第六周周考(八年级数学)
北师大版八年级数学下册第六章学情评估 附答案 (3)
北师大版八年级数学下册第六章学情评估一、选择题(共8小题,每小题3分,计24分)1.正十九边形的外角和为( )A.180°B.360°C.720°D.1 260°2.关于平行四边形,下列说法正确的是( )A.既是轴对称图形,又是中心对称图形B.是轴对称图形,但不是中心对称图形C.不是轴对称图形,但是中心对称图形D.不是轴对称图形,也不是中心对称图形3.在▱ABCD中,下列结论一定正确的是( )A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C4.如图,在平面直角坐标系中,A(1,0),B(-1,3),C(-2,-1),找一点D,使得以点A,B,C,D为顶点的四边形是平行四边形,则点D的坐标不可能是以下( )A.(2,4) B.(-4,2)C.(0,-4) D.(-3,2)(第4题) (第5题) (第6题) (第7题) 5.如图,E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( )A.5 B.7C.10 D.146.如图,在▱ABCD中,AC⊥AB,∠ABD=30°,AC与BD交于点O,AO=1,则BC 的长为( )A.7B. 5 C.3 D.2 27.如图,以正五边形ABCDE的边CD为边作正方形CDFH,使点F,H在其内部,连接FE,则∠DFE等于( )A.60°B.81°C.78°D.80°8.如图,在边长为12的等边三角形ABC中,D为边BC上一点,且BD=12CD,过点D作DE⊥AB于点E,F为边AC上一点,连接EF,DF,M,N分别为EF,DF 的中点,连接MN,则MN的长为( )A. 3 B.2C.2 3 D.4(第8题) (第9题) (第10题)二、填空题(共5小题,每小题3分,计15分)9.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形,AB与CD的大小关系为________.10.如图,在▱ABCD中,AC,BD相交于点O,AB=10 cm,AD=8 cm,AC⊥BC,则OB=________ cm.11.一个正多边形的外角为72°,则过该正多边形一个顶点的对角线有________条.12.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为 ________.(第12题) (第13题)13.一机器人以0.5 m/s的速度在平地上按如图所示的要求行走,则该机器人从开始到停止所需时间为________s.三、解答题(共13小题,计81分)14.(5分)一个多边形的外角和是它的内角和的29,求这个多边形的边数和内角和.15.(5分)如图,已知在平行四边形ABCD中,E,F是对角线BD上的两点,且BE =DF.求证:四边形AECF为平行四边形.(第15题)16.(5分)如图,在平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为点E,F.求证:AE=CF.(第16题)17.(5分)如图,在△ABC中,AB=AC,D,E分别是边AB,AC上的点,连接BE,DE,∠ADE=∠AED,F,G,H分别为BE,DE,BC的中点.求证:FG=FH.(第17题)18.(5分)如图,E,F是四边形ABCD的对角线BD上的两点,且DC∥AB,DC=AB,DE=FB.求证:∠ECF=∠FAE.(第18题)19.(5分)如图,在四边形ABCD中,AD=BC,连接BD,E是BC延长线上一点,连接DE,且BD=DE,∠E=∠ADB,求证:∠A=∠BCD.(第19题)20.(5分)如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=FC,连接AF,BD.(1)求证:△ABC≌△DFE;(2)求证:四边形ABDF是平行四边形.(第20题)21.(6分)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD 上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.(第21题) 22.(7分)如图,在平行四边形ABCD中,F是AD的中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE;(2)若BC=2AE,∠E=31°,求∠DAB的度数.(第22题)23.(7分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD 及等边三角形ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:AC=EF;(2)求证:四边形ADFE是平行四边形.(第23题)24.(8分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为多少?(第24题)25.(8分)如图,已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)求证:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.(第25题)26.(10分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC 交直线AB于点F,DE∥AB交直线AC于点E.(1)[问题证明]当点D在边BC上时,如图①,求证:DE+DF=AC.(2)[类比探究]当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)[解决问题]若AC=6,DE=4,则DF=________.(第26题)答案一、1.B 2.C 3.B 4.D 5.D 6.A 7.B8.A 提示:∵BC=12,BD=12 CD,∴BD=4.∵△ABC为等边三角形,∴∠B=60°.∵DE⊥AB,∴∠DEB=90°,∴∠BDE=30°,∴BE=12BD=2,由勾股定理得DE=BD2-BE2=42-22=2 3. ∵M,N分别为EF,DF的中点,∴MN=12DE= 3.二、9.AB=CD10.73 11.2 12.25°13.144三、14.解:设这个多边形是n边形,由题意得29×180°(n-2)=360°,解得n=11.(11-2)×180°=1 620°.∴这个多边形的边数是11,其内角和为1 620°. 15.证明:连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F是对角线BD上的两点,且BE=DF,∴OB-BE=OD-DF,即OE=OF,∴四边形AECF是平行四边形.16.证明:∵四边形ABCD是平行四边形,∴AD =BC ,AD ∥BC ,∴∠DAE =∠BCF .∵DE ⊥AC ,BF ⊥AC ,∴∠DEA =∠BFC =90°,在△DEA 与△BFC 中,⎩⎨⎧∠DEA =∠BFC ,∠DAE =∠BCF ,AD =CB ,∴△DEA ≌△BFC (AAS),∴AE =CF .17.证明:∵∠ADE =∠AED ,∴AD =AE .∵AB =AC ,∴AB -AD =AC -AE ,即BD =CE .∵F ,G ,H 分别为BE ,DE ,BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE , ∴FG =FH .18.证明:连接AC 交BD 于O ,如图所示.∵DC ∥AB ,DC =AB ,(第18题)∴四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =FB ,又∵OA =OC ,∴四边形AFCE 是平行四边形,∴∠ECF =∠FAE .19.解:∵BD =DE ,∴∠E =∠DBE .∵∠E =∠ADB ,∴∠DBE =∠ADB ,∴AD ∥BC .又∵AD =BC ,∴四边形ABCD 是平行四边形,∴∠A =∠BCD .20.证明:(1)∵BE =FC ,∴BE +EC =FC +EC ,∴BC =FE .在△ABC 和△DFE 中,⎩⎨⎧AB =DF ,BC =FE ,AC =DE ,∴△ABC ≌△DFE (SSS).(2)由(1)得,△ABC ≌△DFE ,∴∠ABC =∠DFE ,∴AB ∥DF .又∵AB =DF ,∴四边形ABDF 是平行四边形.21.(1)证明:在△AOE 和△COD 中,⎩⎨⎧∠EAO =∠DCO ,AO =CO ,∠AOE =∠COD ,∴△AOE ≌△COD (ASA),又∵AO=CO,∴四边形AECD是平行四边形.(2)解:∵AB=BC,AO=CO,∴OB⊥AC.∴∠COD=90°.∵AC=8,∴CO=12AC=4.在Rt△COD中,由勾股定理,得OD=CD2-CO2=52-42=3,∴DE=2OD=6,∴S四边形AECD=12AC×DE=12×8×6=24.22.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,∴∠E=∠DCF.∵F是AD的中点,∴AF=DF.∵∠EFA=∠CFD,∴△AFE≌△DFC,∴AE=CD,∴AB=AE.(2)解:∵四边形ABCD是平行四边形,∴AD=BC.∵F是AD的中点,∴AF=DF=12AD,∴AF=12BC.∵BC=2AE,∴AE=AF.∵∠E=31°,∴∠AFE =∠E =31°,∴∠DAB =∠AFE +∠E =62°.23.证明:(1)∵Rt △ABC 中,∠BAC =30°,∴AB =2BC ,又∵△ABE 是等边三角形,EF ⊥AB ,∴AB =2AF .∴AF =BC ,在Rt △AFE 和Rt △BCA 中,⎩⎨⎧AF =BC ,AE =BA ,∴Rt △AFE ≌Rt △BCA (HL),∴AC =EF .(2)∵△ACD 是等边三角形,∴∠DAC =60°,AC =AD ,∴∠DAB =∠DAC +∠BAC =90°.又∵EF ⊥AB ,∴∠EFA =90°.∴EF ∥AD .∵AC =EF ,AC =AD ,∴EF =AD ,∴四边形ADFE 是平行四边形.24.解:连接EF ,设AE 与BF 交于点O ,∵AB =AF ,AO 平分∠BAD ,∴∠BAE =∠DAE ,AO ⊥BF ,BO =FO =12BF =3. ∵四边形ABCD 为平行四边形,∴AF ∥BE ,∴∠DAE =∠BEA ,∴∠BAE =∠BEA ,∴AB =EB ,而BO ⊥AE ,∴AO =OE ,在Rt △AOB 中,AO =AB 2-OB 2=52-32=4, ∴AE =2AO =8.25.(1)证明:∵BD 垂直平分AC ,∴AB =BC ,AD =DC .在△ADB 与△CDB 中,⎩⎨⎧AB =BC ,AD =DC ,DB =DB ,∴△ADB ≌△CDB (SSS),∴∠BCD =∠BAD .∵∠BCD =∠ADF ,∴∠BAD =∠ADF ,∴AB ∥FD .∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形.(2)解:∵四边形ABDF 是平行四边形,AF =DF =5, ∴AB =BD =5.设BE =x ,则DE =5-x ,∵BD ⊥AC ,∴∠AEB =∠AED =90°,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2,解得x =75, ∴AE =AB 2-BE 2=245, ∴AC =2AE =485. 26.(1)证明:∵DF ∥AC ,DE ∥AB ,∴四边形AFDE是平行四边形.∴AF=DE.∵DF∥AC,∴∠FDB=∠C.又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B,∴DF=BF,∴DE+DF=AB=AC.(2)解:图②中:AC+DE=DF.图③中:AC+DF=DE.(3)解:2或10。
