初四与圆有关的计算题练习
中考数学专题训练:与圆有关的计算(附参考答案)
中考数学专题训练:与圆有关的计算(附参考答案)1.如图,一条公路的转弯处是一段圆弧(AC⏜),点O是这段弧所在圆的圆心,B 为AC⏜上一点,OB⊥AC于D.若AC=300√3 m,BD=150 m,则AC⏜的长为( )A.300π m B.200π mC.150π m D.100√3π m2.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是( )A.30°B.60°C.105°D.210°3.如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A,B是圆上的两点,O为圆心,∠AOB=120°,小强从点A走到点B,走便民路比走观赏路少走( )A.(6π-6√3)米B.(6π-9√3)米C.(12π-9√3)米D.(12π-18√3)米4.如图,在Rt△ABC中,∠ACB=90°,AB=√5,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为( )A.8-πB.4-πC.2-π4D.1-π45.如图,两个半径长均为√2的直角扇形的圆心分别在对方的圆弧上,扇形FCD的圆心C 是AB⏜的中点,且扇形FCD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分的面积等于( )A .π2-1 B .π2-2 C .π-1D .π-26.如图,正六边形ABCDEF 内接于⊙O ,点M 在AB⏜上,则∠CME 的度数为( )A .30°B .36°C .45°D .60°7.如图,在以AB 为直径的⊙O 中,C 为圆上的一点,BC⏜=3AC ⏜,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°8.设圆锥的底面圆半径为r ,圆锥的母线长为l ,满足2r +l =6,这样的圆锥的侧面积( ) A .有最大值94π B .有最小值94π C .有最大值92πD .有最小值92π9.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥,这个圆锥的底面圆的半径是( )A .π4 B .√24 C .12D .110.圆心角为90°,半径为3的扇形弧长为( ) A .2π B .3π C .32πD .12π11.如图,⊙O 是△ABC 的外接圆,半径为4,连接OB ,OC ,OA .若∠CAO =40°,∠ACB =70°,则阴影部分的面积是( )A .43π B .83π C .163πD .323π12.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3∶1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍13.如图所示,点A ,B ,C 对应的刻度分别为1,3,5,将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A ′,则此时线段CA 扫过的图形的面积为( )A .4√3B .6C .43πD .83π14.如图,要用一张扇形纸片围成一个无底的圆锥(接缝处忽略不计).若该圆锥的底面圆周长为20π cm ,侧面积为240π cm 2,则这个扇形的圆心角的度数是_______度.15.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =2√3,半径为1的⊙O 在Rt △ABC 内平移(⊙O 可以与该三角形的边相切),则点A 到⊙O 上的点的距离的最大值为__________.16.如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)17.已知AB 为⊙O 的直径,AB =6,C 为⊙O 上一点,连接CA ,CB .(1)如图1,若C 为AB⏜的中点,求∠CAB 的大小和AC 的长; (2)如图2,若AC =2,OD 为⊙O 的半径,且OD ⊥CB ,垂足为点E ,过点D 作⊙O 的切线,与AC 的延长线相交于点F ,求FD 的长.18.如图,⊙O是正方形ABCD的内切圆,切点分别为E,F,G,H,ED与⊙O相交于点M,则sin ∠MFG的值为______.19.一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为______厘米.20.如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线⏜的中点,弦CE,BD相交于点F.交于点P,∠ABC=2∠BCP,E是BD(1)求∠OCB的度数;(2)若EF=3,求⊙O的直径长.21.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线.(2)如果AB=10,CD=6.①求AE的长;②求△AEF的面积.参考答案1.B 2.D 3.D 4.D 5.D6.D 7.C8.C 9.B10.C 11.C 12.B 13.D14.150 15.2√7+1 16.4-π17.(1)∠CAB=45°AC=3√2(2)FD=2√2 18.√5519.2620.(1)∠OCB=60°(2)⊙O的直径长为6√321.(1)证明略(2)①AE=454②△AEF的面积为2258。
初中数学圆形专题训练50题含(参考答案)
初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。
2020-2021初四数学圆的有关计算综合练习题D(附答案详解)
2020-2021初四数学圆的有关计算综合练习题D(附答案详解)一.选择题(共8小题)1.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是()A.甲B.乙C.丙D.丁2.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.B.C.2D.3.如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现:点P与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.9个B.10个C.11个D.12个4.如图,点A,B,C,D,E,F,G,H为⊙O的八等分点,AD与BH的交点为I,若⊙O 的半径为1,则HI的长等于()A.2﹣B.2+C.2D.5.如图一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则阴影部分的面积为()A.B.C.D.6.如图,菱形ACBD中,AB与CD交于O点,∠ACB=120°,以C为圆心AC为半径作弧AB,再以C为圆心,CO为半径作弧EF分别交AC于F点,BC于E点,若CB=2,则图中阴影部分的面积为()A.B.C.D.7.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.π﹣2B.π+2C.2﹣πD.+π8.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm二.填空题(共9小题)9.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=;r:b=;正六边形T1,T2的面积比S1:S2的值是.10.如图,正六边形内接于圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.11.两个正三角形内接于一个半径为R的⊙O,设它的公共面积为S,则2S与的大小关系是.12.如图,在矩形ABCD中,AB>BC,以点B为圆心,AB的长为半径的圆分别交CD边于点M,交BC边的延长线于点E.若DM=CE,的长为2π,则CE的长.13.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN 重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是.14.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为(结果保留π).15.看图、填表:r h a底面积底面圆的周长侧面积表(全)面积3551368(圆周率用π表示即可)16.若圆锥的高是cm,底面直径是2cm,则这个圆锥的侧面积是,表面积是cm2;侧面展开图扇形的圆心角的度数是.17.一个圆锥的底面半径为10cm,母线长为20cm,则圆锥的高是,侧面展开图的圆心角是.三.解答题(共8小题)18.如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.20.如图,正五边形ABCDE的两条对角线AC,BE相交于点F.(1)求证:AB=EF;(2)若BF=2,求正五边形ABCDE的边长.21.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC ∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.22.如图,半圆O的直径AB=6,弦CD的长为3,点C,D在半圆上运动,D点在上且不与A点重合,但C点可与B点重合.(1)若的长=π时,求的长;(2)取CD的中点M,在CD运动的过程中,求点M到AB的距离的最小值.23.如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=4,∠DP A=45°(1)求⊙O的半径.(2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径.25.如图1所示是济川实验初中存放教师自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形,图2是车棚顶部截面的示意图,所在圆的圆心为O,过点O作OD⊥AB,垂足为C,交于点D,AB=4,CD=2.车棚顶部是用一种塑料钢板覆盖的,求覆盖棚顶的塑料钢板的面积.(不考虑接缝等因素,计算结果保留π)答案详解:一.选择题(共8小题)1.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是()A.甲B.乙C.丙D.丁【解答】解:∵五边形ABCDE是正五边形,△ABC是等边三角形,∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,∴DG垂直平分线段AB(丁正确),DG平分∠CDE.∵∠ABC=∠BCD=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°.正三角形ABG中,∠BAG=60°,∴∠BAC+∠BAG=36°+60°=90°,∴AC与AG不垂直(乙不正确).由∠CDE+∠DCA=108°+72°=180°,得DE∥AC(丙正确).∴∠CDF=EDF=∠CFD,∴△CDF是等腰三角形(甲正确).总之,丁、甲、丙正确,乙不正确,故选:B.2.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.B.C.2D.【解答】解:设⊙O与MN相切于点K,设正方形的边长为2a.∵BC、CD、MN是切线,∴BE=CE=CF=DF=a,MK=ME,NK=NF,设MK=ME=x,NK=NF=y,在Rt△CMN中,∵MN=x+y,CN=a﹣y,CM=a﹣x,∴(x+y)2=(a﹣y)2+(a﹣x)2,∴ax+ay+xy=a2,∵S△AMN=S正方形ABCD﹣S△ABM﹣S△CMN﹣S△ADN=4,∴4a2﹣×2a×(a+x)﹣(a﹣x)(a﹣y)﹣×2a×(a+y)=4,∴a2﹣(ax+ay+xy)=4,∴a2=4,∴a=2或﹣2(负值舍去),∴AB=2a=4,∴⊙O的半径为2.故选:C.3.如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现:点P与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.9个B.10个C.11个D.12个【解答】解:如图所示:圆与直线的交点以及圆心位置都是符合题意的点,故在直线AB上会发出警报的点P有:11个.故选:C.4.如图,点A,B,C,D,E,F,G,H为⊙O的八等分点,AD与BH的交点为I,若⊙O 的半径为1,则HI的长等于()A.2﹣B.2+C.2D.【解答】解:如图,连接AB、OH,作OM⊥AD于M,ON⊥BH于N,在IH上截取一点K,使得ON=NK,连接OK.∵点A,B,C,D,E,F,G,H为⊙O的八等分点,∴∠A=∠B=45°,∠H=22.5°,∴∠AIB=90°,∴∠MIN=∠OMI=∠ONI=90°,∴四边形OMIN是矩形,∵=,∴AD=BH,∴OM=ON,∴四边形OMIN是正方形,设OM=a,∵ON=NK,∴∠OKN=45°,∵∠OKN=∠H+∠KOH,∴∠H=∠KOH=22.5°,∴OK=KN=a,在Rt△ONH中,a2+(a+a)2=1,∴a=,∴IH=(2+)a=.故选:D.5.如图一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则阴影部分的面积为()A.B.C.D.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣×3×3=6π﹣,∴阴影部分的面积为﹣2×(6π﹣)=9﹣3π,故选:A.6.如图,菱形ACBD中,AB与CD交于O点,∠ACB=120°,以C为圆心AC为半径作弧AB,再以C为圆心,CO为半径作弧EF分别交AC于F点,BC于E点,若CB=2,则图中阴影部分的面积为()A.B.C.D.【解答】解:∵四边形ACBD是菱形,∠ACB=120°,∴∠DCA=∠ACB=60°,AB⊥CD,AD=BC=AC=2,∴∠CBA=∠CBA=(180°﹣∠ACB)=30°,∠AOC=90°,∴OC=AC==1,由勾股定理得:AO==,∵AC=AD,∠ACD=60°,∴△ACD是等边三角形,∴CD=AC=2,∴DO=CD﹣OC=2﹣1=1,∴阴影部分的面积S=S扇形DCA﹣S△DOA=﹣=﹣,故选:A.7.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.π﹣2B.π+2C.2﹣πD.+π【解答】解:连接OE,∵∠BOA=90°,点C为BD的中点,CE∥OA,OA=4∴∠ECO+∠COA=180°,OB=OE=4,OC=2,∴∠OCE=90°,OE=2OC,∴∠EOC=60°,CE=2,∴阴影部分的面积为:=,故选:A.8.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm【解答】解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.二.填空题(共9小题)9.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=1:1;r:b=:2;正六边形T1,T2的面积比S1:S2的值是3:4.【解答】解:连接OE、OG,OF,∵EF=a,且正六边形T1,∴△OEF为等边三角形,OE为圆的半径r,∴a:r=1:1;由题意可知OG为∠FOE的平分线,即∠EOG=∠EOF=30°,在Rt△OEG中,OE=r,OG=b,∵==cos∠EOG=cos30°,即=,∵r:a=1:1①;r:b=:2②;∴②:①得,a:b=:2,且两个正六边形T1,T2相似,∴S1:S2=a2:b2=3:4.故答案为:r:a=1:1;r:b=:2;S1:S2=3:4.10.如图,正六边形内接于圆⊙O中,已知外接圆的半径为2,则阴影部分面积为4π﹣6.【解答】解:已知圆的半径为2,则面积为4π,空白正六边形为六个边长为2的正三角形,每个三角形面积为,则正六边形面积为6,所以阴影面积为4π﹣611.两个正三角形内接于一个半径为R的⊙O,设它的公共面积为S,则2S与的大小关系是2S≥.【解答】解:如图:整个图形关于OM对称,关于ON也对称∴AM=B1M,AN=A1N,故AM+MN+NA=,∴△AMN的周长为定值,故,同理,,故,∴.故答案是:2S≥r2.12.如图,在矩形ABCD中,AB>BC,以点B为圆心,AB的长为半径的圆分别交CD边于点M,交BC边的延长线于点E.若DM=CE,的长为2π,则CE的长4﹣2.【解答】解:连接BM,则AB=BE=BM,设BM=R,∵四边形ABCD是矩形,∴AB=CD=BE,∠B=∠BCD=90°,∵DM=VE,∴CM=BC,∵的长为2π,∴=2π,解得:R=4,即BM=BE=CD=AB=4,在Rt△BCM中,由勾股定理得:BC2+CM2=BM2,BC=CM=2,∴CE=4﹣2,故答案为:4﹣2.13.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN 重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是2﹣.【解答】解:如图,点D的运动轨迹是图中的红线.观察图象可知M、D之间的最小距离是线段AD′的长=AE﹣EF=2﹣,故答案为2﹣.14.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为﹣(结果保留π).【解答】解:过O作OD⊥AB于D,交劣弧AB于E,如图:∵把半径为2的⊙O沿弦AB折叠,经过圆心O,∴OD=DE=1,OA=2,∵在Rt△ODA中,sin A==,∴∠A=30°,∴∠AOE=60°,同理∠BOE=60°,∴∠AOB=60°+60°=120°,在Rt△ODA中,由勾股定理得:AD===,∵OD⊥AB,OD过O,∴AB=2AD=2,∴阴影部分的面积S=S扇形AOB﹣S △AOB =﹣=﹣,故答案为:﹣.15.看图、填表:侧面积表(全)面积r h a底面积底面圆的周长3551368(圆周率用π表示即可)【解答】解:(1)∵r=3,a=5,∴h=4;∴底面积为π×32=9π;底面圆的周长为2π×3=6π;侧面积=π×3×5=15π;表面积=9π+15π=24π;(2)∵h=5,a=13,∴r=12;∴底面积为π×122=144π;底面圆的周长为2π×12=24π;侧面积=π×12×13=156π;表面积=144π+156π=300π;(3)∵r=6,h=8,∴a=10,∴底面积为π×62=36π;底面圆的周长为2π×6=12π;侧面积=π×6×10=60π;表面积=36π+60π=96π;故答案为4,9π,6π,15π,24π;12,144π,24π,156π,300π;10,36π,12π,60π,96π.16.若圆锥的高是cm,底面直径是2cm,则这个圆锥的侧面积是2πcm2,表面积是3πcm2;侧面展开图扇形的圆心角的度数是180°.【解答】解:∵圆锥的底面直径是2cm,∴圆锥的底面圆的半径为1cm,周长为2πcm,∵圆锥的高是cm,∴圆锥展开后所得扇形的半径为=2(cm),∴这个圆锥的侧面积是×2π×2=2π(cm2),表面积是2π+π×12=3π(cm2),设侧面展开图扇形的圆心角的度数是n°,∵圆锥展开后所得扇形的面积是2πcm2,∴=2π,解得:n=180,故答案为:2πcm2,3π,180°.17.一个圆锥的底面半径为10cm,母线长为20cm,则圆锥的高是10cm,侧面展开图的圆心角是180°.【解答】解:(1)如图所示,在Rt△SOA中,SO===10;设侧面展开图扇形的圆心角度数为n,则由2πr=,得n=180,故侧面展开图扇形的圆心角为180度.故答案为:10cm,180°.三.解答题(共8小题)18.如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是60°;图2中,∠APN的度数是90°,图3中∠APN的度数是108°.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【解答】解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:在图2中,∠APN=90°;在图3中,∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n中,.19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为:1;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.【解答】解:(1)设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和外切正六边形的边长比为R:R=:1;故答案为::1;(2)BE是⊙O的内接正十二边形的一边,理由:连接OA,OB,OE,在正方形ABCD中,∠AOB=90°,在正六边形AEFCGH中,∠AOE=60°,∴∠BOE=30°,∵n==12,∴BE是正十二边形的边.20.