高中数学必修1.2.4.5综合测试题及答案汇编

合集下载

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

最新高中数学人教版必修一至四测试题及答案

最新高中数学人教版必修一至四测试题及答案

高中数学人教版必修一至四测试题及答案云龙一中2016---2017学年(下)高一年级月考数学试卷第1卷 选择题一、单项选择 (每题5分 共12小题 60分)1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N 等于(A ) A.{0,4}B.{3,4}C.{1,2}D.∅2、计算:9823log log ⋅= ( D )A 12B 10C 8D 6 3、函数2(01)x y a a a =+>≠且图象一定过点 (B )A (0,1)B (0,3)C (1,0)D (3,0)4、把函数x y 1-=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( c ) A 1x 3x 2y --=B 1x 1x 2y ---= C 1x 1x 2y ++= D 1x 3x 2y ++-= 5、设x x e1e )x (g 1x 1x lg)x (f +=-+=,,则 ( B ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数6、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( C ) A (0,1) B (1,2) C (2,3) D (3,4)7、若0.52a=,πlog 3b =,2log 0.5c =,则( A )A a b c >>B b a c >>C c a b >>Db c a >>8.如果sin(π+A )=-12,那么cos(32π-A )的值是( A )A .-12B.12 C .-32D.329.若tan α=2,则 2sin α-cos αsin α+2cos α值 为 ( B )A .0 B. 34 C .1 D. 5410. 在下列关于直线m l ,与平面βα,的命题中真命题是 (A ) (A )若β⊥l 且βα//,则α⊥l (B )若β⊆l 且βα⊥,则α⊥l (C )若β⊥l 且βα⊥,则α//l (D )若m =βα 且m l //,则α//l 二、填空题:(每题5分 共4小题 20分) 第11卷 11.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -= ---2-------12、函数122x )x (f x-+=的定义域是____:(,2]-∞ _13.圆0222=-+x y x 和圆0422=++y y x 的位置关系是的相交. 14.以点(1,2)为圆心,与直线03534=-+y x 相切的圆的方程是25)2()1(22=-+-y x .15.球与其内接正方体的体积比是 2:3π.16.已知直线l 经过点(43)P --,,且被圆22(1)(2)25x y +++=截得的弦长为8,则直线l 的方程是 .43250x y ++=或4x =- 三、解答题(一共70分) 17.18. 计算 5log 3333322log 2log log 859-+- 5log 3333332log 2log 329)log 25-+-解:原试=(-log =33332log 2log 23)3log 23-+-(5-2log =333log 23log 23-+-+2=-119.已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1, ∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43.20.已知集合{}{}19123|,73|<-<=≤≤=x x B x x A ,求: (1)求B A ⋃ (2)求B A C R ⋂)((2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.21.如图所示,在正方体1111ABCD A B C D -中,E 是棱BC 的中点. (1)求证:1BD ∥平面1C DE ;(2)试在棱1CC 上求一点P ,使得平面11A B P ⊥平面1C DE .(1)证明:如图1,连结1CD ,交1C D 于点O ,E ∵是BC 的中点,O 是1CD 的中点,1BD OE ∴∥,由线面平行的判定定理知1BD ∥平面1C DE ;(2)解:如图2,过1B 作11B P C E ⊥,交1CC 于点P ,交1C E 于点1O , 11A B ⊥∵平面11BCC B , 111A B C E ⊥∴,又11C E B P ⊥∵,1111A B B P B =,1C E ⊥∴平面11A B P . 1C E ⊂∵平面1C DE ,∴平面11A B P ⊥平面1C DE ,这时由图3可知,1111B C O CEC ∠=∠,图21111C B O CC E ∠=∠∴,且111B C C C =,从而111B C P C CE Rt Rt △≌△,1C P CE =∴,即P 为1C C 的中点.22.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=. (1)求证:无论m 为何值,直线l 恒过定点(31),;(2)当m 为何值时,直线被圆截得的弦最短,最短的弦长是多少? 解:(1)将点(31),的坐标代入直线方程的左边有(21)3(1)1740m m m +⨯++⨯--=,即点(31),的坐标轴令直线的方程恒成立.故点(31),是直线l 上的一点,即直线l 恒过定点(31),.(2)容易知道点(31)D ,在圆内,当直线l 垂直于CD 时被截得的弦长最短,由圆的方程可得圆以C 的坐标为(12),, 则直线CD 的斜率121312CD k -==--. 所以当直线l 被截得的弦长最短时直线l 斜率为2. 由直线l 的方程可得1211m k m +=-+.于是有2121l m k m +=-=+,解得34m =-. 则直线l 的方程为250x y --=.又CD =所以最短的弦长为故直线l 被圆C 截得的弦最短时m 的值是34-,最短长度是.22.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >, (1)求(1)f ;(2)解不等式2)3()(-≥-+-x f x f 。

