2015届高三数学立体几何专题训练及详细答案

合集下载

高三数学立体几何专题训练有解析

高三数学立体几何专题训练有解析

2015届高三数学立体几何专题训练(有解析)2015届高三数学立体几何专题训练(有解析)1、(2014广东高考)如图4,四边形为正方形,平面,,于点,,交于点.(1)证明:(2)求二面角的余弦值2、(2013广东高考)如图1,在等腰直角三角形中,,,分别是上的点,,为的中点.将沿折起,得到如图2所示的四棱锥,其中.(Ⅰ)证明:平面;(Ⅱ)求二面角的平面角的余弦值.3、(2012广东高考)如图5所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求二面角的正切值.4、(2011广东高考)如图5,在锥体中,是边长为1的菱形,且,,,分别是的中点.(1)证明:平面;(2)求二面角的余弦值.5、(2014广州一模)如图5,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.(1)求证:;(2)在棱上确定一点,使,,,四点共面,并求此时的长;(3)求平面与平面所成二面角的余弦值.6、(珠海2015届高三9月摸底)如图,长方体中,分别为中点,(1)求证:.(2)求二面角的正切值.7、(广州海珠区2015届高三8月)如图,四棱锥中,底面为正方形,,平面,为棱的中点.(1)求证://平面;(2)求证:平面平面;(3)求二面角的余弦值.8、(2014届肇庆二模)如图5,在四棱锥中,底面ABCD 是边长为2的菱形,且DAB=60.侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.(1)求证:BG平面PAD;(2)求平面PBG与平面PCD所成二面角的平面角的余弦值;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论. 9.(2014届深圳二模)如图5,已知△ABC为直角三角形,∠ACB为直角.以AC为直径作半圆O,使半圆O所在平面⊥平面ABC,P为半圆周异于A,C的任意一点.(1)证明:AP⊥平面PBC(2)若PA=1,AC=BC=2,半圆O的弦PQ∥AC,求平面PAB与平面QCB所成锐二面角的余弦值.10图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.11(2014广州二模)图,在五面体中,四边形是边长为的正方形,∥平面,,,.(1)求证:平面;(2)求直线与平面所成角的正切值.12、(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)如图,在直角梯形中,已知,,,.将沿对角线折起(图),记折起后点的位置为且使平面平面.(1)求三棱锥的体积;(2)求平面与平面所成二面角的平面角的大小.13、(茂名市2013届高三4月第二次高考模拟数学理)如图,在边长为4的菱形ABCD中,,点E,F分别在边CD,CB 上,点E与点C,点D不重合,,,沿EF将折起到的位置,使得平面平面(1)求证:平面(2)设AOBD=H,当O为CH中点时,若点Q满足,求直线OQ与平面PBD所成角的正弦值.14、(揭阳市2013高三第二次高考模拟考试理科数学)在图(4)所示的长方形ABCD中,AD=2AB=2,E、F分别为AD、BC的中点,M、N两点分别在AF和CE上运动,且AM=EN=把长方形ABCD沿EF折成大小为的二面角A-EF-C,如图(5)所示,其中(1)当时,求三棱柱BCF-ADE的体积;(2)求证:不论怎么变化,直线MN总与平面BCF平行;(3)当且时,求异面直线MN 与AC所成角余弦值.15、(珠海市2013届高三上学期期末)已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:;(2)求证:;(3)设为中点,在边上找一点,使平面,并求的值.16、(2013广州一模)如图4,在三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.(1)求证:∥平面;(2)若为上的动点,当与平面所成最大角的正切值为时,求平面与平面所成二面角(锐角)的余弦值. 17.(2015广州海珠区等四区调研二)如图所示,已知垂直以为直径的圆所在平面,点在线段上,点为圆上一点,且,,(1)求证:⊥;(2)求二面角的余弦值.18、(2015届执信中学高三上期中)在三棱柱ABC—A1B1C1中,已知,,在底面的射影是线段的中点.(Ⅰ)证明:在侧棱上存在一点,使得⊥平面,并求出的长;(II)求二面角的余弦值.19、(2015江门高三调研)如图3,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于点F.⑴求证:PA//平面EDB;⑵求证:PF=PB;⑶求二面角C-PB-D的大小.20、(2013广州二模)等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1﹣DE﹣B成直二面角,连结A1B、A1C(如图2).(1)求证:A1D丄平面BCED;(2)在线段BC上是否存在点P,使直线PA1与平面A1BD 所成的角为600?若存在,求出PB的长;若不存在,请说明理由.答案:1、(1)证明:平面,平面①四边形为正方形②平面平面③即④且平面(2)方法1(传统法)过作交于,过作交于,连接就是所求二面角的平面角(过程略)方法2(向量法)由(1)可得,,建立空间直角坐标系,如图所示.设在中,,则;由(1)知,所以,因为,所以,所以,,所以,所以,则设平面的法向量为,则,得,取,则,所以由(1)可知,平面的法向量为,所以设二面角为,则2、(Ⅰ)在图1中,易得连结,在中,由余弦定理可得由翻折不变性可知,所以,所以,理可证,又,所以平面.(Ⅱ)传统法:过作交的延长线于,连结,因为平面,所以,所以为二面角的平面角.结合图1可知,为中点,故,从而所以,所以二面角的平面角的余弦值为.向量法:以点为原点,建立空间直角坐标系如图所示, 则,,所以,设为平面的法向量,则,即,解得,令,得由(Ⅰ)知,为平面的一个法向量,所以,即二面角的平面角的余弦值为.3、解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面.(Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是.法1:以点为原点,、、为轴、轴、轴,建立空间直角坐标系.则、、、,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3.法2:设与交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由∽可得,而,所以,,而,所以,于是,而,于是二面角的正切值为.4、(1)证明:取的中点,连接∵,∴∵在边长为1的菱形中,∴△是等边三角形∴,∴平面∴∵分别是的中点∴∥,∥∴,,∴平面(2)解:由(1)知,∴是二面角的平面角易求得∴∴二面角的余弦值为5、推理论证法:(1)证明:连结,,因为四边形是正方形,所以.在正方体中,平面,平面,所以.因为,,平面,所以平面.因为平面,所以.(2)解:取的中点,连结,则.在平面中,过点作,则.连结,则,,,四点共面.因为,,所以.故当时,,,,四点共面.(3)延长,,设,连结,则是平面与平面的交线.过点作,垂足为,连结,因为,,所以平面.因为平面,所以.所以为平面与平面所成二面角的平面角.因为,即,所以.在△中,,,所以.即.因为,所以.所以.所以.故平面与平面所成二面角的余弦值为.空间向量法:(1)证明:以点为坐标原点,,,所在的直线分别为轴,轴,轴,建立如图的空间直角坐标系,则,,,,,所以,.因为,所以.所以.(2)解:设,因为平面平面,平面平面,平面平面,所以.(所以存在实数,使得.因为,,所以.所以,.所以.故当时,,,,四点共面.(3)解:由(1)知,.设是平面的法向量,则即取,则,.所以是平面的一个法向量.而是平面的一个法向量,设平面与平面所成的二面角为,则.故平面与平面所成二面角的余弦值为.6、解:(1).证明:在长方体中,分别为中点,且四边形是平行四边形………………3分,………5分(2).长方体中,分别为中点,……………7分过做于,又就是二面角的平面角…………9分,在中,………………11分直角三角形中…………………13分二面角的正切值为…………………14分7.8、(1)证明:连结BD.因为ABCD为棱形,且∠DAB=60°,所以ABD为正三角形.(1分)又G为AD的中点,所以BG⊥AD.(2分)又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BG⊥平面PAD.(4分)解:(2)∵△PAD为正三角形,G为AD的中点,∴PG⊥AD.∵PG平面PAD,由(1)可得:PG⊥GB.又由(1)知BG⊥AD.∴PG、BG、AD两两垂直.(5分)故以G为原点,建立如图所示空间直角坐标系,,,(6分)所以,,,,(7分)设平面PCD的法向量为,即令,则(8分)又平面PBG的法向量可为,(9分)设平面PBG与平面PCD所成二面角的平面角为,则∴即平面PBG与平面PCD所成二面角的平面角的余弦值为.(10分)(3)当F为PC的中点时,平面DEF⊥平面ABCD.(11分)取PC的中点F,连结DE,EF,DF,CG,且DE与CG相交于H.因为E、G分别为BC、AD的中点,所以四边形CDGE为平行四边形,故H为CG的中点.又F为CP的中点,所以FH//PG.(12分)由(2),得PG平面ABCD,所以FH平面ABCD.(13分)又FH平面DEF,所以平面DEF⊥平面ABCD.(14分)9、10.18.【解析】(Ⅰ)依题意,侧面是菱形,是的中点,因为,所以,又平面平面,且平面,平面平面所以平面.……………………………5分(Ⅱ)[传统法]由(Ⅰ)知平面,面,所以,又,,所以平面,过作,垂足为,连结,则,所以为二面角的平面角.…………9分在中,,所以,……12分所以,即二面角的余弦值是.………………………14分[向量法]以为原点,建立空间直角坐标系如图所示,…………………………………6分由已知可得故,则,………………8分设平面的一个法向量是,则,即,解得令,得………………………………………11分显然是平面的一个法向量,……………12分所以,即二面角的余弦值是.………14分11.(1)证明:取的中点,连接,则,∵∥平面,平面,平面平面,∴∥,即∥.……………1分∵∴四边形是平行四边形.…………2分∴∥,.在Rt△中,,又,得.∴.……………3分在△中,,,,∴,∴.……………4分∴,即.∵四边形是正方形,∴.………5分∵,平面,平面,∴平面.……………6分(2)证法1:连接,与相交于点,则点是的中点,取的中点,连接,,则∥,.由(1)知∥,且,∴∥,且.∴四边形是平行四边形.∴∥,且.……………7分由(1)知平面,又平面,∴.………8分∵,平面,平面,∴平面.……………9分∴平面.∵平面,∴.………10分∵,平面,平面,∴平面.……………11分∴是直线与平面所成的角.……………12分在Rt△中,.……………13分∴直线与平面所成角的正切值为.……………14分证法2:连接,与相交于点,则点是的中点,取的中点,连接,,则∥,.由(1)知∥,且,∴∥,且.∴四边形是平行四边形.∴∥,且.……………7分由(1)知平面,又平面,∴.∵,平面,平面,∴平面.∴平面.……………8分以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,则,,,. ∴,,.……………9分设平面的法向量为,由,,得,,得.令,则平面的一个法向量为.……………10分设直线与平面所成角为,则.……11分∴,.…………13分∴直线与平面所成角的正切值为.……………14分12、解:(1)∵平面平面,,平面,平面平面,∴平面,即是三棱锥的高,又∵,,,∴,∴,,∴三棱锥的体积.(2)方法一:∵平面,平面,∴又∵,,∴平面,∵平面,∴∴∵,∴∴∴,即由已知可知,∵,∴平面∵平面,∴平面平面所以平面与平面所成二面角的平面角的大小为. 方法二:过E作直线,交BC于G,则,如图建立空间直角坐标系,则,,设平面的法向量为,则,即化简得令,得,所以是平面的一个法向量.同理可得平面PCD的一个法向量为设向量和所成角为,则∴平面与平面所成二面角的平面角的大小为.13、14、解:(1)依题意得平面,=由得,,∴(2)证法一:过点M作交BF于,过点N作交BF于,连结,∵∴又∵∴∴四边形为平行四边形,【法二:过点M作交EF于G,连结NG,则,同理可证得,又,∴平面MNG//平面BCF∵MN平面MNG,】(3)法一:取CF的中点为Q,连结MQ、NQ,则MQ//AC,∴或其补角为异面直线MN与AC所成的角,∵且∴,即MN与AC所成角的余弦值为法二:且分别以FE、FB、FC所在直线为x轴,y轴,z轴,建立空间直角坐标系则,所以与AC所成角的余弦值为15、解:(1)证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,两两互相垂直。