如图,正五边形ABCDE的两条对角线AC,BE相交于点F.(1)求证:AB=EF;(2)若BF=2,求正五边形ABCDE的边长.【解答】解:(1)∵正五边形ABCDE,∴AB=AE,∠BAE=108°,∴∠ABE=∠AEB=36°,同理:∠BAF=∠BCA=36°,∴∠F AE=∠AFE=72°,∴AE=EF,∴AB=EF;(2)设AB=x,由(1)知;∠BAF=∠AEB,∵∠ABF=∠ABE,∴△ABF∽△EBA,∴,即,解得:(舍去),∴五边形ABCDE的边长为1+.21.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC ∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.22.如图,半圆O的直径AB=6,弦CD的长为3,点C,D在半圆上运动,D点在上且不与A点重合,但C点可与B点重合.(1)若的长=π时,求的长;(2)取CD的中点M,在CD运动的过程中,求点M到AB的距离的最小值.【解答】解:(1)连接OD、OC,∵CD=OC=OD=3,∴△CDO是等边三角形,∴∠COD=60°,∴==π,又∵半圆弧的长度为:×6π=3π,∴=3π﹣π﹣=(2)过点M做ME⊥AB于点E,连接OM,再CD运动的过程中,CD=3,由垂径定理可知:DM=,∴由勾股定理可知:OM==∴由勾股定理可知:ME2=OM2﹣OE2若ME取最小值,则只需要OE最大即可,当C与B重合时,此时OE最大,∵CD=OC=3,∴△ODC是等边三角形,∴∠MOC=30°,OM=,此时ME=OM=即点M到AB的距离的最小值为.23.如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.【解答】(1)证明:连接DB.∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵点E是BC的中点,∴DE=CE=BC,∴∠EDC=∠C,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠A+∠C=90°,∴∠ADO+∠EDC=90°,∴∠ODE=90°,∴OD⊥DE;(2)∵AB=8,∠BAC=30°,∴AD=4,阴影部分的面积=﹣×4×2=π﹣4.24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=4,∠DP A=45°(1)求⊙O的半径.(2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径.【解答】解:(1)∵弦DE垂直平分半径OA,∴CE=DC=DE=2,OC=OE,∴∠OEC=30°,∴OC==2,∴OE=2OC=4,即⊙O的半径为4;(2)∵∠DP A=45°,∴∠D=45°,∴∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为r,∴2πr=,解得r=1,即这个圆锥的底面圆的半径为1.25.如图1所示是济川实验初中存放教师自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形,图2是车棚顶部截面的示意图,所在圆的圆心为O,过点O作OD⊥AB,垂足为C,交于点D,AB=4,CD=2.车棚顶部是用一种塑料钢板覆盖的,求覆盖棚顶的塑料钢板的面积.(不考虑接缝等因素,计算结果保留π)【解答】解:∵OD⊥AB,∴AC=2,∵CD=2,∴OC=OA﹣2,∵OA2﹣OC2=AC2∴OA=4,∴sin∠AOD=,∴∠AOD=60°,∴∠AOB=2∠AOD=120°∴覆盖棚顶的塑料钢板的面积=×60=160π。
2020-2021初四数学圆的有关计算综合练习题3(附答案详解)
2020-2021初四数学圆的有关计算综合练习题3(附答案详解)一.选择题(共10小题)1.如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B (1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.2.一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为()A.2B.4C.4D.83.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度4.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A.正三角形B.正四边形C.正五边形D.正六边形5.如图:AD是⊙O的直径,AD=12,点BC在⊙O上,AB、DC的延长线交于点E,且CB=CE,∠BCE=70°,则以下判断中不正确的是()A.∠ADE=∠E B.劣弧AB的长为πC.点C为弧BD的中点D.BD平分∠ADE6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则劣弧的长是()A.πB.C.D.7.如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为S1,S2,S3,则S1+S3﹣S2为()(π取3)A.B.+C.﹣D.8.圆锥的底面面积为16πcm2,母线长为6cm,则这个圆锥的侧面积为()A.24cm2B.24πcm2C.48cm2D.48πcm29.已知圆锥的底面半径为3,侧面展开图的圆心角为180°,则圆锥的母线长是()A.6B.3C.D.910.设矩形ABCD的长与宽的和为2,以AB为轴心旋转一周得到一个几何体,则此几何体的侧面积有()A.最小值4πB.最大值4πC.最大值2πD.最小值2π二.填空题(共10小题)11.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=.12.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则,,组成的封闭图形就是“莱洛三角形”.若AB=3,则此“莱洛三角形”的周长为.13.如图,把边长为6的正三角形剪去三个三角形得到一个正六边形,这个正六边形的面积为.14.如图,⊙O与正五边形ABCDE的两边AE,CD分别相切于A,C两点,则∠OBC的度数为度.15.已知一个扇形的圆心角为135°,弧长为3πcm,则它的半径为.16.在边长为a的正方形ABCD中,分别以A、B为圆心,以a为半径作弧交对角线于F、E两点,、与对角线所围成的阴影部分的周长为17.如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是(结果保留π).18.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是cm.19.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为.20.已知圆柱的侧面积是20πcm2,高为5cm,则圆柱的底面半径为.三.解答题(共8小题)21.正六边形是由边长相等的等边三角形构成的,我们把每个等边三角形叫做基本图形的特征三角形.下列基本图形是由边长为1的特征三角形按一定规律排列的.(1)观察图形,完成如表:图形编号图1图2图3…图n 基本图形的特性三角形个数61014…图形的周长68…图形的面积…(2)已知上述某一图形中共有202个特征三角形,则这一图形的周长是,面积是.22.(1)计算:﹣()﹣1+3tan30°﹣20190+|1﹣|(2)如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为劣弧BC上一动点.求证:P A=PB+PC;(2)已知:如图2,四边形ABCD是⊙O的内接正方形,点P为劣弧BC上一动点.求证:P A=PC+PB.24.如图,长方形ABCD的周长为28,且AB:BC=3:4,求:(1)弧BE的长度;(2)图中阴影部分的面积.25.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)26.如图,在△ABC中,AB=AC,以AB为直径的圆,交AC于E点,交BC于D点.(1)若AB=8,∠C=60°,求阴影部分的面积;(2)当∠A为锐角时,试说明∠A与∠CBE的关系.27.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?28.求圆柱的表面积.答案详解:一.选择题(共10小题)1.如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B (1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.【解答】解:如图所示,连接AM,∵正六边形是中心对称图形,绕中心O旋转时,点E与B重合时,α的角度不变;点E与F、M重合时,α的角度不变;点E与G、H重合时,α的角度不变,此时角度最小;∵AN=4﹣,EN=1,OM=OE==2,∴tan∠EAN===,tan∠MAO===;当OE⊥AE时,α角是最大的,∵OE=2,OA=4,∴α=30°,∴tanα=∴当α取最大角时,它的正切值为;故选:C.2.一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为()A.2B.4C.4D.8【解答】解:∵圆内接正六边形的边长是4,∴圆的半径为4.那么直径为8.圆的内接正方形的对角线长为圆的直径,等于8.∴圆的内接正方形的边长是4.故选:B.3.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度【解答】解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON(SAS)∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故选:C.4.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A.正三角形B.正四边形C.正五边形D.正六边形【解答】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.5.如图:AD是⊙O的直径,AD=12,点BC在⊙O上,AB、DC的延长线交于点E,且CB=CE,∠BCE=70°,则以下判断中不正确的是()A.∠ADE=∠E B.劣弧AB的长为πC.点C为弧BD的中点D.BD平分∠ADE【解答】解:①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故A正确;②∵∠A=∠BCE=70°,∴∠AOB=40°,∴劣弧的长==,故B正确;③∵AD是⊙O的直径,∴∠ACD=90°,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为的中点,故C正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故D错误.故选:D.6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则劣弧的长是()A.πB.C.D.【解答】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴劣弧的长==,故选:B.7.如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为S1,S2,S3,则S1+S3﹣S2为()(π取3)A.B.+C.﹣D.【解答】解:连接OE、OF,过O作OH⊥EF于H,交AB于G,∵点E,F为弧AB的四等分点,∠AOB=120°,∴∠AOF=∠BOE=30°,∠EOF=60°,∵OA=OB,∴∠BOG=60°,∵OB=3,∴OG=,BG=,∴AB=2BG=3,Rt△EOH中,∠EOH=30°,OE=3,∴EH=,∴OH=,∴GH=,∴S1+S3﹣S2=S△AOB+S矩形ABCD﹣S扇形OAF﹣S△EOF﹣S扇形OBE﹣(S扇形OEF﹣S△EOF),=+AB•GH﹣,=+3(﹣)﹣9,=﹣,故选:A.8.圆锥的底面面积为16πcm2,母线长为6cm,则这个圆锥的侧面积为()A.24cm2B.24πcm2C.48cm2D.48πcm2【解答】解:∵圆锥的底面面积为16πcm2,∴圆锥的半径为4cm,这个圆锥的侧面积=•2π•4•6=24π(cm2).故选:B.9.已知圆锥的底面半径为3,侧面展开图的圆心角为180°,则圆锥的母线长是()A.6B.3C.D.9【解答】解:设母线长为R,由题意得:,解得:R=6,故选:A.10.设矩形ABCD的长与宽的和为2,以AB为轴心旋转一周得到一个几何体,则此几何体的侧面积有()A.最小值4πB.最大值4πC.最大值2πD.最小值2π【解答】解:以AB为轴心旋转一周得到一个几何体是圆柱体,而且圆柱的底面半径是x,(0<x<2)所以周长=2xπ,S侧面积=2xπ×(2﹣x)=﹣2πx2+4xπ=﹣2π(x﹣1)2+2π,所以S侧面积最大值为2π.故选:C.二.填空题(共10小题)11.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=.【解答】解:在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,∴BM=BC=2,CM=BM=2,∴AM=4+2=6,∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN﹣CM=6﹣2,故答案为6﹣2.12.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则,,组成的封闭图形就是“莱洛三角形”.若AB=3,则此“莱洛三角形”的周长为3π.【解答】解:连接OB、OC,作OD⊥BC于D,∵△ABC是正三角形,∴∠BAC=60°,∴的长为:=π,∴“莱洛三角形”的周长=π×3=3π.故答案为3π.13.如图,把边长为6的正三角形剪去三个三角形得到一个正六边形,这个正六边形的面积为6.【解答】解:∵六边形DFHKGE是正六边形,∴∠EDF=∠DFH=∠FHK=∠KGE=∠GED=120°,DE=DF,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=DE=AE,同理:BH=BF=FH,∴AD=DF=BF=2,∴S正六边形DFHKGE=6S△ADE=6××22=6,故答案为:6.14.如图,⊙O与正五边形ABCDE的两边AE,CD分别相切于A,C两点,则∠OBC的度数为54度.【解答】解:连接OA,OC.∵BA=BC,BO=BO,OA=OC,∴△ABO≌△CBO(SSS),∴∠ABO=∠CBO,∵∠ABC=108°,∴∠OBC=∠ABC=54°,故答案为54.15.已知一个扇形的圆心角为135°,弧长为3πcm,则它的半径为4cm.【解答】解:∵l=,∴r===4,故答案为:4cm.16.在边长为a的正方形ABCD中,分别以A、B为圆心,以a为半径作弧交对角线于F、E两点,、与对角线所围成的阴影部分的周长为2a+a【解答】解:由题意得:BE=AF=AB=a,∵四边形ABCD是正方形,∴∠ABO=∠BAO=45°,∴、与对角线所围成的阴影部分的周长=AF+BE+的长+的长=a+a+2×=2a+a,故答案为:2a+a.17.如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是(结果保留π).【解答】解:∵P A、PB是半径为1的⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,而∠APB=60°,∴∠APO=30°,∠POA=90°﹣30°=60°,又∵OP垂直平分AB,∴△AOC≌△BOC,∴S△AOC=S△BOC,∴S阴影部分=S扇形OAD==.故答案为.18.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是40cm.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故答案为40.19.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为5cm.【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=5.所以这个圆锥的高==5(cm).故答案为5cm.20.已知圆柱的侧面积是20πcm2,高为5cm,则圆柱的底面半径为2cm.【解答】解:设圆柱底面圆的半径为r,那么侧面积为2πr×5=20πr=2cm.故答案为2cm.三.解答题(共8小题)21.正六边形是由边长相等的等边三角形构成的,我们把每个等边三角形叫做基本图形的特征三角形.下列基本图形是由边长为1的特征三角形按一定规律排列的.(1)观察图形,完成如表:图形编号图1图2图3…图n 基本图形的特性三角形个数61014…6+4(n﹣1)图形的周长6810…6+2(n﹣1)图形的面积×10×14…×[6+4(n﹣1)](2)已知上述某一图形中共有202个特征三角形,则这一图形的周长是104,面积是.【解答】解:(1)第①个图有6=6+4(1﹣1)个三角形,周长为6=6+2(1﹣1),面积为×6=×[6+4(1﹣1)],第②个图形有10=6+4(2﹣1)个三角形,周长为8=6+2(2﹣1),面积为×10=×[6+4(2﹣1)],第③个图形有14=6+4(3﹣1)个三角形,周长为10=6+2(3﹣1),面积为×14=×[6+4(3﹣1)],…第n个图形有6+4(n﹣1)个三角形,周长为6+2(n﹣1),面积为×[6+4(n﹣1)],故答案为:6+4(n﹣1),10,6+2(n﹣1),(2)由题意得:6+4(n﹣1)=202,解得:n=50,则这一图形的周长是6+2(50﹣1)=104,面积为×202=,故答案为:104,.22.(1)计算:﹣()﹣1+3tan30°﹣20190+|1﹣|(2)如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.【解答】解:(1)原式=﹣3﹣2+﹣1+﹣1=﹣5(2)在正五边形ABCDE中,∵∠ABC=∠DCB=108°,BC=BA=CD,∴∠BAC=∠BCA=∠CDB=∠CBD=36°,∴∠ABF=72°,∴∠AFB=∠CBD+∠ACB=72°,∴∠AFB=∠ABF,∠FCB=∠FBC,∴AF=AB=1,FB=CF,设FB=FC=x,∵∠BCF=∠BCA,∠CBF=∠CAB,∴△BCF∽△ACB,∴CB2=CF•CA,∴x(x+1)=1,∴x2+x﹣1=0,∴x=或(舍弃),∴BF=.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为劣弧BC上一动点.求证:P A=PB+PC;(2)已知:如图2,四边形ABCD是⊙O的内接正方形,点P为劣弧BC上一动点.求证:P A=PC+PB.【解答】证明:(1)延长BP至E,使PE=PC,连接CE,如图1,∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,在△BEC和△APC中,,∴△BEC≌△APC(SAS),∴P A=BE=PB+PC;(2)过点B作BE⊥PB交P A于E,连接OA,OB.如图2,∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∵∠APB=∠AOB=45°,∴BP=BE,∴PE=PB,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴PC=AE,∴P A=AE+PE=PC+PB;24.如图,长方形ABCD的周长为28,且AB:BC=3:4,求:(1)弧BE的长度;(2)图中阴影部分的面积.【解答】解:(1)由题意AB=28÷2×=6,BC=28÷2×=8,∴==3π.(2)由(1)知,AB=6,BC=8,∵四边形ABCD是长方形,∴∠A=∠C=90°,AD=BC=8,∴DE=AD﹣AE=2,S=S扇形BCF﹣S△EDF﹣(S长方形ABCD﹣S扇形ABE)=S扇形BCF+S扇形ABE﹣S△EDF﹣S长方形ABCD=+﹣﹣6×8=25π﹣50.25.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)【解答】(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.26.如图,在△ABC中,AB=AC,以AB为直径的圆,交AC于E点,交BC于D点.(1)若AB=8,∠C=60°,求阴影部分的面积;(2)当∠A为锐角时,试说明∠A与∠CBE的关系.【解答】解:(1)如图,连接OE,∵∠C=60°,AB=AC,∴∠BAC=60°,∴∠AOE=60°,∴∠BOE=120°,∴∠OBE=30°,∵AB=8,∴OB=4,∴S阴影=S扇形AOE+S△BOE=+×2×4=π+4;(2)∵AB是⊙O的直径,∴∠BEA=90°,∴∠EBC+∠C=∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠CAB=2∠EBC.27.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?【解答】解:(1)设扇形的半径为r.则有:=300π,解得r=30,∴扇形的弧长==20π.(2)设圆锥的底面圆的半径为x.则有:2π•x=20π,∴x=10,∴圆锥的高==20,∴圆锥的体积=•π•102•20=π.28.求圆柱的表面积.【解答】解:圆柱的表面积=2πr2+πdh=2π×32+π×6×10=78π;圆柱的表面积=2πr2+πdh=2π×72+π×14×5=168π。
