六年级下册《鸽巢问题》教学设计
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗一、说教材。
1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。
2、教材地位及作用。
本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。
实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
就课时划分而言,《鸽巢问题》的例1和例2既可以用一课时完成,又可以分两课时完成,我之所以选择后者,是因为在《鸽巢问题》中,“总有”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。
而且例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“鸽巢问题”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习鸽巢问题(二),才能灵活运用这一原理解决各种实际问题。
二、说学情。
1、年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。
因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。
三、说说教学目标。
根据《数学课程标准》和教材内容以及学生的学情,我确定本节课说说学习目标如下:知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。
能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇) 人教版数学六年级下册第27课鸽巢问题说课稿【第1篇】《鸽巢问题》说课稿尊敬的各位评委老师,大家好!我是()号考生。
今天我说课的内容是《鸽巢问题》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《鸽巢问题》是人教版小学数学六年级下册第68页的内容,,是数与代数领域的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
②能力目标:通过画图发展学生的类推能力,形成比较抽象的数学思维。
③情感目标:通过“鸽巢问题”的灵活应用感受数学的魅力。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”。
难点是:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。
可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:引导法、观察法、讨论法;学法是:动手操作法,合作交流法。
三、说教学准备在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。
环节一、情境导入我给大家表演一个魔术。
一副牌,取出大小王,还剩52张牌,你们5人每人随意抽出一张,我知道至少有2张牌是同花色的。
问问同学是否相信?并做几组实验,验证这一猜想。
借助同学的疑问和兴趣,此时,我会点明:告知这个故事里蕴含着一个重要的数学原理,即抽屉原理,从而引出新知。
通过情境设置,从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生对的比例的学习兴趣和求知欲。
六年级数学鸽巢问题教案
六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗一、教学内容:教科书第68页例1。
二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
四、教学准备:多媒体课件。
五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。
你准备好了吗?好,我们现在开始上课。
(三)导学1、请同学们先来看例1。
把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。
我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。
至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。
或者是说,铅笔的支数要大于或等于两支。
那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。
