高中化学元素周期表与阿伏伽德罗定律
阿伏伽德罗定律巧记
阿伏伽德罗定律巧记什么是阿伏伽德罗定律?阿伏伽德罗定律,也称为周期表定律,是化学中最基本的定律之一。
该定律描述了元素周期表中元素的排列规律和性质的周期性变化。
由于它的重要性和广泛应用,掌握阿伏伽德罗定律对于理解化学和进行科学研究至关重要。
阿伏伽德罗定律的历史阿伏伽德罗定律是由俄国化学家杜布尼尔于1869年发现并提出的。
他根据元素的原子量以及元素性质之间的相似性,将元素排列在一个表格中,这就是我们今天所熟知的周期表。
1869年3月6日,杜布尼尔在俄国化学会上首次公开发表了他的发现,并将这个表格称为“周期系统”。
随后,在法国化学家莫尔根特·桑斯特(Lothar Meyer)独立研究后不久,他也提出了类似的观点。
然而,在这两位科学家之前,英国化学家约瑟夫·普劳斯特(John Newlands)也提出了类似的周期性规律,但由于他的理论不够完善,没有得到广泛认可。
阿伏伽德罗定律的内容阿伏伽德罗定律主要包括以下几个方面的内容:1. 元素周期表元素周期表是根据阿伏伽德罗定律排列的。
它以原子序数递增的方式排列了所有已知元素,并将具有相似化学性质的元素放在同一垂直列中,称为“族”。
每个周期从左到右依次填充新的电子壳。
2. 周期性规律阿伏伽德罗定律指出,在元素周期表中,元素的物理和化学性质会随着原子序数的增加而呈现出一定的周期性变化。
例如,原子半径、电离能、电负性等性质会随着原子序数的变化而呈现出规律性的增减。
3. 周期表上的分组元素周期表中,元素按照它们最外层电子壳中电子数目不同而分为若干组。
这些组别通常被称为“主族”和“过渡族”。
主族元素的最外层电子壳通常填满或缺少几个电子,而过渡族元素则具有不完全填充的最外层电子壳。
4. 元素性质的周期变化根据阿伏伽德罗定律,元素周期表中元素的性质会随着原子序数的增加而呈现出周期性变化。
例如,金属性随着原子序数增加而减弱,非金属性则相应增强。
如何巧记阿伏伽德罗定律?虽然阿伏伽德罗定律是化学中非常重要的定律,但对于初学者来说,记住所有元素和它们的性质可能是一项艰巨的任务。
《阿伏加德罗定律》 讲义
《阿伏加德罗定律》讲义一、什么是阿伏加德罗定律阿伏加德罗定律是化学中的一个重要定律,它指出:在相同的温度和压强下,相同体积的任何气体都含有相同数目的粒子(分子、原子或离子)。
为了更好地理解这个定律,我们先来思考一个简单的例子。
想象有两个相同大小的气球,一个充满了氢气,另一个充满了氧气。
如果在温度和压强都相同的条件下,这两个气球的体积相同,那么根据阿伏加德罗定律,气球内氢气和氧气的粒子数目是相等的。
这个定律的提出,为我们研究气体的性质和进行相关的化学计算提供了重要的依据。
二、阿伏加德罗定律的数学表达式阿伏加德罗定律可以用一个简单的数学表达式来表示:V₁/ n₁= V₂/ n₂。
其中,V₁和 V₂分别表示两种气体的体积,n₁和 n₂分别表示它们的物质的量。
这个表达式告诉我们,在同温同压下,气体体积与物质的量成正比。
比如说,如果我们知道一种气体的体积和物质的量,又知道另一种气体的体积或者物质的量中的一个量,就可以通过这个公式计算出另一个量。
三、阿伏加德罗定律的推论基于阿伏加德罗定律,我们可以推导出一些非常有用的结论。
1、同温同压下,气体的体积比等于物质的量之比假设在相同的温度和压强下,有气体 A 和气体 B,它们的体积分别为 V₁和 V₂,物质的量分别为 n₁和 n₂。
根据阿伏加德罗定律的表达式 V₁/ n₁= V₂/ n₂,我们可以得到 V₁/ V₂= n₁/ n₂。
这意味着,如果我们知道两种气体的物质的量之比,就可以直接得出它们的体积之比;反之亦然。
2、同温同体积下,气体的压强比等于物质的量之比同样在一定温度和体积下,气体 A 和气体 B 的压强分别为 P₁和P₂,物质的量分别为 n₁和 n₂。
由理想气体状态方程 PV = nRT(其中 P 是压强,V 是体积,n 是物质的量,R 是气体常数,T 是温度),当温度和体积不变时,P₁/ n₁= P₂/ n₂,即 P₁/ P₂= n₁/n₂。
这个推论在研究化学反应中气体压强的变化时非常有用。
高中化学阿伏加德罗定律及其应用解析
相对分子量之比,也等于其摩尔质量之比
ρρ---1-2
===
Μ---- 1 Μ2
密度比
密度之比
1 V2 n2 2 V1 n1
A.相同质量的任何气体的密度之比都等于其
体积的反比
B.同温同压下等质量的任何气体的密度之比
都等于其物质的量的反比,也就是其分子个
数之比
1 m1 M 1 2 m2 M 2
阿伏加德罗定律及其应用
要决 因定 素物 (质 一体 定积 条大 件小 下的 )主
粒子数 粒子本身大小 粒子间距
任何气体 相同条件
固体、液体
气体 分子间平均距离
近似相等
条件相同:若气体分子数相同 气体所占体积 近似相等
一、阿伏加德罗定律
1、含义
同温、同压下,相同体积的任何气体含有 相同数目的分子。
分子组成可用OxFy表示。10mLA气体能分解生成
15mLO2和10mLF2(同温、同压)。
(1)A的化学式是
推断理由是 。
小结:
一般思路: (1)微粒个数比=物质的量之比=化学
方程式中各物质的系数比; (2)写出化学反应方程式; (3)由质量守恒定律确定生成物的分子式。
2、式量的确定
例题2、有一真空瓶的质量为m1g,该瓶充入氧气后总 质量为m2g;在相同状况下,若改充某气体A后,总 质量为m3g。则A的分子量为 32(m3–m1)/ (m2–m1) 。
2、数学表达式 相同条件下: V1/V2=N1/N2
注意: (1)“三同”定“一 同”。 (2)适用于气态物质。既适用于单一气体,
又适用于混合气体。
二、阿伏加德罗定律的几个推论
气体状态方程: PV= n R T ·······(1)
高一化学阿伏加德罗知识点
高一化学阿伏加德罗知识点阿伏加德罗常数是化学中非常重要的一个概念,它在化学计算中有着广泛的应用。
本文将介绍阿伏加德罗常数的定义、计算方法以及其在化学中的应用。
一、阿伏加德罗常数的定义阿伏加德罗常数是指在一定条件下,1摩尔气体在标准状态下的体积。
它的数值为6.02214076 x 10^23 mol^-1,通常简写为NA。