初中圆练习题
初中圆练习题圆是我们学习数学中的一个重要概念,它在几何学中占据着重要的地位。
本篇文章将为大家带来一些初中阶段关于圆的练习题,希望可以帮助大家更好地理解和掌握这个概念。
练习题一:求圆的周长和面积1. 已知一个圆的半径为5cm,求这个圆的周长和面积。
2. 若一个圆的周长为18π cm,求这个圆的半径和面积。
3. 一个圆的面积为64π cm²,求这个圆的半径和周长。
练习题二:圆的切线与弦1. 在图中,AB是一个圆的直径,C是圆上的一点。
若AC=8cm,BC=6cm,求圆的半径和周长。
A/ \/ \/ \/_______\C B2. 在图中,EF是一个圆的直径,D是圆上的一点,且DE⊥EF。
若EF=10cm,DE=6cm,求圆的半径和周长。
E/ \/ \/ \/_______\D练习题三:圆的切线性质1. 在图中,AB是一个圆的直径,DE⊥AB于C。
若AC=2cm,BC=6cm,求圆的半径和周长。
A/ \/ \/ \/_______\D B\\\C2. 在图中,EF是一个圆的直径,DG是圆上的切线,且DG⊥EF。
若DG=5cm,EF=12cm,求圆的半径和周长。
E/ \/ \D / \/_______\G练习题四:圆与角的关系1. 在图中,O是圆心,∠ACB是圆内角,若∠ACB=60°,求∠AOB 的度数。
O/ \/ \/ \/_______\A B2. 在图中,O是圆心,∠BCD是圆内角,若∠BCD=120°,求∠BOD的度数。
O/ \/ \/ \/_______\B C///D以上是一些关于初中阶段圆的练习题,通过做这些题目,可以巩固对圆的周长、面积、切线和角的理解。
希望同学们能够认真完成,并进一步提高自己的数学水平。
初中数学圆形专题训练50题含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【答案】C【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【详解】解:A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.【点睛】本题考查了三角形的外接圆与外心,确定圆的条件,圆心角、弧、弦的关系,正确的理解题意是解题的关键.2.已知O的半径是5cm,线段OP的长为4cm,则点P()A.在O外B.在O上C.在O内D.不能确定【答案】C【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.OP=<【详解】解:45∴点P在O内,故选:C.【点睛】本题考查了点和圆的位置关系,熟悉点和圆的位置关系的判断是关键.3.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?()A.B.C .D . 【答案】B【详解】试题分析:根据直径所对的圆周角为直角可得:B 为正确答案.4.已知⊙O 的半径是一元二次方程2340x x --=的一个根,点A 与圆心O 的距离为6,则下列说法正确在是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .无法判断 【答案】A【分析】先求方程的根,可得r 的值,由点与圆的位置关系的判断方法可求解.【详解】解:⊙2340x x --=,⊙1x =﹣1,2x =4,⊙⊙O 的半径为一元二次方程2340x x --=的根,⊙r =4,⊙6>4,⊙点A 在⊙O 外,故选:A .【点睛】本题考查了解一元二次方程,点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d 与圆半径大小关系完成判定.5.如图,AB 是半圆O 的直径,28BAC ∠=︒,则D ∠的度数是( )A .62︒B .118︒C .152︒D .138︒【答案】B 【分析】连接BC ,则直径所对的圆周角是直角可求得B ∠的度数,再由圆内接四边形的性质即可求得结果的度数.【详解】连接BC ,如图所示,AB 是直径,90ACB ∴∠=︒, 90902862B BAC ∴∠=︒-∠=︒-︒=︒,180********D B ∴∠=︒-∠=︒-︒=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,圆内接四边形的性质等知识,掌握这两条性质是关键.6.如图,AB 是O 的直径,CD 是O 的弦.若=21BAD ∠︒,则ACD ∠的大小为( )A .21°B .59°C .69°D .79°【答案】C 【分析】先求出ABD ∠的度数,然后再根据圆周角定理的推论解答即可.【详解】解:⊙AB 是O 的直径⊙=90BDA ∠︒,⊙=21BAD ∠︒,⊙=1809021=69ABD ∠--︒︒︒︒,又⊙=AD AD ,⊙==69ACD ABD ∠∠︒,故答案为:C .【点睛】本题主要考查了圆周角定理的推论,解题的关键是熟练掌握在同圆或等圆中同弧或等弧所对圆周角相等;直径所对圆周角等于90°.7.如图,圆与圆的位置关系没有( )A .相交B .相切C .内含D .外离 【答案】A 【分析】根据圆与圆的位置关系,寻找交点个数即可解题.【详解】解:圆与圆相交有两个交点,但是图像中没有两个交点的情况,所以圆与圆的位置关系没有相交,故选A.【点睛】本题考查了圆与圆的位置关系,属于简单题,熟悉位置关系的辨析方法是解题关键.8.已知在Rt ABC 中, 9034ACB AC BC ∠=︒==,,, 则Rt ABC 的外接圆的半径为( ) A .4B .2.4C .5D .2.5 Rt ABC 中,根据勾股定理得,223BC =直角三角形的外心为斜边中点,Rt ABC 的外接圆的半径为故选:D .【点睛】本题考查了直角三角形的外心的性质,勾股定理的运用,关键是明确直角三角形的斜边为三角形外接圆的直径.9.如图,12∠=∠,则AB CD =的是( ).A .B .C .D .【答案】C【分析】根据圆周角与弧的关系即可求解.【详解】解:根据同圆或等圆,相等的弧所对的圆周角相等,只有C 选项符合题意;⊙12∠=∠,⊙AB CD =.故选:C .【点睛】本题考查了圆周角与弧的关系,掌握同圆或等圆中,相等的圆周角所对的弧相等是解题的关键.10.ABC ∆中,10AB AC cm ==,12BC cm =,若要剪一张圆形纸片盖住这个三角形,则圆形纸片的最小半径为( )cm .A .5B .6C .152D .254 AB AC =BD DC ∴=连接OB ,在Rt⊙ABD 设圆形纸片的半径为【点睛】本题考查的是三角形的外接圆与外心、等腰三角形的性质,掌握等腰三角形的三线合一、三角形外接圆的性质及勾股定理是解题的关键. 11.如图所示,MN 是半圆O 的直径,MP 与半圆0相切于点M ,R 是半圆上一动点,RE MP ⊥于E ,连接MR .设MR x =,MR RE y -=,则下列函数图象能反映y 与x 之间关系的是( )A .B .C .D .,可得~EMR RNM ,设半圆2)r ,根据函数的解析式即可判断函数图象⊙~EMR RNM , ER MR MR MN=, 设半圆O 的半径为值2(02x y x x r=-+<<可得到y 是x 的二次函数,开口方向向下,对称轴12.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y=k x经过正方形AOBC 对角线的交点,半径为4-⊙ABC ,则k 的值为( ).A B .2 C .4 D .=4,⊙DN×NO=4,即:xy=k=4.故选C .考点:反比例函数图象上点的坐标特征;正方形的性质;三角形的内切圆与内心. 13.若5cm AB =,作半径为4cm 的圆,使它经过A 、B 两点,这样的圆能作( ) A .0个B .1个C .2个D .无数个【答案】C【分析】先作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆即可;【详解】解:这样的圆能画2个.如图:作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆,则⊙O 1和⊙O 2为所求【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r . 14.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32πAB BD =ABD ∴是等边三角形,AD AB ∴=6BC =,3CD ∴=,AD CD ∴=C CAD ∴∠=∠C CAD ∠+∠30C ∴∠=BAC ∴∠=AC ∴=∴图中阴影部分的面积15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30BCD ∠=︒,CD = )A .24π-B .83π-C .43π-D .348π-故选:B .【点睛】本题考查了扇形的面积计算,勾股定理,含30︒角的直角三角形的性质,等边三角形的性质和判定等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π17.如图,四边形ABCD 内接于O ,:2:1,2ABC ADC AB ∠∠== ,点C 为BD 的中点,延长AB 、DC 交于点E ,且60E ∠=,则O 的面积是( )A .πB .2πC .3πD .4π 【答案】D 【分析】连接BD ,根据圆内接四边形的外角等于其内对角可得∠D =∠CBE =60°,根据等边对等角以及三角形内角和定理求出∠BCE =60°,可得∠A =60°,点C 为BD 的中点,可得出∠BDC =∠CBD =30°,进而得出⊙ABD =90°,AD 为直径,可得出AD =2AB =4,再根据面积公式计算得出结论;【详解】解:连接BD ,∵ABCD 是⊙O 的内接四边形,∴∠CBE =∠ADC ,∠BCE =∠A⊙:2:1ABC ADC ∠∠=∴:2:1ABC CBE ∠∠=∴∠CBE =∠ADC=60°,∠CBA =120°⊙60E ∠=⊙⊙CBE 为等边三角形⊙∠BCE =∠A=60°,⊙点C 为BD 的中点,⊙∠CDB =∠DBC=30°⊙⊙ABD =90°,⊙ADB =30°⊙AD 为直径⊙AB =2⊙AD =2AB =4 ⊙O 的面积是=224ππ⨯=故答案选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,等边三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.18.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )A cmB .163 cmC cmD .83cm19.⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 ( )A .C 在⊙O 内B .C 在⊙O 上 C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内【答案】D【详解】试题解析:因为⊙O 的半径是10cm ,A 是圆上一点,所以OA=10cm , 又B 是OA 的中点,所以BA=5cm .而BC=5cm ,所以点C 应在以B 为圆心,5cm 为半径的⊙B 上.⊙B 上的点除点A 在⊙O 上外,其它的点都在⊙O 内.故选D .20.如图,在ABC 中,90ACB ∠=︒.AC BC =,4cm AB =.CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( ).A .2B .πC .2πD .π2【答案】D 【详解】试题解析:如图,,90CA CB ACB AD DB =∠==,,⊙CD ⊙AB ,⊙⊙ADE =⊙CDF =90,CD =AD =DB ,在⊙ADE 和⊙CDF 中,AD CD ADE CDF DE DF ,=⎧⎪∠=∠⎨⎪=⎩⊙⊙ADE ⊙⊙CDF (SAS),⊙⊙DAE =⊙DCF ,⊙⊙AED =⊙CEG ,90,四点共圆,的运动轨迹为弧CD90,的运动轨迹的长为二、填空题21.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC、BD交于点BD=,则AC=________.E,若1AD=,722.如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .23.如图,ABC ∆中,90,6,4,ACB BC AC D ∠=︒==是AC 边上的一个动点,过点C 作,CE BD ⊥垂足为,E 则AE 长的最小值为_______________________.【答案】2【分析】取BC 中点F ,连接AE 、EF .易得点E 在以BC 长为直径的圆周上上运动,24.如图,⊙O内接正五边形ABCDE与等边三角形AFG,则⊙FBC=__________.【分析】连接OA,OB,OF,OC,分别求出正五边形ABCDE和正三角形AFG的中心角,结合图形计算即可.【详解】解:连接OA,OB,OF,OC.25.如图,点A、B在半径为3的⊙O上,劣弧AB长为π2,则⊙AOB=____.26.如图,Rt⊙ABC中,⊙ACB=90°,⊙A=30°,BC=6,D,E分别是AB,AC边的中点,将⊙ABC绕点B顺时针旋转60°到⊙A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.【详解】27.四边形ABCD 是O 的内接四边形,2C A ∠=∠,则C ∠的度数为___.【答案】120°##120度【分析】根据圆内接四边形对角互补,再结合已知条件求解即可.【详解】解:四边形ABCD 是O 的内接四边形,180C A∴∠+∠=︒2C A∠=∠,120C∴∠=︒.故答案为:120︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形对角互补是解答本题的关键.28.如图,在Rt⊙ABC中,⊙C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是_______.【答案】6013##8413来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了勾股定理.29.如图,在⊙O中,点C在优弧ACB上,将弧沿BC折叠后刚好经过AB的中点D,若⊙O AB=4,则BC的长是_____.30.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠=_________.31.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点()()()0,4,4,4,6,2A B C --.(1)若该圆弧所在圆的圆心为D ,则AD 的长为__________.(2)该圆弧的长为___________.90255180π=【详解】解:(1)如图,易知点2425+=即D 的半径为AD CD ==2AD DC +ACD ∆为直角三角形,根据题意得90255180π=即该圆弧的长为5π.【点睛】本题主要考查圆,扇形等知识的综合应用,掌握确定圆心的方法,即确定出的坐标是解题的关键.OD BC,OD与32.如图,已知AB是半圆O的直径,C、D是半圆O上的两点,且//∠=______.AC交于点E,若E是OD中点,,则CAD【答案】30°【分析】先判定AC垂直平分OD,进而可判定⊙OAD是等边三角形,再由三线合一即可求出⊙CAD的度数.【详解】⊙AB是半圆O的直径,⊙⊙ACB=90°.OD BC,⊙//⊙⊙AED=90°.⊙E是OD中点,⊙AC垂直平分OD,⊙AD=OA,⊙OA=OD,⊙⊙OAD是等边三角形,⊙⊙OAD=60°,⊙⊙CAD=30°.故答案为:30°.【点睛】本题考查了圆周角定理,平行线的性质,线段垂直平分线的判定与性质,以及等边三角形的判定与性质,熟练掌握圆周角定理、线段垂直平分线的判定与性质是解答本题的关键.33.如图,在半径为2cm的扇形纸片AOB中,⊙AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm2334.若点O 是等腰ABC 的外心,且60,BOC ∠=︒底边4,BC =则ABC 的边BC 上的高为 ____________________.E,如果点F是弧EC的中点,联结FB,那么tan⊙FBC的值为.关系;解直角三角形.【答案】【详解】试题分析:连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.解:连接CE交BF于H,连接BE,⊙四边形ABCD是矩形,AB=3,BC=5,⊙AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt⊙BFC中,由勾股定理得:BH==,所以tan⊙FBC===.故答案为.36.O是ABC的外心,且140∠=________;若I是ABC的内心,∠=,则ABOC且140∠=________.BIC∠=,则A70100是ABC的外心,且140,如图所示:是ABC的内心,且140,如图所示:⊙I 是⊙ABC 的内心,⊙⊙A=180°-(⊙ABC+⊙ACB)= 180°-2(⊙IBC+⊙ICB)=180°-2(180°-140°)=100°. 故答案为70°;100°.【点睛】本题考查了三角形内外心的性质,熟知三角形内外心的性质是解题的关键. 37.冬天的雪是我们的乐园,一次下雪后,小伙伴们堆了一大雪人,准备给雪人制作一个底面半径为9cm ,母线长为30cm 的圆锥形礼帽,则这个圆锥形礼帽的侧面积为____________cm 2 .(结果保留π)【答案】270π.【详解】试题分析:S=πrl=9×30π=270π(2cm ).考点:圆锥的侧面积计算.38.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .39.如图,I 是直角ABC 的内切圆,切点为D 、E 、F ,若10AF ,3BE =,则ABC 的面积为_____.的值,再利用三角形的面积公式求得ABC 的面积即可.【详解】解:I 是直角ABC 的内切圆,且10AF ,BE =3,10AF AD ==,CE 13=,x ,则3BC x ,AC 中,222AC BC AB +=,即)22313x +=,(不符题意,舍去)ABC ∴的面积为故答案为:【点睛】本题考查了切线长定理、勾股定理、一元二次方程的应用,熟记切线长定理是解题的关键.40.如图,正六边形ABCDEF内接于半径为1cm的⊙O,则图中阴影部分的面积为_____cm2(结果保留π).三、解答题41.如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF 与⊙O 相切;(2)求△BCF 和直角梯形ADCF 的周长之比. 【答案】(1)证明见详解;(2)6:7.【分析】(1)连接OE 、DE ,根据等腰三角形性质推出⊙ODE =⊙OED ,⊙CDE =⊙CED ,推出⊙OED +⊙CED =90°,根据切线的判定推出即可;(2)过F 作FM⊙DC 于M ,得出四边形ADMF 是矩形,推出AD =FM =4,AF =DM ,求出AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得出方程()()222444x x +-=+,求出x 的值,即可求出△BCF 的周长和直角梯形ADCF 的周长.【详解】(1)证明:连接OE ,DE ,⊙OD =OE ,CE =CD ,⊙⊙ODE =⊙OED ,⊙CDE =⊙CED ,⊙四边形ABCD 是正方形,⊙⊙ADC =90°,⊙⊙ADC =⊙ODE +⊙CDE =90°,⊙⊙OED +⊙CED =90°,即OE⊙CF ,⊙OE 为半径,⊙CF 与⊙O 相切.