你说对了吗?课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!方法一:用“枚举法”证明。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】说教学目标:(一)知识与技能:1、通过观察、猜测、实验等活动,使学生初步了解并找出简单事物的组合数;2、使学生获得一些初步的数学实践活动经验。
(二)过程与方法:1、培养学生初步观察、分析推理能力以及有序地、全面地思考总是的方法和意识;2、感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。
(三)情感、态度和价值观:1、通过活动培养学生学习数学的兴趣和合作意识;2、初步学会表达解决总是的大致过程和结果。
说教学重点:简单的排列组合的方法。
说教学难点:有序的思考问题。
教学任务分析:“实践与综合应用”是数学课程内容标准中的四个领域之一。
在第一学段中,要特别加强实践活动,“搭配中的学问”是本册书的四个专题活动之一。
通过这一专题让学生感受数学与现实生活的联系,培养学生的实践能力。
通过本节课的教学重在训练学生有序思考能力,这种能力对学生今后学习数学乃至其他学科,以及解决生活中的实际问题都起着重要的作用。
说学情分析:学生对新奇的具体的事物感兴趣,爱动、好问,注意力不够稳定,而不善于记忆抽象的内容等。
同时对身边的数学有浓厚的兴趣,乐于探究生活中的数学;有较强的语言表达能力、动手操作能力,初步具备了用所学知识解决实际问题的能力;思维活跃,能多角度思考问题,富有创新精神。
因此我在数学广角这一主题中安排了五个板块进行教学,循序渐进,螺旋上升。
说教学过程:一、创设情况,提出搭配中的问题谈话:今天我感到很高兴,因为有这样难得的机会和大家在一起学习,希望在这节课中我们能够成为好朋友!今天我们初次见面,我给你们先讲个“田忌赛马”的故事,想听吗?(教师讲故事,大屏幕播放连环画)(学生聚精会神地边听故事边看画面。
)谈话:故事讲完了,你知道孙膑是如何帮助田忌反败为胜的吗?田忌赛马是用到了数学中的什么学问,学习了今天的知识,你就能揭开这其中的奥秘,也能成为聪明的军事家孙膑。
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)一、教学目标1.知识与能力:–学生能够理解“鸽巢问题”的概念;–学生能够运用排除法解决“鸽巢问题”相关问题;–学生能够在实际生活中应用“鸽巢问题”解决问题。
2.过程与方法:–引导学生积极思考,提高解决问题的能力;–利用小组合作,培养学生的合作意识和团队精神;–结合情境讨论,激发学生学习兴趣。
3.情感态度与价值观:–培养学生细心观察问题、逻辑思维和创新能力;–培养学生团队合作精神,培养学生积极探究、创造的态度。
二、教学重难点1.教学重点:–学习掌握“鸽巢问题”的概念;–学生能够灵活应用排除法解决问题。
2.教学难点:–学生能够在实际问题中应用“鸽巢问题”解决问题。
三、教学准备1.教师准备:–教案、多媒体课件、草稿纸等。
2.学生准备:–铅笔、橡皮、教科书等。
四、教学过程1.导入(5分钟)–引导学生回顾上一堂课的内容,为本节课的学习做铺垫。
2.新课呈现(15分钟)–通过多媒体课件或教科书引入“鸽巢问题”的概念,呈现问题情境,激发学生兴趣。
3.讲解与示范(20分钟)–针对“鸽巢问题”展开讲解,解释相关概念,通过示范进行解题演示,引导学生理解解题思路。
4.练习与讨论(30分钟)–分组进行练习,让学生通过小组合作解决问题,在讨论中发现解题方法的不同之处,运用排除法思维解决问题。
5.拓展应用(15分钟)–老师引导学生思考真实生活中可能遇到的“鸽巢问题”,激发学生对数学的实际应用兴趣,提高解决问题的能力。
6.总结与作业布置(5分钟)–总结本节课的重点内容,布置相关作业,巩固学生对“鸽巢问题”的理解和应用能力。
五、教学板书•鸽巢问题–概念:一个有限的集合如果要被划分成许多个部分,但是部分的总数比集合的总数还要多,那么必然存在至少一个部分包含了2个以上的元素;–解题方法:排除法。
六、教学反思通过本节课的教学,学生对“鸽巢问题”有了更深入的理解。
但在教学过程中,发现部分学生在排除法应用上存在困难,需要在后续课程中加强相关训练。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。
【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。
3.使学生感受数学的魅力,培养学习的兴趣。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。
【教学过程】一、开门见山,引入课题。
承接课前谈话内容,直接揭示课题。
二、经历过程,构建模型。
(一)研究“4个小球任意放进3个抽屉”存在的现象。
1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。