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。

答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。

答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。

答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。

求棱锥体积。

解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。

2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。

求四棱锥的体积。

解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。

2015届高考数学总复习:立体几何专题训练模拟试卷及答案

2015届高考数学总复习:立体几何专题训练模拟试卷及答案

立体几何专题训练1.如图所示空间图形中, 四边形ABCD 为矩形,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证;BFD AE 平面//; (Ⅲ)求三棱锥BGF C -的体积. 解: (Ⅰ)证明: ABE AD 平面⊥,BC AD //∴ABE BC 平面⊥,则BC AE ⊥ACE BF 平面⊥,则BF AE ⊥∴BCE AE 平面⊥(Ⅱ)证明:依题意可知:G 是AC 中点ACE BF 平面⊥ 则BF CE ⊥,而BE BC = ∴F 是EC 中点 在AEC ∆中,AE FG //∴BFD AE 平面//(Ⅲ)解: BFD AE 平面//∴FG AE //,而BCE AE 平面⊥∴BCE FG 平面⊥∴BCF FG 平面⊥G 是AC 中点∴F 是CE 中点 ∴FG AE //且121==AE FGACE BF 平面⊥ ∴CE BF ⊥∴BCE Rt ∆中,221===CE CF BF∴12221=⋅⋅=∆CFB S∴3131=⋅⋅==∆--FG S V V CFB BCF G BFG C2.如图,在四棱锥ABCD P -中,底面ABCD 为直角梯形,BC AD //, 90=∠ADC ,平面⊥PAD 底面ABCD ,Q 为AD 的中点, 2==PD PA ,3,121===CD AD BC ,M 是棱PC 的中点。