(2)解:如图:过F 作FM⊙DC 于M ,⊙四边形ABCD 是正方形,⊙AD =DC =BC =AB =CE =4,⊙FAD =⊙ADM =⊙FMD =⊙FMC =90°,⊙四边形ADMF 是矩形,⊙AD =FM =4,AF =DM⊙⊙OAF =90°,OA 为半径,⊙AF 切⊙O 于A ,CF 切⊙O 于E ,⊙AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得:222FM MC CF +=,()()222444x x +-=+, 解得:x =1,⊙AF =EF =DM =1,⊙CF =4+1=5,⊙⊙BCF 的周长是BC +CF +BF =4+5+4−1=12,直角梯形ADCF 的周长是AD +DC +CF +AF =4+4+5+1=14,⊙⊙BCF 和直角梯形ADCF 的周长之比是12:14=6:7.【点睛】本题考查了正方形性质,切线的性质和判定,矩形的性质和判定,勾股定理的应用,主要考查学生综合运用定理进行推理的能力.42.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC . (1)如图⊙,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图⊙,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图⊙,若BC=5,BD=4,求AD AB AC+ 的值.43.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,BC的长.【答案】(1)直线AC与⊙DBE外接圆相切.(2)BC=4.【分析】(1)取BD的中点O,连接OE,证明⊙OEB=⊙CBE后可得OE⊙AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE⊙⊙ABC,利用线段比求解.【详解】(1)直线AC与⊙DBE外接圆相切.理由:⊙DE⊙BE⊙BD为⊙DBE外接圆的直径取BD的中点O(即⊙DBE外接圆的圆心),连接OE⊙OE=OB⊙⊙OEB=⊙OBE⊙BE平分⊙ABC⊙⊙OBE=⊙CBE⊙⊙OEB=⊙CBE⊙⊙CBE+⊙CEB=90°⊙⊙OEB+⊙CEB=90°,即OE⊙AC44.如图,已知AB是⊙O的直径,⊙O交⊙ABE边AE于点D,点P在BA的延长线上,PD交BE于点C.现有3个选项:⊙AB=BE,⊙PC⊙BE,⊙PD是⊙O的切线.(1)请从3个选项中选择两个作为条件,余下一个作为结论,得到一个真命题,并证明;你选择的两个条件是,结论是(只要填写序号);(2)在(1)的条件下,连接OC,如果P A=2,sin⊙ABC=45,求OC的长.=AB BE∴∠=BAE∴∥OD BE∴∠=ODP∴PD是⊙4CP =2,PA OD∴=OD OA45.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC⊙DE交BD于点G(1)求证:BD平分弦AC;(2)若弦AD=5㎝,AC=8㎝,求⊙O的半径.46.如图,⊙ABC 为⊙O 的内接三角形,其中AB 为⊙O 的直径,过点A 作⊙O 的切线P A .(1)求证:⊙P AC =⊙ABC ;(2)若⊙P AC =30°,AC =3,求劣弧AC 的长.603180π=π.【点睛】本题考查了切线的性质,圆周角定理的推论,弧长公式,熟练掌握相关知识是解题的关键.47.如图,在⊙ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连结BD,(1)求证:DE BE=;(2)当AB=10,BD=8,求CD和BE的长.48.在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:⊙画线段AB;⊙分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;⊙在直线MN上取一点C(不与点O重合),连接AC、BC;⊙过点A作平行于BC的直线AD,交直线MN于点D,连接B D.(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=⊙BAD=30°,求图中阴影部分的面积.1149.如图,AB是⊙O的直径,CD与⊙O相切于点C,且与AB的延长线交于点D,连接AC.作CE⊙AB于点E.(1)求证:⊙BCE=⊙BCD;(2)若AD=8,12BCAC=,求CD的长.【答案】(1)见解析;(2)CD=4【分析】(1)连接OC,如图,利用圆周角定理得到⊙ACB=90°,利用切线的性质得到⊙DCO=90°,则根据等角的余角相等得到⊙ACO=⊙BCD,同样方法证明⊙A=⊙BCE,从而得到⊙BCE=⊙BCD;(2)证明⊙ACD⊙⊙CBD,然后利用相似比求CD的长.【详解】(1)证明:连接OC,如图,⊙AB是⊙O的直径,⊙⊙ACB=90°,即⊙ACO+⊙OCB=90°,⊙CD与⊙O的相切于点C,⊙⊙DCO=90°,即⊙BCD+⊙OCB=90°,⊙⊙ACO=⊙BCD,⊙OC=OA,⊙⊙A=⊙ACO,50.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,2AB =,点P 从点A 出发,以每秒12个单位长度的速度沿AB 向点B 运动,到点B 停止.同时点Q 从点A 出发,沿AC CB -的线路向点B 运动,在边AC BC 上的速度为每秒2个单位长度,到B 停止,以PQ 为边向右或右下方构造等边PQR ,设P 的运动时间为t 秒,解答下列问题:(1)填空:BC =__________,AC =__________.(2)当Q 在AC 上,R 落在BC 边上时,求t 的值.(3)连结BR .⊙当Q 在边AC 上,BR 与ABC 的一边垂直时,求PQR 的边长.⊙当Q 在边BC 上且R 不与点B 重合时,判断BR 的方向是否变化,若不变化,说明理由.理由见解析⊙ABC中,90,30∠,ABA=,3作QD⊙AB59⊙⊙QPR是等边三角形,⊙⊙QRP=60°,⊙⊙ABC=90°-⊙A=60°,⊙⊙QBP=⊙QRP=60°,⊙Q、P、B、R四点共圆,⊙⊙QBR=⊙QPR=60°,⊙BR的方向不变.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,四点共圆等等,解题的关键在于能够熟练掌握相关知识进行求解.。
(完整版)圆形基础练习题
(完整版)圆形基础练习题圆形基础练题(完整版)本文档提供了一系列圆形基础练题,旨在帮助练者掌握圆形相关的基本概念和计算方法。
以下是题目及其答案,供参考和练。
1. 计算圆的面积给定一个圆的半径为r,计算其面积。
答案:圆的面积公式为A = π * r^2,其中π为圆周率,近似取值为3.14。
故圆的面积为A = 3.14 * r^2。
2. 计算圆的周长给定一个圆的半径为r,计算其周长。
答案:圆的周长公式为C = 2 * π * r,其中π为圆周率,近似取值为3.14。
故圆的周长为C = 2 * 3.14 * r。
3. 计算圆柱的体积给定一个圆柱的底面半径为r,高度为h,计算其体积。
答案:圆柱的体积公式为V = π * r^2 * h,其中π为圆周率,近似取值为3.14。
故圆柱的体积为V = 3.14 * r^2 * h。
4. 计算圆的弧长给定一个圆的半径为r,扇形度数为θ,计算圆的弧长。
答案:圆的弧长公式为L = (2 * π * r * θ) / 360,其中π为圆周率,近似取值为3.14。
故圆的弧长为L = (2 * 3.14 * r * θ) / 360。
5. 计算圆环的面积给定一个圆环的外半径为R,内半径为r,计算其面积。
答案:圆环的面积公式为A = π * (R^2 - r^2),其中π为圆周率,近似取值为3.14。
故圆环的面积为A = 3.14 * (R^2 - r^2)。
6. 计算圆心角的弧度给定一个圆的半径为r,圆心角的度数为θ,计算圆心角的弧度。
答案:圆心角的弧度公式为α = (π * θ) / 180,其中π为圆周率,近似取值为3.14。
故圆心角的弧度为α = (3.14 * θ) / 180。
以上是本文档提供的圆形基础练习题,通过练习这些问题,您可以更好地掌握圆形的基础知识和计算方法。
祝您练习顺利!。
初四数学圆专项练习题
初四数学圆专项练习题1、在半径为1的圆中,长度等于2的弦所对的圆心角是 度。
圆周角是 。
2、如图2正方形ABCD 内接于⊙O ,点P 在AD 上, 则∠BPC= .3、如图3,已知点E 是圆O 上的点, B 、C 分别是劣弧AD 的三等分点, 46BOC ∠=,则AED ∠的度数为___________ .4、如图4,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点P 是直径AB 上一动点,求PC+PD 的最小值。
5、如图5,AB 是⊙O 的直径,∠C = 30,求∠ABD6、△ABC 中AB=AC=10,BC=12,求△ABC 外接圆的半径7、如图,Rt △ABC 中,∠ACB=90°,AC=4,BC=3,以AC 为直径的圆交AB 于D ,求AD 的长8、如图,锐角ABC 中,以BC 为直径的半圆O 分别交AB 、AC 于D 、E 两点,且S △ADE :S 四边形BCED=1:2,求cos ∠BAC 的值O A B 2题 4题 3题 5题9、在Rt△ABC中,∠C=900∠B=300,O是AB上的一点,OA=m,⊙O的半径为r,当r与m 满足什么关系时,(1)直线AC与⊙O相离?(2)直线AC与⊙O相切?(3)直线AC与⊙O相交?10、在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,四边形AMBC的面积为S.求S关于m的函数关系式,并求出S的最大值.并写出M点坐标。
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.11、如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;(3)在(2)的条件下,求证:直线CD是⊙M的切线.圆练习题1、已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=2,AD=1,求∠CAD的度数.2、如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD.3、如图,已知AB是⊙O的直径,弦CD⊥AB于H,AC=10,CD=12,求sin∠ABD的值4、如图:如图,△ADC的外接圆直径AB交CD于点E,已知∠C=70°,∠D=35°,求∠CEB的度数.5、如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=O的直径。
2020-2021初四数学圆的有关计算综合练习题2(附答案详解)
2020-2021初四数学圆的有关计算综合练习题2(附答案详解)一.选择题(共10小题)1.对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补2.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A.3B.4C.6D.83.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1B.C.D.24.若正六边形外接圆的半径为4,则它的边长为()A.2B.C.4D.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+6.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC 的长()A.2πB.πC.D.4π7.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点、AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y 轴正半轴上的A′处,则图中阴影部分面积为()A.﹣2B.C.D.﹣28.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm29.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm10.如图,圆柱底面半径为cm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.24cm B.30cm C.2cm D.4cm二.填空题(共10小题)11.正六边形的两对边之间的距离是14cm,则边长是cm.12.边长为6的正六边形的边心距为.13.边长为4的正六边形内接于⊙M,则⊙M的半径是.14.下列说法:①相等的弦所对的圆心角相等;②对角线相等的四边形是矩形;③正六边形的中心角为60°;④对角线互相平分且相等的四边形是菱形;⑤计算的结果为7;⑥函数y=的自变量x的取值范围是x>﹣1;⑦的运算结果是无理数.其中正确的是(填序号即可)15.半径为2的圆中,60°的圆心角所对的弧的弧长为.16.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于°.17.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为.18.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是cm.19.电焊工用一个圆心角为150°,半径为24cm的扇形白铁片制作一个圆锥的侧面(假设焊接时缝隙宽度忽略不计),那么这个圆锥的底面半径为cm.20.选作题(请从以下两个小题中任选一题作答,若多选,则按所选的第一题计分.)A.如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD绕AB所在直线旋转一周所得圆柱的侧面积为;B.用科学计算器计算:4cos35°≈(结果精确到0.01)三.解答题(共8小题)21.已知边长为1的正七边形ABCDEFG中,对角线AD,BG的长分别为a,b(a≠b),求证:(a+b)2(a﹣b)=ab2.22.如图,⊙O是正五边形ABCDE的外接圆,对角线AC、BD相交于点P.(1)求∠APB的度数;(2)求证:AC=AB+BP.23.如图所示,正五边形ABCDE,连接对角线AC、BD,设AC与BD相交于点F.(1)写出图中所有的等腰三角形;(2)判断四边形AFDE的形状,并说明理由.24.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求劣弧的长.25.如图,⊙O的一条弦AB分圆周长为3:7两部分,若圆半径为4cm,试求弦AB所对的圆周角的度数和优弧AB的长.26.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.27.如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘连部分忽略不计),求圆锥形纸帽的高.28.在一个长方形ABCD中,AB=3cm,BC=2cm,将它以AD、BC的中心连线EF为轴,旋转得到一个体积为3πcm2的圆柱,求由图中阴影部分以EF的轴旋转得到的那部分的体积.答案详解:一.选择题(共10小题)1.对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补【解答】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.2.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A.3B.4C.6D.8【解答】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:C.3.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1B.C.D.2【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.4.若正六边形外接圆的半径为4,则它的边长为()A.2B.C.4D.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:C.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4D.2+【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.6.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC 的长()A.2πB.πC.D.4π【解答】解:连接OA、OC,如图.∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则劣弧AC的长==2π.故选:A.7.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点、AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y 轴正半轴上的A′处,则图中阴影部分面积为()A.﹣2B.C.D.﹣2【解答】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=AC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′,=S扇形ABA′﹣S扇形CBC′,=﹣,=π﹣π,=π.故选:C.8.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm2【解答】解:∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选:A.9.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.10.如图,圆柱底面半径为cm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.24cm B.30cm C.2cm D.4cm【解答】解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为cm,∴长方形的宽即是圆柱体的底面周长:2π×=8cm;又∵圆柱高为18cm,∴小长方形的一条边长是6cm;根据勾股定理求得AC=CD=DB=10cm;∴AC+CD+DB=30cm;故选:B.二.填空题(共10小题)11.正六边形的两对边之间的距离是14cm,则边长是cm.【解答】解:连接OA、OB,设MN⊥AB、MN⊥DE,MN过中心O,∵ABCDEF是正六边形,∴∠AOB=60°,∠AOM=30°,∵正六边形的两条对边之间的距离是14,∴OM=ON=7,∴AM=OM×tan∠AOM=,∵OA=OB,OM⊥AB,∴AB=2AM=,故答案为:.12.边长为6的正六边形的边心距为3.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故答案为3.13.边长为4的正六边形内接于⊙M,则⊙M的半径是4.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.14.下列说法:①相等的弦所对的圆心角相等;②对角线相等的四边形是矩形;③正六边形的中心角为60°;④对角线互相平分且相等的四边形是菱形;⑤计算的结果为7;⑥函数y=的自变量x的取值范围是x>﹣1;⑦的运算结果是无理数.其中正确的是③⑦(填序号即可)【解答】解:①在同圆或等圆中,相等的弦所对的圆心角相等;故错误;②对角线相等且平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算的结果为1;故错误;⑥函数y=的自变量x的取值范围是x≥﹣1;故错误;⑦=﹣是无理数;故正确.故答案为:③⑦.15.半径为2的圆中,60°的圆心角所对的弧的弧长为π.【解答】解:l===π.故答案为π.16.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于120°.【解答】解:根据弧长的公式l=,得n===120°,故答案为:120.17.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为.【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE==.故答案为:.18.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是48cm.【解答】解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=48.