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题第一章至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(N)等于( )UA. B.C. D.(A∪B)【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)3.下列图形中,不是函数图象的是( )【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x35.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)6.函数f(x)=若f(x)=2,则x的值是( )A. B.± C.0或1 D.0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )7.已知a=log2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+10010.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( ) A.3- B.3+C.2-D.2+11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.14.= .15.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.16.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【补偿训练】已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小). (注:总费用=途中费用+装卸费用+损耗费用)22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.高中数学必修一(第一至第三章) (参考答案)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(UN)等于( )A. B.C. D.【解析】选B.因为U N=,M=,所以M∩(UN)=.【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U(A∪B)= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以U(A∪B)={2,4}.2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小.【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选 C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3). 【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x).【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,,,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).【解析】原式=÷×=××=×a×=a2.18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩=或,因为RB=,所以(RB)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).(ax+b)的图象经过点A(2,1),B(5,2). 【补偿训练】已知函数f(x)=log3(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.f(x)+x2-6的值域.(3)当x∈(-3,4]时,求函数g(x)=log2【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].。

高中数学必修1-必修5综合测试题(附答案)

高中数学必修1-必修5综合测试题(附答案)

高二数学必修1-必修5考试题一、选择题(每小题5分,共40分,在每小题的四个选项中有且只有一个是正确的,请把正确选项填涂在答题卡上。

)1. 对于下列命题:①,1sin 1x R x ,②22,sin cos 1x R xx,下列判断正确的是A. ①假②真B. ①真②假C. ①②都假D. ①②都真2. 条件语句的一般格式是3. 某校为了了解学生的课外阅读情况,随即调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示。

根据条形图可得这50名学生这一天平均每人的课外阅读时间为A. 0.6 小时B. 0.9 小时C. 1.0 小时D. 1.5 小时4. 有一圆柱形容器,底面半径为10cm ,里面装有足够的水,水面高为12cm ,有一块金属五棱锥掉进水里全被淹没,结果水面高为15cm ,若五棱锥的高为3cm ,则五棱锥的底面积是A. 100cm2B. 100 cm2C. 30cm2D. 300 cm2IF 条件THEN 语句 1 ELSE 语句 2 END IF人数(人) 0 0.5 1.0 1.5 2.0时间(小时)20 15 105A.是满足条件语句 1语句 2否B.是否满足条件语句 2语句 1D.是否满足条件满足条件语句 2语句 1语句 1语句 2 否满足条件是C.5.已知数列1{}nn a pa 为等比数列,且23nnna ,则p 的值为A.2B.3C.2或3D.2或3的倍数6.若α、β表示平面,a 、b 表示直线,则a ∥α的一个充分条件是A. α⊥β且a ⊥βB. αI β=b 且a ∥b C. a ∥b 且b ∥αD. α∥β且aβ7.已知奇函数f(x)和偶函数g(x)满足f(x)+g(x)=2xxaa,若g(a)=a, 则f(a)的值为A.1B.2C.154D.1748. 已知()f x 是以2为周期的偶函数,当[0,1]x时,()f x x ,那么在区间[1,3]内,关于x 的方程()1f x kxk (其中k 走为不等于l 的实数)有四个不同的实根,则k 的取值范围是A .(1,0)B .1(,0)2C .1(,0)3D .1(,0)4题号 12345678答案二、填空题(每小题5分,共30分。

高中数学必修1综合测试卷(三套+含答案)

高中数学必修1综合测试卷(三套+含答案)

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。

已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。

5D .6 4。

下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。

设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。

2 B .3 C .9 D 。

187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

高中数学必修1、4、5、2综合测试题附答案

高中数学必修1、4、5、2综合测试题附答案

数学必修1一、选择题1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ⋂=( )A .{}5B .{}0,3C .{}0,2,3,5D .{}0,1,3,4,5 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数12log y x =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e1e )x (g 1x 1x lg)x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a=,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫⎝⎛+3264=______13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x-+=的定义域是______ 15.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 .三、解答题16. 计算 5log 3333322log 2log log 859-+-18、已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。

高中数学必修综合测试卷三套+含答案

高中数学必修综合测试卷三套+含答案

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

数学必修1-5综合测试题[3]

数学必修1-5综合测试题[3]

