九年级数学上册第三章概率的进一步认识2用频率估计概率课标解读素材北师大版剖析

合集下载

九年级数学上册第三章概率的进一步认识3.2用频率估计概率教案新版北师大版

九年级数学上册第三章概率的进一步认识3.2用频率估计概率教案新版北师大版

3.2利用频率估计概率教学目标:1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;3、能从频率值角度估计事件发生的概率;4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。

教学重点与难点:通过实验体会用频率估计概率的合理性。

教学过程: 一、引入:我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是31,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:(1)填写以下频数、频率统计表:(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:(3)根据上面的表格,画出下列频率分布折线图(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。

三、做一做:1.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?四、例题分析:例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:(1)计算表中各个频数. (2)估计该麦种的发芽概率(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg? 分析:(1)学生根据数据自行计算(2)估计概率不能随便取其中一个频率区估计概率,也不能以为最后的频率就是概率,而要看频率随实验次数的增加是否趋于稳定。

北师大版九年级上册第三章 概率的进一步认识3.2用频率估计概率

北师大版九年级上册第三章 概率的进一步认识3.2用频率估计概率

第三章概率的进一步认识3.2 用频率估计概率一.备课标(一)内容标准:1.了解利用数据可以进行统计判断,发展建立数据分析的观念,感受随机现象的特点。

2.知道通过大量的重复试验,可以用频率估计概率。

(二)数学思想、方法(十大核心概念):通过大量的试验,培养学生的数据分析观念和运算能力,增强学生的应用意识二.备重点、难点(一)教材分析:本节课是九上第三章概率的进一步认识的第二节用频率来估计概率。

本节课是学生通过以前的学习,对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.(二)教学重点、难点内容:教学重点:是掌握试验的方法估计复杂的随机事件发生的概率教学难点:是试验估计随机事件发生的概率;关键是通过试验、统计活动,体会随机事件的概率。

三.备学情(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生通过以前的学习,对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.(2)支持性条件:经历了试验、统计过程,获得了用试验方法估计事件发生的概率的体验,并且在以前的数学学习活动中已经历了很多合作学习的过程,具有了一定的合作学习经验,具备了一定的合作与交流的能力.2.起点能力分析:(1)学生对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.(2)经历了试验、统计过程,获得了用试验方法估计事件发生的概率。

(二)学生可能达到的程度和存在的普遍性问题:学生对用试验方法估计随机事件发生的概率,当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率,掌握的比较好。

学生对.频率稳定于理论概率,用频率估计概率有模糊认识,针对以上问题解决这一问题的策略是:用试验统计的方法,让学生理解频率与概率的关系。

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率课标解读素材 北师大版(2021年整理)

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率课标解读素材 北师大版(2021年整理)

九年级数学上册第三章概率的进一步认识2 用频率估计概率课标解读素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章概率的进一步认识2 用频率估计概率课标解读素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章概率的进一步认识2 用频率估计概率课标解读素材(新版)北师大版的全部内容。