故这个扇形铁皮的半径为48cm,故答案为:48.19.电焊工用一个圆心角为150°,半径为24cm的扇形白铁片制作一个圆锥的侧面(假设焊接时缝隙宽度忽略不计),那么这个圆锥的底面半径为10cm.【解答】解:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=10.答:这个圆锥的底面半径为10cm.故答案为10.20.选作题(请从以下两个小题中任选一题作答,若多选,则按所选的第一题计分.)A.如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD绕AB所在直线旋转一周所得圆柱的侧面积为4π;B.用科学计算器计算:4cos35°≈ 1.89(结果精确到0.01)【解答】解:A.圆柱的侧面面积=π×2×2×1=4π.故答案为:4π.B.用科学计算器求出≈0.577cos35°≈0.819原式=4×0.577×0.819≈1.89.故答案为:1.89.三.解答题(共8小题)21.已知边长为1的正七边形ABCDEFG中,对角线AD,BG的长分别为a,b(a≠b),求证:(a+b)2(a﹣b)=ab2.【解答】证明:连结BD、EG、BE、DG,则BD=EG=GB=b,DG=BE=DA=a,DE =AB=AG=1,在四边形ABDG中,由托勒密协定理,得AD•BG=AB•DG+BD•AG,即ab=a+b①,同理在四边形BDEG中,得BE•DG=DE•BG+BD•GE,即a2=b+b2,∴b=a2﹣b2=(a+b)(a﹣b)②,①×②,得ab2=(a+b)2(a﹣b).22.如图,⊙O是正五边形ABCDE的外接圆,对角线AC、BD相交于点P.(1)求∠APB的度数;(2)求证:AC=AB+BP.【解答】解:(1)如图,∵⊙O是正五边形ABCDE的外接圆,∴∠ABP==72°.(2)∵⊙O是正五边形ABCDE的外接圆,∴∠BAC==36°,∴∠APB=180°﹣72°﹣36°=72°,∴∠ABP=∠APB,∴AB=AP;同理可证:∠PBC=∠PCB=36°,∴PB=PC,∴AC=AB+BP.23.如图所示,正五边形ABCDE,连接对角线AC、BD,设AC与BD相交于点F.(1)写出图中所有的等腰三角形;(2)判断四边形AFDE的形状,并说明理由.【解答】解:(1)图中的等腰三角形有:△ABF、△ABC、△BCF、△BCD、△DCF.(2)四边形AFDE是菱形;理由如下:∵正五边形ABCDE内接于⊙O,∴∠BDE==72°,∠E==108°,∴∠BDE+∠E=180°,DF∥AE;同理可证:AF∥DE,而AE=DE,∴四边形AFDE是菱形.24.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求劣弧的长.【解答】(1)证明:如图,连接AE.∵AB是圆O的直径,∴∠AEB=90°,即AE⊥BC.又∵AB=AC,∴AE是边BC上的中线,∴BE=CE;(2)解:∵AB=6,∴OA=3.又∵OA=OD,∠BAC=54°,∴∠AOD=180°﹣2×54°=72°,∴的长为:=.25.如图,⊙O的一条弦AB分圆周长为3:7两部分,若圆半径为4cm,试求弦AB所对的圆周角的度数和优弧AB的长.【解答】解:根据弦AB分圆周长为3:7两部分,则两条弧的度数分别是108°和252°,再根据圆周角的度数等于它所对的弧的度数的一半,得弦对的圆周角分别是54°和126°,根据弧长公式得:弧长==π.26.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.【解答】解:(1)∵AB为半圆⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠ABC=45°;(2)∵AB=2,∴阴影部分的面积=2×1﹣=1﹣.27.如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘连部分忽略不计),求圆锥形纸帽的高.【解答】解:设圆锥的底面圆的半径为r,则2πr=6π,解得r=3,设扇形AOB的半径为R,则=6π,解得R=9,所以圆锥形纸帽的高==6.28.在一个长方形ABCD中,AB=3cm,BC=2cm,将它以AD、BC的中心连线EF为轴,旋转得到一个体积为3πcm2的圆柱,求由图中阴影部分以EF的轴旋转得到的那部分的体积.【解答】解:由题意可得出:阴影部分旋转后体积为两圆锥的组合体,其底面半径为1cm,高为cm,故由图中阴影部分以EF的轴旋转得到的那部分的体积为:2×π×12×=π(cm3)。
初中数学圆形专题训练50题-含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒2.如图,P 是∠O 外一点,P A 是∠O 的切线,A 为切点,PO 与∠O 相交于B 点,已知∠BCA =34°,C 为∠O 上一点,连接CA ,CB ,则∠P 的度数为( )A .34°B .56°C .22°D .28° 【答案】C 【分析】根据切线的性质可得:90,OAP ∠=︒ 利用圆周角定理可得:2,O ACB ∠=∠ 从而可求出结果.【详解】解:∠P A 是∠O 的切线,A 为切点,∠∠OAP =90°,又∠∠BCA =34°,∠∠O =2∠ACB =68°,∠∠P =90°﹣∠AOB =90°﹣68°=22°.故选:C.【点睛】本题考查的是切线的性质定理,圆周角定理,掌握利用圆周角定理与切线的性质定理求解角的大小是解题的关键.3.如图,AB为∠O直径,CD为弦,AB∠CD于E,连接CO,AD,∠BAD=25°,下列结论中正确的有()∠CE=OE;∠∠C=40°;∠ACD=ADC;∠AD=2OEA.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:∠AB为∠O直径,CD为弦,AB∠CD于E,∠CE=DE,BC BD=,ACB ADB=,∠∠BOC=2∠A=40°,ACB BC ADB BC+=+,即ADC ADC=,故∠正确;∠∠OEC=90°,∠BOC=40°,∠∠C=50°,故∠正确;∠∠C≠∠BOC,∠CE≠OE,故∠错误;作OP∠CD,交AD于P,∠AB∠CD,∠AE<AD,∠AOP=90°,∠OA<PA,OE<PD,∠PA+PD>OA+OE∠OE<OA,∠AD>2OE,故∠错误;故选:B.【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键.4.下列命题正确的是()A.相等的圆心角所对的弧是等弧B.等圆周角对等弧C.任何一个三角形只有一个外接圆D.过任意三点可以确定一个圆【答案】C【分析】根据圆周角与弧的关系可判断出各选项,注意在等圆中这个条件.【详解】A、缺少条件,必须是在同圆或等圆中,相等的圆心角所对的弧才相等;故本选项错误;B、缺少条件,必须是在同圆或等圆中,相等的圆周角所对的弧才相等;故本选项错误;C、任何一个三角形只有一个外接圆,故本选项正确;D、缺少条件,过任意不共线的三点才可以确定一个圆,故本选项错误.故选:C.【点睛】本题考查命题与定理的知识,属于基础题,掌握相关的性质定理是解题的关键.5.如图,四边形ABCD为∠O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55°B.70°C.110°D.125°∠四边形ABCD为∠O的内接四边形,∠∠BCD=180°−∠A=125°,故选D【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质. 6.如图,点A,B,C均在圆O上,当∠BOC=120°时,∠BAC的度数是()A.65°B.60°C.55°D.50°7.如图,在O中,AB所对的圆周角∠ACB=50°,D为AB上的点.若∠AOD=35°,则∠BOD的大小为()A.35°B.50°C.55°D.65°【答案】D【分析】在同圆中,由同弧所对的圆周角等于其圆心角的一半解答.【详解】解:∠ACB=50°,AOB∴∠=⨯︒=︒250100BOD AOB AOD∴∠=∠-∠=︒-︒=︒1003565故选:D.【点睛】本题考查圆周角与圆心角的性质,是基础考点,掌握相关知识是解题关键.8.如图,四边形ABCD内接于∠O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【答案】D【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【详解】连接OD、OB,∠四边形ABCD内接于∠O,∠∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∠40°≤∠BPD≤80°,∠∠BPD不可能为90°,故选D.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,已知四边形ABCD 内接于∠O,AB是∠O的直径,EC与∠O 相切于点C,∠ECB=35°,则∠D 的度数是()A.145°B.125°C.90°D.80°【答案】BOC【详解】解:连接.∠EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选:B.10.如图,AC 是汽车挡风玻璃前的刮雨刷.如果65AO cm =,15CO cm =,当刮雨刷AC 绕点O 旋转90时,则刮雨刷AC 扫过的面积为( )A .225cm πB .21000cm πC .225cmD .21000cm11.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A.0.5B.1C.2D.412.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【答案】B【详解】试题分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解:设底面圆的半径为r,则:2πr==π.∠r=, ∠圆锥的底面周长为, 故选B .考点:圆锥的计算.13.如图,AB 为半圆O 的直径,C 为半圆上一点,且弧AC 为半圆的,设扇形AOC ,∠COB ,弓形BmC 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3【答案】B 【详解】试题分析:首先根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1.再根据题意,知S 1占半圆面积的.所以S 3大于半圆面积的.解:根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的,所以S 3大于半圆面积的.因此S 2<S 1<S 3.故选B .考点:扇形面积的计算.14.如图,在矩形ABCD 中,2AB =,BC =B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .3πB .35πC .23πD .34π 【答案】C【分析】解直角三角形求出30CBE ∠=︒,推出60ABE ∠=︒,再利用扇形的面积公式【详解】解:四边形=BA BE∴∠cos CBE∴∠=CBE∴∠ABE∴S15.下列事件中,是随机事件的是()A.∠O的半径为5,OP=3,点P在∠O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角【答案】C【分析】根据随机事件的定义进行分析解答即可.【详解】解:(1)点P一定在∠O内,A是不可能事件,故错误.(2) 相似三角形的对应角一定相等,是必然事件,B错误.(3) 任意画两个直角三角形,这两个三角形不一定相似,C正确.(4) 直径所对的圆周角一定为直角,D为为为为为为为错误.综上选C.【点睛】本题考查随机事件的定义,熟悉掌握是解题关键.16.如图,AC是∠O的直径,弦BD∠AO于E,连接BC,过点O作OF∠BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B cm C.2.5cm D cm17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:∠勒洛三角形是中心对称图形;∠在图1中,等边三角形的边长为2,则勒洛三角形的周长为2π;∠在图2中,勒洛三角形的周长与圆的周长相等;∠使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;上述结论中,所有正确结论的序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=33°,则∠BEC=()A.66°B.114°C.123°D.132°【答案】C【分析】根据圆周角定理可求∠CAD=33°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在∠O中,∠∠CBD=33°,∠∠CAD=33°,∠点E是△ABC的内心,∠∠BAC=66°,∠∠EBC+∠ECB=(180°﹣66°)÷2=57°,∠∠BEC=180°﹣57°=123°.故选C.【点睛】考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.19.如图,四边形ABCD为正方形,O为AC、BD的交点,∠DCE为Rt∠,∠CED=90°,OE=CE DE=5,则正方形的面积为()A.5B.6C.7D.8∠CE DE=5故选:B【点睛】本题考查了四点共圆的判定及圆周角定理,同弧或等弧所对的圆周角相等,正方形的判定及性质定理,全等三角形的判定及性质.20.如图,AB 是∠O 的直径,弦CD∠AB 于点G ,点F 是CD 上一点,且满足13CF FD ,连接AF 并延长交∠O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:∠∠ADF∠∠AED ;∠FG =2;∠tan∠E ;∠S △DEF =结论的个数是( )A .1B .2C .3D .4AFD ADE S S =ADE S =△DEF =AFD ,∠所以正确的结论是∠∠∠.二、填空题21.如图,有4个圆|A ,B ,C ,D ,且圆A 与圆B 的半径之和等于圆C 的半径,圆B 与圆C 的半径之和等于圆D 的半径,现将圆A ,B ,C 摆放如图甲,圆B ,C ,D 摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D 面积为__________.【答案】28π【分析】根据题意得到圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图得到方程求出b 的关系,再根据圆D 的面积与b 的关系即可求解.【详解】∠图甲阴影部分面积分别为4π,即圆A 的面积为4π,∠圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图可得222(22)12(2)b b b ππππ+=+++化简得226b b +=,∠圆D 的面积为2(22)b π+=4π()22b b ++4π=28π,故填:28π.【点睛】此题主要考查圆的面积求解,解题的关键是根据图形找到等量关系进行列方程求解.22.圆的有关概念:(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做__.线段OA 叫做__.(b )圆是所有点到定点O 的距离__定长r 的点的集合.(2)弦:连接圆上任意两点的__叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦); (3)弧:圆上任意两点间的部分叫__(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够__的弧叫等弧.(5)等圆:能够__的两个圆叫等圆,半径__的两个圆也叫等圆.【答案】 圆心 半径 等于 线段 弧 完全重合 完全重合 相等【分析】根据圆、弦、弧、等弧、等圆的定义即可作答.【详解】(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心.线段OA 叫做半径.(b )圆是所有点到定点O 的距离等于定长r 的点的集合.(2)弦:连接圆上任意两点的线段叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);(3)弧:圆上任意两点间的部分叫弧(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够完全重合的弧叫等弧.(5)等圆:能够完全重合 的两个圆叫等圆,半径相等的两个圆也叫等圆.故答案为:圆心,半径;等于;线段;弧;完全重合;完全重合;相等.【点睛】本题主要考查了圆、弦、弧的定义,牢记相关定义是解答本题的关键. 23.如图,在矩形ABCD 中,8AB =,6AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,则r 的取值范围是 _____.90,Rt ABD 中,由勾股定理得:2AD AB +A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,且CD BD <<10r <<,24.如图ABC 内接于O ,半径为6,2sin 3A =∠,则BC 的长为___________.【详解】解:作O的直径,∠90D=sin D CD.25.如图,PA、PB分别切∠O于A、B,并与∠O的另一条切线分别相交于D、C两点,已知PA=6,则∠PCD的周长=_______.【答案】12【详解】试题分析:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.设DC与∠O的切点为E∠PA、PB分别是∠O的切线,且切点为A、B∠PA=PB=6同理可得DE=DA,CE=CB则∠PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.考点:切线长定理26.如图,若BC是∠O的弦,OD∠BC于D,且∠BOD=50 o,点A在∠O上(不与B、C重合),则∠BAC=________.27.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.【答案】120°【分析】根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】由题意得,圆锥的底面积为16πcm²,28.如图,在等腰直角三角形ABC 中,4AB BC ==,点M 是AB 的中点,将ABC 绕点M 旋转至A B C '''的位置,使AB A C ''⊥,其中点C 的运动路径为弧CC ',连接CM ,则图中阴影部分的面积为_______.29.如图,ABC内接于O,若OAB30∠=,则C∠=______.【详解】OA OB=30OAB=∠=,1803030120=--=,由圆周角定理得,1602C AOB∠=∠=,故答案为60.【点睛】本题考查的是三角形的外接圆与外心,等腰三角形的性质,掌握圆周角定理是解题的关键.30.如图,BC为∠O的直径,弦AD∠BC于点E,直线l切∠O于点C,延长OD交l 于点F,若AE=2,为ABC=22.5°,则CF的长度为31.用一张圆形的纸剪一个边长为4 cm的正六边形,则这个圆形纸片的半径最小应为_______cm.【答案】4【分析】要剪一张圆形纸片完全盖住这个正六边形,这个圆形纸片的边缘即为其外接圆,根据正六边形的边长与外接圆半径的关系即可求出.【详解】∠正六边形的边长是4cm,∠正六边形的半径是4cm,∠这个圆形纸片的最小半径是4cm,故答案为4cm.【点睛】此题主要考查了正多边形与圆的知识,注意正六边形的外接圆半径与边长相等,这是一个需要谨记的内容.32.如图,AB与∠O相切于点A,BO与∠O相交于点C,点D是∠O上一点,∠B=38°.则∠D的度数是_____.33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =12cm,则球的半径为______cm.【答案】7.5【分析】首先找到EF的中点M,作MN∠AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是(12﹣x) cm,MF=6 cm,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【详解】解:EF 的中点M ,作MN∠AD 于点M ,取MN 上的球心O ,连接OF ,∠四边形ABCD 是矩形,∠∠C =∠D =90°,∠四边形CDMN 是矩形,∠MN =CD =12 cm设OF =x cm ,则ON =OF ,∠OM =MN ﹣ON = (12﹣x) cm ,MF =6 cm ,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(12﹣x )2+62=x 2,解得:x =7.5,故答案为:7.5.