(Ⅰ)求证: //PA 平面MQB ; (Ⅱ)证明:⊥CD 平面PAD (Ⅲ)求三棱锥DQM P -的体积。

解:证明:(Ⅰ)连接AC ,交BQ 于N ,连接MN ,AD BC // 且AD BC 21=,即AQ BC //, ∴四边形BCQA 为平行四边形,且N 为AC 中点,又因为点M 是棱PC 的中点, PA MN //∴,因为BABCD Q MBCMB 1C 1NCBA⊂MN 平面MQB ,⊄PA 平面MQB ,则MQB //平面PA ;(Ⅱ)∵Q 为AD 的中点, 2==PD PA ,∴PQ AD PAD ABCD PQ ABCD DC ABCDPQ DC AD DC DC PAD⊥⊥∴⊥⊂∴⊥⊥∴⊥平面平面平面平面,又平面(Ⅲ)PDQ M DQM P V V --=,已证出⊥CD 平面PAD 所以M 到平面PAD 的距离为CD 21所以413211321312121312131=⋅⋅⋅⋅⋅=⋅⋅⋅=⋅==∆--CD PQ QD CD S V V PDQ PDQ M DQM P3.已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(1)求证:N B C BC 11//平面;(2)求证:BN 11C B N ⊥平面; (3)求此几何体的体积.解:(1)证明: 该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴1,,BB BC BA 两两互相垂直。

2015年高中数学立体几何解答题汇编(有答案)

2015年高中数学立体几何解答题汇编(有答案)

2014年12月28日高中数学立体几何一.解答题(共30小题)1.(2015•惠州模拟)如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.是菱形,,则∵∴2.(2015•赤峰模拟)如图,在三棱柱ABC﹣A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3.(1)求证:AB1⊥平面A1BC;(2)求三棱锥C﹣A1B1C1的体积.=,3.(2015•重庆一模)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB 为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D﹣BCM的体积.DM=5,PC==2=×=2∴4.(2015•开封模拟)如图,四棱锥P﹣ABCD,底面ABCD为直角梯形,BC∥AD,BC⊥CD,BC=CD=AD.(Ⅰ)若E为PD中点,证明:CE∥平面APB;(Ⅱ)若PA=PB,PC=PD,证明:平面APB⊥平面ABCD.EF,因为BC,EF5.(2015•兴国县一模)在长方体ABCD﹣A1B1C1D1中,AA1=AD=2,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长.若不存在,说明理由.平行且等于6.(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M 为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.BAD=,BM=BAD=,(BM=OBM=OBM=(,ABM===,,即PO=,•OM=V=S PO=7.(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.(Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D﹣BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.=,==8.(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.=9.(2014•湖南)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.,,连ADO==所成角的余弦值为10.(2014•江西)如图,三棱柱ABC﹣A1B1C1中,AA1⊥BC,A1B⊥BB1,(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC﹣A1B1C1体积最大,并求此最大值.BC= AO=O==,V==,即h=时棱柱的体积最大,最大值为:11.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.MD=AC12.(2014•开封二模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积..,则的面积,故三棱柱的体积13.(2014•安徽)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H 分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:GH∥EF;(Ⅱ)若EB=2,求四边形GEFH的面积.∴KB=GK=PO,,PO==S==1814.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.PA=3BC=415.(2014•北京)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(Ⅰ)求证:平面ABE⊥B1BCC1;(Ⅱ)求证:C1F∥平面ABE;(Ⅲ)求三棱锥E﹣ABC的体积.,可求三棱锥AB==16.(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.,,a,a,﹣,,﹣(﹣,,﹣,a a=(﹣a的法向量=即=,﹣,﹣的距离a=由此可得,边长为V=Sh=××a=17.(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.的高的.求出,,∴的高的.BCD=.=×.18.(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.=,得的一个法向量为=或19.(2011•扬州模拟)在正方体ABCD﹣A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.(1)若λ=1,求异面直线DE与CD1所成角的余弦值;(2)若平面CDE⊥平面CD1O,求λ的值.为单位正交基底建立如图,以,cos=所成角的余弦值为=0=0E•=020.(2014•北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F 为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.n,即,|=|,所成的角为可设n,∴)PH=21.(2014•西藏一模)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1(Ⅰ)求证:CD=C1D;(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值;(Ⅲ)求点C到平面B1DP的距离.∴∴,的一个法向量为=⇒=∴x=;的一个法向量为<的平面角的余弦值为)∵的一个法向量为⇒,∴d=22.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.的方向向量,根据•,求出向量∴,∵=0)∵=,的法向量,得,则=,所成角的正弦值为)∵===上,设λ===•=2,,,)=,得,则的法向量=23.(2014•湖南)如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(Ⅰ)证明:O1O⊥底面ABCD;(Ⅱ)若∠CBA=60°,求二面角C1﹣OB1﹣D的余弦值.OB=OD=,(=的一个法向量,则,即,则,所以,﹣),>|=||=的余弦值为24.(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.为坐标原点,||为单位长度,轴的正方向,的为坐标原点,的方向为||轴的正方向,),,∴,,=,==,可取,=,﹣,<,=25.(2014•广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD 于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.PD=DF===,又∴EF=CD=,((,,=,∴,∴=,=(,>=26.(2014•广西)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.E=,DF=,arctan27.(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.,,,,,,,﹣)的法向量=的法向量=CDAM,),,∴,(﹣,,﹣的法向量,∴的法向量,==所成的角(锐角)的余弦值为28.(2014•浙江)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.,BFG==BD=BC=,AC=AD=得;AD=,BAE=BG=,BFG=,二面角的大小为.29.(2014•河东区二模)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD 的中点,PA=2AB=2.(Ⅰ)求四棱锥P﹣ABCD的体积V;(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF;(Ⅲ)求二面角E﹣AC﹣D的大小.∴∴∴∴,又∴30.(2014•河北模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).(Ⅰ)求证:CD⊥平面ADD1A1;(Ⅱ)若直线AA1与平面AB1C所成角的正弦值为,求k的值.为原点,,,所成角的正弦值为,建立方程,即可求为原点,,的方向为=,的法向量=,得,。