2022年八年级数学上册第六章数据的分析测试卷3新版北师大版
第六章数据的分析测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题10.一组数据2、﹣2、4、1、0的中位数是.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.三、解答题15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.答案1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【考点】极差;算术平均数;中位数;众数.【专题】选择题.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为:=9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【专题】选择题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【考点】算术平均数;众数.【专题】选择题.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】选择题.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【考点】平均数、中位数和众数的比较.【专题】选择题.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.5【考点】方差;众数.【专题】选择题.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故选A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,3【考点】方差;算术平均数.【专题】选择题.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′=[(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]=[3×(x1+x2+ (x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9×[(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】选择题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数:=(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【考点】极差;加权平均数;中位数;众数.【专题】选择题.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.10.一组数据2、﹣2、4、1、0的中位数是.【考点】中位数.【专题】填空题.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.【考点】算术平均数.【专题】填空题.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.【考点】众数;中位数.【专题】填空题.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.【考点】中位数;算术平均数.【专题】填空题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.【考点】方差;算术平均数.【专题】填空题.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2=[(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 (把你认为正确结论的序号都填上). 【考点】方差;算术平均数;中位数. 【专题】填空题.【分析】平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.【解答】解:①由表中可知,平均字数都是135,正确;②甲班的中位数是149,过半的人数低于150,乙班的中位数是151,过半的人数大于等于151,说明乙的优秀人数多于甲班的,正确;③甲班的方差大于乙班的,又说明甲班的波动情况大,所以也正确. 故填①②③.【点评】本题考查了平均数、中位数和方差的意义.对统计中的概念理解是学好统计的关键,这道题把统计初步知识的考查与现代社会生活联系起来,避免了对该部分知识的抽象考查和脱离实际的弊病.16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示: 请决出两人的名次.【考点】加权平均数.【专题】解答题.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】解答题.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组【考点】折线统计图;算术平均数;中位数;方差.【专题】解答题.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】解答题.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【专题】解答题.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)。
北师大八年级数学上册第6周周末练习题含答案
八年级数学上册第6周练习卷组卷人: 家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题 (共10小题,答案写在表格内)AB .CD .2.下列各数中,比2大比3小的无理数是( * )A B C .52D .π3.在下列各组数中,互为相反数的是( * )A .3-B .|3|-与13-C .|与D .34.下列二次根式中,最简二次根式是( * )A B C D51的值( * )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间6.下列说法,正确的有( * )①一个数的平方根等于它本身,这个数是0或1; ②实数包括无理数和有理数;③2 ④无理数就是带根号的数; ⑤2±是8的立方根;1=. A .1个B .2个C .3个D .4个7.下列计算正确的是( * ) A+= B .3CD .2=8.若a ,b 分别是65-的整数部分和小数部分,则23a b -的值为( * ) A .565-+ B .935- C .535-+D .965-+9.如图,在数轴上A 点所对应的数为2.BA OA ⊥,1AB =,以O 为圆心,OB 为 半径的圆弧交数轴于点C ,则点C 在数轴上所对应的数是( * )A .3B .5C .7D .310.如图作图所示,点A 所表示的数为x ,则(x = * )A .1B .1-C .2D .2-二.填空题(共7小题) 11.在实数227,5,3.14159,π-,38,4中,无理数 个.12.比较大小:19 4.13.的平方根是 ,﹣64的立方根是 .14.若a ,b 为实数,且满足|4|10a b ++-=.则a b +的值为 .15.设6的整数部分为m ,17的整数部分为n ,则m n += .16.如图,数轴上点A 表示的数是1,在点A 的位置上以单位长度为边长画一个正方形,以A 为圆心,正方形的对角线为半径画弧,与数轴交点为B ,则点B 表示的数是 .17.将边长分别为1和2的长方形如图剪开,拼成一个与长方形的面积相等的正方形,则该正方形的边长最接近整数 .三.解答题18.把下列各数分别填入相应的横线上(填序号):①45+,②0,③0.2121121112-⋯,④72-,⑤ 4.9-,⑥π,⑦13,⑧56-.正数集合: ;负数集合: ;有理数集合: ;无理数集合: .19.计算:03|3720227-+.20.已知a 的平方根为3±,a b -的算术平方根为2. (1)求a ,b 的值; (2)求2a b +的平方根.21.观察以下等式:观察下列等式:第11=,2第2,第3=,⋯按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:用含n的式子表示,并证明这个结论?22.阅读下列材料,然后回答问题.=;(1(2.八年级数学上册第6周练习卷参考答案一. 选择题 (每小题3分,共10小题) 题号 1 2 3 4 5 6 7 8 9 10 答案ABCBDBCABD二.填空题(每小题4分,共7小题) 11. 2 12. > 13. ,﹣4 14. -315. 6 16. 12 17. 1三.解答题18. 解:①⑥⑦; ③④⑤⑧; ①②④⑤⑦⑧; ③⑥.19. 解:原式331231=.20. 解:(1)a 的平方根为3±,a b -的算术平方根为2.9a ∴=,4a b -=,即9a =,5b =;(2)当9a =,5b =时,219a b ±+=±答:2a b +的平方根为1921. 解:(1)写出第6211677-=; 6; (2)写出你猜想的第n 2111(1)n n n -=++, 证明:左边2211(1)(1)n n n +=-++211(1)n n +-=+n ==右边,∴=.22. 解:(1==(2=+...1=+(22...21=2=.。
八年级数学上第六周周测试
八年级周测试(第六周)一、选择题(共5题,每小题2分共10分)1、1、一元一次方程2x=12的解是( ) A 、 61=x B 、41=x C 6=x D 、4=x 2.解为2的一元一次方程为( )A 、1121=-x B 、24=-xC 、3121=+xD 、124+=x x3、已知线段a=3,b=6,如果线段c 与线段a 、b 组成一个三角形,则线段c 的长可以是( )A 、12B 、3C 、9D 、8 4、下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等5、教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是( )A .两点之间线段最短B .三角形的稳定性C .两点确定一条直线D .垂线段最短二、填空题(共2小题,每小题5分共10分)833=+y x x x --≥-23148->+x x 43=-y x 6、请写出一个解为x=31的一元一次程 .7、一个多边形的每一个内角都等于170°,则这个多边形 是 边形.三、解答题80分8、(a-1)x2+ax+1=0是关于x 的一元一次方程,求这个方程的解(10分)解方程9、1022=-x (10分)10、 (15分)解不等式组11、 (20分)12、如图AB=DF ,AC=DE ,BF=CE ,你能找到一对全等的三角形吗?说明你的理由.(13分)3221=+y x 1331=+y x13、填表(12分) 多边形的边数34 5 6 7n 内角和外角和附加题:1151463=+--x x。
初二数学八年级上册《第六章 数据的分析周周测3(全章)》练习题