【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.34.已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.与O 的位置关系是相切.2268=+与O 的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.35.如图,一次函数y=x轴、y轴交于A、B两点,P为一次函数=的图像上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则y x∠BPO=_________.∠∠OBP=15°又∠BOP=45°∠∠BPO=180°-45°-15°=120°相交时,点P即为圆心.(2)当∠ABO的外角平分线与y x如图,同理可求∠OBP=30°+75°=105°∠∠BPO=180°-45°-105°=30°故答案为:30°或120°【点睛】本题主要考查了切线的判定和性质,角平分线的性质及三角形的内角和的应用,正确的对点P的位置进行分类是解题的关键.36.如图,四边形ABCD内接于∠O,点E在AB的延长线上,BF∠AC,AB=BC,∠ADC=130°,则∠FBE=_______°.【答案】65【详解】连接BD,如图所示:∠∠ADB和∠ACB是弧AB所对的圆周角,∠BDC和∠BAC是弧BC所对的圆周角,∠∠ADB=∠ACB,∠BDC=∠BAC,又∠∠BDC+∠ADB=∠ADC,∠ADC=130°,∠∠BAC+∠ACB=130°,又∠AB=BC,∠∠BAC=∠ACB=65°,又∠BF∠AC,∠∠FBE=∠BAC=65°;故答案是:65.37.如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧AB,使点B在O右下方,且4tan3AOB∠=.在优弧AB上任取一点P,且能过P作直线l OB∥交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧AB上一段AP的长为13π,则AOP∠的度数为__________,x的值为__________;(2)x的最小值为__________,此时直线l与弧AB所在圆的位置关系为__________26nπ⨯38.如图,在Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,, 以BC 边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是___;此圆锥展开的侧面扇形的圆心角为____.边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是此圆锥展开的侧面扇形的扇形弧长是底面圆周长,此圆锥展开的侧面扇形的圆心角度数为【点睛】本题考查了勾股定理,圆锥的计算;得到几何体的组成是解决本题的突破39.如图,在平面直角坐标系xOy 中,一次函数y +4的图象与x 轴、y 轴交于A 、B 点,点C 在线段OA 上,点D 在直线AB 上,且CD =2,∠DEC 是直角三角形(∠EDC =90°),DE ,连接AE ,则AE 的最大值为_________.∠+∠=______度,阴影四边形的面积为______.【答案】 105︒##105度 1##1-+∠90ABD ,AB BD =90ABC BAC ∠+∠=︒=BAC DBE ∠=∠,(AAS BAC DBE ≌△△AC BE =,BC DE =三、解答题41.如图,在∠O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD .(1)求证:AEC DEB △∽△;(2)连接AD ,若3AD =,30C ∠=︒,求∠O 的半径.【答案】(1)证明见解析(2)∠O 的半径为3Rt ADB 中,26AD ==,132AB ==的半径为【点睛】本题考查圆的基本知识,相似三角形的判定,以及含42.如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与O 的位置关系,并说明理由;(2)若ECF 2A ∠∠=,CM 6=,CF 4=,求MF 的长.与O 相切;理由见解析;3343.已知:如图,线段BC 与经过点C 的直线l .求作:在直线l 上求作点D ,使150CDB ∠=︒.作法:∠分别以点B ,C 为圆心,BC 长为半径画弧,两弧交于BC 上方的点A ,连接AB ,AC ;∠以点A 为圆心,以AB 长为半径画圆交直线l 于点D (不同于点C ),连接BD .则点D 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠60BAC ∠=︒.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠30CEB ∠=︒.(_________________________)(填推理依据)∠点B ,D ,C ,E 在A 上.∠180CDB CEB ∠+∠=︒.(_________________________)(填推理依据)即150CDB ∠=︒. 【答案】(1)见解析(2)圆周角定理;圆内接四边形对角互补【分析】(1)根据题意作出图形即可求解;(2)根据圆周角定理,以及圆内接四边形对角互补,即可求解.【详解】(1)解;如图所示,(2)证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠=60?BAC ∠.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠=30?CEB ∠(圆周角定理)∠点B ,D ,C ,E 在A 上.∠+=180CDB CEB ∠∠︒.(圆内接四边形对角互补)即150CDB ∠=︒.故答案为:圆周角定理;圆内接四边形对角互补.【点睛】本题考查了等边三角形的判定和性质,圆周角定理,圆内接四边形的性质,掌握圆周角定理是解题的关键.44.某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等. (1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56°,则∠BPC =【答案】(1)见解析;(2)112°【分析】(1)连接AB 、BC 、AC ,作线段AB 和AC 的垂直平分线,交点P 即为所求; (2)利用三角形外心的性质结合圆周角定理得出答案.【详解】解:(1)如图所示:P 点即为所求;(2)连接PB 、PC ,∠点P 是三角形ABC 的外心,∠∠BPC =2∠BAC =112°.【点睛】此题主要考查了应用设计与作图,掌握线段垂直平分线的性质,得出P 点是三角形ABC 的外心是解题关键.45.如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:P A 是O 的切线;()2若PD =O 的直径.)O 的直径为30,继而根据等腰三角形的性质可得出30,继而由P ,可得出30的直角三角形的性质求出PD OD =,可得出O 的直径.连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴=,又OA OC =,OAC 30∠∠∴=,又AP AC =P ACP 30∠∠=,90,是O的切线.Rt OAP中,P30∠=,=+,2OA OD PD=,又OA OD=,PD OA=,PD5∴=2OA2PD∴的直径为O【点睛】本题考查了切线的判定、圆周角定理、含掌握切线的判定定理、圆周角定理及含46.如图,已知等边∠ABC,AB=2,以AB为直径的半圆与BC边交于点D,过点D 作DF∠AC,垂足为F,过点F作FG∠AB,垂足为G,连结GD.(1)求证:DF是∠O的切线;(2)求FG的长.22447.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是∠O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求∠O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【答案】(1)见解析;(2)∠O的半径R为7.【分析】(1)连结AC,BD,根据圆周角定理得到∠C=∠B,∠A=∠D,再根据三角形相似的判定定理得到△APC∠∠DPB,利用相似三角形的性质得AP:DP=CP:BP,变形有AP•BP=CP•DP;由此得到相交弦定理;(2)由AB=10,PA=4,OP=5,易得PB=10-4=6,PC=OC-OP=R-5,PD=OD+OP=R+5,根据相交弦定理得到PA•PB=PC•PD,即4×6=(R-5)×(R+5),解方程即可得到R的值.【详解】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,∠O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∠∠C=∠B,∠A=∠D,∠∠APC∠∠DPB,∠AP:DP=CP:BP,∠AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∠AB=10,PA=4,OP=5,∠PB=10﹣4=6,PC=OC﹣OP=R﹣5,PD=OD+OP=R+5,由(1)中结论得,PA•PB=PC•PD,∠4×6=(R﹣5)×(R+5),解得R=7(R=﹣7舍去).所以∠O的半径R=7.【点睛】本题考查的是圆,熟练掌握相交弦定理和相似三角形的判定与性质是解题的关键.48.如图,点C在以AB为直径的∠O上.AE与过点C的切线垂直,垂足为D,AD 交∠O于点E,过B作BF∠AE交∠O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∠AE交∠O于F,连接CF,求CF的长.49.如图,已知∠O的直径AB=8,过A、B两点作∠O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.∠求∠COD的面积.∠试判断直线CD与∠O的位置关系,并说明理由.(2)若直线CD与∠O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.50.在平面直角坐标系xOy 中,对于线段MN 及点P 、Q ,若60MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称点Q 是点P 的线段60MN -︒对经点.(1)设点()0,2A .∠()1Q ,()24,0Q ,312Q ⎫-⎪⎪⎝⎭,其中为某点P 的线段60OA -︒对经点的是______.∠已知()0,1B ,设∠B 的半径为r ,若∠B 上存在某点P 的线段60OA -︒对经点,求r 的取值范围.(2)若点()4,0Q 同时是相异两点1P 、2P 的线段60OD -︒对经点,直接写出线段OD 长的取值范围. 为边的等边三角形的外接圆C 上优弧上的横纵坐标的最值,根据定义以及中点坐标公的方法作出图形,作M 的切线关于P 中心对N 为圆心,矩形对角线长度为半径两圆组成的图两直线之间的部分,除公共部分以外的图形,即图中阴影部分,包括边轴上的部分,根据图形求得)作辅助线,设,M N 在OD 同时是相异两点1P 、2P 的线段33DM x =,OM 长,解一元一次不等式组求解即可.Q 为边的等边三角形的外接圆C 上优弧上的一点,()0,2A2OA ∴=C 为AOP 的外心,则过点C 分别作CG 2OC33GC =3GC ∴=33C x ∴=∴P 的横坐标最大值为Qx交M于点S作M的是C的直径)AA交M于点F1根据对称性,同理可得过N的r的最值也为M N在OD)作辅助线,设,T 为,M N 的交点,2MT NT OM ∴===11=22TH MN OD ∴==在Rt NTH 中, NH OH ON NH =+OR ON NR =+()4,0D236+∴解得433即433≤。
2020-2021初四数学圆的有关计算综合练习题1(附答案详解)
2010-2021初四数学圆的有关计算综合练习题1(附答案详解)一.选择题(共10小题)1.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为()A.B.C.D.2.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.93.若一个正多边形的一个内角是135°,则这个正多边形的中心角为()A.20°B.45°C.60°D.90°4.下列圆的内接正多边形中,中心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形5.如图,圆上有A、B、C、D四点,其中∠BAD=80°,若弧ABC、弧ADC的长度分别为7π、11π,则弧BAD的长度是()A.4πB.8πC.l0πD.15π6.如图,四边形ABCD为⊙O的内接四边形,⊙O的半径为3,AO⊥BC,垂足为点E,若∠ADC=130°,则的长等于()A.B.C.D.7.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣8.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A.B.C.D.9.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π10.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2二.填空题(共10小题)11.我们规定:一个正n边形(n为整数,n≥4)的最长对角线与边长的比值,叫做这个正n边形的“特征值”,记为a n,那么a6=.12.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.13.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.14.如图,点O是正八边形ABCDEFGH的中心点,点M和点N分别在AB和DE上,且AM=DN,则∠MON的大小为度.15.如图,半径为6的⊙O的直径AB与弦CD垂直,且∠BAC=40°,则劣弧BD的长是(结果保留π).16.如图,已知扇形的圆心角∠AOB=120°,半径OA=2,则扇形的弧长为.17.如图,等边△ABC的边长是4,O是△ABC的中心,连接OB,OC,把△BOC绕着点CO旋转到△AO′C的位置,在这个旋转过程中,线段OB所扫过的图形的面积是.18.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是.19.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于cm.20.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.三.解答题(共8小题)21.如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.22.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.23.求半径为3的圆的内接正方形的边长.24.如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,连结AD、BC 若,∠DAB=30°.(1)求∠ABC的度数;(2)若AD=8,求的长度(结果保留π).25.如图,半圆O的直径AB=6,弦CD=3,的长为π,求的长.26.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.27.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.28.一个圆柱形容器的内半径为10厘米,里面盛有一定高度的水,将一个长25厘米,宽6厘米的长方体金属块完全淹没,结果容器内的水升高了4厘米(没有溢出),问这个金属块的高是多少厘米?(π的取值3)答案详解:一.选择题(共10小题)1.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为()A.B.C.D.【解答】解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为,同理可得,第二个六角形的面积为:=,第三个六角形的面积为:=,第四个六角形的面积为:=.故选:D.2.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.9【解答】解:分别过正六边形的顶点A,B作AE⊥MN于E,BF⊥MN于F,则∠EAM=∠NBF=30°,EF=AB=2,∵AM=BN=2=1,∴EM=FN=1=,∴MN=++2=3,∴△PMN的周长3×3=9,故选:D.3.若一个正多边形的一个内角是135°,则这个正多边形的中心角为()A.20°B.45°C.60°D.90°【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n==8,∴该正多边形为正八边形,故这个正多边形的中心角为:=45°.故选:B.4.下列圆的内接正多边形中,中心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选:A.5.如图,圆上有A、B、C、D四点,其中∠BAD=80°,若弧ABC、弧ADC的长度分别为7π、11π,则弧BAD的长度是()A.4πB.8πC.l0πD.15π【解答】解:∵、的长度分别为7π,11π,∴圆的周长为18π,∵∠A=80°,∴∠C=180°﹣80°=100°,故=×18π=10π.故选:C.6.如图,四边形ABCD为⊙O的内接四边形,⊙O的半径为3,AO⊥BC,垂足为点E,若∠ADC=130°,则的长等于()A.B.C.D.【解答】解:连接OB、OC,∵四边形ABCD为⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣∠ADC=50°,∴∠AOC=100°,∴∠EOC=80°,∵AO⊥BC,OB=OC,∴∠BOC=2∠EOC=160°,∴的长==π,故选:D.7.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣【解答】解:如图,连接BE,则BE=BC=2,在Rt△ABE中,∵AB=1、BE=2,∴∠AEB=∠EBC=30°,AE==,则阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形BCE=1×2﹣×1×﹣=2﹣﹣,故选:A.8.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A.B.C.D.【解答】解:设圆锥的母线长为R,由题意得60π=π×5×R,解得R=12.∴sinθ=,故选:C.9.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π【解答】解:圆锥的侧面积为:×2π×1×3=3π,故选:B.10.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2【解答】解:根据侧面积公式可得π×2×3×6=36πcm2,故选:B.二.填空题(共10小题)11.我们规定:一个正n边形(n为整数,n≥4)的最长对角线与边长的比值,叫做这个正n边形的“特征值”,记为a n,那么a6=2.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC,根据题意得:BE是正六边形最长的对角线,∵ABCDEF是正六边形,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵ABCDEF是正六边形,∴OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,即∠BEC=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴BC=BE,∴=2,∴a6=2,故答案为2.12.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是7.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.13.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.【解答】解:正五边形的内切圆与外接圆所围圆环的面积为:π(OA2﹣OH2)=π×AH2=.故答案为:.14.