1y-6 是六次四项式,且单项式 2x5-my3n 与该多项式的次数相同,则 m=__4__,n=_53___.
第三页,共13页。
6.对于多项式 1-2x+12x2 的说法,错误的是( B ) A.是二次三项式
B.是由 1,2x,12x2 三项组成
C.最高次项的系数是12 D.第二项的系数是-2 7.(2016·晋中实验月考)多项式 x-x2y+3xy 的次数及最高次项的系数 分别是( A ) A.3,-1 B.2,-1 C.5,-1 D.2,3 8.对于多项式-x2yz+2xy2-xz-1 是_四___次_四___项式,最高次项的系 数是__-_1_,知识点❸ 整式 9.代数式 7x2y-1y,3ab+b2,-23a2b+12,x1y,-5 中,不是整式的有( B ) A.1 个 B.2 个 C.3 个 D.4 个 10.下列说法正确的是( B ) A.整式就是多项式 B.π是整式 C.-20716xy2 的系数是-17 D.a+3 2是单项式
3.3 整式-七年级数学上册课件(北师大版)
二、新知探究
方法归纳
确定多项式的项和次数的“五注意”:
(1)多项式的各项应包括它的符号;
(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包
括它的符号;
(3)一个多项式的最高次项可以不唯一;
(4)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个
单项式的次数之和;
(5)多项式的“项”与“项数”是两个不同的概念,“项”是指组成多项式的单
单独一个数或一个字母也是单项式.
例如:像-2,a,-b等是单项式.
注意:像 +
, , 等不是数字与字母乘积的形式,因此不是单项式.
二、新知探究
想一想:(2)观察下面这些式子又有什么特点呢?
400m+400n ,50-5x, − , − ,ab+ac+bc .
做一做:(1)如图,一个十字形花坛铺上了草皮,
c
c
平方米;
a
(2)当水结冰时,其体积大约会比原来增加 ,x立方米的水结
成冰后体积约为
立方米;
( + ) =
二、新知探究
(3)如图,一个长方体的箱子紧靠墙角,
它的长、宽、高分别是 a,b,c.这个
箱子露在外面的表面积是
ab+ac+bc ;
整式
项:多项式中的每个单项式叫多项式的项.
(其中不含字母的项叫做常数项)
多项式
次数:多项式中次数最高的项的次数.
六、作业布置
习题3.4
单项式2m,-ab c,a,- x的系数分别为2,-1,1,- .
2024年北师大版七年级上册数学同步课件第三章第1节第3课时整式
知识点2:单项式的系数和次数(重点) 1.系数:单项式中的数字因数叫作这个单项式的系数。 2.次数:单项式中所有字母的指数和叫作这个单项式的次数。
注:①单项式的系数包括它前面的符号,且只与数字因数有关, 而单项式的次数只与字母的指数有关;②确定一个单项式的次数 时,没有写指数的字母,实际上指数是“1”,计算时不能将其遗 漏;不要把系数的指数当成字母的指数一同计算。
解:(2)因为该整式是关于x的二次单项式,所以m+2=1,n-1= -2,解得m=-1,n=-1。 (3)因为该整式是关于x的二次二项式, 所以①(n-1)xm+2这一项不存在,原整式是关于x的二次二项式, 则n-1=0,即n=1,m为大于-2的任意整数; ②若(n-1)xm+2的次数为1,系数不为-2,原整式是关于x的二次 二项式,则m=-1,n≠-1; ③(n-1)xm+2的次数为2,系数不为3,原整式是关于x的二次二项 式,则m=0,n≠4。
+6y+9 中,哪些是单项式?哪些是多项式?哪些是整式?
解:单项式:12x2y,-15b2,0;多项式:5x2-16y2,x+3 3,y2+6y+9; 整式:21x2y,-51b2,5x2-16y2,x+3 3,0,y2+6y+9。
【题型二】确定单项式的系数和次数 例2:填表:
单项式 系数 次数
-2a5 -2 5
3h -xy2 3 -1
2
3
πt2 -32vt π -23
2
2
例3:已知单项式-
2 3
xy2m-1与-22x2y2的次数相同。
(1)求m的值值。
解:(1)根据题意,得1+2m-1=2+2,解得m=2。
(2)因为m=2,所以- 2 xy2m-1=-
B.常数项是1
北师大版七年级数学上册 第三章3 整式的加减
用括号括起来。(2)整式加减的最后结果中:①不能含有同类项, 即要合并到不能再合并为止;②不能出现带分数,带分数要化 成假分数。
知识点2:整式化简求值的步骤(重难点) 一化:利用整式加减运算法则将整式化简;二代:把已知字母或某 个整式的值代入化简后的式子; 三计算:依据有理数的运算法则进行计算。
例4:一名同学做一道题,“已知两个多项式A、B,计算A+B” 时,
他误将A+B看成A-B,求得结果是9x2-2x+7,若B=x2+ 3x解:A=9x2-2x+7+x2+3x-2=10x2+x+5,所以A+B=
1-0x22,+求x+出5A++xB2+的3正x确-答2=案1。1x2+4x+3。
【题型三】整式加减运算中的无关型问题(拓展) 例5:已知代数式A=x2+xy-2y,B=2x2-2xy+x-1。
【题型一】整式的加减运算
例1:化简:(1)(7m2n-5m)-(4m2n-5m);(2)2x2{- 5x -1 ( x-3) 2
+ 2}x2 。
解:(1)原式=7m2n-5m-4m2n+5m=3m2n。(2)原式=2x2-5x +
12x-3-2x2=-92x-3。
例 2:先化简,再求值:21x2+2x2-3xy+13y2-332x2-2xy-19y2, 其中x,y满足(x-2)2+|y+3|=0。
如果用a,b分别表示一个两位数的十位数字和个位数字,那 么这个两位数可以表示为10a+b。交换这个两位数的十位 数字和个位数字,得到的数是10b+a,这两个数相加得 (10a+b)+(10b+a)=11a+11b
2.请同学们在完成上面任务后思考以下问题:
两个数相减后的结果有什么规律?这个规律对任意一个三位数都 成立吗? 规律是它们的差为百位数字与个位数字的差的99倍,对任意一个 三位数都成立
北师大数学七年级上册第三章 整式
课堂检测ቤተ መጻሕፍቲ ባይዱ
3.3 整式/
基础巩固题
5.已知多项式:3xm-(n-1)x2+1. (1)当多项式是二次二项式时,求m,n的取值范围; (2)当多项式是二次三项式时,求m,n的取值范围.