2015高考数学立体几何

2015高考数学立体几何

1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面4.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+5.【2015高考新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( ) (A )1 (B )2 (C )4 (D )86.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 、 123π+ D 、223π+7.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4+ C.2+ D .58.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1+(B)2 (C)1+(D)9.【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π正(主)视图11俯视图侧(左)视图2110.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π 错误!未找到引用源。

(B )43π错误!未找到引用源。

2015届高考数学 立体几何1(基础及能力训练)

2015届高考数学 立体几何1(基础及能力训练)

2015届高考数学 立体几何1(基础及能力训练)111.在如图所示的空间直角坐标系O ­xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B D .④和②2.一块石材表示的几何体的三视图如右图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .43.几何体的三视图(单位:cm)如图右所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 24.某几何体三视图如右图所示,则该几何体表面积为( )A .54B .60C .66D .725.把边长为2的正方形ABCD 沿对角线BD 折起,连接AC ,得到三棱锥C - ABD ,其正视图、俯视图为全等的等腰直角三角形(如右图所示)其侧视图的面积为( )A.32B.12 C .1 D.226.四面体ABCD 及其三视图如右下图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.7.三棱锥A -BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.8.在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.9.如图①所示,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=13DC,F为EC的中点.现将△DAE沿AE翻折到△P AE的位置,如图②所示,且平面P AE⊥平面ABCE.(1)求证:平面P AF⊥平面PBE;(2)求三棱锥A-PBC与三棱锥E-BPF 体积之比.。

2015高考数学(理)真题分类汇编:专题10 立体几何(Word版含解析)

2015高考数学(理)真题分类汇编:专题10 立体几何(Word版含解析)

专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015届高考数学(理)二轮专题配套练习:立体几何(含答案)

2015届高考数学(理)二轮专题配套练习:立体几何(含答案)

立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.2.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________.3.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上), S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .3πC .2πD .32π4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件.6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|.②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦. ②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离:可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号).找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直.易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 找准失分点 ③是错误的;⑤是错误的.1.已知三条不同直线m ,n ,l 与三个不同平面α,β,γ,有下列命题: ①若m ∥α,n ∥α,则m ∥n ; ②若α∥β,l ⊂α,则l ∥β;③α⊥γ,β⊥γ,则α∥β; ④若m ,n 为异面直线,m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥β. 其中正确命题的个数是( ) A .0 B .1 C .2 D .32.设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .1124.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④5.一个几何体的三视图如图所示,则该几何体的表面积为()A .2+ 2B .3+ 2C .1+2 2D .56.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥AD B .平面P AB ⊥平面PBCC .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 7.对于四面体ABCD ,给出下列四个命题:①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD . 其中正确的是________.(填序号)8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号)10.三棱锥D -ABC 及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD 的长为________.1.43 2.22 3.D 4.相交 5.充分不必要 6.(1)64 (2)24 1.C 2.②③ 3.②④CABCAD 7.①④ 8.π3 9.①④ 10.4 2。