用频率估计概率课标解读一、课标要求用频率估计概率一节包括两个课时,本课是在学生已经学习了用列举法求概率的基础上,进一步研究用频率估计概率.《义务教育数学课程标准(2011年版)》对用频率估计概率一节相关内容提出的教学要求是:1.能够通过随机试验,获得事件发生的频率;2.知道通过大量重复试验,可以用频率估计概率;3.了解频率与概率的区别与联系.二、课标解读1.本章知识结构如下图所示:本节介绍用频率估计概率.由前两节可知,对于结果个数有限且每个结果等可能的随机试验中的事件,我们可以用列举法去概率.教科书这一节从统计试验结果频率的角度去研究一些随机试验中事件的概率,此方法求概率不受列举法求概率的两个条件的限制.2.理解用频率估计概率方法的合理性和必要性教科书设置了一个投币试验,一方面要求学生亲自动手试验获得数据,从数据中发现规律;另一方面还给出历史上投币试验的数据,为学生发现规律提供帮助.通过学生的亲自动手试验和历史数据,学生能够用自己在统计中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小.学生自主可以发现,在大量重复投掷一枚硬币时,“正面向上”的频率在0.5的左右摆动,一般地,随着投掷次数的增加,频率会呈现出一定的稳定性:在0.5的左右摆动的幅度会越来越小.这个稳定值和用古典概型求出的概率理论值0.5是一致的,从而说明用频率估计概率方法的合理性.通过这个试验,也让学生从频率的角度进一步认识概率的意义,概率反映的规律是针对大量重复试验而言.但试验的次数再多,也很难保证试验的结果与理论值相等.让学生明白这一点,认识到概率的思维方式与确定性思维方式的差异,从而建立良好的随机观念.由于用频率估计概率不受随机试验中可能结果数有限和各种结果发生等可能的限制,适用的范围比列举法更广.3.频率与概率的联系初学概率的学生容易混淆概率与频率两个概念,更不容易理解两者的联系与区别.在一定条件下,大量重复进行同一试验时,事件A发生的频率会在某一个常数附近波动,即频率具有随机性.试验的次数越多,波动越小,这个性质就是频率的稳定性,这个常数就是事件A发生的概率P(A).人们常把试验次数很大时事件发生的频率作为概率的近似值.频率与概率是两个对立的概念,事件的概率是一个客观存在的常数,事件的频率是一个与试验次数、试验者都有关的一组波动的变数,而概率的统计定义是把频率的稳定值看作概率的近似值,因为频率与概率的差异永远存在,但随着试验次数的增大,这个差异会越来越小,频率由量变到质变成为概率,反映了变量与常量的辩证统一的思想.用概率的统计定义时,概率会取不同的近似值,但一个事件发生的概率不会有两个不同的值.事件发生的概率是一个客观存在的数值,反映了事件本身固有的属性.4.重视学生动手实验数学课程标准指出:有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展.学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,进一步体会概率与统计的关系,才能在数学思考、问题解决和情感态度方面得到发展.教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件.因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动.应鼓励学生动手实验,不应教给学生这样一种观念: 只有运用理论的方法才能得到正确的解答.概率、事件的可能性的测量,可以理论地和实验地确定.也可以借助计算机(器)进行模拟活动、处理数据,正确理解随机事件发生的不确定性及其频率的稳定性,更好地体会频率与概率的意义.为了让学生通过具体的试验操作获得一定的活动经验,体会随机试验中频率的随机性以及大量重复试验中频率的稳定性,进而加强对概率意义的理解,教科书在25.3节设置了一个投掷硬币的试验,为学生提供一个体验随机试验的机会.由于在这个试验中需要获得的投掷次数相对较多,因此这里需要发动全体学生积极参与,动手试验,靠集体的力量快速地获得试验频率.在学习用频率估计概率这部分内容时,一方面要鼓励学生亲自动手,集体合作,这主要是针对一些比较简单的试验,比如说投币试验、图钉试验等;另一方面也鼓励学生采用模拟方法进行试验,特别是利用计算机或计算器进行模拟试验.我们知道,为了提高频率估计概率精度,需要进行大量的重复试验,这样的试验是极其费时费力的,因此应该鼓励学生使用现代信息技术.比如“实验与探究的估计”,其实是用计算器或计算机产生随机数的方法进行模拟.通过模拟试验,学生既可以感受到概率知识广泛的应用性,而且也有利于学生进一步理解概率的意义.概率与生活的密切联系,生活中的素材充满了趣味性和吸引力,教学时要注意挖掘学生身边的素材,让学生亲身参与到实践活动中,在解决问题的过程中,进一步加强对随机概念的培养.。

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。

判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率典例解析素材1 (新版)北师大版

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率典例解析素材1 (新版)北师大版

用频率估计概率典例解析用频率求概率的估计值是中考必考知识点.中考试卷中出现了不少的概率问题,在具体情景中展示数学的整体性,下面举几例看看概率问题在中考中的体现.例1.某农场中学八年级的同学,就“每年过生日时,你是否会向母亲道一声‘谢谢’”这个问题,对本年级66名同学进行了调查.调查结果如表1.表1(1)请你整理表1中的信息,填写表2.(频率保留四个有效数字)(2)选择适当的统计图描述这组数据.(3)通过对这组数据的分析,你有何感想?(用一两句话表示即可)表2解:(1)如表3.表3(2)如图1所示(作出条形、扇形、折线统计图或频数分布直方图均可).(3)从上面的数据可以看出,现在的孩子对父母的感恩之情比较淡薄,学校和社会应加强这方面的教育.(答案不唯一,有积极意义即可)评注:解此类题目往往要先对数据进行整理和计算,然后用所学的知识进行分析,提出合理化建议,一般结论不唯一,只要建议合理就行.例2.某灯泡厂生产了100箱灯泡,从中随机抽取了10箱,•发现这10箱中不合格的灯泡数分别是3,2,4,3,2,1,2,3,0,1,你能估计出这100•箱灯泡中大约有多少个坏灯泡?解:(3+2+4+3+2+1+2+3+0+1)÷10=2.1,2.1×100=210.答:这100箱灯泡中约含有210个次品.评注:灯泡实验的次数即是频数,频数m对总次数n的比即为频率,当实验次数很大时,事件发生的频率呈现稳定性,这时可用事件发生的频率来估计坏灯泡的概率.例3.2006年2月23日《南通日报》公布了2000~2005年南通市城市居民人均可支配收入情况(如图2所示).(1)求南通市城市居民人均可支配收入的中位数.(2)哪些年份南通市城市居民人均可支配收入比上年增加了1000元以上?(3)如果从2006年开始,南通市城市居民人均可支配收入每年比上年增加a元,到2008年底可达到18000元,求a的值.解:(1)中位数(8640+9598)÷2=9119(元)(2)由折线图知:2004年和2005年南通市城市居民人均可支配收入比上年增加了1000元以上.(3)可列方程:12384+3a=18000.解得a=1872.评注:这是一道与城市居民人均可支配收入的问题,与实际生活息息相关,此题创设了一个较新的情境,不仅要求学生掌握相关的知识点,还要求学生用数学的眼光看待周围的世界,这正是新课标所倡导的.例4.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.解:(1)21(2)不公平.画树状图如图所示:所以P (和为偶数)=31, P (和为奇数)=32 因为P (和为偶数)≠P(和为奇数), 所以游戏不公平.评注:画树形图是列举的有效方法,但若列举是分步进行且是步步递推的,用树形图列举法统计多位数个数效率更高,本题考查概率知识,这种试题在近几年的中考试卷中出现频率极高,应予以重点关注.。