2011-2012学年下期高中数学必修综合测试题(三)一、 选择题:本大题共10小题;第每小题5分,共50分。

在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.设{}{}==+==-=B A x x x B x x x A 则,0|,0|22 ( )(A )0 (B ){0} (C )Φ (D ){-1,0,1} 2. 一个容量为100的样本分成若干组,已知某组的频率为0.3,则该组的频数是 ( )A. 3B. 30C. 10D. 300 3. 若S n 是数列{a n }的前n 项和,且{}n n a n S 则,2=是 ( )(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列 4. 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是 ( )(A )()4)1(322=+++y x (B )()4)1-(322=++y x (C )()4)1-(1-22=+y x (D )()4)1(122=+++y x 5. 若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2 +=的取值范围是 ( )(A )⎪⎭⎫ ⎝⎛210,(B ) ⎝⎛⎥⎦⎤210,(C )⎪⎭⎫ ⎝⎛∞+,21 (D )()∞+,06. 若向量a=(3,2),b=(0,-1),c=(-1,2),则向量2b -a 的坐标是 ( )(A )(3,-4) (B )(-3,4) (C )(3,4) (D )(-3,-4)7. 设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )(A )05-=+y x (B )01-2=-y x (C )042=--x y (D )07-2=+y x 8. 若则,,cos sin ,cos sin 40b a =+=+ββααπβα( )(A )b a (B )b a (C )1 ab (D )2 ab9. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。

高一数学必修1-4综合测试题含答案

高一数学必修1-4综合测试题含答案

高一数学必修1-4综合测试题含答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一数学必修1-4综合测试题含答案共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.)225sin( -的值是 ( )A .22 B .22-C .21 D .23 2.若直线经过A (23, 9)、B(43, 15)两点, 则直线A B 的倾斜角是( ) A .45°B .60°C .120°D .135°3.幂函数)(x f 的图象过点⎪⎭⎫⎝⎛21,4,那么)8(f 的值为( )A.42B. 64C. 22D. 6414.为了得到函数)42sin(π-=x y 的图象,只需把函数x y 2sin =的图象上所有的点( )A .向左平移4π个单位长度 B .向右平移4π个单位长度C .向左平移8π个单位长度D .向右平移8π个单位长度5. 已知a 、b 是非零向量且满足(2)-⊥a b a ,(2)-⊥b a b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6.已知两直线m 、n ,两平面α、β,且βα⊂⊥n m ,.下面有四个命题1)若n m ⊥则有,//βα; 2)βα//,则有若n m ⊥; 3)βα⊥则有若,//n m ; 4)n m //,则有若βα⊥. 其中正确命题的个数是( ) A .0B .1C .2D .37.若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D.1或3-8.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( ) A.224cm π,312cm π B.215cm π,312cm πC.224cm π,336cm π D.以上都不正确9.设函数2()3x f x x =-,则函数()f x 有零点的区间是( )A.[]0,1B.[]1,2C.[]2,1--D.[]1,0-10. 3名学生排成一排,其中甲、乙两人站在一起的概率是( ) A.23 B.12 C. 13 D. 1611. 已知函数()225f x x mx =-+,m R ∈,它在(,2]-∞-上单调递减,则()1f 的取值范围是( )A. 15)1(=fB. 15)1(>fC. 15)1(≤fD. 15)1(≥f 12. 对于向量,,a b e 及实数12,,,,x y x x λ,给出下列四个条件: ①3+=a b e 且5-=a b e ; ②12x x +=0a b③()λ≠0a =b b 且λ唯一; ④(0)x y x y +=+=0a b 其中能使a 与b 共线的是( )A .①②B .②④C .①③D .③④第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题.2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()log (1)f x x =-的定义域是_________ ;14.过点(1,0)且与直线220x y --=平行的直线方程是 ;GM D 1C 1B 1A 1NDCBA15. 在区间[2,3]-上任取一个实数,则该数是不等式21x >解的概率为 .16.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f xb =+的图像上,则b = 。

最新高中数学必修一、必修四、必修二综合练习(含答案)