解:(1)因为多项式是二次二项式, 所以m=2,n-1≠3,或m=0,n-1≠ 0. 所以m=2,n≠4,或m=0,n≠1.
3 n
;④
12x+1中,下列判
断正确的是( D )
A.①③是单项式 C.②④是多项式
B.②是二次三项式 D.①④是整式
连接中考
3.3 整式/
按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第
n个单项式是( C )
A.(-1)n-1x2n-1
B.(-1)nx2n-1
C.(-1)n-1x2n+1
(1)45x4+25x2-1;
(2)2xy + xy;
(3)a3+2ab3+b3-a3b2; (4)a+bb;
解: 45x4+25x2-1 ,a3+2ab3+b3-a3b2是多项式;
45x4+25x2-1是四次三项式, a3+2ab3+b3-a3b2是五次四项式.
探究新知 方法点拨
3.3 整式/
(1)判断一个代数式是不是多项式,首先要根据多项式 的概念,考虑它的每一项是不是单项式;
探究新知
3.3 整式/
练一练 下列式子中哪些是单项式?
xy 3
,
5a ,
-
3 4
xy2z
,
a,
x- y,
√√
√√
2024年秋新北师大版七年级上册数学教学课件 3.3 探索与表达规律课时1
新知探究 知识点 日历中的数学规律
思考2:在某个月的日历中,恰好有五个星期日位于同
一列且日期数的和为80,这个月的第一个星期日是几号?
解:假设这个月的第一个星期日是m号,
则m+(m+7)+(m+7+7)+(m+7+7+7)+ (m+7+7+7+7)=80,
此时中间数为405,其余四个数分别为
......
395 ,403 ,407 ,415.
d=__a_+__5_.(用含a的式子填空)
随堂练习
(2)用一个长方形框框出日历中的三个数(图3中的阴影),如果 这三个数的和等于51,那么这三个数各是多少?
解:设中间的数为x,则上面的数为
x-7,下面的数为x+7.
根据题意,得(x-7)+x+(x+7)=51,
所以x=17.
图3
所以这三个数分别是10,17,24.
纵列相邻两数相差7
所以m=2,
所以这个月的第一个星期日是2号.
新知探究 知识点 日历中的数学规律 思考3:如果将方框改为十字形框,你能发现哪些规律?
7+13+14+15+21=70 =14×5.
十字形框中5个数的和等于正中间的数的5倍.
新知探究 知识点 日历中的数学规律 思考4:如果将方框改为H形框,你能发现哪些规律?
随堂练习
3.将连续的奇数1,3,5,7,9,…排成如图所示的数表.
(1)十字形框中的五个数之和与中间数
15有什么关系?
1 3 57 9
3.3整式
第三章 整式及其加减
第三节
整式
沈阳市第一七四中学
探索新知
用含有字母的式子填空: 1、边长为x的正方形的周长是 4x 。 2、一辆汽车的速度是v千米/小时,行驶t小时所走过 的路程为 vt 千米。 6a2 3、棱长为a的正方体的表面积为 ,体积 为 a3 。 -n 4、设n表示一个数,则它的相反数是_______.
单项式的其他概念
2,单项式的次数
一个单项式中,所有字母的指数的和叫做 这个单项式的次数。 ab, a, 24ab3, 3的 次数分别是: 2, 1, 4, 0
注意:单独的数字不含字母,所以它 的次数是零次. 3的次数为0
-2 xy z
3
2 3
5r
2
3 2 5 4 2 2 - a b, - a, 2 x , 3 a y 4
归纳新知
t-5
1.上面各式中有单项式吗?将上面各式按和的形式 读出来;2.它们有什么共同特点?