BS北师版 初三九年级数学 上册第一学期秋 第三章 概率的进一步认识(全章教案教学设计 分课时 含反思)

BS北师版 初三九年级数学 上册第一学期秋  第三章 概率的进一步认识(全章教案教学设计 分课时 含反思)

第三章概率的进一步认识3.1用树状图或表格求概率第1课时用树状图或表格求概率1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率【类型一】两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来.解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.3.2用频率估计概率1.知道通过大量的重复试验,可以用频率来估计概率;(重点)2.了解替代模拟试验的可行性.一、情景导入我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作探究探究点:用频率估计概率小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说:“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?解:(1)“3点朝上”的频率为660=110,“5点朝上”的频率为2060=13;(2)小颖的说法是错误的,因为“5点朝上”的频率大并不能说明“5点朝上”这一事件发生的概率大,因为当试验的次数非常多时,随机事件发生的频率才会稳定在事件发生的概率附近.小红的说法也是错误的,因为掷骰子时“6点朝上”这个事件的发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.易错提醒:频率与概率的联系与区别:(1)联系:当试验次数很多时,事件发生的频率会稳定在一个常数附近,人们常把这个常数作为概率的近似值.(2)区别:事件发生的频率不能简单地等同于其概率.概率从数量上反映了一个随机事件发生的可能性大小,是理论值,是由事件本质决定的,只能取唯一值,它能精确地反映事件发生的可能性大小;而频率只有在大量重复试验的前提下才可近似地作为这个事件的概率,即概率是频率的稳定值,而频率是概率的近似值.在“抛掷一枚均匀硬币”的试验中,如果手边现在没有硬币,则下列各个试验中哪个不能代替()A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”B.两个形状大小完全相同,但颜色为一红一白的两个乒乓球C.扔一枚图钉D.人数均等的男生、女生,以抽签的方式随机抽取一人解析:“抛一枚均匀硬币”的试验中,出现正面和反面的可能性相同,因此所选的替代物的试验结果只能有两个,且出现的可能性相同,因此A项、B项、D项都符合要求,故选C.方法总结:用替代物进行试验时,首先要求替代物与原试验物所产生的所有可能均等的结果数相同,且所有结果中的每一对应事件的概率相等;其次所选择的替代物不能比实物进行试验时更困难.替代物通常选用:扑克、卡片、转盘、相同的乒乓球、计算器等.某篮球队教练记录了该队一名主力前锋练习罚篮的结果如下:(1)填表:求该前锋罚篮命中的频率(精确到0.001);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?解:(1)表中的频率依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802;(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.方法总结:利用频率估计概率时,不能以某一次练习的结果作为估计的概率.试验的次数越多,用频率估计概率也越准确,因此用多次试验后的频率的稳定值估计概率.在一个不透明的盒子里装有颜色不同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.1); (2)假如你摸一次,估计你摸到白球的概率P (白球)=; (3)试估算盒子里黑球有多少个. 解:(1)0.6 (2)0.6 (3)设黑球有x 个,则2424+x=0.6,解得x =16.经检验,x =16是方程的解且符合题意. 所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率⎩⎪⎨⎪⎧用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.第2课时 概率与游戏的综合运用1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A 转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B 转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A 转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A 转盘中“红”区域2等分,B 转盘“蓝”区域2等分后列表如下:从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P(紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.所以P(王铮去足球队)=P(王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率 拓展资源 消息的传播及生日相同的故事

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率 拓展资源 消息的传播及生日相同的故事

九年级数学上册第三章概率的进一步认识2 用频率估计概率拓展资源消息的传播及生日相同的故事素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章概率的进一步认识2 用频率估计概率拓展资源消息的传播及生日相同的故事素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章概率的进一步认识2 用频率估计概率拓展资源消息的传播及生日相同的故事素材(新版)北师大版的全部内容。