二、阿伏加德罗常数的计算方法阿伏加德罗常数可以通过实验数据与一些基本物理常数的关系计算得出。
其中,与阿伏加德罗常数相关的实验数据主要有电子电荷e、普朗克常量h和光速c等。
计算公式如下:NA = 6.02214076 x 10^23 mol^-1 = e / (h × c)三、阿伏加德罗常数在化学中的应用1. 摩尔质量计算根据阿伏加德罗常数,我们可以计算出物质的摩尔质量。
摩尔质量是指一摩尔物质的质量,单位为g/mol。
通过将物质的质量除以摩尔数,可以得到物质的摩尔质量。
2. 摩尔体积计算阿伏加德罗常数也可以用于计算气体的摩尔体积。
在标准温度和标准压力下,1摩尔气体的体积为22.4升。
由于摩尔体积与物质的摩尔数成正比,因此可以通过阿伏加德罗常数计算出气体的摩尔体积。
3. 科学计数法的使用阿伏加德罗常数是一个非常大的数值,为了方便使用,人们通常使用科学计数法表示阿伏加德罗常数。
科学计数法是一种用于表示非常大或非常小的数值的方法,可以简化计算过程,提高计算的准确性。
4. 化学方程式的平衡在一些化学方程式的平衡中,阿伏加德罗常数被用于计算摩尔比。
通过比较反应物与生成物的摩尔比,我们可以确定一个化学方程式是否平衡以及需要调整的系数。
总结:阿伏加德罗常数是化学中的重要概念,它用于计算摩尔质量、摩尔体积以及在化学方程式平衡中的应用。
通过深入理解和运用阿伏加德罗常数,我们可以更好地理解化学中的各种现象,为化学学习和实验提供准确的计算基础。
2023年高考必备阿伏加德罗常数及其定律相关知识点归纳
一、与“阿伏加德罗常数和阿伏加德罗定律”有关知识点归纳(一)阿伏加德罗常数有关知识归纳1. 阿伏加德罗常数旳概念及理解⑴概念:1 mol任何粒子旳粒子数叫阿伏加德罗常数, 一般用“NA”表达, 而6.02×1023是阿伏加德罗常数旳近似值。
⑵概念旳理解: ①阿伏加德罗常数旳实质是1mol任何粒子旳粒子数, 即12g12C所含旳碳原子数。
②不能说“含6. 02×1023个粒子旳物质旳量为1mol”, 只能说“含阿伏加德罗常数个粒子旳物质旳量为1mol”。
③阿伏加德罗常数与6.02×1023不能等同, 阿伏加德罗常数不是一种纯数, 它有单位, 其单位为“mol-1”, 而6.02×1023只是一种近似值, 它无单位。
2. 与阿伏加德罗常数有关旳概念及其关系①物质旳量物质旳量(n)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系: n=N/NA。
②摩尔质量摩尔质量(Mr)、阿伏加德罗常数(NA)与一种分子(或原子)真实质量(mr)之间旳关系: mr=Mr/ NA。
③物质旳质量物质旳质量(m)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系: m/Mr=N/ NA。
④气体体积气体体积(V)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系:V/Vm=N/NA, 当气体在原则状况时, 则有:V/22.4=N/ NA。
⑤物质旳量浓度物质旳量浓度(cB)、溶液旳体积(V)与物质旳量(nB)之间旳关系: cB= nB/V,根据溶液中溶质旳构成及电离程度来判断溶液中旳粒子数。
3. 有关阿伏加德罗常数试题旳设陷方式命题者为了加强对考生旳思维能力旳考察, 往往故意设置某些陷阱, 增大试题旳辨别度。
陷阱旳设置重要有如下几种方面:⑴状态条件考察气体时常常给出非原则状况(如常温常压)下旳气体体积, 这就不能直接用“22.4L/mol”进行计算。
⑵物质旳状态考察气体摩尔体积时, 命题者常用在原则状况下某些易混淆旳液体或固体作“气体”来设问, 困惑学生。
高一上学期化学第一次月考复习知识点:离子反应
高一上学期化学第一次月考复习知识点:离子反应化学的历史渊源非常古老,可以说从人类学会使用火,就开始了最早的化学实践活动,为大家推荐了高一上学期化学第一次月考复习知识点,请大家仔细阅读,希望你喜欢。
Ⅰ、基本概念与基础理论:一、阿伏加德罗定律1.内容:在同温同压下,同体积的气体含有相同的分子数。
即“三同”定“一同”。
2.推论(1)同温同压下,V1/V2=n1/n2 (2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1 (4)同温同压同体积时,M1/M2=ρ1/ρ2注意:①阿伏加德罗定律也适用于不反应的混合气体。
②使用气态方程PV=nRT有助于理解上述推论。
(博缔教育手摘)3、阿伏加德罗常这类题的解法:①状况条件:考查气体时经常给非标准状况如常温常压下,1.01×105Pa、25℃时等。
②物质状态:考查气体摩尔体积时,常用在标准状况下非气态的物质来迷惑考生,如H2O、SO3、已烷、辛烷、CHCl3等。
③物质结构和晶体结构:考查一定物质的量的物质中含有多少微粒(分子、原子、电子、质子、中子等)时常涉及希有气体He、Ne等为单原子组成和胶体粒子,Cl2、N2、O2、H2为双原子分子等。
晶体结构:P4、金刚石、石墨、二氧化硅等结构。
二、离子共存1.由于发生复分解反应,离子不能大量共存(博缔教育手摘)。
(1)有气体产生。
如CO32-、SO32-、S2-、HCO3-、HSO3-、HS-等易挥发的弱酸的酸根与H+不能大量共存。
(2)有沉淀生成。
如Ba2+、Ca2+、Mg2+、Ag+等不能与SO42-、CO32-等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能与OH-大量共存;Pb2+与Cl-,Fe2+与S2-、Ca2+与PO43-、Ag+与I-不能大量共存。
(3)有弱电解质生成。
如OH-、CH3COO-、PO43-、HPO42-、H2PO4-、F-、ClO-、AlO2-、SiO32-、CN-、C17H35COO-、等与H+不能大量共存;一些酸式弱酸根如HCO3-、HPO42-、HS-、H2PO4-、HSO3-不能与OH-大量共存;NH4+与OH-不能大量共存。
高一阿伏伽德罗常数知识点
高一阿伏伽德罗常数知识点高中生物中有一些基本的理论知识点是必须要掌握的,其中一个重要的概念就是阿伏伽德罗常数。
阿伏伽德罗常数是一个物理常数,它在化学和物理学中起着重要的作用。