让学生说说对这句话的理解。
2.验证结论的正确性。
让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。
3.全班交流。
学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。
从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。
(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。
1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。
学生以小组为单位共同研究:先画出不同的放法。
然后观察分析每种放法,看看哪种猜测是正确的。
3.全班交流。
小组汇报研究结果。
教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。
那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。
人教版数学六年级下册《鸽巢问题》教案
人教版数学六年级下册《鸽巢问题》教案一、教学目标1.了解鸽巢问题的背景和意义。
2.学习用分析思维解决问题的方法。
3.培养学生的逻辑思维能力和数学解题能力。
二、教学重点1.理解鸽巢问题的提出背景。
2.掌握解决鸽巢问题的基本方法。
三、教学难点1.运用分析思维解决问题。
2.能够正确利用数学知识解决实际问题。
四、教学准备1.教材《数学》六年级下册。
2.黑板、彩色粉笔。
3.学生课前阅读教材相关知识,做好预习。
4.预先准备示范解题的案例。
五、教学过程1. 导入介绍鸽巢问题的背景,引发学生对问题本身的思考和兴趣。
2. 学习和讨论1.展示一个简单的鸽巢问题,并让学生表述对问题的理解。
2.引导学生进行讨论,探究解决问题的策略和方法。
3.让学生自行尝试解决问题,并相互交流讨论。
4.结合教材内容,讲解解决鸽巢问题的基本思路和方法。
3. 实例讲解1.通过一个具体的案例进行讲解,详细展示解题的过程和方法。
2.引导学生分析案例,总结解题的关键点和技巧。
4. 练习与巩固1.布置相关练习题,让学生进行独立练习。
2.就学生在练习中遇到的问题进行讲解和指导。
3.鼓励学生相互交流讨论,加深理解和巩固知识。
5. 拓展与应用1.提出一些拓展问题,让学生进行探究和应用。
2.鼓励学生运用所学知识解决实际生活中的问题。
六、课堂小结总结本节课学习的重点和难点,强调解决问题的方法和策略。
七、作业布置布置练习题和拓展问题作为课后作业,以巩固和拓展学生的学习成果。
以上是本节课的教学内容,希望同学们能够认真对待,通过学习鸽巢问题的解决方法,提升自己的数学思维能力和解题水平。
人教版六年级下册《鸽巢问题》教学设计含反思
人教版六年级下册《鸽巢问题》教学设计含反思教学内容:人教版六年级下册第68、69页,例1、例2。
教学目标:1.知识与能力:使学生经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题;通过操作、观察、比较、推理等数学活动,建立数学模型,发现规律;渗透“模型”思想。
2.过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教具、学具准备:课件、扑克牌、每个小组都准备有相应数量的笔筒、铅笔、课堂体验单。
教学过程:(一)游戏导入:1.老师和大家玩一个扑克牌的游戏。
需要5名同学配合,谁愿意?向同学介绍:这是一幅扑克牌,取出大、小王,还剩几张?请你们任意抽1张。
我判断,这5张牌中至少有2张是同花色的。
请亮牌,几张同花色的?(二)动手操作,感知模型1.出示:丁丁说:“把4支铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少有2支铅笔”,他说得对吗?请说明理由。
2.引导学生找出关键词“总有”、“至少”“一个”。
3.引导学生理解“总有”、“至少”的意思。
4. 分小组探究,介绍活动要求:5.全班交流,小组展示交流自己的研究结果。
(1)方法1:摆学具的方法。
(2)方法2:画图法。
(3)方法3:数的分解。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)(4)师:像这样,把所有的摆法都一一列举出来,最后得出结论,这种方法叫枚举法。
(5)引导学生用假设法解决。
(6)引导学生列式:4÷3=1(支)……1(支)至少数1+1=2(支)师:①先在每个杯子里放一支,也就是平均分,这种方法叫假设法。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
《鸽巢问题》教学设计(共3篇)