消息的传播现在假定在某一个有200人的小村庄,开始有一个人向三个人传出某种消息;第二天,听到消息的三个人中,有一个人把消息传了开去,不过,他也只传了三个人。

第三天,刚听到消息的三个人中,也只有一个人把消息传开去,而且也只传了三个人……在这样的假定下,传播的速度似乎并不十分快。

因为不是一传三,三传九,九传二十七……而是每天只传三个,半个月至多不过传了45人,不到全村人数的四分之一。

但是,有一个出乎意料的情况,半个月之后,几乎必定有人重复听到这一消息.因为根据计算,经过15次传播之后,至少有一人重复听到消息的概率达到99.45%。

你信不信?如果有疑问,可以设计一则试验来验证这个结论。

准备200张卡片,在上面分别写上1,2,3,…,200,将卡片装入布袋里。

第一次从布袋里盲目地取出一张,把号码记下。

这个号码就算是信息的发布者。

暂时不放回.第二次,从布袋中盲目取出三张,记下号码。

这算是第一批听到消息的三个人。

留一张暂时不放回(这张卡片代表下一次传播消息的人),另两张放回。

把第一张卡片放回,然后第三次从布袋中盲目取三张卡片,记下号码。

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率 例析彩票中奖的概率有多大素材 北师大

九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率 例析彩票中奖的概率有多大素材 北师大

九年级数学上册第三章概率的进一步认识2 用频率估计概率例析彩票中奖的概率有多大素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章概率的进一步认识2 用频率估计概率例析彩票中奖的概率有多大素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章概率的进一步认识2 用频率估计概率例析彩票中奖的概率有多大素材(新版)北师大版的全部内容。

每种彩票中奖的概率有多大概率是表示一个事件发生的可能性的大小.了解事件发生的概率,我们可以解决实际生活中的一些实际问题,如我们可以通过计算概率来判断彩票中奖机会的可能性的大小.例1 某种彩票规定:每发行100万份,设立特等奖1名,一等奖10名,二等奖100名,三等奖1000名,四等奖10000名。

然后随机摇出中奖号码.小李花了2元钱买了1份,(1)请计算一下小李中各种奖的概率分别是多少?(2)请计算小李中奖的概率是多少?(3)如果他想使中奖的概率达到0.5以上,至少需要花多少元?(设各种奖可以兼得)析解:(1)P (特等奖)11000000=;P (一等奖)1011000000100000==; P (二等奖)1001100000010000==;P (三等奖)11000=;P (四等奖)1100=. (2)因为只要中各奖项中的一种都算中奖,所以中奖的概率为P (中奖)1101001000100000.0111111000000++++==. (3)设购买a 份彩票可使中奖概率提高到0.5,则0.0111110.5x =,解得45x ≈.所以至少需要花90元.例2某种彩票的购买及中奖的方法是:买一注彩票时任选一个7位数(每一位数字从09~这10个数字中选一个),如果抽签所得到的7位数与你购买的这注彩票的7位数数字相同且排列也相同,那么就中了大奖,问购买一注此种彩票中大奖的概率是多少?析解:选定第一位数时它的概率为101,同样选定第二位数时也是从10个数字中选取一个,概率是101,……,依次类推,选定这个7位数的概率是: 111111111010101010101010000000P =⨯⨯⨯⨯⨯⨯=. 所以购买一注此种彩票中大奖的概率是100000001. 例3 有一种彩票是“21选5",规则是从12321,,,…这21个数中任选5个数,如果所选的5个数,不计顺序,与开奖的5个数完全吻合,那么就中了一等奖.当你购买一注这种彩票时,中奖的概率是多少?析解:从21中选1个数正好是中奖的5个数中的一个的概率是521P =, 再从剩余的20个数中选1个数正好是中奖的5个数中剩余4个数中的1个的概率是420P =. 再从剩余的19个数中选1个数,正好是中奖的5个数中剩余3个数中的1个的概率是319P =. 再从剩余的18个数中选1个数,正好是中奖的5个数中剩余2个数中的1个的概率218P =.最后从剩余的17个数中选中最后一个中奖的数字的概率是171.所以在“21选5"这种彩票中,中大奖的概率为:5432110.000049212019181720349P =⨯⨯⨯⨯=≈.。