本文将为你介绍阿伏伽德罗常数的定义、历史背景以及其在科学研究中的应用。
首先,我们来看一下阿伏伽德罗常数的定义。
阿伏伽德罗常数是一个表示物质中基本单位的数量的常数。
它的数值约为6.022 x 10^23,单位是mol-1。
阿伏伽德罗常数的精确值是由实验测定得出的,它是指在一个摩尔物质中的个体数目。
阿伏伽德罗常数得名于意大利物理学家阿莫德罗·阿伏伽德罗,他是19世纪末20世纪初最重要的物理学家之一。
阿伏伽德罗对物质的组成和性质进行了深入研究,并提出了阿伏伽德罗常数的概念。
他的贡献被广泛地应用在化学和物理学领域。
阿伏伽德罗常数在化学研究中有着重要的作用。
首先,它可以用来计算物质的摩尔质量。
例如,如果你知道一种物质的质量和摩尔数,那么你就可以使用阿伏伽德罗常数来计算每个摩尔的质量。
这对于化学实验和计算很有帮助。
其次,阿伏伽德罗常数还可以用来计算分子或离子的数目。
假设你知道一种物质的质量和摩尔质量,那么你就可以使用阿伏伽德罗常数来计算物质中分子或离子的个数。
这对于研究物质的组成和化学反应很有意义。
阿伏伽德罗常数还与分子和原子的质量关系密切相关。
根据阿伏伽德罗常数的定义,一个摩尔物质中的质量就是这种物质的分子或原子的质量。
所以,阿伏伽德罗常数可以帮助我们了解物质的组成和性质。
除了在化学中的应用,阿伏伽德罗常数在物理学中也有重要的意义。
在核物理学中,阿伏伽德罗常数被用来表示放射性物质的半衰期。
半衰期是指放射性物质衰变到一半所需要的时间,它与阿伏伽德罗常数的关系可以帮助我们研究核反应和放射性衰变。
此外,阿伏伽德罗常数也与光速和普朗克常数等物理常数之间存在一定的关系。
这些关系对于理解和研究量子物理学和相对论物理学的基本原理非常重要。
高中化学必修一 正确理解和使用阿伏伽德罗定理及其推论
阿伏加德罗定理及其推论的理解通常条件下,气体分子间的平均距离约为分子直径的10倍,此时,气体分子间的作用力其主要作用,维系分子之间的联系。
因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
平均距离的测定并不是精确测定的,也无法精确测定。
其方法是通过电子显微镜对分子间距离进行测定,然后将大量数据进行汇总,通过统计的方法进行计算得出。
因此可以说,阿伏加德罗定律是通过实验测定的,不是理论上直接推导出的。
阿伏加德罗定律 Avogadro's hypothesis定义:同温同压同体积的气体含有相同的分子数。
推论:(1)同温同压下,V1/V2=n1/n2(2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1(4)同温同压同体积时,M1/M2=ρ1/ρ2同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
分子间的平均距离又决定于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(气体分子间的作用微弱,可忽略),故定律成立。
该定律在有气体参加的化学反应、推断未知气体的分子式等方面有广泛的应用。
阿伏加德罗定律认为:在同温同压下,相同体积的气体含有相同数目的分子。
1811年由意大利化学家阿伏加德罗提出假说,后来被科学界所承认。
这一定律揭示了气体反应的体积关系,用以说明气体分子的组成,为气体密度法测定气态物质的分子量提供了依据。
对于原子分子说的建立,也起了一定的积极作用。
中学化学中,阿伏加德罗定律占有很重要的地位。
它使用广泛,特别是在求算气态物质分子式、分子量时,如果使用得法,解决问题很方便。
下面简介几个根据克拉伯龙方程式导出的关系式,以便更好地理解和使用阿佛加德罗定律。
阿伏伽德罗高考知识点
阿伏伽德罗高考知识点阿伏伽德罗(Dmitri Ivanovich Mendeleev)是一位著名的俄罗斯化学家,也是现代化学的奠基人之一。
他以其提出的元素周期表而闻名于世。
在高考中,对阿伏伽德罗的相关知识点的了解,不仅可以帮助我们答题,还有助于加深对化学的理解。
今天,我们就来探讨一下阿伏伽德罗在高考中的知识点。
1. 元素周期表的组成:元素周期表是化学中最重要的工具之一,通过它,我们可以对元素的性质和相互关系有所了解。
元素周期表由一系列周期和一序列组成。
周期指的是元素按照原子序数递增的顺序排列,而组则是指具有相似化学性质的元素排列在一起。
元素周期表按照一般情况下元素的物理、化学性质有规律地排列。
在元素周期表的左上角是氢元素,而右下角是镭元素。
2. 元素周期律:元素周期表的排列是根据元素周期律而进行的。
从左到右、从上到下,元素的原子序数递增。
阿伏伽德罗通过研究元素的性质和相互之间的关系,总结出了元素周期律。
元素周期律的核心概念是周期性和族性,周期性指的是元素的性质会随着原子序数的增加而周期性地重复出现;族性则指的是同一族的元素具有相似的化学性质和原子结构。
这些规律和周期性对我们在高考中理解和应用化学知识非常重要。
3. 元素的物理和化学性质:根据元素周期律,我们可以了解到各种元素的物理和化学性质。
阿伏伽德罗的周期表不仅包括元素的原子序数和元素符号,还包括元素的原子质量、电子亲和能、电离能等重要信息。
通过对这些信息的分析和比较,我们可以了解到不同元素的性质和它们之间的关系。
例如,同一周期内,元素的电子层次增加,原子半径递增,金属性和非金属性特征也会有所转变。
同一族的元素则具有相似的化学性质,例如,碱金属和卤素都属于同一族,它们具有较强的活泼性和容易失去或者获得电子的特征。
4. 元素的周期趋势:元素周期表中的元素具有明显的周期趋势。
其中,原子半径、电离能、电子亲和能和电负性是最为重要的周期趋势。
这些周期性的变化反映了元素的性质和原子结构的改变。
高中化学必修一知识点归纳总结
高中化学必修一知识点归纳总结一、基本概念与定义1. 物质的量:表示一定数量粒子的集合体,单位是摩尔(mol)。
2. 阿伏伽德罗常数:1摩尔物质中所含有的粒子数,约为6.022 x 10^23。
3. 物质的量浓度:单位体积溶液中所含物质的量,单位是摩尔每升(mol/L)。
4. 溶液的pH值:表示溶液酸碱性的量度,pH = -log[H+]。