第六章数据的分析周周测3一、单选题1.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.82.已知一组数据从小到大依次为-1,0,4,x,6,15,中位数为5,则其众数为 ( )A.4 B.5 C.5.5 D.63.有四个数:84,76,X,90,它们的平均数为80,则X为()A.70 B.71 C.72 D.734.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.35.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.26.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长率分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是( )A.方差B.平均数C.众数D.中位数8.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.众数C.中位数D.方差9.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分10.某市举行中学生“好书伴我成长”演讲比赛,某同学将所有选手的得分情况进行统计,绘成如图所示的成绩统计图.思考下列四个结论:①比赛成绩的众数为6分;②成绩的极差是5分;③比赛成绩的中位数是7.5分;④共有25名学生参加了比赛,其中正确的判断共有()A.1个B.2个C.3个D.4个二、填空题11.李刚同学的四次数学测试成绩分别是80分、76分、90分、84分,如果按照1:2:4:1的权重对这四次成绩进行综合评价,李刚同学的综合得分是_____分.12.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S甲2=36,S乙2=158,则小麦长势比较整齐的试验田是________.13.甲、乙两同学近期4次数学单元测试成绩的平均分相同,甲同学成绩的方差,乙同学成绩的方差,则他们的数学测试成绩谁较稳定____________________(填甲或乙).____________.三、解答题17.我市某中学举行“中国梦——校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是____;(2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?。
最新北师版八年级初二数学上册第六章数据的分析周周测2(6.36.4)
第六章数据的分析周周测2一.选择题1.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的A. 方差B. 众数C. 平均数D. 中位数2.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示:型号22 23 24 25数量双 2 6 11 15 7 3 4经理最关心的是,哪种型号的鞋销量最大对他来说,下列统计量中最重要的是A. 平均数B. 众数C. 中位数D. 方差3.期中考试后,两位同学讨论他们所在小组的数学成绩,小明说:“我们组7位同学中,有4人的成绩是86分”,小亮说:“我们组7位同学中,第4名的成绩是86分”,上面两位同学所说的“86分”反映的统计量分别是A. 众数和中位数B. 众数与平均数C. 众数和方差D. 平均数与中位数4.下列说法中错误的是A. 一组数据的平均数、众数和中位数可能是同一个数B. 一组数据的众数可能有多个C. 数据中的中位数可能不唯一D. 众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的5.小张参加招考公务员考试,本次参加招考的总人数是1600名,规定:按考试成绩从高到低排列,前800名通过笔试,小张想知道自己是否通过笔试,他最应该了解的考试成绩统计量是A. 平均数B. 中位数C. 众数D. 标准差6.下列做法错误的是A. 小丽近6个月的手机话费单位:元分别为:,这组数据的中位数是25B. 服装店老板最关心的是卖出服装的众数C. 要了解全市初中毕业班近4万名学生2015年中考数学成绩情况,适宜采用全面调查D. 条形统计图能够显示每组中的具体数据,易于比较数据之间的差别7.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占,期末考试成绩占,小宝这个学期的期中、期末体育成绩百分制分别是80分、90分,则小宝这个学期的体育成绩综合成绩是A. 80分B. 84分C. 86分D. 90分8.学期的五次数学单元练习中,甲、乙两位同学的平均成绩一样,方差分别为,由此可知A. 甲比乙的成绩稳定B. 甲乙两人的成绩一样稳定C. 乙比甲的成绩稳定D. 无法确定谁的成绩更稳定9.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是秒,方差如下表所示选手甲乙丙丁方差则这四人中发挥最稳定的是A. 甲B. 乙C. 丙D. 丁10.在5次数学单元测试中,甲、乙、丙、丁四名同学成绩的平均分均为分,方差分别为,则这四名同学中成绩最稳定的是A. 甲B. 乙C. 丙D. 丁11.数学老师对黄华的8次单元考试成绩进行统计分析,要判断黄华的数学成绩是否稳定,老师需要知道黄华这8次数学成绩的A. 平均数B. 中位数C. 众数D. 方差12.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分方差最高分如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选A. 丁B. 丙C. 乙D. 甲13.在方差的计算公式中,数字10和20分别表示的意义可以是A. 数据的个数和方差B. 平均数和数据的个数C. 数据的个数和平均数D. 数据组的方差和平均数二.填空题14.从10000名初三学生中,随机地抽取100名学生,测得他们所穿鞋的鞋号(单位:公分),则这个样本数据的平均数、中位数、众数、方差四个指标中,鞋厂最感兴趣的指标是众数15.一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为 .16.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是 .17.甲乙两位士兵射击训练,两人各射靶5次,命中的环数如下表:甲射靶的环数7 8 6 8 6乙射靶的环数9 5 6 7 8那么射击成绩较稳定的是 .18.在一次数学单元测试中,A、B两个学习小组成员的成绩如图所示,则在这次测试中,这两个小组的数学成绩较为稳定的一组是(填“A组”、“B组”或“一样”) .三.解答题19.某校把体育成绩、德育成绩、学习成绩三项,分别按1:3:6的比例计入综合成绩,综合成绩最高者得一等奖,已知小明、小亮两位同学入围测评,他们的成绩如表通过计算他们的综合成绩,判断两人谁能拿到一等奖?体育成绩德育成绩学习成绩小明95 94 91小亮90 91 9320.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上含为优秀表是成绩最好的甲班和乙班5名学生的比赛数据单位:个:1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 95 110 91 104 500经统计发现两班总数相等此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:计算两班的优秀率.计算两班比赛数据的方差.根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.21.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表单位:环:第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8根据表格中的数据,分别计算甲、乙的平均成绩;已知甲六次成绩的方差,试计算乙六次测试成绩的方差;根据、计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.22.学校准备推荐一位选手参加知识竞赛,对甲、乙两位选手进行四项测试,他们各自的成绩百分制如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83学校将表达能力、阅读理解、综合素质和汉字听写分别以、、、记入个人最后成绩,并根据成绩择优推荐,请你通过计算说明谁将被推荐参加比赛?23.县教育局为了了解我县中小学校实施素质教育的情况,抽查了某校七年级甲、乙两个班的部分学生,了解他们在一周内周一到周五参加课外活动的次数情况,抽查结果如图所示,请根据有关信息回答下列问题:在这次抽查中,甲班被抽查了多少人?乙班被抽查了多少人?在被抽查的学生中,甲班学生参加课外活动的平均次数是多少?乙班学生参加课外活动的平均次数是多少?根据以上信息,用你学过的知识,估计甲、乙两班在开展课外活动方面,哪个班更好一些?从图中你还能得到哪些信息?为了传承优秀传统文化,我县团委组织了一次全县有3000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩成绩x取整数,总分100分作为样本进行整理,得到下列不完整的统计图表:成绩分频数频率103040 nm50请根据所给信息,解答下列问题:______ , ______ ;请补全频数分布直方图;这次比赛成绩的中位数会落在______ 分数段;若成绩在90分以上包括90分的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?补充完面的统计分析表某校要从九年级一班和班选取10名女同学成仪队,选取两班生的身高如下:单米一班:168空格空170 空空6空66 171 格空6 170 班级平均数方差中位数极差一班168 168 6二班168请选一合适的计量作为选择标准,说明哪一个班能.学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
八年级数学下学期第六周周练试题试题2
宁化城东中学2021-2021学年八年级数学下学期第六周周练试题班级 姓名 座号 成绩 一.选择题〔每一小题3分,一共30分〕1.以下图形中,既是轴对称图形,又是中心对称图形的是〔 〕A .B .C .D .2.以下各式从左到右的变形中,是因式分解的为( )A. bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+-C. )1)(1(12-+=-x x x D.c b a x c bx ax ++=++)(3.假设a >b ,那么以下不等式变形错误的选项是〔 〕 A . a+1>b+1B .C . 3a ﹣4>3b ﹣4D . 4﹣3a >4﹣3b4.一次函数y=x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的选项是〔 〕A .B .C .D .5.以下因式分解正确的选项是〔 〕A 、()ay ax y x a +=+B 、()()t t t t t 3441632+-+=-+C 、()()2242-+=-m m m D 、()()1122+-+=+-b a b a b a6.如图,AB∥CD,点E 在BC 上,且CD=CE ,∠D=74°,那么∠B 的度数为〔 〕 A . 68° B . 32° C . 22° D . 16°7.如图,将Rt △ABC 〔其中∠B=35°,∠C=90°〕绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于〔 〕 A . 55° B . 70°C . 125°D . 145°8.如图,含30°角的直角三角尺DEF 放置在△ABC 上,30°角的顶点D 在边AB 上,DE⊥AB.假设∠B 为锐角,BC∥DF,那么∠B 的大小为〔 〕A . 30°B . 45°C . 60°D . 75°9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .假设△ADC 的第6题 第7题第8题第10题周长为10,AB=7,那么△ABC 的周长为〔 〕A . 7 B . 14 C .17 D . 2010.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,那么△EDF 的面积为〔 〕A .11 C .7二.填空题〔每一小题3分,一共18分〕 11.分解因式:29xyx -=____________.12、 命题“等边三角形的三个内角相等〞的逆命题是 13.图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD⊥CD,∠ADB=∠C.假设P 是BC 边上一动点,那么DP 长的最小值为 _________ . 14.如图,将等边△ABC 沿BC 方向平移得到△A 1B 1C 1.假设BC=3,,那么BB 1= _________ .第16题15.2100x -y kxy 49+是完全平方式,那么K= 。