九年级数学上册第三章概率的进一步认识2用频率估计概率教案新版北师大版

九年级数学上册第三章概率的进一步认识2用频率估计概率教案新版北师大版

2 用频率估计概率【知识与技能】能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性.知道大量重复试验时频率可作为事件发生概率的估计值.【过程与方法】结合生活实例,能进一步明确频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.【情感态度】培养学生的动手能力和处理数据的能力,培养学生的理性精神.【教学重点】了解用频率估计概率的必要性和合理性.【教学难点】大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、情境导入,初步认识问题1:投掷一枚质地均匀的硬币时,结果正面向上的概率是多少?答:0.5问题2:周末,县体育馆有一场精彩的篮球比赛,小亮手中有一张球票,小强和小明都是班上的篮球迷,两人都想去,小亮很为难,不知给谁,请大家帮小亮想个办法解决这个问题.方案:投掷硬币,若正面朝上,小强获得球票;若反面朝上,小明获得球票.问题3:为什么要用投掷硬币的方法呢?理由:这样做公平.能保证小强和小明得到球票的可能性一样大,即得票概率相同.问题4:如果掷硬币机会均等,若投掷10次硬币,是否一定是5次正面向上?投掷50次,100次……?【教学说明】在此基础上,导出课题试验.二、思考探究,获取新知1.自主学习课本157~159页内容,初步了解如何用频率估计概率.2.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率.解:(1)“3点朝上”的频率是6/60=1/10;“5点朝上”的频率是20/60=1/3.(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.3.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析:(1)由40000人次中公园游戏场发放的福娃玩具为10000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)因为1000/040000=1/4,所以参加一次这种游戏活动得到福娃玩具的频率为1/4.(2)因为试验次数很大时,频率接近于理论概率.所以估计从袋中任意摸出一个球,恰好是红球的概率是1/4.设袋中白球有x个,则根据题意,得6/(x+6)=1/4,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.【教学说明】利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.【归纳结论】1.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计事件发生的概率,但两者不能简单地等同.2.用频率估计概率的方法,主要适合试验的所有可能结果不是有限个,或者各种可能结果发生的可能性不相等的随机事件.三、运用新知,深化理解1.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为(C)A.1/16B.1/4C.π/16D.π/42.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是1/2.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有6个.4.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125;该镇约有100000×0.125=12500人看中央电视台的早间新闻.【教学说明】让学生进一步感受用频率估计概率方法的适用范围,并用概率值来解释生活经验.四、师生互动,课堂小结通过本节课的学习你有哪些收获?还有哪些疑惑?请与同伴交流.【教学说明】学生根据本节课所学,总结本节课的内容,教师补充强调.1.布置作业:教材“习题3.4”中第1题.2.完成练习册中相应练习.通过本节课的学习,使学生明白通过大量的重复试验,可以把稳定在某个常数附近的频率作为事件发生的概率.教师需要引导学生体会统计概率的本质是估计,用频率估计概率的目的是为了解释现象、解释生活,而不是为了得到一个准确的数值.。

秋九年级数学上册 第三章 概率的进一步认识 3.2 用频率估计概率教学设计 (新版)北师大版-(新版

秋九年级数学上册 第三章 概率的进一步认识 3.2 用频率估计概率教学设计 (新版)北师大版-(新版

上,则说它国徽面朝上的概率为 1,国徽面朝下的概率为 0,显然是
错误的,,随意抛掷一枚骰子,“6 朝上”时我们说“6 朝上”的概率
为 1,6 朝下的概率为 0,显然也是错误的,我们知道它们的概率均 1
为6. 活动内容 3:
活动 二: 实践 探究 交流
每个同学课外调查 10 人的生日,从全班的调查结果中随机选择 50 人,看有没有 2 人生日相同,设计方案估计 50 人中有 2 人生日相 同的概率.
处理方式: 方案 1:将每个同学调查的生日随机排列成一方阵,然后按某一
3/9
word
新知 规则从中选取 50 个数据进行试验(如 25×20,从某行某列开始,自 左而右,自上而下,选出 50 个数). 方案 2:把全班每个同学所调查的数据写在纸条上,放在箱子里 随机抽取. 方案 3:从 50 个同学手里随机抽取一个调查数据,组成 50 个数 据. 方案 4:全班分成 10 个小组,把每个小组调查的数据放在一起, 打乱次序,随机抽取 5 个,然后把 10 个小组的结果放在一起,组成 50 个数据. 活动过程指导: (1)为节约时间,生日表示方式简化成四位数,如“0217”. (2)人人参与,大胆发言、交流、讨论从大量的重复试验活动中 感受生日相同的概率较大. (3)激励学生提出更好的活动方案,如:产生 1~365 之间某一自 然数随机数的方法;分工制作 1~365 自然数卡片,放入纸箱随机抽 取一 X,记下,放回去,再随机抽取,直至抽出 50X,多次重复试验, 并估计出 50 人中有 2 人生日相同的概率,此为模拟试验. 活动评价指导: (1)关注学生的参与程度,活动过程中的思维方式,与同学合作交 流情况. (2)鼓励思维多样性. (3)关注学生能否用试验方法估计一些较复杂随机事件发生的概 率. (4)关注学生对概率的理解是否全面. (5)关注试验次数. 实际效果:通过以上探索活动,经历了大量重复试验,能估算出