5. 氧化还原反应:一种化学反应,其中电子从一个物质转移到另一个物质。
二、元素周期表1. 元素周期律:元素的性质随原子序数的增加呈现出周期性变化。
2. 周期表的分区:分为s区、p区、d区、ds区和f区。
3. 主族元素:周期表中s区和p区的元素。
4. 过渡元素:周期表中d区的元素。
5. 稀有气体:周期表中最后一组元素,化学性质稳定。
三、化学键1. 离子键:正负离子之间的静电吸引力。
2. 共价键:两个或多个原子共享电子对形成的化学键。
3. 金属键:金属原子间的电子共享,形成“电子海”。
4. 氢键:分子间的一种较弱的相互作用力。
四、化学反应原理1. 化学反应速率:单位时间内反应物质的消耗速度或生成物质的生成速度。
2. 化学平衡:反应物和生成物浓度不再变化的状态。
3. 莱-夏特列原理:当一个处于平衡状态的系统受到外部条件改变时,系统会自发地调整,使得这种改变被抵消。
4. 酸碱理论:布朗斯特-劳里酸碱理论,酸是质子(H+)的供体,碱是质子的受体。
五、溶液与电解质1. 溶液:一种或几种物质分散在另一种物质中形成的均一混合物。
2. 饱和溶液:在一定温度下,溶质在溶剂中的溶解达到最大值的溶液。
3. 电解质:在水溶液或熔融状态下能导电的物质。
4. 非电解质:在水溶液或熔融状态下不导电的物质。
六、常见物质的性质与变化1. 酸碱盐的性质:酸能与碱反应生成盐和水,盐能与酸或碱反应。
2. 氧化还原反应的特征:氧化剂得到电子被还原,还原剂失去电子被氧化。
3. 沉淀反应:两种溶液混合时生成不溶于水的固体(沉淀)的反应。
高一化学必修一讲义:阿伏加德罗定律及平均摩尔质量的计算
高一化学必修一讲义:阿伏加德罗定律及平均摩尔质量的计算阿伏加德罗定律及平均摩尔质量的计算【教学目标】1、掌握阿伏加德罗定律及其重要推论2、掌握阿伏加德罗定律及其相关计算【知识梳理】一、阿伏加德罗定律1、定律内容:同温同压下,相同体积的任何气体都含有相同的分子数2、理想气体的状态方程:pV =nRT[其中:p 为气体压强,V 为气体体积,n 为物质的量,R 为常数,T 为温度(单位为开尔文,符号是K)] 由理想气体的状态方程结合物质的量的相关公式可以推出:RT M mnRT PV ==【微点拨】①阿伏加德罗定律适用于任何气体,包括混合气体,不适用于非气体②同温、同压、同体积、同分子数,共同存在,相互制约,且“三同定一同”③标准状况下的气体摩尔体积是阿伏加德罗定律的一个特例④是分子不是原子⑤同温同压下,相同体积的任何气体含有相同物质的量的分子【即学即练1】1、在同温同压下,同体积的氢气和甲烷,它们的分子数之比是( );原子数之比是( );物质的量之比( );质量之比( )A .2:5B .1:1C .1:5D .1:82、同温同压下,同体积的下列气体,质量最大的是( )A .NH 3B .SO 2C .CH 4D .H 2二、阿伏伽德罗定律的推论 (可通过pV =nRT 及n =m M 、ρ=m V 导出)1、体积之比(1)语言叙述:同温同压下,气体的体积之比等于其物质的量之比,也等于其分子数之比(2)公式:V 1V 2=n 1n 2=N 1N 2(3)应用:比较相同条件(同温同压)下,如:0.3 mol H 2和0.2 mol CH 4①比较气体体积的大小可以直接比较物质的量的大小:V( H2)>V(CH 4)②求体积比可以转化为求物质的量之比:V( H 2):V(CH 4)=0.3:0.2=3:2 ③求体积分数可以转化为求物质的量分数:%60%1002.03.03.02=?+=的体积分数H2、压强之比(1)语言叙述:同温同体积时,气体的压强之比等于其物质的量之比,也等于其分子数之比(2)公式:p 1p 2=n1n 2=N 1N 23、密度之比(1)语言叙述:同温同压下,气体的密度之比等于其摩尔质量之比,也等于其相对分子质量之比(2)公式:ρ1ρ2=M 1M 2(3)应用:比较相同条件(同温同压下),气体的密度相对大小4、质量之比(1)语言叙述:同温同压下,同体积的气体的质量之比等于其摩尔质量之比,也等于其相对分子质量之比(2)公式:m 1m 2=M 1M 2【即学即练2】1、同温同压下,同质量的下列气体,体积最大的( )A .NH 3B .SO 2C .CH 4D .H 22、在标准状况下,所占体积最大的是( )A .98g H 2SO 4B .6.02×1023个N 2分子C .44.8L HClD .6g H 23、下列各组物质中,所含分子数一定相同的是( )A .1g H 2和8 gO 2B .0.1mol HCl 和2.24 L HeC .150℃,1.01×105Pa 时,18LH 2O 和18LCO 2D .常温常压下28gCO 和6.02×1022个CO 分子4、(多选)关于m g H 2和n g He 的下列说法中,正确的是( )A .同温同压下,H 2与He 的体积比为m ∶2nB .同温同压下,若m=n ,则H 2与He 的分子数之比为2∶1C .同温同压下,同体积时,H 2与He 的质量比n m >1 D .同温同压下,H 2与He 的密度比为1∶2 5、标准状况下,m g A 气体与n g B 气体分子数相等,下列说法不正确的是( )A .标准状况下,同体积的气体A 和气体B 的质量比为m ∶nB .25 ℃时,1 kg 气体A 与1 kg 气体B 的分子数之比为n ∶mC .同温同压下,气体A 与气体B 的密度之比为m ∶nD .标准状况下,等质量的A 与B 的体积比为m ∶n6、同温同压下,下列气体的密度最大的是( )A .F 2B .Cl 2C .HClD .CO 2二、混合气体的平均摩尔质量(M )或平均相对分子质量1、混合气体的平均摩尔质量:总总n m M = 2、求混合气体的平均摩尔质量的方法 (1)混合气体的平均摩尔质量:总总n m M =(2)根据混合气体中各组分的物质的量分数或体积分数求混合气体的平均摩尔质量①M =m (总)n (总)=M 1n 1+M 2n 2+…+M i n i n (总)=M 1a 1%+M 2a 2%+…+M i a i % 其中a i %=n i n (总)×100%,是混合气体中某一组分的物质的量分数。
阿伏加德罗定律及应用讲解