最新八年级数学第六章数据的分析单元测试题及答案
最新八年级数学第六章数据的分析单元测试题及答案一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是( )A. 90分B. 91分C. 92分D. 93分2.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是( )星期一二三四五六日收入(点)15212727213021A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点3.若样本x1,x2,x3,⋯,x n的平均数为10,方差为4,则对于样本x1−3,x2−3,x3−3,⋯,x n−3,下列结论正确的是( )A. 平均数为10,方差为2B. 众数不变,方差为4C. 平均数为7,方差为2D. 中位数变小,方差不变4.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确( )A. 中位数是95分B. 众数是90分C. 平均数是95分D. 方差是155.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是( )A. 平均数B. 方差C. 中位数D. 众数6.计算一组数据方差的算式为s2=1×[(x1−10)2+(x2−10)2+⋯+(x5−10)2],则下列信息中,不5正确的是( )A. 这组数据中有5个数据B. 这组数据的平均数是10C. 计算出的方差是一个非负数D. 当x1增加时,方差的值一定随之增加7.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )参加人数平均数中位数方差甲459493 5.3乙459495 4.8A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多8.某校八(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是.( )A.20元、20元B. 30元、20元C. 20元、30元D. 30元、30元9.某电脑公司销售部为了制定下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售员本月销售量的平均数、中位数、众数分别是( )A. 19台、20台、14台B. 19台、20台、20台C.18.4台、20台、20台 D. 18.4台、25台、20台10.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,根据统计图提供的信息,下列推断正确的是( )A.该班学生共有44人B. 该班学生一周锻炼12小时的有9人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼时间的中位数是11二、填空题(本大题共5小题,共15.0分)11.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.12.一组数据1,2,a的平均数为2,另一组数据−2,a,2,1,b的众数为−2,则数据−2,a,2,1,b的中位数为.13.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(用“>”连接)14. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是 .15. 在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为______.三、解答题(本大题共10小题,共75.0分。
八年级(上)数学周练试卷
八年级(上)数学周练试卷20200923一、单选题(每题3分,共24分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难八方支援,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是( )A .B .C .D .2.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC =(第2题图) (第3题图) (第4题图) (第5题图) (第6题图)3.如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使BC=CD ,再作出 BF 的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图),可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得 DE 的长就是 AB 的长,判定△ABC ≌△EDC ,最恰当的理由是 ( )A .SASB .SSAC .SSSD .ASA4.如图,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( )A .25°B .27°C .30°D .45°5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于点D ,如果AC=3cm ,那么AE+DE等于( )A .2cmB .3cmC .4cmD .5cm6.如图,△ABC 中AB 的垂直平分线交AC 于D ,若AC=5cm ,BC=4cm ,那么△DBC 的周长是( )A .6 cmB .7 cmC .8 cmD .9 cm7.如图,AB //CD ,且AB =CD ,AC 交DB 于点O ,过点O 的直线EF 分别交AB 、CD 与点E 、F ,则图中全等的三角形有( )A .6对B .5对C .4对D .3对(第7题图) (第8题图)(第7题图)(第8题图)(第12题图)(第13题图)(第14题图)8.如图,在△ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG 的中线;④∠EAM=∠ABC.其中正确结论的个数是()A.4B. 3C. 2D. 1二、填空题(每题3分,共30分)9.线段的对称轴有条.10.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有个.11.在镜中看到的一串数字是“”,则这串数字是.12.如图,△ABC≌△DCB,∠D=70°,∠ACB=45°,则∠ABD=.(第15题图)(第16题图)(第17题图)(第18题图)13.如图,△ABC≌△DEF,BC=5cm,BF=7cm,则EC长为.14.如图,已知AB=AC,AD=AE,∠BAC=∠DAE,∠1=21°,∠2=30°,∠3=.15.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5cm,则△PMN的周长为______________.16.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.17.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为9,则DE的长为.18.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为.三.解答题(共8小题,共66分)19.(6分)如图,已知AB=AE,AC=AD,∠BAD=∠EAC.求证:∠B=∠E.20.(9分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(3分)(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短.(3分)(3)求△A′B′C′的面积.(3分)21. (8分)如图,点A、E、B、D 在同一条直线上,在△ABC 和△DEF 中,BC = EF,AC∥DF,CB∥FE.(1)求证:△ABC≌△DEF .(3分)(2)连接A F、DC.线段A F、DC 的关系是,请说明理由.(2+3分)22.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE =BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.23.(9分)如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA、OB上分别截取OC、OD,并且使OC=OD,连接CD,过点O作OP⊥CD,垂足为P;(3分)(2)根据(1)的作图,试说明∠AOP=∠BOP;(3分)(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹).(3分)24.(6分)如图,已知A,E,F,C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB//CD.求证:EG=FG.25.(8分)如图,已知AD//BC, ∠1=∠2,∠3=∠4,点E 在DC 上,求证:AD+BC=AB26.(12分)(1)问题背景:如图1:在四边形ABC 中,AB =AD ,∠BAD =120∘,∠B =∠ADC =90∘.E ,F 分别是BC ,CD 上的点。
八年级上学期数学周清试卷(一次函数)
2017-2018学年上学期八年级第六周周清试卷命题人:翁广虹 班级______ 姓名________ 学号______ 分数_______一、选择题(每题3分,共21分)1.下面哪个点在函数y=12x+1的图象上( )A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)2.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-14.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-35、点A (1x ,1y )、B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:()A 、12y y >B 、12y y < C 、12y y = D 、无法确定. 6.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四7.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3二、填空题(每空2分,共20分)8.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________9.下列函数中,__________是一次函数.__________是正比例函数 .(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 210.有下列函数:①y =6x-5;②y =5x ;③y =x +4;④y =-4x +5。