2015-2017立体几何全国卷高考真题

2015-2017立体几何全国卷高考真题

2015-2017立體幾何高考真題1、(2015年1卷6題)《九章算術》是我國古代內容極為豐富の數學名著,書中有如下問題:“今有委米依垣內角,下周八尺,高五尺。

問:積及為米幾何?”其意思為:“在屋內牆角處堆放米(如圖,米堆為一個圓錐の四分之一),米堆為一個圓錐の四分之一),米堆底部の弧長為8尺,米堆の高為5尺,問米堆の體積和堆放の米各為多少?”已知1斛米の體積約為1.62立方尺,圓周率約為3,估算出堆放斛の米約有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】設圓錐底面半徑為r ,則12384r ⨯⨯==163r =,所以米堆の體積為211163()5433⨯⨯⨯⨯=3209,故堆放の米約為3209÷1.62≈22,故選B.考點:圓錐の性質與圓錐の體積公式2、(2015年1卷11題)圓柱被一個平面截去一部分後與半球(半徑為r )組成一個幾何體,該幾何體三視圖中の正視圖和俯視圖如圖所示.若該幾何體の表面積為16 + 20π,則r=( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正視圖和俯視圖知,該幾何體是半球與半個圓柱の組合體,圓柱の半徑與球の半徑都為r ,圓柱の高為2r ,其表面積為22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故選B.考點:簡單幾何體の三視圖;球の表面積公式、圓柱の測面積公式 3、(2015年1卷18題)如圖,四邊形ABCD 為菱形,∠ABC=120°,E ,F 是平面ABCD 同一側の兩點,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)證明:平面AEC ⊥平面AFC ;(Ⅱ)求直線AE 與直線CF 所成角の余弦值. 【解析】 試題分析:(Ⅰ)連接BD ,設BD∩AC=G,連接EG ,FG ,EF ,在菱形ABCD 中,不妨設GB=1易證EG ⊥AC ,通過計算可證EG ⊥FG ,根據線面垂直判定定理可知EG ⊥平面AFC ,由面面垂直判定定理知平面AFC ⊥平面AEC ;(Ⅱ)以G 為座標原點,分別以,GB GC の方向為x 軸,y 軸正方向,||GB 為單位長度,建立空間直角坐標系G-xyz ,利用向量法可求出異面直線AE 與CF 所成角の余弦值. 試題解析:(Ⅰ)連接BD ,設BD∩AC=G,連接EG ,FG ,EF ,在菱形ABCD 中,不妨設GB=1,由∠ABC=120°,可得 由BE ⊥平面ABCD ,AB=BC 可知,AE=EC ,又∵AE ⊥EC ,∴EG ⊥AC ,在Rt △EBG 中,可得DF=2.在Rt △FDG 中,可得在直角梯形BDFE 中,由BD=2,可得 ∴222EG FG EF +=,∴EG ⊥FG ,∵AC∩FG=G,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如圖,以G 為座標原點,分別以,GB GC の方向為x 軸,y 軸正方向,||GB 為單位長度,建立空間直角坐標系G-xyz ,由(Ⅰ)可得A (00),E (,F (-1,0,C (00),∴AE =(1,CF =(-1,).…10分故cos ,3||||AE CF AE CF AE CF ⋅<>==-. 所以直線AE 與CF 考點:空間垂直判定與性質;異面直線所成角の計算;空間想像能力,推理論證能力4、(2015年2卷6題)一個正方體被一個平面截去一部分後,剩餘部分の三視圖如右圖,則截去部分體積與剩餘部分體積の比值為( )A .81 B .71 C .61 D .51 【解析】由三視圖得,在正方體1111ABCD A BC D -中,截去四面體111A A B D -,如圖所示,,設正方體棱長為a ,則11133111326A A B D V a a -=⨯=,故剩餘幾何體體積為3331566a a a -=,所以截去部分體積與剩餘部分體積の比值為51,故選D .考點:三視圖.5、(2015年2卷9題)已知A,B 是球O の球面上兩點,∠AOB=90,C 為該球面上の動點,若三棱錐O-ABC 體積の最大值為36,則球O の表面積為( ) A .36π B .64π C .144π D .256π【解析】如圖所示,當點C 位於垂直於面AOB の直徑端點時,三棱錐O ABC -の體積最大,設球O の半徑為R ,此時2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,則球O の表面積為24144S R ππ==,故選C .考點:外接球表面積和椎體の體積.6、(2015年2卷19題)(本題滿分12分)如圖,長方體1111ABCD A BC D -中,=16AB ,A1=10BC ,18AA =,點E ,F 分別在11A B ,11C D 上,114A E D F ==.過點E ,F の平面α與此長方體の面相交,交線圍成一個正方形.(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由); (Ⅱ)求直線AF 與平面α所成角の正弦值. 【解析】(Ⅰ)交線圍成の正方形EHGF 如圖:(Ⅱ)作EM AB ⊥,垂足為M ,則14AM AE ==,18EM AA ==,因為EHGF 為正方形,所以10EH EF BC ===.於是226MH EH EM =-=,所以10AH =.以D為座標原點,DA の方向為x 軸の正方向,建立如圖所示の空間直角坐標系D xyz -,則(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-.設(,,)n x y z =是平面E H G F の法向量,則0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =.又(10,4,8)AF =-,故45cos ,15n AF n AF n AF⋅<>==⋅.所以直線AF 與平面α所成角の正弦值為45.考點:1、直線和平面平行の性質;2、直線和平面所成の角.7、(2016年1卷6題)如圖,某幾何體の三視圖是三個半徑相等の圓及每個圓中兩條相互垂直の半徑.若該幾何體の體積是283π,則它の表面積是 (A )17π (B )18π (C )20π (D )28πD D CAE FA B CB【解析】試題分析: 該幾何體直觀圖如圖所示:是一個球被切掉左上角の18,設球の半徑為R ,則37428V R 833ππ=⨯=,解得R 2=,所以它の表面積是78の球面面積和三個扇形面積之和2271=42+32=1784S πππ⨯⨯⨯⨯故選A .考點:三視圖及球の表面積與體積8、(2016年1卷11題)平面α過正方體ABCD -A 1B 1C 1D 1の頂點A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,則m 、n 所成角の正弦值為(B (D)13試題分析:如圖,設平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因為//α平面11CB D ,所以//',//'m m n n ,則,m n 所成の角等於','m n 所成の角.延長AD ,過1D 作11//DE B C ,連接11,CE B D ,則CE 為'm ,同理11BF 為'n ,而111//,//BD CE B F A B ,則','m n 所成の角即為1,A B BD 所成の角,即為60︒,故,m n ,選A. 考點:平面の截面問題,面面平行の性質定理,異面直線所成の角.【名師點睛】求解本題の關鍵是作出異面直線所成角,求異面直線所成角の步驟是:平移定角、連線成形,解形求角、得鈍求補.9、(2016年1卷18題)如圖,在以A ,B ,C ,D ,E ,F 為頂點の五面體中,面ABEF 為正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 與二面角C -BE -F 都是60.(I )證明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A の余弦值.試題解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )過D 作DG F ⊥E ,垂足為G ,由(I )知DG ⊥平面F ABE .以G 為座標原點,GF の方向為x 軸正方向,GF 為單位長度,建立如圖所示の空間直角坐標系G xyz -.由(I )知DF ∠E 為二面角D F -A -E の平面角,故DF 60∠E =,則DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 為二面角C F -BE -の平面角,C F 60∠E =.從而可得(C -.所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 設(),,n x y z =是平面C B E の法向量,則C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧+=⎪⎨=⎪⎩, CABDEF所以可取(3,0,n =.