阿伏加德罗定律及应用讲解阿伏加德罗定律是描述化学物质中元素的组成关系的定律。
该定律得名于意大利化学家阿伏加德罗(Amedeo Avogadro),他在1811年提出了这一理论。
阿伏加德罗定律的核心概念是“相等体积气体中具有相同温度、压力和相同体积下具有相同数目的气体分子”。
根据阿伏加德罗定律,一个特定的体积中的气体分子数量与该体积中其他气体的种类和数量无关,只与气体分子的数量有关。
阿伏加德罗定律的数学表达方式是:相等体积气体中的气体分子数与气体的量成正比,即V=kn,其中,V表示气体的体积,n表示气体分子的数量,k是一个常数,代表着气体的性质。
阿伏加德罗定律的应用广泛,下面将介绍一些主要的应用:1. 摩尔体积的概念:根据阿伏加德罗定律,相等体积中的气体分子数量是相同的,因此,无论气体是单原子分子还是多原子分子,它们在相等条件下的体积都是相同的。
这就引出了“摩尔体积”的概念,即相同摩尔数的气体在相同条件下占据相同的体积。
2. 摩尔质量的计算:由于阿伏加德罗定律给出了气体分子数量和摩尔体积之间的关系,因此可以利用该定律来计算气体的摩尔质量。
根据化学式中元素的摩尔数量和气体分子的数量,可以得到气体的摩尔质量。
3. 气体的密度计算:根据阿伏加德罗定律,相等体积气体中的气体分子数和气体分子的质量成正比。
因此,根据摩尔质量和摩尔体积之间的关系,可以计算气体的密度。
密度等于气体的质量除以气体占据的体积。
通过测量气体的质量和体积,可以计算出气体的密度。
4. 气体反应的计算:根据阿伏加德罗定律,相等体积中的气体分子数量是相同的,所以可以用这个定律来计算气体反应中气体的摩尔比例。
在气体反应中,可以利用阿伏加德罗定律来推导反应物和生成物之间的摩尔比例关系。
总结起来,阿伏加德罗定律是描述化学物质中元素的组成关系的基本定律之一,其应用涉及了摩尔体积、摩尔质量、气体密度和气体反应等方面。
这些应用广泛存在于化学的各个领域,对于研究化学反应和气体性质具有重要意义。
高中2019版化学新教材必修一阿伏加德罗定律及推论
3.在标准状况下,9.6gSO2和O2组成的 混合气体,体积为4.48L,则此混合气体
中SO2和O2的物质的量之比为 [ C ]
A.2∶1
B.1∶2
C.1∶1
D.以上任何比
4 同温同压下,等体积的CO2和CO,下列说法正 确的是: A、质量相等 B、密度相等 C、所含分子数目相等 D、所含碳原子数相等 E、所含氧原子相等
同温
同压 同分子数 同体积
气体摩尔 体积
0℃
1大气压 1mol
22.4L
2、阿伏加德罗定律的数学表达式:
克拉珀珑方程 PV=nRT
P:气体压强(单位:Pa ) V:气体的体积(单位:L) n:气体分子的物质的量(单位:mol) T:温度(单位:K) R:常数
二、阿伏加德罗定律的几个推论
理想气体的状态方程:PV = nRT
=
M1 M2
例、在标准状况下,空气的平均式量为29, 相同条件下的下列气体密度比空气密度大的是(①③④ )
①CO2 ②H2 ③Cl2 ④HCl ⑤N2
例5、某气体A对氧气的相对密度为0.5,求 ①A的是式量是多少? ②A气体对空气的相对密度是多少?(同温同压
下)
A的式量为:16;
A气体对空气的相对密度为:0.55
④
ρ 1 M1 D ρ 2 M2
1. 已知空气中按体积分数计,氮气约占78%, 氧气约占21%,其余1%为稀有气体Ar(其他气 体都近似折算为氩)。试求空气的平均相对分 子质量。
2 在一定温度下,某物质W按下式分解:
由生成物组成的混合气体对氢气的相对 密度为18,则W的相对分子质量为 [ A ]
ρ 2 M2
阿伏伽德罗定律及其推论公式(一)
阿伏伽德罗定律及其推论公式(一)阿伏伽德罗定律及其推论公式1. 阿伏伽德罗定律简介阿伏伽德罗定律是化学中一个基本的定律,它描述了元素之间的质量关系。
阿伏伽德罗定律可简单表述为:元素的质量与其所含原子数成正比。
根据元素的质量和原子数的关系,我们可以推导出以下公式。
2. 阿伏伽德罗定律公式根据阿伏伽德罗定律,我们可以得到以下公式:元素质量与原子数的关系元素的质量可以表示为原子数乘以单位原子质量,即:质量 = 原子数× 单位原子质量单位原子质量单位原子质量是指一个元素中平均每个原子的质量。
单位原子质量可以通过将元素质量与元素原子数相除得到,即:单位原子质量 = 元素质量 / 元素原子数3. 推论公式根据阿伏伽德罗定律及其相关公式,我们可以得到一些重要的推论公式。
元素质量与单位原子质量的关系由阿伏伽德罗定律公式可推导出,元素质量与单位原子质量之间的关系为:质量 = 单位原子质量× 原子数元素摩尔质量与原子摩尔质量的关系元素摩尔质量是指一个摩尔的元素的质量,原子摩尔质量是指一个摩尔的元素中每个原子的质量。
根据阿伏伽德罗定律及相关公式,我们可以得到元素摩尔质量与原子摩尔质量之间的关系:元素摩尔质量 = 原子摩尔质量× 原子数4. 举例解释例如,对于氧气(O2)分子,我们可以通过阿伏伽德罗定律及其相关公式计算其质量。
根据阿伏伽德罗定律,氧气分子的质量等于其所含原子数乘以单位原子质量。
氧气分子由2个氧原子组成,而单位原子质量为每个氧原子的质量。
假设单位原子质量为16克/摩尔,根据节的推论公式,氧气分子的质量可以计算如下:质量 = 单位原子质量× 原子数 = 16克/摩尔× 2 = 32克/摩尔因此,氧气分子的质量为32克/摩尔。
总结阿伏伽德罗定律及其推论公式是化学领域中非常重要的定律和公式。
通过这些公式,我们可以计算元素的质量、单位原子质量和元素摩尔质量等重要参数。
高中化学知识点:阿伏加德罗定律