1 2 ab - r 3x+5y+2z x2+2x+18 2 单项式+单项式
几个单项式的和叫做多项式。
1 2 2 2 ①a, ② - x y, ③ 2x - 1, ④x + xy + y . 3 2 2 多项式有 2 x - 1 , x + xy + y .
课堂小结
系数: 单项式中的数字因数 (包括前面符号) 项: 多项式中每一个单项式
单项式
(数与字母 次数: 单项式中所有字母的指数和 整 的乘积)
式
多项式
(几个单项 式的和)
次数: 多项式中次数最高项的次数
m次n项式
4 4.若-5xym-1为四次单项式,则m=____.
【北师大版】七年级数学上册:3.3《整式》ppt课件
3.下列各式中,属于多项式的是( )
A.a+b=b+a
x+y B. 2
a+b
π
C. c
D.3
4.下列式子中,既不是单项式,也不是多项式的是( )
A.x2+2
1 B.2xy
a
π
C.b
D.4
5.多项式-3x2-4x+3 的次数是________;多项式 2-6x +34xy-x63y的项数是________项,次数是________,最高次数 项的系数是________;多项式4a2b92+1的常数项是________;- π+4a2-13ab2c+25 是________次________项式.
6.当 a=3,b=2 时,代数式 a2-2ab+b2 的值是____. 7.当 a 为何值时,代数式(2-7a)x3-3ax2-x+7 是关于 x 的二次三项式?
课前热身 1.数字与字母乘积形式的代数式,数字,字母;几个单项 式的和,数字因数,各个字母的指数和,几个单项式,最高 2.单项式与多项式
2.______________________统称为整式.
随堂基演础练训(练10分钟)
知识点 1:单项式及相关概念 1.下列说法正确的是( ) A.单项式-34x2y的系数是-3,次数是 3 B.单项式 x 的系数为 0,次数为 1 C.单项式 22x3y2 的系数是 4,次数是 5 D.单项式 a 的系数为 1,次数为 0
初中数学课件
金戈铁骑整理制作
第三章 整式及其加减
3 整式
课
随
前
堂
热
演
身
练
课前基热础身训(练5分钟)
1.________________________叫做单项式,其中单独的一 个________或________也叫做单项式;___________________ 叫做多项式,单项式中__________________叫做这个单项式的 系数,________叫做这个单项式的次数,在多项式中,________ 叫做多项式的项,一个多项式中,次数________项的次数,叫 做这个多项式的次数,那么这个多项式就叫做几次几项式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.单项式 2x2 y 的系数是 2,次数是3 3
B.单项式a的系数是0, 次数是0
C. 3x2 y 4x 1是二次三项式
D.单项式 32 ab 的次数是2,系数为 9
2
2
小红和小兰房间窗户的装饰物如图所示,它们 分别由两个四分之一圆和四个半圆组成(半径分别 相同).
a
a
b
b
(1)窗户中能射进阳光的部分的面积分别是
多少?(窗框面积忽略不计)
小红和小兰房间窗户的装饰物如图所示,它们 分别由两个四分之一圆和四个半圆组成(半径分别 相同).
ab b2
8
a
ab b2
a
32
b
b
(2)你能指出其中的单项式或多项式吗?它
们的次数分别是多少?
单项式
整式 多项式
3 整式
做一做
(1)如图,一个十字形花坛铺上了草皮,此花坛共有草地
平方米
;
(2)当水结冰时,其体积大约会比原来增加
1
,x立方米的
水结成冰后体积约为
立方米;
9
做一做
(3)如图,一个长方体的箱子紧靠墙角,它的长、宽、高分
别是a,b,c。这个箱子露在外面的表面积是
;
(4)某件商品的成本价为a元,按成本价提高15%后标价,又
以八折销售,此件商品的售价为
元。
小明房间的窗户如图所示,其中上方的装
饰物由两个四分之一圆和一个半圆组成(他们
的半径相同)。
(1)装饰物所占 的面积是多少?
b2
16
a
(2)窗户中能射
进阳光部分的面积是多
少?
ab b2
b
16
下面两组式子各有什么特点?
(1)
16
b
2,ab
,a 2h
3 ,5
x
都是数与字母的乘积,这样的代数式叫做单项
式(monomial).
(2)ab
16
b
2
,2a+2b,
1 2
ab
1 2
mn
几个单项式的和叫做多项式(polynomial)
单项式
多项式 整式(integral expression)
单项式的次数(degree of monomial):一个单
项式中,所有字母的指数之和.
3 x 1次 5
2+1=3次
a2h
多项式的次数:一个多项式中,次数最高的项的
次数.
ab b2
16
2次
1 x2y 2y 1 3
2+1=3次
注意:
1.单独的一个数或一个字母也是单项式; 2.单独一个非零数的次数是0。 3.当单项式的系数为1或-1时,这个“1” 应省略不写。
例1.下列式子中哪些是单项式,哪些是多项式?
单项式:
xy , 5a, 3 xy2z, a, x m, m2 2m 1 x
xy , 5a, 3 xy2z, a, 1 , 3.14 , m
3
4
x
多项式:x—y, m2 2m 1
例2.下列说法中,正确的是( D )