最新高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习一. 选择题:1.函数()f x = ( )A .(,0]-∞B .[0,)+∞C .(,0)-∞D .(,)-∞+∞2.下列四个命题中正确的是( )A .lg 2lg3lg5⋅=B .mn n m a a a =⋅C .a a n n =D .yxy x aa a log log log =- 3. cos300︒= ( )(A)2-(B)-12 (C)12(D) 2 4.正三角形ABC 的边长为1,设=AB c ,=BC a ,=CA b ,那么a b b c c a ++的值是( )A .32 B .12 C .32- D .12- 5.在正项等比数列{}n a 中,若232a a +=,458a a +=,则56a a += ( )A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S =40,那么判断框中应填入 A .6k ≤ B .5k ≤ C .6k ≥ D .5k ≥ 7.已知1x > ,则11y x x =+-的最小值为 ( )A.1B. 2C.D. 38.已知图1是函数()y f x =的图象,则图2中的图象对应的函数可能是 ( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--9.已知全集{}0,1,2U =,且{}2U C A =,则集合A 的子集共有( ) A .2个B .3个C .4个D .5个10.为了得到函数cos(2)3y x π=-的图象,可以将函数sin 2y x =的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度D .向左平移12π个单位长度二、填空题(每小题5分,共20分)11.已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -∥b ,则k = . 12. 满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是________. 13.已知3cos()25πα-=,则cos2α= 14.对定义域是f D 、g D 的函数)(x f y =、)(x g y =,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈=g f gf g f Dx D x x g D x D x x f D x D x x g x f x h 且当且当且当),(),(),()()(,若函数11)(-=x x f ,2)(x x g =,则=+)2()1(h h 。

高中数学,必修一,必修四,综合练习检测(附答案)

高中数学,必修一,必修四,综合练习检测(附答案)

一、选择题(5× 10=50 分)9. 设0 a 1,在同向来角坐标系中,函数y a x与 y log a ( x) 的图象是(1. 若会合 A { 6,7,8} ,则知足 A B A 的会合B的个数是()A. 1B. 2C. 7D. 82. 假如全集 U {1,2,3,4,5,6} 且 A (C U B) {1,2} , (C U A) (C U B) { 4,5} ,A B {6} ,则A等于()A. {1,2}B. {1,2,6}C. {1,2,3}D. {1,2,4}3. 已知函数 f (x) log 2 ( x2 ax 3a) 在 [2, ) 上是增函数,则实数 a 的取值范围是()A. ( ,4)B. ( 4,4]C. ( , 4) ( 2, )D. [ 4,2)4. 若a=(2,1),b=(3,4),则向量a在向量b方向上的投影为()A.2 5B.2C.5D.1010.在锐角△ ABC中,设x sin A sin B, ycos Acos B.则 x,y 的大小关系为 (5. 函数 y f ( x) 在区间 (a,b) (a b) 内有零点,则() A. xy B.x yC.xy D.x yA. f (a) f (b) 0B. f (a) f (b) 0C. f ( a) f (b) 0D. f (a) f (b) 的符号不定6. 已知函数 f (x) log 2 x, x 03x , x 0,则 f [ f (1 )]的值是()41C. 9 1A. B. 9 D.9 97.给出下边四个命题:①AB BA 0;② AB BC AC ;③ AB-AC BC ;④ 0AB,此中正确的个数为()A.1 个B.2 个C.3 个D.4 个sin x sin(3x) 2 tan x tan(3x)8.若 2 ,则 2 的值是()A.-2B.-1C.1D.2 二、填空题( 5× 6=30 分)11. 方程 log 2 (9 x 5) log 2 (3x 2) 2 的解是。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修1.2.4.5综合测试题
一、选择题:
1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )
A .{2,4,6}
B .{1,3,5}
C .{2,4,5}
D .{2,5}
2.如果函数2
()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a ≤- B 、3a ≥- C 、a ≤5 D 、a ≥5
3.要得到2sin(2)3y x π
=-
的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移3π
个单位
4.圆1C :222880x y x y +++-=与圆2C :22
4420x y x y +-+-=的位置关系是( )
A. 相交
B. 外切
C. 内切
D. 相离 5.下列各组函数是同一函数的是 ( )
①()f x =
()g x =()f x x =
与()g x =
③0
()f x x =与01()g x x
=
;④2()21f x x x =--与2
()21g t t t =--。

A. ①② B 、①③ C 、③④ D 、①④
6.已知2tan()5αβ+=
, 1tan()44
πβ-=, 则tan()4π
α+的值为 ( )
A .16
B .2213
C .322
D .13
18
7.已知a ,b 满足:||3a =,||2b =,||4a b +=,则||a b -=( )
A
B
C .3
D .10
8. 若定义运算b
a b
a b a
a b
<⎧⊕=⎨
≥⎩,则函数()212
log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R
9.直线3440x y --=被圆2
2
(3)9x y -+=截得的弦长为( ) A
..4 C
. D .2
10.如上图,三棱柱111A B C ABC -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC
中点,则下列叙述正确的是( )
A . 1CC 与1
B E 是异面直线 B . A
C ⊥平面11ABB A
C .11//AC 平面1AB E
D .A
E ,11B C 为异面直线,且11AE B C ⊥ A 1
B 1
C 1
A
B
E
C
二、填空题
11.过点(0,1),(2,0)A B 的直线的方程为 .
12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为 . 13.函数2
4
++=
x x y 的定义域为 . 14.已知圆C 经过点(0,6),(1,5)A B --,且圆心坐标为(,1)a a +,则圆C 的标准方程
为 . 15.给出下列五个命题: ①函数2sin(2)3
y x π
=-
的一条对称轴是512
x π=
; ②函数tan y x =的图象关于点(
2
π
,0)对称; ③正弦函数在第一象限为增函数 ④若12sin(2)sin(2)44
x x π
π
-
=-,则12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)
三、解答题
16.已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。