浙江金华市义乌市七校联考2024-2025学年八年级上学期10月月考数学试题(解析版)
八年级数学第六周校本作业2024.10温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.)1. 下列图案是轴对称图形的为( )A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对个图形分析判断即可得解.【详解】解:A、此图形是轴对称图形,符合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,不合题意;D、此图形不是轴对称图形,不合题意;故选A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A. 100°B. 80°C. 60°D. 40°【答案】B【解析】【详解】由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.3. 下列长度的各组线段能组成一个三角形的是()A. 1cm,2cm,3cmB. 3cm,8cm,5cmC. 4cm,5cm,10cmD. 4cm,5cm,6cm【答案】D【解析】【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】A .1cm+2cm=3cm ,不符合题意;B .3cm+5cm=8cm ,不符合题意;C .4cm+5cm=9cm 10cm <,不符合题意;D .4cm+5cm=9cm 6cm >,符合题意,故选D .【点睛】本题考查了是否构成三角形,熟练掌握三角形两边之和大于第三边是解题的关键.4. 下列命题中,假命题是( )A. 等腰三角形是轴对称图形B. 对顶角相等C. 若22a b =,则a b =D. 如果直线a c ,b c ,那么直线a b【答案】C【解析】【分析】根据等腰三角形的性质可判断A ,根据对顶角的性质可判断B ,根据乘方的意义可判断C ,根据平行线的性质可判断D .【详解】解:A .等腰三角形是轴对称图形,是真命题,不符合题意;B .对顶角相等,是真命题,不符合题意;C .若22a b =,则a b =±,故该选项是假命题,符合题意;D .如果直线a c ,b c ,那么直线a b ,是真命题,不符合题意.故选:C .【点睛】本题主要考查了真假命题、等腰三角形的性质、对顶角、乘方运算的含义、平行线的性质等知识,理解并掌握相关知识是解题关键.5. 下列图形中,线段BD 是ABC 的高线的是( )A. B.C. D.【答案】A【解析】【分析】本题主要考查了三角形高的定义,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,据此求解即可.【详解】解:由三角形高的定义可知,只有A 选项中的线段BD 是ABC 的高线,故选:A .6. 如图,图中的两个三角形全等,则α∠等于( )A. 71°B. 59°C. 49°D. 50°【答案】B【解析】 【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:由全等三角形的性质可知,两幅图中边长为a 、b 的夹角对应相等,∴180507159α∠=°−°−°=°,故选:B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等.7. 如图,已知ABC DCB ∠=∠,下列判断中,错误是( )A. 若添加条件AB DC =,则ABC DCB △≌△B. 若添加条件AC DB =,则ABC DCB △≌△C. 若添加条件A D ∠=∠,则ABC DCB △≌△D 若添加条件ACB DBC ∠=∠,则ABC DCB △≌△【答案】B【解析】【分析】本题考查了全等三角形的判定定理,根据全等三角形的判定定理逐个判断即可,能熟记全等三角形的判定定理是解此题的关键.的.【详解】解:A 、AB DC =,ABC DCB ∠=∠,BC CB =,符合全等三角形的判定定理SAS ,能推出ABC DCB △≌△,故选项不符合题意;B 、ABC DCB ∠=∠,AC DB =,BC CB =,不符合全等三角形的判定定理,不能推出ABC DCB △≌△,故选项符合题意;C 、AD ∠=∠,ABC DCB ∠=∠,BC CB =,符合全等三角形的判定定理AAS ,能推出ABC DCB △≌△,故选项不符合题意;D 、ACB DBC ∠=∠,BC CB =,ABC DCB ∠=∠,符合全等三角形的判定定理ASA ,能推出ABC DCB △≌△,故选项不符合题意;故选:B .8. 以下尺规作图中,一定能得到线段AD =BD 的是( )A. B.C. D.【答案】D【解析】【分析】利用基本作图,前面三个作图AD 分别为三角形高线、角平分线和中线,第四个作了AB 的垂直平分线,从而得到DA=DB .【详解】A .AD 为BC 边的高;B .AD 为角平分线,C .D 点为BC 的中点,AD 为BC 边上的中线,D .点D 为AB 的垂直平分线与BC 的交点,则DA =DB .故选:D .【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9. 如图,在ABC 中,已知点D ,E 分别为边BC ,AD 上的中点,且28cm ABCS = ,则BEC S 的值为( )A. 26cmB. 25cmC. 24cmD. 22cm【答案】C【解析】 【分析】本题考查三角形的中线,根据三角形的中线平分面积,推出214cm 2BEC ABC S S == ,即可. 【详解】解:∵点D ,E 分别为边BC ,AD 上的中点,∴,,AD BE CE 分别为,,ABC ABD ACD 的中线, ∴12ABD ACD ABC S S S ==△△△,11,22BED ABD CED ACD S S S S == , ∴21121224cm BED CED AB A BEC AB D C CD S S S S S S =+=+== ; 故选:C .10. 如图,D 为ABC 两个内角平分线的交点,若90A ∠=°,12cm AB =,5cm AC =,13cm BC =,则点D 到BC 边的距离为( )A. 2cmB. 3cmC. 4cmD. 5cm【答案】A【解析】 【分析】本题考查了角平分线的性质及三角形面积法,过点D 分别作DG AB ⊥、DE BC ⊥、DF AC ⊥,连接AD ,由角平分线的性质得出DG DE DF ==,利用三角形面积求法得出答案,掌握角平分线的性质是解题的关键.【详解】解:过点D 分别作DG AB ⊥、DE BC ⊥、DFAC ⊥,连接AD ,如图:∵点D 为ABC ∠和ACB ∠的角平分线的交点,∴点D 在BAC ∠的角平分线上,∴点D 到ABC 的三边的距离相等,即DG DE DF ==,∴ABC ADB BDC ADC S S S S =++ ,111222AB DG BC DE AC DF =⋅+⋅+⋅ 111222AB DG BC DE AC DF =⋅+⋅+⋅ 111222AB DE BC DE AC DE =⋅+⋅+⋅ ()12DE AB BC AC =⋅++, ∵90A ∠=°,12cm AB =,5cm AC =,13cm BC =, ∴()111251213522DE ××=⋅++, 解得:2cm DE =,∴点D 到BC 边的距离为2cm ,故选:A .二、填空题(本题共6小题,每小题3分,共18分.)11. 如图,∠ACD 是△ABC 的外角,若∠ACD =110°,∠B =50°,则∠A 的度数为_____.【答案】60°##60度【解析】【分析】根据三角形的外角定理进行推导计算即可求解.【详解】解:∵ACD ∠是ABC 的外角,若110ACD ∠=°,50B ∠=°∴=1105060A ACD B ∠∠−∠=°−°=°.故答案是:60°【点睛】本题考查了三角形的外角定理,难度不大,熟记定理是解决问题的关键.12. 如图,AB =AC ,要使 ABE ≌ ACD ,应添加的条件是_____(添加一个条件即可).【答案】AE =AD【解析】【详解】要使△ABE ≌△ACD ,已知AB =AC ,∠A =∠A ,则可以添加AE =AD ,利用SAS 来判定其全等;或添加∠B =∠C ,利用ASA 来判定其全等;或添加∠AEB =∠ADC ,利用AAS 来判定其全等.故答案为:AE=AD (答案不唯一).13. 如图,在ABC 中,10AB AC ==,6BC =,DE 是AB 的中垂线,则BDC 的周长为____________.【答案】16【解析】【分析】本题考查了线段垂直平分线的性质,由DE 是AB 的中垂线,得到BD AD =,即可求解,掌握线段垂直平分线的性质是解题的关键.【详解】解:∵DE 是AB 的中垂线,∴BD AD =,∵10AB AC ==,6BC =,∴BDC 的周长为:10616BD CD BC AD CD BC AC BC ++=++=+=+=,故答案为:16.14. 等腰三角形一边长等于4,另一边长等于9,它的第三边长是______.【答案】9【解析】【分析】本题没告诉腰是4还是9,要分情况论.确定腰是9还是4后,再根据三角形三边关系看是否能构成三角形,最后确定第三边的长.【详解】分两种情况讨论.第一种情况,当一腰是4时,则底边为9,另一腰长为4.此时因为4+4<9不符合三角形三边不等关系,此种情况不成立;第二种情况,当一腰是9时,则底边为4,另一腰为9.此时9+9>4、4+9>9、4+9>4,符合三边不等关系.此时等腰三角形的三条边长分别为9、9、4.所以第二种情况下第三边长为9.综上讨论第三边长为9.故答案为:9.【点睛】本题考查三角形三边不等关系,易错点是题目中没有明确告诉等腰三角形的腰和底而忽视讨论. 15. 已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是_________【答案】7或3##7或3【解析】【分析】本题主要考查等腰三角形的定义、三角形中线的定义和分类讨论思想;掌握等腰三角形的定义并运用分类讨论思想是解题的关键;先根据题意画出图形,再分有两种情况:①若+AB AD 为6,②若+AB AD 为9,进而即可求解【详解】根据题意画出图形,如图,设等腰三角形的腰长2ABAC x BC y ===,, ∵BD 是腰上的中线,∴AD DC x ==,有两种情况:①若+AB AD 为6,则26x x +=,解得2x =,则9x y +=,即29y +=, 解得7y =;②若+AB AD 为9,则29x x +=,解得3x =,则6x y +=,即36y +=, 解得3y =;所以等腰三角形底边长是7或3,故答案为:7或316. 如图,在四边形ABCD 中,AD BC ∥,6cm 10cm 8cm AD BD BC ==>,,.动点P 以1cm/s 的速度从点A 出发沿边AD 向点D 匀速移动,动点Q 以2cm/s 的速度从点B 出发沿边BC 向点C 匀速移动,动点M 从点B 出发沿对角线BD 向点D 匀速移动,三点同时出发.连接PM QM 、,当动点M 的速度为 __________cm/s 时,存在某个时刻,使得以P 、D 、M 为顶点的三角形与QBM 全等.【答案】0.5或2.5【解析】【分析】本题主要考查了全等三角形的性质,平行线的性质,解二元一次方程组,设运动的时间为s t ,动点M 的速度为cm/s v ,则cm 2cm cm AP t BQ t BM vt ===,,,进而得到()()6cm 10cm PD t DM vt =−=−,,再分当DPM BMQ ≌时,当DPM BQM ≌时,两种情况根据全等三角形对应边相等建立方程组求解即可.【详解】解:设运动时间为s t ,动点M 的速度为cm/s v ,由题意得,cm 2cm cm AP t BQ t BM vt ===,,, ∴()()6cm 10cm PD t DM vt =−=−,. ∵AD BC ∥,的的∴ADB DBC ∠=∠.