設m 是平面CD AB の法向量,則C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.則219cos ,n m n m n m ⋅==- 故二面角C E -B -A の余弦值為考點:垂直問題の證明及空間向量の應用【名師點睛】立體幾何解答題第一問通常考查線面位置關係の證明,空間中線面位置關係の證明主要包括線線、線面、面面三者の平行與垂直關係,其中推理論證の關鍵是結合空間想像能力進行推理,要防止步驟不完整或考慮不全致推理片面,該類題目難度不大,以中檔題為主.第二問一般考查角度問題,多用空間向量解決.10、(2016年2卷6題)右圖是由圓柱與圓錐組合而成の幾何體の三視圖,則該幾何體の表面積為(A )20π (B )24π (C )28π (D )32π 解析:幾何體是圓錐與圓柱の組合體,設圓柱底面圓半徑為,周長為,圓錐母線長為,圓柱高為. 由圖得,,由畢氏定理得:,,故選C .11、(2016年2卷14題)α,β是兩個平面,m ,n 是兩條線,有下列四個命題:①如果m n ⊥,m α⊥,n β∥,那麼αβ⊥. ②如果m α⊥,n α∥,那麼m n ⊥. ③如果a β∥,m α⊂,那麼m β∥.④如果m n ∥,αβ∥,那麼m 與α所成の角和n 與β所成の角相等.r c l h2r =2π4πc r ==4l =21π2S r ch cl =++表4π16π8π=++28π=其中正確の命題有 .(填寫所有正確命題の編號) 【解析】②③④12(2016年2卷19題)(本小題滿分12分)如圖,菱形ABCD の對角線AC 與BD 交於點O ,5AB =,6AC =,點E ,F 分別在AD ,CD 上,54AE CF ==,EF 交BD 於點H .將△DEF 沿EF 折到△D EF 'の位置OD '=(I )證明:DH'⊥平面ABCD ; (II )求二面角B D A C '--の正弦值.【解析】⑴證明:∵,∴,∴. ∵四邊形為菱形,∴,∴,∴,∴.∵,∴;又,, ∴,∴,∴,∴, ∴.又∵,∴面.⑵建立如圖坐標系.,,,, ,,, 設面法向量,由得,取, ∴.同理可得面の法向量, 54AE CF ==AE CFAD CD=EF AC ∥ABCD AC BD ⊥EF BD ⊥EF D H ⊥EF DH'⊥6AC =3AO =5AB =AO OB ⊥4OB =1AE OH OD AO=⋅=3DH D H '==222'OD OH D H '=+'D H OH ⊥OH EF H =I 'D H ⊥ABCD H xyz -()500B ,,()130C ,,()'003D ,,()130A -,,()430AB =u u u r ,,()'133AD =-u u u r ,,()060AC =u u u r ,,'ABD ()1n x y z =,,u r1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩430330x y x y z +=⎧⎨-++=⎩345x y z =⎧⎪=-⎨⎪=⎩()1345n =-u r ,,'AD C ()2301n =u u r,,∴,∴.13、(2016年3卷9題)如圖,網格紙上小正方形の邊長為1,粗實現畫出の是某多面體の三視圖,則該多面體の表面積為( )(A)18+ (B)54+ (C )90 (D )81 【答案】B考點:空間幾何體の三視圖及表面積.【技巧點撥】求解多面體の表面積及體積問題,關鍵是找到其中の特徵圖形,如棱柱中の矩形,棱錐中の直角三角形,棱臺中の直角梯形等,通過這些圖形,找到幾何元素間の關係,建立未知量與已知量間の關係,進行求解. 14、(2016年3卷10題)在封閉の直三棱柱111ABC A B C -內有一個體積為V の球,若AB BC ⊥,6AB =,8BC =,13AA =,則V の最大值是( ) (A )4π (B )92π(C )6π (D )323π【答案】B試題分析:要使球の體積V 最大,必須球の半徑R 最大.由題意知球の與直三棱柱の上下底面都相切時,球の半徑取得最大值32,此時球の體積為334439()3322R πππ==,故選B .考點:1、三棱柱の內切球;2、球の體積.【思維拓展】立體幾何是の最值問題通常有三種思考方向:(1)根據幾何體の結構特徵,變1212cos n n n n θ⋅=u r u u r u r u ur sin θ=動態為靜態,直觀判斷在什麼情況下取得最值;(2)將幾何體平面化,如利用展開圖,在平面幾何圖中直觀求解;(3)建立函數,通過求函數の最值來求解. 15、(2016年3卷19題)(本小題滿分12分) 如圖,四棱錐P ABC -中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 為線段AD 上一點,2AM MD =,N 為PC の中點.(I )證明MN平面PAB ;(II )求直線AN 與平面PMN 所成角の正弦值.【答案】(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)取PB の中點T ,然後結合條件中の數據證明四邊形AMNT 為平行四邊形,從而得到MNAT ,由此結合線面平行の判斷定理可證;(Ⅱ)以A 為座標原點,以,AD AP 所在直線分別為,y z 軸建立空間直角坐標系,然後通過求直線AN の方向向量與平面PMN 法向量の夾角來處理AN 與平面PMN 所成角.試題解析:(Ⅰ)由已知得232==AD AM ,取BP の中點T ,連接TN AT ,,由N 為PC中點知BC TN //,221==BC TN .又BC AD //,故TN AM,四邊形AMNT 為平行四邊形,於是AT MN //.因為⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB.設(,,)n x y z =為平面PMN の法向量,則⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,於是||85|cos ,|||||n AN n AN n AN ⋅<>==.考點:1、空間直線與平面間の平行與垂直關係;2、棱錐の體積. 【技巧點撥】(1)證明立體幾何中の平行關係,常常是通過線線平行來實現,而線線平行常常利用三角形の中位線、平行四邊形與梯形の平行關係來推證;(2)求解空間中の角和距離常常可通過建立空間直角坐標系,利用空間向量中の夾角與距離來處理. 16、(2017年1卷7題)某多面體の三視圖如圖所示,其中正視圖和左視圖都由正方形和等腰直角三角形組成,正方形の邊長為2,俯視圖為等腰直角三角形、該多面體の各個面中有若干是梯形,這些梯形の面積之和為A .10B .12C .14D .16【答案】B【解析】由三視圖可畫出立體圖該立體圖平面內只有兩個相同の梯形の面()24226S =+⨯÷=梯6212S =⨯=全梯故選B17、(2017年1卷16題)如圖,圓形紙片の圓心為O ,半徑為5cm ,該紙片上の等邊三角形ABC の中心為O ,D 、E 、F 為元O 上の點,DBC △,ECA △,FAB △分別是一BC ,CA ,AB 為底邊の等腰三角形,沿虛線剪開後,分別以BC ,CA ,AB 為折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱錐.當ABC △の邊長變化時,所得三棱錐體積(單位:3cm )の最大值為_______.【答案】【解析】由題,連接OD ,交BC 與點G ,由題,OD BC ⊥OG =,即OG の長度與BC の長度或成正比設OG x =,則BC =,5DG x =-三棱錐の高h2132ABC S x =⋅=△則213ABC V S h =⋅=△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-令()0f x '>,即4320x x -<,2x <則()()280f x f =≤ 則38045V ⨯=≤∴體積最大值為3415cm18、(2017年1卷18題)如圖,在四棱錐P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)證明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --の余弦值. 【解析】(1)證明:∵90BAP CD P ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD(2)取AD 中點O ,BC 中點E ,連接PO ,OE ∵AB CD∴四邊形ABCD 為平行四邊形 ∴OE AB由(1)知,AB ⊥平面PAD∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ∴OE PO ⊥,OE AD ⊥ 又∵PA PD =,∴PO AD ⊥ ∴PO 、OE 、AD 兩兩垂直∴以O 為座標原點,建立如圖所示の空間直角坐標系O xyz -設2PA =,∴()002D -,,、()220B ,,、()002P ,,、()202C -,,, ∴()022PD =--,,、()222PB =-,,、()2200BC =-,,設()n x y z =,,為平面PBC の法向量由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得20y +=-=⎪⎩ 令1y =,則z =,0x =,可得平面PBCの一個法向量(01n =, ∵90APD ∠=︒,∴PD PA ⊥又知AB ⊥平面PAD ,PD ⊂平面PAD ∴PD AB ⊥,又PA AB A = ∴PD ⊥平面PAB即PD 是平面PABの一個法向量,(0PD =,,∴cos 23PD n PD n PD n⋅===⋅, 由圖知二面角A PB C --為鈍角,所以它の余弦值為19、(2017年2卷4題)如圖,網格紙上小正方形の邊長為1,學 科&網粗實線畫出の是某幾何體の三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體の體積為( ) 【解析】 A .90π B .63π C .42π D .36π【解析】【命題意圖】本題主要考查簡單幾何體三視圖及體積,以考查考生の空間想像能力為主目の. 