17.已知数列}{n a 满足:111,2n n a a a n -=-=且. (1)求432,a a a , (2)求数列}{n a 的通项n a
18.已知α为第三象限角,()3sin()cos()tan()
22tan()sin()
f ππ
ααπαααπαπ-+-=----. (1)化简()f
α
(2)若31
cos()25
πα-=,求()f α的值
19.如图,三棱柱111ABC A B C -,1A A ⊥底面ABC ,且ABC ∆为正三角形,16A A AB ==,D 为AC 中点.
(1)求三棱锥1C BCD -的体积;
(2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1//AB 平面1BC D .
A
B C
A 1
B 1
C 1
D
20.已知关于,x y 的方程2
2
:240C x y x y m +--+=. (1)若方程C 表示圆,求m 的取值范围;
(2)若圆C 与圆2
2
812360x y x y +--+=外切,求m 的值;
(3)若圆C 与直线:240l x y +-=相交于,M N 两点,且MN =
,求m 的值.
高中数学必修1.2.4.5综合测试题
参考答案
1-10 A A D A C C D B C D
11.220x y +-=
12.(0,9)
13. ),2()2,4[+∞--- 14.()()2
2
3225x y +++= 15.①④ 16.解:
A B=∅
(1)当A=∅时,有2a+1a-1a -2≤⇒≤ (2)当A ≠∅时,有2a+1a-1a>-2>⇒

A B =∅,则有2a+10a-11≤≥或1
a -a 22
⇒≤≥或
1
2a -a 22
∴-<≤≥或
由以上可知1
a -a 22
≤≥或
17.解:(1)
2123422,415;1119a a a a a -=⨯∴=+===同理,,
()
()()21324312(2)
22
2324
2122312122
1
n n n a a a a a a a a n a n n n n n --=⨯-=⨯-=⨯-=⨯=+⨯++
+-+=+⨯=+-以上等式相加得:
18.解:(1)
()3sin()cos()tan()
22tan()sin()
f ππ
ααπαααπαπ-+-=----
(cos )(sin )(tan )
(tan )sin cos ααααα
α--=
-=- (2)∵31cos()25πα
-
= ∴ 1sin 5α-= 从而1
sin 5
α=-
又α为第三象限角
∴cos α==

()f α
的值为 19. 解:(1)∵ABC ∆为正三角形,D 为AC 中点,
∴BD AC ⊥,

6AB =
可知,3,CD BD ==
∴122
BCD
S CD BD ∆=
⋅⋅=. 又∵
1A A ⊥底面ABC ,且16A A AB ==, ∴1C C
⊥底面ABC ,且16C C =,
∴1
11
3
C BCD
BCD V S C C -∆=⋅⋅= (2) ∵1A A ⊥底面ABC ,

1A A BD ⊥.
又BD AC ⊥,
∴BD ⊥平面
11ACC A .
又BD ⊂平面1BC D , ∴平面1BC D
⊥平面11ACC A .
(3)连结1B C 交1BC 于O ,连结OD ,
在1B AC ∆中,D 为AC 中点,O 为1B C 中点,
所以1//
OD AB ,
又OD ⊂平面1BC D ,
∴直线1//AB 平面1BC D .
20.解:(1)方程C 可化为 m y x -=-+-5)2()1(22,
显然 5,05<>-m m 即时时方程C 表示圆.
(2)由(1)知圆C 的圆心为(1,2)

22812360x y x y +--+=可化为22(4)(6)16x y -+-=,
故圆心为(4,6),半径为4. 又两圆外切,
4=,
即54=,可得4m =.
(3)圆C 的圆心(1,2)到直线:240l x y +-=的距离为
5
12
142212
2
=
+-⨯+=
d ,

MN =
则12MN =,

2221
()2
r d MN =+,
所以225(
(),55
m -=+得 4=m .。

相关文档
最新文档