当DPM BMQ ≌时,则DP BM DM BQ ==,, ∴6102t vt vt t −=−=,,解得4t =,∴644v −=,解得0.5v =.当DPM BQM ≌时,则DP BQ DM BM ==,, ∴6210t t vt vt −=−=,,解得2t =,∴1022v v −=,解得 2.5v =.综上所述,动点M 的速度为0.5cm/s 或2.5cm/s ,故答案为:0.5或2.5.三、解答题(本题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.) 17. 如图,已知点C 、E 、F 、B 在同一直线上,AB CD ∥,BF CE =,A D ∠=∠,则AE DF =.完成下面的说理过程(填空).证明:∵AB CD ∥(已知)∴B C ∠=∠(____________)∵BF CE =(已知)∴BF +____________CE =+____________,即BE =____________.在ABE 和DCF 中,∵________________________B C ∠=∠∴ABE DCF △≌△(____________)∴AE DF =(____________)【答案】见解析【解析】【分析】本题考查全等三角形的判定和性质,根据平行线的性质,线段的和差关系,利用证明ABE DCF △≌△,利用全等三角形的性质,即可得出结论.【详解】证明:∵AB CD ∥(已知)∴B C ∠=∠(两直线平行,内错角相等)∵BF CE =(已知)∴BF EF CE EF +=+,即BE CF =.在ABE 和DCF 中,∵A D B C BE CF ∠=∠ ∠=∠ =, ∴ABE DCF △≌△(AAS )∴AE DF =(全等三角形的对应边相等)18. 图1,图2都是44×的正方形网格,每个小正方形的顶点称为格点.三个顶点均在格点上的三角形称为格点三角形.在给定的网格中,按下列要求用无刻度的直尺画出相应的格点三角形.(1)在图1中画出以AB 为底的等腰三角形ABC ;(2)在图2中画出所有与DEF 全等(不包含DEF )的EFG .【答案】(1)图见解析;(2)图见解析.【解析】【分析】本题考查了勾股定理与网格作图,等腰三角形的判定,全等三角形的判定,掌握相关知识是解题的关键.(1)取格点C ,连接AC ,BC ,由网格及勾股定理可得AC BC =,即可得出等腰三角形ABC ;(2)取格点1G 、2G 、3G ,分别连接1EG 、1FG ,2EG 、2FG ,3EG 、3FG ,由网格及勾股定理可得1DE G F =,1DF G E =,即可证明1DEF G EF △≌△,同理2DEF G EF △≌△,3DEF G EF △≌△,则EFG 即为所求的三角形.【小问1详解】解:取格点C ,连接AC ,BC ,如图:由网格可知,AC ==BC ==,∴AC BC =,∴ABC 为等腰三角形,则ABC 即为所求的等腰三角形;【小问2详解】解:取格点1G 、2G 、3G ,分别连接1EG 、1FG ,2EG 、2FG ,3EG 、3FG ,如图:由网格可知,DE DF ==,1G F ,1G E ==,∴1DE G F =,1DF G E =,在DEF 和1G EF 中,11DE G F DF G E EF FE = = =,∴()1SSS DEF G FE ≌,同理可得:2DEF G FE ≌,3DEF G EF △≌△,则EFG 即为所求的三角形.19. 如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题中条件易知:△≌△ADC ,可得AC 平分∠BAD ;(2)利用(1)的结论,可得△BAE ≌△DAE ,得出BE=DE .【详解】解:(1)在ΔΔΔΔΔΔΔΔ与ADC ∆中,AB AD AC AC BC DC = = =∴()ABC ADC SSS ∆∆≌∴BAC DAC ∠=∠即AC 平分BAD ∠;(2)由(1)BAE DAE ∠=∠在BAE ∆与DAE ∆中,得BA DA BAE DAE AE AE = ∠=∠ =∴()BAE DAE SAS ∆∆≌∴BE DE =【点睛】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.20. 如图.点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B ∠=∠.ACE BDF ∠=∠.(1)求证:ACE BDF ≌△△;(2)若8AB =,2AC =,求CD 的长.【答案】(1)证明见解析(2)4【解析】【分析】(1)直接利用AAS 证明ACE BDF ≌△△即可;(2)根据全等三角形的性质得到2BD AC ==,则4CD AB AC BD =−−=.【小问1详解】证明:在ACE △和BDF 中,ACE BDF A B AE BF ∠=∠ ∠=∠ =, ∴()AAS ACE BDF △△≌;【小问2详解】解:∵ACE BDF ≌△△,2AC =,∴2BD AC ==,又∵8AB =,∴4CD AB AC BD =−−=.【点睛】本题主要考查了全等三角形的性质与判定,熟知全等三角形的性质与判定条件是解题的关键. 21. 如图,在ABC 中,AD 是BC 边上的高,AE 是BAC ∠的角平分线,51B ∠=°,63C ∠=°.(1)求BAE ∠的度数;(2)求DAE ∠的度数.【答案】(1)33BAE ∠=°(2)6DAE ∠=°【解析】【分析】本题主要考查角平分线的定义、三角形的高及三角形内角和,熟练掌握角平分线的定义、三角形的高及三角形内角和是解题的关键;(1)由题意易得66BAC ∠=°,然后根据角平分线的定义可进行求解;(2)由(1)可知33CAE BAE ∠=∠=°,则有27DAC ∠=°,然后问题可求解.【小问1详解】解:∵51B ∠=°,63C ∠=°,∴18066BAC B C ∠=°−∠−∠=°,∵AE 是BAC ∠的角平分线, ∴1332BAE BAC ∠=∠=°; 【小问2详解】解:由(1)可知33CAE BAE ∠=∠=°, ∵AD 是BC 边上的高,∴90ADC ∠=°,∴18027DAC C ADC ∠=°−∠−∠=°,∴6DAE EAC DAC ∠=∠−∠=°.22. 如图,在ABC 中,BC 的垂直平分线m 交BC 于点D ,P 是直线m 上的一动点.(1)连结BP ,CP ,求证:BP CP =;(2)连结AP ,若6AB =,4AC =,7BC =,求APC △的周长的最小值.【答案】(1)证明见解析;(2)APC △周长的最小值是10.【解析】【分析】本题考查了线段垂直平分线的性质,轴对称-最短路线问题的应用,解此题的关键是找出P 的位置. (1)根据线段垂直平分线的性质即可得出结论;(2)根据题意知点C 关于直线m 的对称点为点B ,故当点P 与点D 重合时,AP CP +值的最小,即可求解.【小问1详解】证明:∵m 是BC 的垂直平分线,P 是直线m 上的一动点,∴BP CP =;【小问2详解】解:∵直线m 垂直平分BC ,∴B 、C 关于直线m 对称,设直线m 交AB 于D ,如图:∵BP CP =,∴当P 和D 重合时,AP CP +的值最小,最小值等于AB 的长,APC ∴ 周长的最小值是:6410AP CP AC AB AC ++=+=+=.23. 若三角形的两个内角α与β满足290αβ+=°,那么这样的三角形是“准互余三角形”.(1)关于“准互余三角形”,下列说法中正确的是____________(填写所有正确说法的序号); ①在ABC 中,若100A ∠=°,70B ∠=°,10C ∠=°,则ABC 是“准余三角形”;②若ABC 是“准互余三角形”,90C ∠>°,60A ∠=°,则20B ∠=°;③“准互余三角形”一定是钝角三角形.(2)如图1,在ABC 中,90ACB ∠=°,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=°.若P 是直线l 上一点,且ABP 是“准互余三角形”,请直接写出APB ∠的度数.【答案】(1)①③ (2)见解析(3)110APB ∠=°,240AP B ∠=°,3110AP B ∠=°,420AP B ∠=° 【解析】【分析】本题考查三角形的内角和定理,角度的计算,理解“准互余三角形”的定义,是解题的关键:(1)根据“准互余三角形”的定义,逐一进行判断即可;(2)根据三角形的内角和定理,结合角平分线平分角,推出290A ABD ∠+∠°,即可得证; (3)根据“准互余三角形”的定义,分类讨论即可解决问题.【小问1详解】解:①70B ∠=° ,10C ∠=°,290B C ∴∠+∠=°,ABC ∴ 是“准互余三角形”.故①正确.② 三角形的两个内角α与β满足290αβ+=°,那么我们称这样的三角形为“准互余三角形”, 90αβ∴+<°,∴三角形的第三个角大于90°,由已知90C ∠>°得290A B ∠+∠°又 60A ∠=°,∴15B ∠=°∴故②错误,③正确.②中已经证明.故答案为①③.【小问2详解】在Rt ABC 中,90ACB ∠=°,90ABC A ∴∠+∠=°,BD 是ABC ∠的角平分线,2ABC ABD ∴∠=∠,290ABD A ∴∠+∠=°,ABD ∴ 是“准互余三角形”.【小问3详解】当点P 在点B 左侧时:∵50ABC ∠=°, ∴50APB PAB ∠+∠=°,∴当290APB PAB ∠+∠=°时,40APB ∠=°;当290APB PAB ∠+∠°时,10APB ∠=°;当点P 在点B 右侧时:当1902ABC APB ∠+∠=°时,20APB ∠=°, 当1902ABC BAP ∠+∠=°时,20BAP ∠=°, ∴1805020110APB ∠=°−°−°=°,综上:110APB ∠=°,240AP B ∠=°,3110AP B ∠=°,420AP B ∠=°时,ABP 满足条件,“准互余三角形”.24. 【模型建立】(1)如图1,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,且45EAF ∠=°,探究图中线段EF ,BE ,DF 之间的数量关系.小明的探究思路如下:延长CB 到点G ,使BG DF =,连接AG ,先证明ADF ABG ≌,再证明AEF AEG △≌△.则EF ,BE ,DF 之间的数量关系为____________.【类比探究】(2)如图2,在四边形ABCD 中,AB AD =,ABC ∠与D ∠互补,E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠,试问线段EF ,BE ,DF 之间具有怎样的数量关系?判断并说明理由.【模型应用】(3)如图3,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=°,E 、F 分别是边BC ,CD 延长线上的点,且12EAF BAD ∠=∠,请探究线段BE ,EF ,DF 具有怎样的数量关系,并证明.是【答案】(1)EF BE DF =+;(2)EF DF BE =+,理由见解析;(3)EF BE FD =−,证明见解析. 【解析】【分析】本题考查了正方形的性质,三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.(1)沿着小明的思路,先证ADF ABG ≌△△,再证AEF AEG ≌ ,即可得出结论;(2)延长CB 至点M ,使得BM DF =,连接AM ,先证ABM ADF ≌ ,再证MAE FAE ≌ ,即可得出结论;(3)在BE 上截取BG ,使BG DF =,连接AG ,证明ABG ADF ≌△△,由全等三角形的性质得出BAG DAF ∠=∠,AG AF =,证明AEG AEF ≌△△,由全等三角形的性质得出结论.