高中化学知识点:阿伏加德罗定律(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如小学资料、初中资料、高中资料、大学资料、文言文、中考资料、高考资料、近义词、反义词、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides you with various types of practical materials, such as primary school materials, junior high school materials, senior high school materials, university materials, classical Chinese, senior high school examination materials, college entrance examination materials, synonyms, antonyms, other materials, etc. If you want to know different data formats and writing methods, please pay attention!高中化学知识点:阿伏加德罗定律阿伏加德罗定律主要说明:同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
阿伏加德罗定律高一知识点
阿伏加德罗定律高一知识点阿伏加德罗定律是化学中的一个重要知识点,它描述了气体的物理性质和化学性质之间的关系。
下面我们来详细了解一下阿伏加德罗定律。
一、阿伏加德罗定律的基本原理阿伏加德罗定律是指在相同温度和容积的条件下,气体的压强与气体的摩尔数成正比。
这个定律可以用以下公式表示:P = nRT/V其中,P代表气体的压强,n代表气体的摩尔数,R代表气体常数,T代表气体的温度,V代表气体的容积。
二、阿伏加德罗定律的实际应用阿伏加德罗定律在实际应用中具有广泛的用途,下面列举一些常见的应用。
1. 气球的充气当我们充气的时候,气球内部的气体会增加,而气球的体积是不变的。
根据阿伏加德罗定律,气体的压强与气体的摩尔数成正比,所以当气体增加时,气体的压强也会增加。
这就是为什么气球会变得鼓鼓的。
2. 汽车轮胎的充气汽车轮胎内部也是充满气体的,当轮胎胎压不足时,我们需要给轮胎充气。
根据阿伏加德罗定律,增加气体的摩尔数,可以增加气体的压强,这样轮胎就能恢复正常的胎压。
3. 氧气气瓶的压力计算在医院或者实验室中,我们经常会使用氧气气瓶。
根据阿伏加德罗定律,如果知道了氧气气瓶的体积、温度和氧气的摩尔数,就可以计算出氧气的压强。
这对于确定气瓶中氧气的质量和用量非常重要。
三、阿伏加德罗定律的适用条件阿伏加德罗定律适用于理想气体,也就是在低压、高温和稀薄的条件下。
这是因为在这种条件下,气体分子之间几乎没有相互作用,可以近似看作理想气体。
在高压、低温和密集的条件下,气体分子之间的相互作用会变得很显著,这时阿伏加德罗定律就不再适用了。
四、阿伏加德罗常数的数值阿伏加德罗常数(R)是一个用于计算阿伏加德罗定律的重要常数,它的数值为8.314 J/(mol·K)。
这个常数在化学计算中经常会被用到,可以用来计算气体的压强、温度和摩尔数之间的关系。
总结:阿伏加德罗定律是描述气体物理性质和化学性质之间关系的重要定律。
它的应用广泛,可以用于充气、压力计算等方面。
新高一化学计算:阿伏伽德罗定律及推论
新高一化学计算:阿伏伽德罗定律及推论高中化学知识新颖且复杂,下面就是小编给大家带来的新高一化学计算:阿伏伽德罗定律及推论,希望能帮助到大家!新高一化学计算:阿伏伽德罗定律及推论一、阿伏伽德罗定律及推论1、定律内容:同温同压下,相同体积的任何气体含有相同数目的分子。
注意:(1)适应范围:任何气体。
(2)拓展:在定律中,可以“四同”中的任意“三同”为条件,均可导出“第四同”。
(3)与气体摩尔体积的关系:标准状况下的气体摩尔体积实际上是阿伏加德罗定律的一个特例。
2、重要推论:根据理想气体状态方程推导:(1)、同温同压下,任何气体的体积之比等于物质的量(或分子数)之比。
V1:V2=n1:n2=N1:N2。
(2)、同温同体积的任何气体的压强之比等于物质的量之比。
p1:p2=n1:n2。
(3)、同温同压下,气体密度之比等于相对分子质量之比。
ρ1:ρ2=M1:M2(4)、同温同压下,同体积的气体的质量之比等于密度之比。
m1:m2=ρ1:ρ2(5)、同温同压下,同质量的气体的体积之比等于相对分子质量的反比。
V1:V2=M2:M1(6)、同温同体积同质量的任何气体的压强之比等于相对分子质量的反比。
p1:p2=M2:M1【练习】1.在体积相同的两个密闭容器中分别充满O2、O3气体,当这两个容器内气体的温度和密度相等时,下列说法正确的是( )A.两种气体的压强相等B.O2比O3质量小C.两种气体的分子数目相等D.两种气体的氧原子数目相等参考答案:D二、气体密度和气体相对分子质量的计算方法1、气体密度的计算:(1)密度定义法:任意情况下,ρ=m÷v(2)摩尔质量法:在标准状况下,ρ=m÷v=M•n÷Vm•n=M÷22.4L.mol-1(3)相对密度法:同温同压下,A气体对B气体的相对密度等于A 气体的密度比B气体的密度,也等于A气体的相对分子质量比B气体的相对分子质量。
D=ρA÷ρB=MA÷MB2、气体相对分子质量的计算:(1)标况密度法:M=22.4L•mol-1×ρ(g/l)(2)相对密度法:MA=MB•D(3)混合气体的平均式量(M):A、摩尔质量定义法:M=m总÷n总=(M1n1+M2n2+…+Mini) ÷n总=(M1V1+M2V2+…+MiVi) ÷n总B、物质的量或体积分数法:M=M1a1+M2a2+…+Miai其中:M1、M2、…+Mi为各气体组分的摩尔质量,a1、a2、…、ai各气体组分的物质的量分数或体积分数。
高中化学阿伏加德罗定律知识点总结
高中化学阿伏加德罗定律知识点总结高中化学阿伏加德罗定律知识点总结1.内容:在同温同压下,同体积的气体含有相等的分子数。
即“三同”定“一等”。
2.推论(1)同温同压下,V1/V2=n1/n2(2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1(4)同温同压同体积时,M1/M2=ρ1/ρ2注意:(1)阿伏加德罗定律也适用于混合气体。
(2)考查气体摩尔体积时,常用在标准状况下非气态的物质来迷惑考生,如H2O、SO3、已烷、辛烷、CHCl3、乙醇等。
(3)物质结构和晶体结构:考查一定物质的量的物质中含有多少微粒(分子、原子、电子、质子、中子等)时常涉及稀有气体He、Ne等单原子分子,Cl2、N2、O2、H2双原子分子。
胶体粒子及晶体结构:P4、金刚石、石墨、二氧化硅等结构。