北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案

北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案

北师大版九年级上册第三章概率的进一步认识知识归纳及例题【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题. 【知识点梳理】要点一、用树状图或表格求概率 1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ; (3)用公式计算所求事件A 的概率.即P (A )=. 知识点二、用频率估计概率 1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值. 知识点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量nm nm重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.知识点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .B .C .D .【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( ) A .B .C .D .【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ). A .BC D【答案】 D.2. (2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.13141234141312143413【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:=.故选C .【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D . 【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P (停在阴影部分)=. 类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是( ) A. 频率等于概率 B. 当试验次数很大时,频率稳定在概率附近 C. 当试验次数很大时,概率稳定在频率附近 D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的. 【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近. 【总结升华】概率是频率的稳定值,而频率是概率的近似值.1918291323类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.70;(3) 由(1)的频率值可以得出P(获得铅笔)=0.70;(4) 0.70×360°=252°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【总结升华】用频率估计概率,强调“同样条件,大量试验”. 举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率. (2)若从箱子中任意摸出一个球是红球的概率为,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断. 【答案与解析】(1)P (抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:53一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)==;(2)∵P(小明获胜)=,∵P(小东获胜)=1﹣=,∵这个游戏不公平.23。

北师大版九年级上册数学 第三章 概率的进一步认识(解析版)

北师大版九年级上册数学 第三章 概率的进一步认识(解析版)