《鸽巢问题》教学设计〔共3篇〕第1篇:《鸽巢问题》教学设计教学内容:〔人教版〕数学六年级下册第70页例1。
教学目的:1、经历“抽屉原理”的探究过程,初步理解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作开展学生的类推才能,形成比拟抽象的数学思维。
3、通过“抽屉原理”的灵敏应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步理解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
教学难点:通过操作开展学生的类推才能,形成比拟抽象的数学思维。
教学准备:多媒体课件、铅笔、文具盒等。
教学过程:一、创设情境,导入新知老师组织学生做“抢凳子的游戏”。
请4位同学上来,摆开3张凳子。
老师宣布游戏规那么:4位同学跟随着音乐〔甩葱歌〕围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。
老师背对着游戏的学生。
师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。
老师说得对吗?师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题〔板书课题〕。
二、自主操作,探究新知1、观察猜想多媒体出例如1:4枝铅笔,3个文具盒。
师:4个人坐3张凳子,不管怎么坐,总有一张凳子至少坐两个同学。
4枝铅笔放进3个文具盒中呢?【不管怎么放,总有一个文具盒中至少放进2枝铅笔。
】师:真的是这样吗?为什么会这样呢?你能给大家解释这一现象吗?2、自主考虑。
〔1〕独立考虑:怎样解释这一现象?〔2〕小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况?3、交流讨论,学生汇报是用什么方法来解释这一现象的。
【学情预设:第一种:用实物摆一摆,把所有的摆放结果都罗列出来。
学生展示把4枝铅笔放进3个盒子里的几种不同摆放情况。
课件再演示四种摆法。
请学生观察不同的放法,能发现什么?引导学生发现:每一种摆放情况,都一定有一个文具盒中至少有2枝铅笔。
也就是说不管怎么放,总有一个盒子里至少有2枝铅笔。
人教版数学六年级下册《鸽巢问题》教案
人教版数学六年级下册《鸽巢问题》教案一. 教材分析人教版数学六年级下册《鸽巢问题》是本册教材中一个重要的数学问题,主要让学生了解和掌握鸽巢问题的解题思想和方法。
通过本节课的学习,使学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
本节课的内容包括鸽巢问题的定义、解题方法及应用。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于生活中的实际问题能够进行简单的分析。
但是,对于鸽巢问题的解题思想和方法还需要通过本节课的学习来培养和提高。
在导入环节,可以利用学生已知的知识,如数学科普知识,激发学生的学习兴趣。
三. 教学目标1.知识与技能:使学生了解和掌握鸽巢问题的解题思想和方法,能够运用所学的知识解决实际问题。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:使学生掌握鸽巢问题的解题方法。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法1.情境教学法:通过生活情境的创设,引导学生了解和掌握鸽巢问题的解题方法。
2.启发式教学法:引导学生主动思考、探究,提高学生解决问题的能力。
3.小组合作学习:鼓励学生进行小组讨论、交流,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作与教学内容相关的课件,帮助学生直观地理解鸽巢问题。
2.教学素材:准备一些与鸽巢问题相关的实际案例,用于引导学生解决实际问题。
七. 教学过程1.导入(5分钟)利用数学科普知识,如“鸡兔同笼”问题,引导学生思考和讨论,从而引出本节课的主题——鸽巢问题。
2.呈现(10分钟)通过课件展示鸽巢问题的定义和解题方法,让学生初步了解和掌握鸽巢问题的解题思路。
3.操练(10分钟)让学生分组讨论,每组选取一个实际案例,运用所学的鸽巢问题解题方法进行解决。
教师巡回指导,解答学生的疑问。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。
六年级下册鸽巢问题教案设计
六年级下册《鸽巢问题》教案设计【设计理念】本通过创设情境、直观和实际操作,使学生进一步经历“鸽巢问题”的探讨进程,并对一些简单的实际问题“模型化”,从而在用““鸽巢问题”加以解决的进程中,增进逻辑推理能力的进展,培育分析、推理、解决问题的能力和探讨数学问题的爱好,同时也使学生感受到数学思想方式的奇异与作用,在数学思维的训练中,慢慢形成有序地、周密地试探问题的意识。