(4)要用到22.4L·mol-1时,必须注意气体是否处于标准状况下,否则不能用此概念;(5)某些原子或原子团在水溶液中能发生水解反应,使其数目减少;点击查看:高中化学知识点总结(6)注意常见的的可逆反应:如NO2中存在着NO2与N2O4的平衡;(7)不要把原子序数当成相对原子质量,也不能把相对原子质量当相对分子质量。
(8)较复杂的化学反应中,电子转移数的求算一定要细心。
如Na2O2+H2O;Cl2+NaOH;电解AgNO3溶液等。
注:在高温高压下,许多气体都接近于理想气体),可以是单一气体,也可以是混合气体。
可以是单质气体,也可以是化合物气体。
3.阿伏加德罗定律及推论定律可导出:“一连比、三正比、三反比”的规律。
1)“一连比”:指在同温同压下,同体积的任何气体的质量比等于摩尔质量(相对分子质量)之比,等于密度比。
2)“三正比”(1)同温同压下,两气体的体积之比等于其物质的量之比,等于其分子数之比。
(2)同温同体积下,两气体的压强之比等于其物质的量之比,等于其分子数之比。
(3)同温同压下,两气体的密度之比等于其摩尔质量(又称相对分子质量)之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中课程复习专题——化学元素周期律与阿伏伽德罗定律一元素周期表和元素周期律1 元素周期律的基本概念1-1 元素周期律的概念元素的物理、化学性质随原子序数逐渐变化的规律,叫做元素周期律,元素周期律由俄国化学家门捷列夫首先发现,并根据此规律创制了元素周期表。
1-2 元素周期律的内涵结合元素周期表,元素周期律可简单表述为:随着原子序数的增加,元素的性质呈周期性的递变规律。
在同一周期中,元素的金属性从左往右递减,非金属性从左往右递增;在同一族中,元素的金属性从上到下递增,非金属性从上到下递减;同一周期中,元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右逐渐增高;同一族的元素性质相近。
主族元素同一周期中,原子半径随元素序数的增加而减小。
同一主族中,原子半径随元素序数的增加而增大。
如果粒子的电子构型相同,则阴离子的半径比阳离子大,且半径随电荷数的增加而减小。
1-3 元素周期律的本质元素周期律的本质就是:元素核外电子排布的周期性,决定了元素性质的周期性。
2 元素周期律的内容2-1 原子半径的周期变化规律⑴原子半径的变化同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;同一族中,从上到下,随着原子序数的递增,元素的原子半径递增。
⑵阴阳离子的半径大小的判别规律由于阴离子是电子最外层得到了电子,阳离子则是失去了电子,所以:ⅰ对于同重元素:阳离子半径<原子半径<阴离子半径。
ⅱ对于不同元素的同性离子:具有相同核外电子排布的离子,原子序数越大,其离子半径越小(不包括稀有气体元素)。
ⅲ对于不同元素的异性离子:具有相同电子构型的离子,阴离子的半径比阳离子大,且半径随电荷数的增加而减小。
2-2 主要化合价的周期变化规律⑴最高正化合价:同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1到+7价)。
第一周期除外(因为只有H、He两个元素),第二周期除外(因为第二周期的O、F元素没有正价)。
⑵最低负化合价:由于金属元素一般无负化合价,故从ⅣA族开始,最低负化合价随原子序数递增而递减(从-4到-1价)。
⑶元素最低负化合价的绝对值与最高正化合价之和为8。
2-3 元素的金属性与非金属性的周期变化规律⑴同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增。
⑵同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减。
2-4 单质及简单离子的氧化性及还原性的周期变化规律⑴同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。
⑵同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。
⑶元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。
2-5 最高价氧化物对应的水化物的周期变化规律⑴同一周期中,从左到右,随着原子序数的递增,元素的最高价氧化物对应的水化物的酸性增强,碱性减弱。
⑵同一族中,从上到下,随着原子序数的递增,元素的最高价氧化物对应的水化物的碱性增强,酸性减弱。
2-6 单质与氢气化合的难易程度的周期变化规律⑴同一周期中,从左到右,随着原子序数的递增,单质与氢气化合逐渐容易。
⑵同一族中,从上到下,随着原子序数的递增,单质与氢气化合逐渐困难。
2-7 气态氢化物的稳定性的周期变化规律⑴同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强。
⑵同一族中,从上到下,随着原子序数的递增,元素气态氢化物稳定性减弱。
3 元素周期律的应用3-1 元素金属性强弱的比较⑴根据元素周期律:同一周期中,从左到右,随着原子序数的递增,元素的金属性递减;同一主族中,从上到下,随着原子序数的递增,元素的金属性递增。
⑵依靠最高价氧化物水化物的碱性判断:碱性越强,其元素的金属性就越强。
⑶依据金属活动性顺序表:金属活动性顺序排在前面的金属活动性强。
⑷常温下与酸或水的反应的剧烈程度:反应越剧烈金属性越强。
⑸通过置换反应来判断金属性强弱:金属性强的金属能把金属性弱的金属从它的盐溶液或者氧化物中置换出来。
3-2 元素非金属性强弱的比较⑴根据元素周期律:同一周期中,从左到右,随着原子序数的递增,元素的非金属性递增;同一主族中,从上到下,随着原子序数的递增,元素的非金属性递减。
⑵依靠最高价氧化物水化物的酸性判断:酸性越强,其元素的非金属性就越强。
⑶依据其气态氢化物的稳定性:稳定性越强,其元素的非金属性就越强。
⑷与氢气化合的条件:与氢气化合,需要条件越低,非金属性越强。
⑸与同种物质反应的条件已经生成物:反应条件越低,非金属性越强;与金属的反应生成物的金属离子价态越高,非金属性越强。