第三章概率的进一步认识一、单选题1.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.12B.13C.23D.14【答案】D【解析】试题分析:先利用列表法与树状图法表示所有等可能的结果n,然后找出某事件出现的结果数m,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=14.考点:概率的计算.2.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.15B.14C.13D.12【答案】C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:41 123=.故选:C.【点睛】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.3.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任可其他区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【答案】A【解析】试题分析:由题意可知,摸到黄球的频率是0.2,可以近似的看成摸到黄球的概率是0.2,设红球有x个,可得,解得x=16,即盒子中大约有16个红球,故答案选A.考点:利用频率估计概率.4.如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是()A.425B.625C.1025D.1925【答案】A【解析】试题解析:列表如下:所有等可能的情况有25种,其中两个指针同时落在偶数上的情况有6种,所以两个指针同时落在偶数上得概率=6. 25故选B.5.小华把如图所示的4×4的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.316B.14C.516D.716【答案】C【解析】【分析】先求出阴影部分的面积,再求出大正方形的面积,最后根据阴影部分的面积与总面积的比,即可得出答案.【详解】解:∵阴影部分的面积=5个小正方形的面积,大正方形的面积=16个小正方形的面积,∵阴影部分的面积占总面积的5 16,∵飞镖落在阴影区域的概率是5 16,故选C.【点睛】此题主要考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比,关键是求出阴影部分的面积.6.下列图形:任取一个是中心对称图形的概率是()A.14B.12C.34D.1【答案】C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定∵∵∵是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=34,因此本题正确选项是C.7.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率【答案】C【解析】解∵A∵掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B∵掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C∵从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确;D∵任意写出一个整数,能被2整除的概率为12,故此选项错误.故选C∵8.箱子内装有53个白球和2个红球,小颖打算从箱子内抽球,以每次抽出一球后将球放回的方式抽53次.若箱子内每个球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小颖抽到红球的概率是()A.12B.152C.253D.255【答案】D【解析】【分析】红球的个数除以球的总数即为所求的概率.【详解】∵一个盒子内装有大小、形状相同的53+2=55个球,其中红球2个,白球53个,∵抽到红球的概率是:2P=55,故选D.【点睛】本题考查了概率公式,熟练掌握概率的概念是解题的关键.9.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.10.下列代数式:20224x x x x +++中,若任取一个代数式,则抽取的代数式对于任意的实数x 均有意义的概率为( )A .15B .25C .35D .45【答案】C【解析】【分析】根据分式有意义,分母不等于0,二次根式的被开方数大于等于0,零指数幂的底数不等于0,对各小题分析判断,再运用概率公式求出答案即可.【详解】当4x >当0x =时,0x 没有意义,223x x ++,整式,对于任意的实数x 均有意义,,对于任意的实数x 均有意义,24x +,由于211x +≥,244x +≥,对于任意的实数x 均有意义,∵5个代数式中,对于任意的实数x均有意义的有3个,∵抽取的代数式对于任意的实数x均有意义的概率为35.故选:C.【点睛】本题考查了概率公式以及分式、零指数幂、二次根式有意义的条件,正确掌握相关定义是解题关键.11.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则布袋中白色球的个数可能是()A.24B.18C.16D.6【答案】C【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∵摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【点睛】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.12.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.5【答案】D【解析】【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65∵0.7∵0.58∵0.52∵0.51∵0.5∵可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5∵故选D∵【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.二、填空题13.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.【答案】1 2【解析】【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∵摸出两个颜色不同的小球的概率为61 122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.14.先后两次抛掷一枚质地均匀的硬币,落地后恰好一次正面向上,一次正面向下的概率是___________.【答案】1 2【解析】【分析】【详解】解:先后两次抛掷一枚质地均匀的硬币,落地后恰好一次正面向上,一次正面向下的概率是:11111.22222 P=⨯+⨯=故答案为1 . 215.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到0.1).【答案】0.9【解析】【分析】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【详解】∵0.9230.8830.8900.9150.9050.8970.902x0.97++++++=≈,∵这种幼树移植成活率的概率约为0.9.故答案是:0.916.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是____.【答案】2100个【解析】因为摸到黑球的频率在0.7附近波动,所以摸出黑球的概率为0.7,再设出黑球的个数,根据概率公式列方程解答即可.解:设黑球的个数为x,∵黑球的频率在0.7附近波动,∵摸出黑球的概率为0.7,即x/3000=0.7,解得x=2100个.大量反复试验时,某某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.17.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____∵【答案】1 3∵【解析】【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可∵【详解】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=21 =63∵故答案为1 3∵【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是____(填写一个你认为正确的序号).∵掷一个质地均匀的正六面体骰子,向上一面的点数是2;∵掷一枚硬币,正面朝上;∵暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.【答案】∵【解析】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右,∵中向上一面的点数是2的概率为16,不符合题意;∵中掷一枚硬币,正面朝上的概率为12,不符合题意;∵中从中任取一球是红球的概率为13,符合题意∵故答案为∵∵19.一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同.任意从袋子中摸出一球后放回,在任意摸出一球,则两次摸出的球所标数字之和为6的概率是【答案】1 3 ,【解析】所出现的情况有6种:(1,1)(1,3)(1,5)(3,3)(3,5)(5,5).所标数字之和为6的有2种,即(1,5)(3,3).所以概率为2163 P==20.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________∵【答案】10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,2n=0.2∵解得,n=10∵故估计n大约有10个.故答案为10∵【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.