【解析】 【解析】解法一:常規解法【解析】從三視圖可知:一個圓柱被一截面截取一部分而剩餘の部分,具體圖像如下:【解析】從上圖可以清晰の可出剩餘幾何體形狀,該幾何體の體積分成兩部分,部分圖如下:從左圖可知:剩下の體積分上下兩部分陰影の體積,下麵陰影の體積為面部分體積即第二種體積求法:V 20、(2017年2卷10題)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,則異面直線1AB 與1C B 所成角の余弦值為( )A B C D 【命題意圖】本題考查立體幾何中の異面直線角度の求解,意在考查考生の空間想像能力 【解析】解法一:常規解法在邊F 由三角形中位線定理和平行線平移功能,異面直線 通過幾何關係求得FH 21、(2017年2卷19題) 如圖,四棱錐P -ABCD 中,側面PAD 為等比三角形且垂直於底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD の中點. (1)證明:直線//CE 平面PAB (2)點M 在棱PC 上,且直線BM 與底面ABCD 所成銳角為o45 ,求二面角M -AB -D の余弦值【命題意圖】線面平行の判定,線面垂直の判定,面面垂直の性質,線面角、二面角の求解 【標準答案】(1)證明略;(2【基本解法1】(1)證明:取PA 中點為F ,連接EF 、AF 因為90BAD ABC ∠=∠=︒,12BC AD =所以BC 12AD 因為E 是PD の中點,所以EF12AD ,所以EF BC 所以四邊形EFBC 為平行四邊形,所以//EC BF 因為BF ⊂平面PAB ,EC ⊄平面PAB 所以直線//CE 平面PAB(2)取AD 中點為O ,連接OC OP 、因為△PAD 為等邊三角形,所以PO ⊥AD因為平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD 所以PO ⊥平面ABCD因為AO BC ,所以四邊形OABC 為平行四邊形,所以//AB OC 所以OC AD ⊥以,,OC OD OP 分別為,,x y z 軸建立空間直角坐標系,如圖設1BC =,則(0,0,3),(0,1,0),(1,1,0),(1,0,0)P A B C --,所以(1,0,PC = 設(,,)M x y z ,則(,,3)PM x y z =-,(1,0,0)AB =因為點M 在棱PC 上,所以(01)PM PC λλ=≤≤,即(,,(1,0,x y z λ= 所以()M λ,所以(1,1)BM λ=- 平面ABCD の法向量為(0,0,1)n = 因為直線BM 與底面ABCD 所成角為45︒, 所以|||sin 45||cos ,|2||||(BM n BM n BM n λ⋅︒=<>===解得12λ=-()22BM =-- 設平面MAB の法向量為(,,)m x y z =,則020AB m x BM m x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩令1z =,則(0,m =所以cos ,5||||6m n m n <>==⋅ 所以求二面角M AB D --の余弦值522、(2017年3卷8題)已知圓柱の高為1,它の兩個底面の圓周在直徑為2の同一個球の球面上,則該圓柱の體積為()A .πB .3π4C.π2 D .π4【答案】B【解析】由題可知球心在圓柱體中心,圓柱體上下底面圓半徑r =,則圓柱體體積23ππ4V r h ==,故選B.23、(2017年3卷16題)為空間中兩條互相垂直の直線,等腰直角三角形ABC の直角邊AC 所在直線與,都垂直,斜邊AB 以直線AC 為旋轉軸旋轉,有下列結論:①當直線AB 與成60︒角時,AB 與成30︒角; ②當直線AB 與成60︒角時,AB 與成60︒角; ③直線AB 與所成角の最小值為45︒; ④直線AB 與所成角の最大值為60︒.其中正確の是________(填寫所有正確結論の編號) 【答案】②③【解析】由題意知,a b AC 、、三條直線兩兩相互垂直,畫出圖形如圖.不妨設圖中所示正方體邊長為1, 故||1AC =,AB =斜邊AB 以直線AC 為旋轉軸旋轉,則A 點保持不變, B 點の運動軌跡是以C 為圓心,1為半徑の圓.以C 為座標原點,以CD 為軸正方向,CB 為軸正方向, CA 為軸正方向建立空間直角坐標系. 則(1,0,0)D ,(0,0,1)A ,直線の方向單位向量(0,1,0)a =,||1a =. B 點起始座標為(0,1,0),直線の方向單位向量(1,0,0)b =,||1b =. 設B 點在運動過程中の座標(cos ,sin ,0)B θθ',其中為B C '與CD の夾角,[0,2π)θ∈.那麼'AB 在運動過程中の向量(cos ,sin ,1)AB θθ'=--,||2AB '=.設AB '與所成夾角為π[0,]2α∈,則(cos ,sin ,1)(0,1,0)cos sin |a AB θθαθ--⋅=∈'. 故ππ[,]42α∈,所以③正確,④錯誤.設AB '與所成夾角為π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)cos |AB bb AB b AB βθθθ'⋅='-⋅='.當AB '與夾角為60︒時,即π3α=, sin3πθα====.∵22cos sin 1θθ+=,∴|cos |θ=∴1cos |cos |2βθ==. ∵π[0,]2β∈.∴π=3β,此時AB '與夾角為60︒.∴②正確,①錯誤.24、(2017年3卷19題)如圖,四面體ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ∠=∠,AB BD =.(1)證明:平面ACD ^平面ABC ;(2)過AC の平面交BD 於點E ,若平面AEC 把四面體ABCD 分成體積相等の兩部分.求二面角D AE C --の余弦值.【解析】⑴取AC 中點為O ,連接BO ,DO ; ABC ∆為等邊三角形 ∴BO AC ⊥∴AB BC = AB BCBD BDABD DBC=⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. DA B CED BC EO∴AD CD =,即ACD ∆為等腰直角三角形,ADC ∠ 為直角又O 為底邊AC 中點∴DO AC ⊥令AB a =,則A B A C B C B D a ====易得:O D a =,OB =∴222OD OB BD +=由畢氏定理の逆定理可得2DOB π∠=即OD OB ⊥OD AC OD OBAC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直の判定定理可得ADC ABC ⊥平面平面 ⑵由題意可知V V D ACE B ACE --=即B ,D 到平面ACE の距離相等即E 為BD 中點以O 為原點,OA 為軸正方向,OB 為軸正方向,OD 為軸正方向,設AC a =,建立空間直角坐標系,則()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 設平面AED の法向量為1n ,平面AEC の法向量為2n ,則1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得(13,1,n =2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得(20,1,n = 若二面角D AE C --為,易知為銳角,則12127cos n n n n θ⋅==⋅主要考點:1、能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等の簡易組合)の三視圖,能識 別上述三視圖所表示の立體模型,會用斜二側法畫出它們の直觀圖 .2、瞭解球、棱柱、棱錐、臺の表面積和體積の計算公式 .3、能運用公理、定理和已獲得の結論證明一些空間圖形の位置關係の簡單命題4、掌握空間向量の線性運算及其座標表示.5、掌握空間向量の數量積及其座標表示,能運用向量の數量積判斷向量の共線與垂直.6、理解直線の方向向量與平面の法向量.7、能用向量方法解決直線與直線、直線與平面、平面與平面の夾角の計算問題,瞭解向量方法在研究立體幾何問題中の應用.。