【详解】解:(1)EF BE DF =+, 理由如下:沿着小明的思路进行证明,在正方形ABCD 中,有AD AB =,90D ABC ∠=∠=°, 即有90ABG ∠=°,∵BG DF =,90D ABG ∠=∠=°,AD AB =, ∴()SAS ADF ABG ≌,∴AF AG =,DAF BAG ∠=∠,∵90BAD ∠=°,45EAF ∠=°, ∴45BAE DAF ∠+∠=°,∴45EAG BAE BAG EAF ∠=∠+∠=°=∠,又∵AF AG =,AE AE =,∴()SAS AEF AEG ≌,∴EG EF =,∵EGBG BE =+,BG DF =, ∴EF BE DF =+;故答案为:EF BE DF =+; (2)EF DF BE =+,理由如下: 延长CB 至点M ,使得BM DF =,连接AM ,如图:∵ABC ∠与D ∠互补, ∴180D ABC ∠+∠=°, ∵180ABC ABM ∠+∠=°, ∴ABM D ∠=∠; ∵AB AD =,BM DF =, ∴()SAS ABM ADF ≌, ∴DAF BAM ∠∠=,AM AF =,12EAF BAD ∠=∠ , 12BAE FAD BAD ∴∠+∠=∠, ∴BAE FAD EAF ∠+∠=∠, ∵DAF BAM ∠∠=, ∴BAM BAE EAF ∠+∠=∠, ∴MAE EAF ∠=∠, 又∵AM AF =,AE AE =, ∴()SAS MAE FAE ≌, ∴=ME EF ,∵ME BE MB =+,MB DF =, ∴EF DF BE =+; (3)EF BE FD =−,理由如下: 如下图中,在BE 上截取BG ,使BG DF =,连接AG ,第21页/共21页∵180B ADC ∠+∠=°,180ADF ADC ∠∠=+°,∴B ADF ∠=∠, 在ABG 与ADF △中, AB AD ABG ADF BG DF = ∠=∠ =, ∴()SAS ABG ADF ≌, ∴BAG DAF ∠=∠,AG AF =, ∴12BAG EAD DAF EAD EAF BAD ∠+∠=∠+∠=∠=∠, ∴GAE EAF ∠=∠, ∵AE AE =, ∴()SAS AEG AEF ≌, ∴EG EF =,∵EGBE BG =−, ∴EF BE FD =−.。
第13章 全等三角形(13.2) 华东师大版八年级数学上册周测卷(含详解)
第六周—八年级上册数学华东师大版(2012)每周测验考查范围:13.2 1.如图为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是只带第③块碎片.其理论依据是( )A. B. C. D.2.观察作图过程,能得出的依据是( )A. B. C. D.3.已知图中的两个三角形全等,则等于( )A. B. C. D.4.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽,则需要测量的量是( )A.的长度B.的长度C.的长度D.的长度5.如图,在中,,,,,则的度数是( )A. B. C. D.6.如图,有两个长度相同的滑梯靠在一面竖直墙上.已知左边滑梯的高度与右边滑梯水平方向的长度相等,若,,,则等于( )A. B. C. D.7.如图,点E,F在上,,,添加一个条件,不能完全证明的是( )A. B. C. D.8.如图,在四边形中,,平分,,,,,则的面积是( )A. B.6 C.9 D.129.如图,点B,A,D,E在同一直线上,,,要使,则只需添加一个适当的条件是______.10.如图,在和中,,,,则____________.如图,在中,点分别在、上,,,,则_____________°.12.如图,,且,上两点,,若,,,则的长为____.13.如图,在和中,,.求证:.14.如图,点B在线段上,,,.求证:.答案以及解析1.答案:A解析:根据全等三角形的判定,已知两角和夹边,就可以确定一个全等三角形.只有第③块玻璃包括了两角和它们的夹边,所以只有带③去才能配一块完全一样的玻璃,是符合题意的.故选A.2.答案:D解析:证明:由作图可知,在和中,故选:D.3.答案:B解析:如图,由三角形内角和定理得.图中的两个三角形全等,.4.答案:D解析:只要测量就可以,理由:连接,,如图,点O分别是、的中点,,,在和中,,..故选:D.5.答案:A解析:在和中,∴,∴,∵,∴,故选:A.6.答案:D解析:由题意得,滑梯、墙、地面正好构成直角三角形,在和中,,,,,故选:D.7.答案:D解析:,,即,,,即,A、,,,,不符合题意.B、,,,,不符合题意.C、,,,,不符合题意.D、,,,“”得不到,符合题意.故选:D.8.答案:A解析:过D作,交的延长线于F,平分,,在和中,,,,在和中,,的面积为,故选:A.9.答案:(答案不唯一)解析:∵,∴,即:,∵,∴,∴,即:,∴当时,根据,可得:;故答案为:(答案不唯一).10.答案:解析:在和Rt中,,,,故答案为:.11.答案:100解析:在和中,,,,,故答案为:100.12.答案:11解析:,,,,,,,,,,,,,故答案为:11.13.答案:证明见详解解析:证明:在和中,,.14.答案:证明见解析解析:证明:∵,∴,∴在和中,,∴,∴.。
八年级数学周周练练习卷
周周练(一)班级 姓名一、选择题1.下列函数关系中,表示一次函数的有( )①y=2x+1 ②y=1x ③y=12x x +- ④s=60t ⑤y=100-25x A.1个 B.2个 C.3个 D.4个 2.下列给出的四个点中,不在直线y=2x-3上的是( )A.(1,-1)B.(0,3)C.(2,1)D.(-1,5) 3.直线y=2x+4与y 轴交点的坐标是 ( )A.(2,0)B.(-2,0)C.(0,4)D.(0,-4) 4.下列说法正确的是 ( )A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数 5.已知一次函数的图像与直线y=x+1平行,且过点(8,2),那么此一次函数的 解析式为 ( )A. y=x-2B. y=x-6C. y=-x+10D. y=-x-16.若一次函数自变量x 的取值范围是 -1<x<3时,函数值y 的取值范围是-2<y<6, 则此函数的解析式为 ( )A. y=2x (-1<x<3)B. y=-2x+4(-1<x<3)C. y=2x (-1<x<3)或y=-2x+4(-1<x<3)D. y=-2x (-1<x<3)或y=2x-4(-1<x<3) 二、填空题7.y=kx+x-3是一次函数,则k8.一次函数y=2(3-x )的图像在y 轴上的截距为9.直线334y x =-+与x 轴的交点坐标为10.y=2x+3的图像是由y=2x-1向 平移 个单位得到的. 11.直线y=2x-3与x 轴的交点为 ,与y 轴的交点为 .12.已知一次函数y=kx+b ,且当x=1时,y=7;当x=2时,y=16,则k= ,b= 13.若一次函数y=(k+3)x+k 2-9是正比例函数,则k= .14.与直线y=2x-3平行,且过点(1,2)的一次函数的解析式为 . 15.若2(1)(1)m y m x m =-++是一次函数,则m=16.已知113y x =-+,当x 时,y>0.17.直线y=kx+b 与直线y=-3x+5平行,且过点(-12,3),则k=18.一次函数y=2x+b 与两坐标围成三角形的面积为4,则b= .三、解答题19.已知一次函数y=kx+b 的图像经过点(1,-2)、点(0,-4). (1)写出这个一次函数的解析式; (2)画出这个一次函数的图像。
数学试卷八年级周周练
一、选择题(每题4分,共20分)1. 下列各数中,是负数的是()A. -3/4B. 0.6C. -2.5D. 1/22. 若a > 0,b < 0,则下列各式中,正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 03. 下列各式中,能化为分式的有()A. 2x - 3B. 5/xC. 3x + 4D. x^2 - 14. 下列各式中,正确的是()A. (a - b)^2 = a^2 + b^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^3 = a^3 - b^3D. (a + b)^3 = a^3 + b^35. 下列各式中,正确的是()A. (x + y)^2 = x^2 + y^2B. (x - y)^2 = x^2 - 2xy + y^2C. (x + y)^3 = x^3 + y^3D. (x - y)^3 = x^3 - y^3二、填空题(每题4分,共20分)6. 若a > 0,b < 0,则a - b的符号为_________。
7. 下列各式中,分式的分母为负数的是_________。
8. 若a = 3,b = -2,则a^2 - 2ab + b^2的值为_________。
9. 若x^2 - 4x + 4 = 0,则x的值为_________。
10. 若a + b = 0,则a^2 + b^2的值为_________。
三、解答题(每题10分,共40分)11. (1)计算:-3/4 + 2/3 - 5/6。
(2)计算:3/4 - (-2/3) + 5/6。
12. (1)若a + b = 0,求证:a^2 + b^2 = 0。
(2)若a - b = 0,求证:a^2 - b^2 = 0。
13. (1)若x^2 - 4x + 4 = 0,求x的值。
(2)若x^2 - 4x + 3 = 0,求x的值。
北师大八年级数学下第六周练习试卷
第六周每周一练一、选择题1、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个. A 、2 B 、3 C 、4 D 、52、下列判断中,正确的是( )A 、分式的分子中一定含有字母B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式 3、下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x y x +- 4、下列约分正确的是( )A 、313m m m +=+B 、212y x y x -=-+C 、123369+=+a b a bD 、()()yx a b y b a x =-- 5、下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x y x y x y x +--=--+- 6、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A 、9448448=-++x xB 、9448448=-++x xC 、9448=+xD 、9496496=-++x x 7、若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍8、已知113x y -=,则55x xy y x xy y+---值为( ) A 、72- B 、72 C 、27D 、72- 二、填空题9、若分式)3)(2(2+--a a a 的值为0,则a= ;当x ______时分式622-+-x x x 有意义. 10、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 11、如果b a =2,则2222ba b ab a ++-= . 12、若分式2312-+x x 的值为负数,则x 的取值范围是 .13、已知31)3)(1(5-++=-++x B x A x x x ,整式A 、B 的值分别为 . 14、若=++=+1,31242x x x x x 则__________. 三、计算题15、22221106532xy x y y x ÷⋅ 16、ac a c bc c b ab b a -+-++17、224)2222(x x x x x x -⋅-+-+- 18、22224421y xy x y x y x y x ++-÷+--19、13132=-+--xx x 20、0)1(213=-+--x x x x四、先化简,后求值21、168422+--x x x x ,其中x=5.22、3,32,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中.。