三、解答题21.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】(1)13;(2)不公平.【解析】试题分析:(1)画出树状图,再根据概率公式即可得出答案;(2)分别求出小明和小东的概率,再进行比较即可得出答案.试题解析:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)=412=13;(2)∵P(小明获胜)=13,∵P(小东获胜)=113=23,∵这个游戏不公平.考点:1.游戏公平性;2.列表法与树状图法.22.在一个不透明的盒子中装有三张卡片,分别标有数字1∵2∵3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.【答案】49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∵两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【答案】(1)0.59,0.58;(2)0.6;(3)黑球8个,白球12个.【解析】【分析】(1)将m和n的值分别代入求解即可得出答案;(2)根据表中数据,取平均值即可得出答案;(3)根据总数和摸到白球的概率求出白球的个数,再用总数减去白球的个数,即可得出答案.【详解】(1)填表如下:(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.【点睛】本题考查的是数据统计,难度系数较低,解题关键是用样本概率估计总体概率.24.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【答案】(1)23;(2)见解析,13【解析】【分析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【详解】(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∵指针所指扇形中的数字是奇数的概率为23.故答案为:23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为31 93 =.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.在一个不透明的布袋里装有4个标有1∵2∵3∵4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.【答案】()1见解析;()124∵ 【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x∵y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】 ()1画树状图得:共有12种等可能的结果()1,2∵()1,3∵()1,4∵()2,1∵()2,3∵()2,4∵()3,1∵()3,2∵()3,4∵()4,1∵()4,2∵()4,3∵()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2∵()2,3∵()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=∵ 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)16,将折线统计图补充完整见解析;(2)1 6 .【解析】试题分析:(1)根据3月份有4家,占25%,可求出某镇今年1﹣5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整;(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:解:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1﹣5月新注册小型企业一共有:4÷25%=16(家),1月份有:16﹣2﹣4﹣3﹣2=5(家).折线统计图补充如下:故答案为16;(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种,∵所抽取的2家企业恰好都是餐饮企业的概率为212=16.考点:列表法与树状图法;扇形统计图;折线统计图.27.在一个不透明的口袋里装有只有颜色不同的黑,白两种颜色的球共20只.某学习小组做摸球实验,将球搅匀后从中摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请填出表中所缺的数据;(2)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01)(3)请据此推断袋中白球约有只.【答案】(1)填表见解析(2)0.60(3)0.58,484;0.60;12【解析】试题分析:(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.试题解析:(1)填表如下:(2)答案为:0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(只).故答案为0.58,484;0.60;12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用频率估计概率课标解读
一、课标要求
用频率估计概率一节包括两个课时,本课是在学生已经学习了用列举法求概率的基础上,进一步研究用频率估计概率.《义务教育数学课程标准(2011年版)》对用频率估计概率一节相关内容提出的教学要求是:
1.能够通过随机试验,获得事件发生的频率;
2.知道通过大量重复试验,可以用频率估计概率;
3.了解频率与概率的区别与联系.
二、课标解读
1.本章知识结构如下图所示:
本节介绍用频率估计概率.由前两节可知,对于结果个数有限且每个结果等可能的随机试验中的事件,我们可以用列举法去概率.教科书这一节从统计试验结果频率的角度去研究一些随机试验中事件的概率,此方法求概率不受列举法求概率的两个条件的限制.
2.理解用频率估计概率方法的合理性和必要性
教科书设置了一个投币试验,一方面要求学生亲自动手试验获得数据,从数据中发现规律;另一方面还给出历史上投币试验的数据,为学生发现规律提供帮助.通过学生的亲自动手试验和历史数据,学生能够用自己在统计中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小.学生自主可以发现,在大量重复投掷一枚硬币时,“正面向上”的频率在0.5的左右摆动,一般地,随着投掷次数的增加,频率会呈现出一定的稳定性:在0.5的左右摆动的幅度会越来越小.这个稳定值和用古典概型求出的概率理论值0.5是一致的,从而说明用频率估计概率方法的合理性.通过这个试验,也让学生从频率的角度进一步认识概率的意义,概率反映的规律是针对大量重复试验而言.但试验的次数再多,也很难保证试验的结果与理论值相等.让学生明白这一点,认识到概率的思维方式与确定性思维方式的差异,从而建立良好的随机观念.
由于用频率估计概率不受随机试验中可能结果数有限和各种结果发生等可能的限制,适用的
范围比列举法更广.
3.频率与概率的联系
初学概率的学生容易混淆概率与频率两个概念,更不容易理解两者的联系与区别.在一定条件下,大量重复进行同一试验时,事件A发生的频率会在某一个常数附近波动,即频率具有随机性.试验的次数越多,波动越小,这个性质就是频率的稳定性,这个常数就是事件A 发生的概率P(A).人们常把试验次数很大时事件发生的频率作为概率的近似值.频率与概率是两个对立的概念,事件的概率是一个客观存在的常数,事件的频率是一个与试验次数、试验者都有关的一组波动的变数,而概率的统计定义是把频率的稳定值看作概率的近似值,因为频率与概率的差异永远存在,但随着试验次数的增大,这个差异会越来越小,频率由量变到质变成为概率,反映了变量与常量的辩证统一的思想.
用概率的统计定义时,概率会取不同的近似值,但一个事件发生的概率不会有两个不同的值.事件发生的概率是一个客观存在的数值,反映了事件本身固有的属性.
4.重视学生动手实验
数学课程标准指出:有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展.学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,进一步体会概率与统计的关系,才能在数学思考、问题解决和情感态度方面得到发展.教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件.因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动.
应鼓励学生动手实验,不应教给学生这样一种观念: 只有运用理论的方法才能得到正确的解答.概率、事件的可能性的测量,可以理论地和实验地确定.也可以借助计算机(器)进行模拟活动、处理数据,正确理解随机事件发生的不确定性及其频率的稳定性,更好地体会频率与概率的意义.
为了让学生通过具体的试验操作获得一定的活动经验,体会随机试验中频率的随机性以及大量重复试验中频率的稳定性,进而加强对概率意义的理解,教科书在25.3节设置了一个投掷硬币的试验,为学生提供一个体验随机试验的机会.由于在这个试验中需要获得的投掷次数相对较多,因此这里需要发动全体学生积极参与,动手试验,靠集体的力量快速地获得试验频率.
在学习用频率估计概率这部分内容时,一方面要鼓励学生亲自动手,集体合作,这主要是针
对一些比较简单的试验,比如说投币试验、图钉试验等;另一方面也鼓励学生采用模拟方法进行试验,特别是利用计算机或计算器进行模拟试验.我们知道,为了提高频率估计概率精度,需要进行大量的重复试验,这样的试验是极其费时费力的,因此应该鼓励学生使用现代信息技术.比如“实验与探究的估计”,其实是用计算器或计算机产生随机数的方法进行模拟.通过模拟试验,学生既可以感受到概率知识广泛的应用性,而且也有利于学生进一步理解概率的意义.
概率与生活的密切联系,生活中的素材充满了趣味性和吸引力,教学时要注意挖掘学生身边的素材,让学生亲身参与到实践活动中,在解决问题的过程中,进一步加强对随机概念的培养.。

相关文档
最新文档