如图,点O是正八边形ABCDEFGH的中心点,点M和点N分别在AB和DE上,且AM=DN,则∠MON的大小为135度.【解答】解:连接OA、OB、OC、OD;∵正八边形是中心对称图形,∴中心角为360°÷8=45°;∴∠OAM=∠ODN=67.5°,∵OA=OD,∠OAM=∠ODN,AM=DN,∴△OAM≌△ODN(SAS),∴∠AOM=∠DON,∴∠MON=∠MOB+∠BOC+∠COD+∠NOD=3∠AOB=135°,故答案为:135.15.如图,半径为6的⊙O的直径AB与弦CD垂直,且∠BAC=40°,则劣弧BD的长是π(结果保留π).【解答】解:如图,连接OC、OD,∵∠BAC=40°,∴∠BOC=2∠BAC=80°.∵⊙O的直径AB与弦CD垂直,∴=,∴∠BOC=∠BOD=80°,∴劣弧BD的长是:=π.故答案为π.16.如图,已知扇形的圆心角∠AOB=120°,半径OA=2,则扇形的弧长为.【解答】解:由弧长公式得:扇形的弧长==;故答案为:.17.如图,等边△ABC的边长是4,O是△ABC的中心,连接OB,OC,把△BOC绕着点CO旋转到△AO′C的位置,在这个旋转过程中,线段OB所扫过的图形的面积是.【解答】解:∵等边△ABC的边长是4,O是△ABC的中心,∴OB=OC=,∴线段OB所扫过的图形的面积=S扇形OAB﹣S扇形OCO′=﹣=﹣=,故答案为:.18.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是25πcm2.【解答】解:如图,圆锥的母线AB=13cm,圆锥的高AO=12cm,圆锥的底面半径OB =r,在Rt△AOB中,(cm),∴S=πr2=π×52=25πcm2.故答案为25πcm2.19.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于5cm.【解答】解:根据题意得:S=πrl,即r===5,则圆锥底面圆的半径长等于5cm,故答案为:520.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是20πcm2.【解答】解:这个圆柱的侧面积=5×2π×2=20π(cm2).故答案为20πcm2.三.解答题(共8小题)21.如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.【解答】解:在正五边形ABCDE中,∵∠ABC=∠DCB=108°,BC=BA=CD,∴∠BAC=∠BCA=∠CDB=∠CBD=36°,∴∠ABF=72°,∴∠AFB=∠CBD+∠ACB=72°,∴∠AFB=∠ABF,∠FCB=∠FBC,∴AF=AB=1,FB=CF,设FB=FC=x,∵∠BCF=∠BCA,∠CBF=∠CAB,∴△BCF∽△ACB,∴CB2=CF•CA,∴x(x+1)=1,∴x2+x﹣1=0,∴x=或(舍去),∴BF=.22.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.【解答】(1)解:∵六边形ABCDEF是正六边形,∴∠F AB==120°;(2)证明:连接OA、OB,∵OA=OB,∴∠OAB=∠OBA,∵∠F AB=∠CBA,∴∠OAG=∠OBH,在△AOG和△BOH中,,∴△AOG≌△BOH(SAS)∴OG=OH.23.求半径为3的圆的内接正方形的边长.【解答】解:如图,∵四边形ABCD是⊙O的内接正方形,∴∠OBE=45°;而OE⊥BC,∴BE=CE;而OB=3,∴sin45°=,cos45°=,∴OE=,BE=,∴BC=3,故半径为3的圆内接正方形的边长为3.24.如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,连结AD、BC 若,∠DAB=30°.(1)求∠ABC的度数;(2)若AD=8,求的长度(结果保留π).【解答】解:(1)如图,连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,∴∠ABD=90°﹣30°=60°.∵C是的中点,∴∠ABC=∠DBC=∠ABD=30°.(2)如图,连接OC,则∠AOC=2∠ABC=60°,∵∠A=30°,AD=8,.∴AB=16,∴AO=8,∴的长度==π.25.如图,半圆O的直径AB=6,弦CD=3,的长为π,求的长.【解答】解:(1)连接OD、OC,∵CD=OC=OD=3,∴△CDO是等边三角形,∴∠COD=60°,∴的长==π,又∵半圆弧的长度为:×6π=3π,∴=3π﹣π﹣=.26.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.【解答】(1)证明:连结AD,∵AB为⊙O直径,∴AD⊥BC,又∵AB=AC,∴BD=CD;(2)解:连结OE,∵AB=4,∠BAC=45°,∴∠BOE=90°,BO=EO=2,∠AOE=90°,∴S阴=S△BOE+S扇形OAE=×2×2+=π+2.27.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180,答:此圆锥侧面展开图的圆心角是180°.28.一个圆柱形容器的内半径为10厘米,里面盛有一定高度的水,将一个长25厘米,宽6厘米的长方体金属块完全淹没,结果容器内的水升高了4厘米(没有溢出),问这个金属块的高是多少厘米?(π的取值3)【解答】解:设长方形的高是xcm,则利用体积公式可得25×6x=π×102×4,解得x≈8.答:这个金属块的高是8厘米。
初四圆的计算练习题
与圆有关的计算练习题1.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB=______.2.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是___________________.3.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=()A.28°B.42°C.56°D.84°4.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°6.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°7.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________.8.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°9.如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=________.\10.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°11.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°12.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为_______.13.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3 B.4 C.5 D.814.在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为_________ .绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()。
初四数学-圆测试题
圆测试题一、选择题1.⊙O 的半径r=10cm ,圆心到直线a 的距离OM =8cm ,在直线a 上有一点P ,且PM =6cm ,则点P ( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .可能⊙O 内也可能在外2.有4个命题:①直径相等的两圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧,其中真命题是( )A .①③B .①③④C .①④D .①3.如图,A 、B 、C 、D 在同一个圆上,则圆中相等的圆周角有( )对A .2C .3D .44.有下列命题:①直径是圆的对称轴;②垂直于弦的直线必经过圆心;③平分弦的直径必平分弦所对的两条弧;④相等的圆周角所对的弧相等,其中假命题的个数为()A .1B .2C .3D .45. 如图, △ABC 内接于 ⊙O , ∠B = 45º, AC =4 ,则⊙O 的半径为A . 22B . 4C . 23D . 56. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定...成立的是 A.CM=DM B.弧AC=弧AD C.AD=2BD D.∠BCD=∠BDC7.已知⊙O 的半径为3cm ,直线l 上有一点P ,OP =3cm ,则直线l 与⊙O 的位置关系为( )A .相交B .相离C .相切D .相交或相切8. 已知⊙O 的半径为5mm ,弦mm AB 8 ,则圆心O 到AB 的距离是A .1 mmB .2 mmC .3 mmD .4 mm9、在圆O 中,圆O 的半径为6厘米,弦AB 的长为6厘米,则弦AB 所对的圆周角是(A )30°或150°(B )45°或135°(C )60°或120°(D )以上答案都不对10、点A 到圆O 的最近点的距离为10厘米,点A 到圆上最远点的距离为6厘米,则圆O 的半径是( )A )8厘米(B )2厘米(C )8厘米或2厘米(D )以上答案都不对11、如图,PA 是⊙O 的切线,切点为A , PA =,∠APO =30°,则⊙O 的半径长为 .12如图,在⊙O 中,∠ACB =∠D =60°,AC =3,则△ABC 的周长为_________。
初四数学专项练习——圆(1)
圆的练习一一.选择题(共10小题)1.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm2.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米3.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m4.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米5.如图,点A、B、C在⊙O上,∠ABO=22°,∠ACO=42°,则∠BOC等于()A.128°B.108°C.86°D.64°6.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,=.则∠DAC等于()A.70°B.45°C.30°D.25°7.如图,AB是⊙O的直径,点C,D,E均在⊙O上,若∠ACD=40°,则∠BED的度数为()A.50°B.40°C.30°D.20°8.如图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=25°,则∠D的度数为()A.85°B.105°C.115°D.130°9.如图,点A、B、C在⊙O上,若∠AOB=130°,则∠C的度数为()A.150°B.130°C.115°D.120°10.如图,四边形ABCD是⊙O的内接四边形,连接BO、CO,若∠BOC=116°,则∠CDB的度数为()A.116°B.122°C.128°D.112°答案:一.选择题(共10小题)1.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm【分析】由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:由题意知OD⊥AB,交AB于点E,∵AB=16,∴BC=AB=×16=8,在Rt△OBC中,∵OB=10,BC=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:B.【点评】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.2.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米【分析】根据垂径定理和勾股定理可得.【解答】解:∵CD⊥AB,AB=10米,由垂径定理得AD=5米,设圆的半径为r,由勾股定理得OD2+AD2=OA2,即(7﹣r)2+52=r2,解得r=米.故选:D.【点评】考查了垂径定理、勾股定理.特别注意此类题经常是构造一个由半径、半弦、弦心距组成的直角三角形进行计算.3.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m【分析】连接OA,设OB=OC=x,则OD=8﹣x,根据垂径定理得出BD,然后根据勾股定理得出关于x的方程,解方程即可得出答案.【解答】解:连接BO,由题意可得:AD=BD=4m,设B半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.4.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米【分析】连接OC.根据垂径定理和勾股定理求解即可.【解答】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴OE=分米,在Rt△OCE中,CE=分米,∴CD=2分米;故选:B.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.5.如图,点A、B、C在⊙O上,∠ABO=22°,∠ACO=42°,则∠BOC等于()A.128°B.108°C.86°D.64°【分析】过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出∠BOC=2∠ABO+2∠ACO.【解答】解:过A作⊙O的直径,交⊙O于D;在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×22°=44°,同理可得:∠COD=∠ACO+∠OAC=2×42°=84°,故∠BOC=∠BOD+∠COD=128°.故选:A.【点评】本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.6.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,=.则∠DAC等于()A.70°B.45°C.30°D.25°【分析】利用圆周角定理得到∠ACB=90°,则∠B=60°,再根据圆内接四边形的对角互补得到∠D=120°,接着根据=得到AD=CD,然后根据等腰三角形的性质和三角形的内角和计算出∠DAC的度数.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣30°=60°,∴∠D=180°﹣∠B=120°,∵=,∴AD=CD,∴∠DAC=∠DCA=(180°﹣120°)=30°.故选:C.【点评】本题考查了圆周角定理:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.如图,AB是⊙O的直径,点C,D,E均在⊙O上,若∠ACD=40°,则∠BED的度数为()A.50°B.40°C.30°D.20°【分析】根据AB是⊙O的直径求出的度数是180°,求出的度数是80°,再求出的度数是100°,即可得出答案.【解答】解:∵AB为⊙O的直径,∴的度数是180°,∵∠ACD=40°,∴的度数是80°,∴的度数是100°,∴∠BED==50°,故选:A.【点评】本题考查了圆周角定理,能求出的度数是解此题的关键,注意:圆周角的度数等于它所对的弧的度数的一半.8.如图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=25°,则∠D的度数为()A.85°B.105°C.115°D.130°【分析】根据圆周角定理求出∠ABC=65°,进而根据圆内接四边形的性质即可求得∠D的度数.【解答】解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=25°,∴∠ABC=65°,∴四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=180°﹣∠ABC=115°,故想C.∴∠CAD=∠CBD=35°.故选:C.【点评】本题考查的是圆周角定理,直径所对的圆周角是直角,圆内接四边形的性质,解本题的关键是作出辅助线.9.如图,点A、B、C在⊙O上,若∠AOB=130°,则∠C的度数为()A.150°B.130°C.115°D.120°【分析】如图,在优弧上取一点D,连接AD,BD.利用圆周角定理以及圆内接四边形的性质即可解决问题.【解答】解:如图,在优弧上取一点D,连接AD,BD.∵∠ADB=∠AOB=65°,又∵∠ADB+∠C=180°,∴∠C=115°,故选:C.【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,四边形ABCD是⊙O的内接四边形,连接BO、CO,若∠BOC=116°,则∠CDB的度数为()A.116°B.122°C.128°D.112°【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算,得到答案.【解答】解:由圆周角定理得,∠A=∠BOC=×116°=58°,∵四边形ABCD是⊙O的内接四边形,∴∠CDB=180°﹣∠A=122°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.。
初中圆相关练习题
初中圆相关练习题1. 问题一:给定圆的半径r为5cm,求圆的直径、周长和面积。
解答:已知半径r = 5cm,根据定义可知,直径d = 2r = 2 * 5cm = 10cm。
所以,圆的直径为10cm。
周长的计算公式为C = 2πr。
将半径r替换为5cm,π近似取3.14,则周长C = 2 * 3.14 * 5cm = 31.4cm。
所以,圆的周长为31.4cm。
面积的计算公式为A = πr²。
将半径r替换为5cm,π近似取3.14,则面积A = 3.14 * (5cm)² = 3.14 * 25cm² = 78.5cm²。
所以,圆的面积为78.5cm²。
2. 问题二:圆的直径为8m,求圆的半径、周长和面积。
解答:已知直径d = 8m,根据定义可知,半径r = d/2 = 8m/2 = 4m。
所以,圆的半径为4m。
周长的计算公式为C = 2πr。
将半径r替换为4m,π近似取3.14,则周长C = 2 * 3.14 * 4m = 25.12m。
所以,圆的周长为25.12m。
面积的计算公式为A = πr²。
将半径r替换为4m,π近似取3.14,则面积A = 3.14 * (4m)² = 3.14 * 16m² = 50.24m²。
所以,圆的面积为50.24m²。
3. 问题三:圆的面积为113.04cm²,求圆的半径、直径和周长。
解答:已知面积A = 113.04cm²,根据面积公式可知,A = πr²。
将圆的面积A替换为113.04cm²,π近似取3.14,得到113.04cm² = 3.14 * r²。
解这个方程可以得知半径r≈6cm。
根据定义可知,直径d = 2r = 2 * 6cm = 12cm。
所以,圆的直径为12cm。
周长的计算公式为C = 2πr。
圆专题练习题
圆专题练习题题目一:求圆的面积和周长已知一个圆的半径为r,求圆的面积和周长。
解析:圆的面积公式为:S = π * r^2圆的周长公式为:L = 2 * π * r题目二:已知圆的面积求半径已知一个圆的面积为S,求圆的半径r。
解析:根据圆的面积公式可得:r = √(S/π)题目三:已知圆心和一点求斜率已知圆心坐标为(a,b)和圆上的一点坐标为(c,d),求这两点连线的斜率。
解析:使用斜率公式可得:k = (d - b) / (c - a)题目四:已知两个圆的圆心坐标和半径,判断是否相交已知两个圆的圆心分别为(a,b)和(c,d),半径分别为r1和r2,判断两个圆是否相交。
解析:计算两个圆心之间的距离,如果圆心距离小于两个圆的半径之和,则两个圆相交;否则不相交。
题目五:已知一个圆和一条直线,求直线与圆的交点个数已知一个圆的圆心坐标为(a,b),半径为r,一条直线的方程为y = kx + n,求直线与圆的交点个数。
解析:将直线方程带入圆的方程,得到二次方程Ax^2 + Bx + C = 0,求二次方程的判别式D = B^2 - 4AC,根据判别式的结果判断交点个数。
1. D > 0,有两个交点;2. D = 0,有一个交点;3. D < 0,没有交点。
题目六:已知一个圆和一直线段,求线段与圆的切点坐标已知一个圆的圆心坐标为(a,b),半径为r,一条直线段的两个端点分别为(c1,d1)和(c2,d2),求直线段与圆的切点坐标。