3-3 关于“10电子微粒”和“18电子微粒”的总结⑴10电子微粒原子数分子离子单核10电子Ne N3-、O2-、F-、Na+、Mg2+、Al3+双核10电子HF OH-三核10电子H2O NH2-四核10电子NH3H3O+五核10电子CH4NH4+⑵18电子微粒原子数分子离子单核18电子Ar K+、Ca2+、Cl-、S2-、P3-双核18电子F2、HCl HS-三核18电子H2S ─四核18电子PH3、H2O2─五核18电子SiH4、CH3F ─五核以上的18电子N2H4、CH3OH、C2H6N2H5+、N2H62+3-4 微粒半径的比较⑴判断的依据:电子层数——相同条件下,电子层越多,半径越大;核电荷数——相同条件下,核电荷数越多,半径越小;最外层电子数——相同条件下,最外层电子数越多,半径越大。
⑵具体规律ⅰ同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外);ⅱ同主族元素的原子半径随核电荷数的增大而增大;ⅲ同主族元素的离子半径随核电荷数的增大而增大;ⅳ电子层结构相同的离子半径随核电荷数的增大而减小;ⅴ同一元素不同价态的微粒半径,价态越高微粒半径越小。
4 元素周期表中的特殊元素4-1 元素周期表中特殊位置的元素⑴族序数等于元素周期数的元素:H、Be、Al、Ge⑵族序数等于周期数二倍的元素:C、S⑶族序数等于周期数三倍的元素:O⑷周期数等于族序数二倍的元素:Li、Ca⑸周期数等于族序数三倍的元素:Na、Ba⑹最高正价与最低负价代数和等于0的元素:C⑺最高正价是最低负价绝对值的三倍的元素:S⑻除了H外,原子半径最小的元素:F⑼短周期中离子半径最大的元素:P4-2 常见元素及其化合物的特性⑴形成化合物种类最多的元素,单质是自然界中硬度最大的物质的元素,气态氢化物中氢元素的质量分数最大的元素:C⑵空气中含量最多的元素,气态氢化物的水溶液成碱性的元素:N⑶地壳中含量最多的元素,氢化物沸点最高的元素,氢化物通常状态呈液态的元素:O⑷最轻的单质的元素和最轻的金属单质的元素:H和Li⑸单质在常温下呈液态的非金属元素和金属元素:Br和Hg⑹最高价氧化物及其对应的水化物既能与强酸反应又能与强碱反应的元素:Br、Al、Zn⑺元素的气态氢化物和它的最高价氧化物对应的水化物能起化合反应的元素:N元素的气态氢化物和它的最高价氧化物对应的水化物能起氧化还原反应的元素:S 元素的气态氢化物和它的最高价氧化物对应的水化物能发生歧化反应的元素:S⑻元素的单质在常温下能与水反应放出气体的短周期元素:Li、Na、F⑼常见的能形成同素异形体的元素:C、P、O、S二物质的量——摩尔1 物质的量⑴意义:物质的量(n)是表示含有一定数目的粒子的集体的物理量。
⑵摩尔(mol):把含有6.02×1023个粒子的任何粒子集体计量为1mol。
⑶阿伏伽德罗常数:把6.02×1023 mol-1叫做阿伏伽德罗常数(N A)。
⑷摩尔质量:单位物质的量的物质所具有的质量叫摩尔质量。
单位为g•mol-1。
数值上等于该粒子的相对原子质量或相对分子质量。
⑸物质的量=物质的质量/ 摩尔质量n= m /M .物质的量=物质所含的微粒的数目/ 阿伏伽德罗常数n = N/ N A。
2 气体摩尔体积⑴定义:单位物质的量的气体所占的体积叫做气体摩尔体积。
单位:L•mol-1。
⑵物质的量= 气体的体积/ 气体摩尔体积n = V / V m。
⑶标准状况下:V m = 22.4 L•mol-1。
3 物质的量在化学实验中的应用3-1 物质的量浓度⑴定义:以单位体积溶液里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B 的物质的量浓度。
单位mol•L 。
⑵物质的量浓度=溶质的物质的量/ 溶液的体积c B = n B / V3-2 一定物质的量浓度的溶液的配置⑴基本原理:根据欲配置溶液的体积和溶质的物质的量浓度,求出所需溶质的质量或体积,在容器内将溶质用溶剂稀释为规定体积。
⑵操作流程ⅰ检验:检验容量瓶是否漏水;ⅱ计算:根据题目要求,计算出需要溶质的质量或者体积;ⅲ称量:根据计算出来的质量或者体积,称出所需的溶质;ⅳ溶解:将称得的溶质在烧杯中用少量溶剂完全溶解;ⅴ转移:将溶解后的溶质转移至恰当的容量瓶中;ⅵ洗涤:用溶剂洗涤转移溶液后的烧杯,确保全部溶质都转移至容量瓶中;ⅶ定容:用溶剂将容量瓶中的溶液定容至指定刻度;ⅷ摇匀:将定容后的容量瓶反复几次摇晃,摇匀瓶中的溶质和溶剂;ⅸ贮存:摇匀后的容量瓶贴上标签,根据溶液的性质在不同地方存放,待用。
⑶注意事项ⅰ选择容量瓶的时候注意要选择跟要配置的溶液的体积一样的容量瓶;ⅱ容量瓶使用前必须检验是否漏水,如果漏水,则需要重新擦真空脂或更换新活塞;ⅲ溶质不能再容量瓶内直接溶解,防止由于溶解放热导致容量瓶容积不准;ⅳ溶解完的溶质待冷却至室温才能转移至容量瓶,防止由于温度变化改变容量瓶容积;ⅴ定容时,当液面离刻度线1-2cm处时,改用滴管滴加溶剂,至液面最低处与刻度线平齐为止。
3-3 溶液的稀释设需要将浓度为c浓,体积为V浓的浓溶液,加V体积的溶剂稀释成浓度为c稀的稀溶液,则:c浓•V浓= c稀•(V+V浓)三阿伏伽德罗定律1 阿伏伽德罗定律的内容在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子。
2 阿伏伽德罗定律的使用对象阿伏伽德罗定律的使用对象是气体,可以是单一气体也可以是混合气体,也可以是化合物气体。
3 阿伏伽德罗定律的具体表述3-1 阿伏伽德罗定律的推论分子间的平均距离取决于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(分子间的作用微弱,可忽略)。
V——气体体积;n——气体的物质的量;p——气体的压强;N——气体的分子数;M——气体的摩尔质量;m——气体的质量;ρ——气体的密度⑴同温同压下:V1 / V2 = n1 / n2⑵同温同体积时:p1 / p2 = n1 / n2 = N1 / N2⑶同温同压等质量时:V1 / V2 = M2 / M1⑷同温同压同体积时:M1 / M2 = ρ1/ ρ23-2 克拉伯龙方程中学化学中,阿伏伽德罗定律占有很重要的地位。