【教学内容】《义务教育程标准实验教科书数学》六年级下册第70--71页的内容。
【教学目标】1.经历“鸽巢问题“”的探讨进程,初步了解“”“鸽巢问题,会用“”“鸽巢问题解决简单的实际问题。
2.通过操作进展学生的类推能力,形成比较抽象的数学思维。
3.通过“”的灵活“鸽巢问题应用感受数学的魅力。
【教学重点】经历“”的探讨“鸽巢问题进程,了解把握“”“鸽巢问题。
【教学难点】明白得“”,并对“鸽巢问题一些简单实际问题加以“模型化”。
教学进程:一、游戏激趣,初步体验、教师组织学生做“抢凳子游戏”游戏规那么:4个人围着凳子转,教师喊“停”,4人必需都坐到凳子上。
教师说:我不用看,就能够猜到,总有一个凳子上至少做了两个同窗。
二、揭露题:教师什么缘故能做出如此准确的判定?道理是什么?那个地址面包括着有趣的数学原理。
(板书题:鸽巢问题)二、检查预习:、什么是抽屉原理?二、谁发觉的?3、通过预习,你明白了什么?4、你的困惑是什么?三、探讨发觉出例如1:把4支笔放进3个笔筒里,不管怎么放,总有1个笔筒里至少有2支笔。
一、让看懂例1的同窗来讲讲。
二、师问:你这是用的什么方式验证这一结论的?对这一问题其他同窗还有不明白的地址吗?生质疑,师答。
3、若是不用一一列举法,还有其他方式来验证这一结论吗?指名上台来讲。
师问:你们对这种方式听懂了吗?生质疑,师解答。
4、练习6支铅笔放进个笔筒里,不管怎么放,总有1个笔筒里至少放了几支铅笔?7支铅笔放进6个笔筒里,不管怎么放,总有1个笔筒里至少放了几支铅笔?100支铅笔放进99个笔筒里,不管怎么放,总有1个笔筒里至少放了几支铅笔?、师引导学生发觉规律:只要笔的支数比盒子数多1,不管怎么放,总有1个盒子里至少有2支笔。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
人教版小学数学六年级下册《鸽巢问题》教学设计
人教版小学数学六年级下册《鸽巢问题》教学设计第一篇:人教版小学数学六年级下册《鸽巢问题》教学设计人教版小学数学六年级下册《鸽巢问题》教学设计【教学内容】人教版六年级下册第68--69页《数学广角---鸽巢问题》例1、例2。
【教学目标】1.经历鸽巢原理的探究过程,初步理解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
4.使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。
【教学重点】经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
【教学难点】理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
【教学过程】一、创设情境引入课题 1.“魔术”表演:规则:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张。
抽到牌后藏好,等老师来猜。
大家猜猜看至少有几个同学的扑克牌花色是相同的?猜谜:老师肯定的说:“这5张牌中,至少有2张牌是同花色的。
老师猜的对不对?”请5个同学举起手中的牌让同学们见证奇迹。
大家表现这么好,我们再来玩游戏。
2.玩游戏游戏要求:老师喊“一、二、三开始” 以后,请你们5个都坐在椅子上,每个人必须都坐下。
3.导入课题:刚才的“魔术”表演和抢椅子游戏,这里面蕴藏着一个非常有趣的数学问题,这节课我们就一起来研究这类问题,下面我们先从简单的情况入手。
“鸽巢问题”。
(板书课题)二、合作探究发现规律(一)教学例1(由枚举法引出假设法,初步“建模”——平均分。
)出示例1 把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支笔。
1.理解“总有”和“至少”的意思。
2.运用“枚举法”初步探究。
(1)把4支笔放进3个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现几种情况都记录下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册《鸽巢问题》教学设计
教学目标
1、理解最简单的“鸽巢问题”及其一般形式,采用枚举法和假设法探究“鸽巢问题”,通过分析和推理,理解并掌握这一类“鸽巢问题”的一般规律。
2、经历“鸽巢问题”探究推理过程,了解“鸽巢原理”,体会比较的学习方法。
3、体会数学知识在日常生活中的广泛应用,培养数学模型思想。
重点:理解“鸽巢问题”的“一般化模型”推理过程。
难点:理解“鸽巢问题”的一般规律。
教学过程
一、问题导入
问题:任意找13个人,他们中至少有2个人的属相相同。
你知道为什么吗?