北师八年级数学上册(BS版)第六章检测题
第六章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.(2019·百色)一组数据2,6,4,10,8,12的中位数是(B)A.6 B.7 C.8 D.92.(2019·齐齐哈尔)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是(C)A.平均数B.中位数C.方差D.众数3.(2019·益阳)已知一组数据5,8,8,9,10,以下说法错误的是(D)A.平均数是8 B.众数是8 C.中位数是8 D.方差是84.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是(D)A.条形统计图B.频数直方图C.折线统计图D.扇形统计图5.(2019·达州)一组数据1,2,1,4的方差为(B)A.1 B.1.5 C.2 D.2.56.(2019·济南)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是(B)A.9.7 m,9.9 mB.9.7 m,9.8 mC.9.8 m,9.7 mD.9.8 m,9.9 m7.(2019·邵阳)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是(A)A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是28.(2019·岳阳)甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是s甲2=1.2,s乙2=1.1,s丙2=0.6,s丁2=0.9,则射击成绩最稳定的是(C) A.甲B.乙C.丙D.丁9.(2019·宜宾)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为x甲、x乙,甲、乙的方差分别为s甲,s乙,则下列结论正确的是(A)A.x甲=x乙,s甲2<s乙2B.x甲=x乙,s甲2>s乙2C.x甲>x乙,s甲2<s乙2D.x甲<x乙,s甲2<s乙210.(2019·鄂尔多斯)下表是抽查的某班10名同学中考体育测试成绩统计表.若成绩的平均数为23,中位数是a,众数是b,则a-b的值是(C)A.-5 B.-2.5 C.2.5 D.5二、填空题(每小题3分,共15分)11.(2019·玉林)样本数据-2,0,3,4,-1的中位数是0.12.(2019·宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为1.15小时.第12题图第15题图13.(2019·巴中)如果一组数据为4,a,5,3,8,其平均数为a,那么这组数据的方差为145. 14.(2019·铜仁)小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是s 小刘2=0.6,s 小李2=1.4,那么两人中射击成绩比较稳定的是小刘.15.(2019·黄石)根据统计图,回答问题:该超市10月份的水果类销售额>11月份的水果类销售额(请从“>”“=”“<”中选一个填空).三、解答题(共75分)16.(8分)学校广播站要招收一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x 应超过多少分? 解:(1)70×10%+80×40%+88×50%=83(分),即李文同学的总成绩为83分(2)当两人成绩相等时,则80×10%+75×40%+x ×50%=83,∴x =90,即若孔明同学的总成绩要超过李文同学,则他的普通话成绩x 应超过90分17.(9分)(2019·达州)随机抽取某小吃店一周的营业额(单位:元)如下表:(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么? 答(填“合适”或“不合适”):不合适;②选择一个你认为最合适的数据估算这个小吃店一个月的营业额. 解:(1)这组数据的平均数=54607=780(元);按照从小到大排列为540,640,640,680,780,1070,1110,中位数为680元,众数为640元;故答案为:780,680,640 (2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×780=23400(元)18.(9分)(天津中考)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为__40人__,图①中m的值为__30__;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.解:(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15 19.(9分)(2019·湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.解:(1)被调查的总人数为16÷16%=100(人),m=100-(20+28+16+12)=24(2)由于共有100个数据,其中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224(人)20.(9分)(2019·呼和浩特)镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,-0.2,0.2,-0.1,0.1,0,1.2,0.6,0,-0.6,1.1,0.5,0.6,-0.5,0.3,0.7,0.9,1.7,-0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收人超过1.5万元的百分比;已知某家庭过去一年的收入是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是s ,小王依据第二组数的方差得出原数据的方差为(1.5+s)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.解:(1)第二组数据的平均数为120 (0.4-0.2+0.2-0.1+0.1+0+1.2+0.6+0-0.6+1.1+0.5+0.6-0.5+0.3+0.7+0.9+1.7-0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万),130×1.9=247,估计全村年收入为247万;全村家庭年收入超过1.5万元的百分比为1320 ×100%=65%;第二组数据的中位数为0.35,故原数据中位数为1.85,某家庭过去一年的收人是1.89万元,则该家庭的收入情况在全村处于中上游 (2)小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差=120[(0.4-0.4)2+(-0.2-0.4)2+(0.2-0.4)2+…+(1.3-0.4)2]=0.3421.(10分)(2019·广西)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机抽取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100; 2班:70,80,80,80,60,90,90,90,100,90; 3班:90,60,70,80,80,80,80,90,100,100.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?解:(1)由题意知a =4,b =110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c =80+902 =85,d=90 (2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好 (3)570×430 =76(张).答:估计需要准备76张奖状22.(10分)甲、乙两人在相同的条件下各射靶10次,每次射靶的成绩情况如图. (1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).解:(2)①平均数相同,s 甲2<s 乙2,所以甲成绩比乙稳定;②平均数相同,甲的中位数<乙的中位数,则乙的成绩比甲好些;③平均数相同,命中9环及以上的次数甲比乙少,则乙成绩比甲好些;④甲成绩在平均数上下波动,而乙成绩处于上升势头,从第4次以后就没有比甲少的情况发生,则乙更有潜力23.(11分)(2019·枣庄)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:一、数据收集,从全校随机抽取20名学生,进行每周用于课外阅读时间的调查,数据如下(三、分析数据,补全下列表格中的统计量:四、得出结论:①表格中的数据:a =5,b =4,c =80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B ; ③如果该校现有学生400人,估计等级为“B”的学生有160人; ④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读13本课外书.解:①由已知数据知a =5,b =4,∵第10,11个数据分别为80,81,∴中位数c =80+812=80.5,故答案为:5、4、80.5 ②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B ,故答案为:B ;③估计等级为“B”的学生有400×820 =160(人),故答案为:160④估计该校学生每人一年(按52周计算)平均阅读课外书80320 ×52=13(本),故答案为:13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开远市第五中学第六周周考数学试卷
满分100分 出卷人:蔡会玲
1.(14分)如图:AD=BC ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE=BF 。
求证:AB ∥CD
2. (14分)如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F 。
求证:BF ⊥AC 。
3.(14分)如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF
4.(14分)如图,在△ABC 中,∠B 、∠C 的平分线交于点O ,求证,O 也在∠A 的平分线上。
A O
B C
F (图24)
E
D
C B A F (图17)E
D C B A
5. (14分)如图,已知E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AO=CO.
6. (15分)如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A.C 作BD 的垂线,垂足分别为E.F,求证:EF =CF -AE.
7.(15分) 如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB,交BC 于D, DE ⊥AB,且AB=6cm,则△BED 的周长是多少?
A B E O F
C。