解析:将直线段的两个端点分别带入圆的方程,得到两个二次方程。
解这两个二次方程可得到两个交点,即切点的坐标。
本文为圆专题练习题,通过解析了解了圆的面积和周长的计算方法,以及如何根据已知面积求圆的半径。
同时,探讨了已知圆心和一点求斜率,已知两个圆的圆心和半径判断是否相交,以及已知圆和直线求交点个数及切点坐标的方法。
通过这些练习题的训练,可以更好地理解和应用圆的相关概念和计算方法,提升数学运算能力。
2020-2021初四数学圆的有关计算综合练习题A(附答案详解)
2020-2021初四数学圆的有关计算综合练习题A(附答案详解)一.选择题(共10小题)1.从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长是()A.10B.C.D.2.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD 边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是()A.0.5B.0.7C.﹣1D.﹣13.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4C.1::2D.1:2:34.如图,用四根长为5cm的铁丝,首尾相接围成一个正方形(接点不固定),要将它的四边按图中的方式向外等距离移动acm,同时添加另外四根长为5cm的铁丝(虚线部分)得到一个新的正八边形,则a的值为()A.4cm B.5cm C.5cm D.cm5.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈6.已知扇形的圆心角为50°,半径长为5,则该扇形的弧长为()A.B.C.D.7.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则图中阴影部分的面积为()A.﹣4B.4﹣C.﹣8D.9﹣3π8.如图,在矩形ABCD中,AB=16,AD>AB,以A为圆心裁出一扇形ABE(E在AD上),将扇形ABE围成一个圆锥(AB和AE重合),则此圆锥的底面圆半径是()A.4B.8C.4D.169.一个圆锥的轴截面是一个边长为2cm的等边三角形,则它的侧面积是()A.4πB.2πC.πD.10.一个圆柱的高为10cm,底面积为25πcm2,这个圆柱的表面积为()A.250πcm2B.200πcm2C.150πcm2D.100πcm2二.填空题(共10小题)11.如图,正六边形ABCDEF的内切圆和外接圆半径之比为.12.边长为4的正六边形的边心距为.13.如图,正六边形ABCDEF外接圆的半径为4,则其内切圆的半径是.14.同圆的内接正三边形、正四边形、正六边形的边长之比为.15.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为cm16.如图,等腰Rt△ABC,AB=AC=12,以AC为直径的圆交BC于点D,则图中阴影部分的周长为.17.如图所示,AB是⊙O的直径,弦CD交AB于点E,若∠DCA=30°,AB=3,则阴影部分的面积为.18.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.19.将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为.20.一个圆柱的高缩小2 倍,底面半径扩大2 倍,表面积不变..(判断对错)三.解答题(共8小题)21.如图,已知正三角形ABC内接于⊙O,AD是⊙O的内接正十二边形的一条边长,连接CD,若CD=6cm,求⊙O的半径.22.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=s时,四边形PBQE为菱形;②当t=s时,四边形PBQE为矩形.23.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B 在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.25.利用所给图形探究:(1)如图1,圆的两弦AB,CD交于圆内一点P,若=30°,则∠APC =°;如图2,圆的两弦AB,CD交于圆内一点P,其他条件不变,则∠APC =°;(2)在(1)中,我们把图1和图2中直线AB、CD的夹角分别叫做圆内角和圆外角.若=n°,你能推导出圆内角和圆外角的计算公式吗?他们分别是:∠APC =°和∠APC=°;(3)图1中,若∠DPB=70°,=20°,请利用(2)中公式求和的度数,并写出求解过程.26.如图,AB为⊙O直径,OE⊥BC垂足为E,AB⊥CD垂足为F.(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.27.如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.28.课堂上,师生一起探究知,可以用已知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.答案详解:一.选择题(共10小题)1.从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长是()A.10B.C.D.【解答】解:∵圆内接正六边形的边长等于圆的半径,∴一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长为10,故选:A.2.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD 边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是()A.0.5B.0.7C.﹣1D.﹣1【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,当正方形和正六边形的边重合时,点B,M间的距离可能是1或﹣1,故选:D.3.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4C.1::2D.1:2:3【解答】解:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:3,所以内切圆半径,外接圆半径和高的比是1:2:3.故选:D.4.如图,用四根长为5cm的铁丝,首尾相接围成一个正方形(接点不固定),要将它的四边按图中的方式向外等距离移动acm,同时添加另外四根长为5cm的铁丝(虚线部分)得到一个新的正八边形,则a的值为()A.4cm B.5cm C.5cm D.cm【解答】解:如图,由题意可知:△ABC是等腰直角三角形,AB=5,AC=BC=a.则有:a2+a2=52,∴a=或﹣(舍弃)故选:D.5.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈【解答】解:如图,设圆的周长是C,则圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C,则这个圆共转了4C÷C=4圈.故选:A.6.已知扇形的圆心角为50°,半径长为5,则该扇形的弧长为()A.B.C.D.【解答】解:扇形的弧长==,故选:A.7.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则图中阴影部分的面积为()A.﹣4B.4﹣C.﹣8D.9﹣3π【解答】解:由折叠可知,S弓形AD=S弓形OD,DA=DO,∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°,∠DOB=30°,∵AD=OD=OA=4,∴CD=2,∴S弓形AD=S扇形ADO﹣S△ADO=﹣=,∴S弓形OD=,阴影部分的面积=S扇形BDO﹣S弓形OD=﹣()=4﹣,故选:B.8.如图,在矩形ABCD中,AB=16,AD>AB,以A为圆心裁出一扇形ABE(E在AD上),将扇形ABE围成一个圆锥(AB和AE重合),则此圆锥的底面圆半径是()A.4B.8C.4D.16【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=4.故小圆锥的底面半径为4;故选:A.9.一个圆锥的轴截面是一个边长为2cm的等边三角形,则它的侧面积是()A.4πB.2πC.πD.【解答】解:∵圆锥的轴截面是一个边长为2cm的等边三角形,∴底面半径=1cm,底面周长=2πcm,∴圆锥的侧面积=×2π×2=2π(cm2),故选:B.10.一个圆柱的高为10cm,底面积为25πcm2,这个圆柱的表面积为()A.250πcm2B.200πcm2C.150πcm2D.100πcm2【解答】解:设底面半径为r,由题意知:πr2=25π,解得:r=5cm,则圆柱的侧面面积=2×π×5×10=100πcm2,圆柱的全面积=25π×2+100π=150πcm2.故选:C.二.填空题(共10小题)11.如图,正六边形ABCDEF的内切圆和外接圆半径之比为.【解答】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是,因而正六边形的内切圆的半径与外接圆的半径之比为:2.故答案为:;12.边长为4的正六边形的边心距为2.【解答】解:正六边形每个中心角度数为360÷6=60°,根据每个中心角都分六边形为等边三角形,∵正六边形的边长为4,则每个等边三角形的高即边心距为:CO=BO•sin60°=2.故答案为:213.如图,正六边形ABCDEF外接圆的半径为4,则其内切圆的半径是2.【解答】解:作OG⊥AB于G,连接OA、OB,如图所示:则OG为正六边形内切圆的半径,则△OAB是等边三角形,∴OA=AB=4,∴AG=AB=2,∴OG===2,故答案为:2.14.同圆的内接正三边形、正四边形、正六边形的边长之比为::1.【解答】解:设圆的半径为r,如图①,∠AOB=×360°=120°,∵OA=OB,∴∠OAB=30°,过点O作OC⊥AB于点C,则AB=2AC,∵AC=OA•cos30°=r,∴AB=r;如图②,∠AOB=×360°=90°,∵OA=OB,∴AB=OA=r;如图③,∠AOB=×360°=60°,∵OA=OB,∴△OAB是等边三角形,∴AB=OA=r;∴同圆的内接正三边形、正四边形、正六边形的边长之比为:::1.故答案为:::1.15.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为30π+30cm【解答】解:由题意得,OC=AC=OA=15,的长==20π,的长==10π,∴扇面ABDC的周长=20π+10π+15+15=30π+30(cm),故答案为:30π+30.16.如图,等腰Rt△ABC,AB=AC=12,以AC为直径的圆交BC于点D,则图中阴影部分的周长为12+6+3π.【解答】解:∵AB=AC=12,∴BC=12,∵AC为直径,∴∠ADC=90°,∴AD=CD=AC=6,∴BD=BC﹣CD=12﹣6=6,取AC中点O,连接OD,则OD⊥AC,∴∠AOD=90°,AO=6弧AC长==3π图中阴影部分的周长为AB+BD+=12+6+3π故答案为12+6+3π.17.如图所示,AB是⊙O的直径,弦CD交AB于点E,若∠DCA=30°,AB=3,则阴影部分的面积为π﹣.【解答】解:作DN⊥AB,垂足为N,∵∠DCA=30°,∴∠AOD=2∠ACD=60°,∴∠BOD=120°,∵AB=2,∴OB=,∴S扇形BOD==π,在Rt△DON中,sin60°==,∴DN=,∴S△BOD=××=,∴S阴影=π﹣,故答案为π﹣.18.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=.故答案为.19.将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为1.【解答】解:设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得•2πr•4=4π,解得r=1,即圆锥的底面半径为1.故答案为1.20.一个圆柱的高缩小2 倍,底面半径扩大2 倍,表面积不变.错误.(判断对错)【解答】解:设原圆柱的高为h,底面半径为r,现在的圆柱的高为h,底面半径为2r,∴原表面积=2πr2•h,现在的表面积=2π•(2r)2h=4πr2h,∴表面积发生了变化,故答案为:错误.三.解答题(共8小题)21.如图,已知正三角形ABC内接于⊙O,AD是⊙O的内接正十二边形的一条边长,连接CD,若CD=6cm,求⊙O的半径.【解答】解:连接OA、OD、OC,如图所示:∵等边△ABC内接于⊙O,AD为内接正十二边形的一边,∴∠AOC=×360°=120°,∠AOD=×360°=30°,∴∠COD=∠AOC﹣∠BAD=90°,∵OC=OD,∴△OCD是等腰直角三角形,∴OC=OD=CD=×6=6,即⊙O的半径为6cm.22.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=2s时,四边形PBQE为菱形;②当t=0或4s时,四边形PBQE为矩形.【解答】(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当P A=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.23.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长AB=OA=a;正六边形的周长=6AB=6a;∵OM=OA•sin60°=a,正六边形的面积S=6××a×a=a2.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B 在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.【解答】解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.25.利用所给图形探究:(1)如图1,圆的两弦AB,CD交于圆内一点P,若=30°,则∠APC =75°;如图2,圆的两弦AB,CD交于圆内一点P,其他条件不变,则∠APC=45°;(2)在(1)中,我们把图1和图2中直线AB、CD的夹角分别叫做圆内角和圆外角.若=n°,你能推导出圆内角和圆外角的计算公式吗?他们分别是:∠APC=(m+n)°和∠APC=(m﹣n)°;(3)图1中,若∠DPB=70°,=20°,请利用(2)中公式求和的度数,并写出求解过程.【解答】解:(1)连接BC,=30°,∵∠A的度数等于的度数的一半,∠C的度数等于的度数的一半,∴∠ABC=60°,∠BCD=15°,如图1,∠APC=∠ABC+∠BCD=60°+15°=75°,如图2,∠APC=∠ABC﹣∠BCD=60°﹣15°=45°,故答案为75,45;(2)如图1,连接BC,∵=n°,∴∠ABC=m°,∠BCD=°,∴∠APC=∠ABC+∠BCD=(m+n)°,如图2,连接BC,∵=n°,∴∠ABC=m°,∠BCD=°,∴∠APC=∠ABC﹣∠BCD=(m﹣n)°,故答案为:(m+n),(m﹣n);(3)根据上面所求可知:∠DPB=(+)=70°∴+=140°∵=20°解得=80°,=60°.26.如图,AB为⊙O直径,OE⊥BC垂足为E,AB⊥CD垂足为F.(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.【解答】解:(1)证明:连接AC,∵AB⊥CD,∴,∴AC=AD,∵OE⊥BC,∴E为BC的中点,∵O为AB的中点,∴OE为△ABC的中位线,∴OE=AC,∴OE=AD,即AD=2OE;(2)S半圆=π•OB2==2π,∵AB为⊙O直径,∴∠ACB=90°,∵∠ABC=30°,AB=4,∴AC=AB=,BC=,S△ABC=AC•BC==2,∵AB⊥CD,∴拱形AD的面积=弓形AC的面积,∴S阴影=S半圆﹣S△ABC=2π﹣2.27.如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.【解答】解:(1)圆锥的高=,底面圆的周长等于:2π×2=,解得:n=120°;(2)连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD═3,AC=2AD=6,即这根绳子的最短长度是6.28.课堂上,师生一起探究知,可以用已知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.【解答】解:连OD.∵EG=20﹣12=8,∴OG=8﹣5=3,∴GD=4,∴AD=2GD=8cm.答:保温杯的内径为8cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初四与圆有关的计算题练习
1、小红要过生日了, 为了筹备生日聚会,准备自己动手用纸板制作圆锥形的生日礼帽,如下图,圆锥帽底面半径为9cm ,母线长为36cm ,请你帮助他们计算制作一个这样的生日礼貌需要纸板的面积为( )
(A )648πcm 2 (B )432πcm 2 (C )324πcm 2 (D )216πcm 2
2、一个扇形,半径为30cm ,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .
3、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )
A.100cm
B.
C.10cm
D.
4、若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是 ( )
(A )120° (B )135° (C )150° (D )180°
5、如图已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )
A.4π cm 2
B.6π cm 2
C.9π cm 2
D.12π cm 2
6、如下图,如果从半径为9cm 的圆形纸片剪去 圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A. B. C. D.
7、如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为______; 用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=______.
8、如下图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为 .
9、如下图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从点A 出发绕侧面一周,再回到点A 的最短的路线长是( )
(A) 36 (B) 2
33 (C) 33 (D) 3 10.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =32BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )
A .(4+π6) cm
B .5 cm
C .3 cm
D .7 cm
1:两个同心圆被两条半径截得的,,又AC=12,求阴影部分面积。
2:蒙古包可以近似地看作圆锥和圆柱组成,如果想用毛毡搭建20个底面积为,高为3.5m,外围高4m的蒙古包,至少要多少平方米的毛毡?
3.小刚用一张半径为24 cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10 cm,那么这张扇形纸板的面积是()
A.120π cm2B.240π cm2
C.260π cm2D.480π cm2
4.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()
A.3π B.6π C.5π D.4π
5.如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20.分别以DM、CM为直径作两个大小不同的⊙O1和⊙O2,则图中所示的阴影部分面积为___________.(结果保留π)
6.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形AB C.那
么剪下的扇形ABC(阴影部分)的面积为______;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=______.
7,如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.
(1)求OE和CD的长;
(2)求图中阴影部分的面积.。