任意找367个人,至少有几个人在同一天过生日?先独立思考,再小组内讨论。
解答:都是至少有2个人。
问题:“至少”表示什么意思?学生分享。
师:解决这一类问题的理论依据就是“鸽巢问题”。
今天我们就一起来研究这一类问题。
(板书:鸽巢问题)
二、探究新知
(一)教学例1。
课件出示例1情境图。
题目:有4支铅笔,3个笔筒,把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?
师:请同学们小组合作讨论问题并实际放放看或者通过画图来表示,一会我们请小组代表来展示一下你们小组讨论的情况?
小组展示不同方案,并总结自己的发现。
枚举法:
1、操作法:通过动画展示。
2、画图表示法:
3、数字表示法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
师:通过刚才的操作,大家发现了什么?
生验证结论:不管怎么放,总有一个笔筒里至少有2支笔。
问题:(1)“总有”是什么意思?(一定有)
(2)“至少”有2支什么意思?(最少,最起码。
不少于2支,可能是2支,也可能是多于2支。
)
假设法:
师:除了像这样把所有可能的情况都列举出来,还有没有别
的方法也可以证明这句话是正确的?
预设:我是这样想的,先假设每个笔筒中放1支,这样还有1支。
这时无论放到哪个笔筒,那个笔筒中就是2支了。
所以我认为是对的。
教师板书图示,引导学会直观认识“这时无论放到哪个笔筒,那个笔筒中就有2支”的情况。
师:你为什么要先在每个笔筒中放1支呢?
预设:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:你为什么一开始就要去平均分呢?(板书:平均分)
预设:平均分,就可以使每个笔筒的笔尽可能少一点,也就有可能找到和结论不一样的情况。
师:我明白了。
但是这样只能证明有一个笔筒中肯定会有2支笔,怎么能证明至少有2支呢?
预设:平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
教师引导学生总结规律:我们把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
这是我们通过实际操作和假设的方法得出了这个结论。
确认结论:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支笔。
问题:把6枝笔放进5个笔筒里呢?还用摆吗?
把7枝笔放进6个笔筒里呢?
把8枝笔放进7个笔筒里呢?
把9枝笔放进8个笔筒里呢?……
你发现什么?(笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。
)
总结:只要放的铅笔数比笔筒多1,总有一个笔筒里至少放进2支。
思考:那么多2、多3、多4、多5……呢?结论还成立么?(成立)
师:我们能不能用字母总结出一般规律呢?小组讨论,看哪一组能得出?
小组分享,师总结:如果有m只鸽子飞回n个鸽巢中,(m>n,m和n是非0的自然数),那么至少有2只鸽子飞回同一个鸽巢。
(二)教学例2。
(1)课件出示例2情境图。
师:把7本书放进3个抽屉中,结果会怎样呢?小组讨论,用假设法来解决。
学生交流后可能会说出:把7本书平均放进3个抽屉,那么每一个抽屉放进2本,还剩1本,把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书。
师:我们能否用数学算式写出解题过程呢?
学生汇报时可能会说出:7÷3=2……1 2+1=3(板书)
师:如果有8本书会怎样呢?10本书呢?
学生独立思考,同桌间讨论、交流。
8÷3=2……2 2+1=3(板书)
10÷3=3……1 3+1=4(板书)
师:我们能不能用数学式子来表示出这个规律呢?
生:物体数÷抽屉数=商……余数至少数:商 1
(2)上面我们解决了几个问题,能否用字母总结出这一类问题的一般规律呢?
组织学生在小组中交流,然后汇报。
汇报可能不规范。
教师总结:如果把多于kn本书放进n个抽屉(k是正整数),那么至少有1个抽屉中有(k+1)本书。
这就是我们今天要学习的课程“鸽巢原理”,又名“抽屉原理”。
它在生产生活中有广泛的应用。
下面就让我们一起来运用一下这个原理。
三、知识应用
课件出示教材第68页做一做第1题、第69页做一做第1题。
四、教学小结:有关鸽巢问题,你还有哪些疑问?通过这节课的学习,你有什么新的收获?
五、作业布置。