2015年高考数学《新高考创新题型》之7:立体几何(含精析)

2015年高考数学《新高考创新题型》之7:立体几何(含精析)

2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。

1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。

2015年全国各地高考数学试题及解答分类大全(立体几何 )

2015年全国各地高考数学试题及解答分类大全(立体几何 )

2015 年全国各地高考数学试题及解答分类大全(立体几何 )一、选择题:1.(2015安徽文、理)一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )222.(2015安徽理)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面3、(2015北京文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.2 C.3 D.2【答案】C【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,222223SA SC AC SC AB BC=+=++=考点:三视图.4. (2015北京理)某三棱锥的三视图如图所示,则该三棱锥的表面积是()11俯视图侧(左)视图21A.25+ B.45 C.225+.5 【答案】C【解析】试题分析:根据三视图恢复成三棱锥P-ABC ,其中PC ⊥平面ABC ,取AB 棱的中点D ,连接CD 、PD ,有,PD AB CD AB ⊥⊥,底面ABC 为等腰三角形底边AB 上的高CD 为2,AD=BD=1,PC=1,5,ABC PD S ∆=1222,2=⨯⨯=,12552PAB S ∆=⨯⨯=AC BC =5=1512PAC PBC S S ∆∆==⨯⨯52=,三棱锥表面积表252S =+.考点:1.三视图;2.三棱锥的表面积.5.(2015福建文)某几何体的三视图如图所示,则该几何体的表面积等于( )A .822+B .1122+.1422+.151112【答案】B【解析】学科网试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为12.底面积为12332⨯⨯=,侧面积为则其表面积为2+2+4+22=8+221122+B .考点:三视图和表面积.6. (2015广东文) 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A考点:空间点、线、面的位置关系.7.(2015广东理)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.大于5 B. 等于5 C. 至多等于4 D. 至多等于3【答案】C.【考点定位】本题考查空间想象能力、推理能力,属于中高档题.8. (2015湖南理)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89πB.169πC.34(21)π-D.312(21)π-【答案】A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.9、(2015湖南文)某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A、89πB、827πC、224(21)π-D、28(21)π-【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体10、(2015全国新课标Ⅰ卷文、理)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)14斛(B)22斛(C)36斛(D)66斛11、(2015全国新课标Ⅰ卷文、理)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,+,则r=( ) 该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π(A )1 (B )2 (C )4 (D )812. (2015全国新课标Ⅱ卷文、理)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 114. (2015全国新课标Ⅱ卷文、理)已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.BOAC16. (2015山东文) 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )()22π()42π【答案】B考点:1.旋转体的几何特征;2.几何体的体积.17.(2015山东理)在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π 【答案】C【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.18. (2015陕西文、理)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D 【解析】试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D 考点:1.空间几何体的三视图;2.空间几何体的表面积.20、(2015浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm 【答案】C考点:1.三视图;2.空间几何体的体积.21、(2015浙江文)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.考点:直线、平面的位置关系.23. (2015浙江理)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤24.(2015重庆文)某几何体的三视图如图所示,则该几何体的体积为()(A)123π+(B)136π(C)73π(D)52π【答案】B【解析】试题分析:由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1;构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯;故选B.考点:三视图.25.(2015重庆理)某几何体的三视图如图所示,则该几何体的体积为()A、13π+ B、23π+C、123π+ D、223π+【答案】A【考点定位】组合体的体积.【名师点晴】本题涉及到三视图的认知,要求学生能由三视图画出几何体的直观图,从而分析出它是哪些基本几何体的组合,应用相应的体积公式求出几何体的体积,关键是画出直观图,本题考查了学生的空间想象能力和运算求解能力.二、填空题:1. (2015江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2015届高考数学一轮专项测试:立体几何

2015届高考数学一轮专项测试:立体几何

一.基础题组1.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则该棱柱的体积为( )A.B.C.D .62.某几何体的三视图如图所示,其中正(主)视图与侧(左) 视图的边界均为直角三角形,俯视图的边界为直角梯形, 则该几何体的体积是 A.13 B. 12C. 1D. 3【答案】C 【解析】试题分析:由三视图可知该几何体是一个四棱锥,根据“正侧等高,正俯等长,侧俯等宽”的侧视图规则,其体积为11(12)21 1.32V =⨯+⨯⨯= 考点:三视图和几何体的体积.3.(1)中的网格纸是边长为1的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为( )A.4B.8C.16D.20图(1)侧视图正视图俯视图4.一个几何体的三视图如下图所示,则该几何体的体积是( )A.108B.180C.72D.144第7题图俯视图侧(左)视图正(主)视图6633333333二.能力题组1.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是中心角为60︒的扇形,则该几何体的体积为( ) A .3πB .23πC .πD .2π2.某几何体的三视图(如图3所示)均为边长为2的等腰直角三角形,则该几何体的表面积是( )A.4+B.C.4D.8+图1三.拔高题组1.如图所示,圆柱的高为2,AE 、DF 是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC , 四边形ABCD 是正方形. (Ⅰ)求证BC BE ; (Ⅱ)求四棱锥E-ABCD 的体积.图3正视图 侧视图考点:1.棱柱、棱锥、棱台的体积;2.空间中直线与直线之间的垂直关系.2.如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、PF ,其中PF =.(Ⅰ) 求证:PF ⊥平面ABED ;(Ⅱ) 在线段PA 上是否存在点Q 使得//FQ 平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(Ⅲ) 求点A 到平面PBE 的距离.(Ⅱ) 当Q 为PA 的三等分点(靠近P )时,//FQ 平面PBE .证明如下: 因为23AQ AP =,23AF AB =,所以//FQ BP ,又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以//FQ 平面PBE .. .CDBEF图5图6ABCD PEF3.已知长方体1111ABCD A B C D -,点1O 为11B D 的中点. (1)求证:1//AB 面11AO D ; (2)若123AB AA =,试问在线段1BB 上是否存在点E 使得1A C ⊥AE ,若存在求出1BEBB ,若不存在,说明理由.1A在AMB ∆和ABE ∆中有:90,90BAM ABM BAM BEA ∠+∠=︒∠+∠=︒ABM BEA ∴∠=∠同理:1BAE AA B ∠=∠1Rt Rt ABEA AB ∴∆∆,1BE ABAB AA ∴=123AB AA =4.如图6,在三棱锥P ABC -中,PA AC ⊥,PC BC ⊥,M 为PB 的中点,D 为AB 的中点,且AMB ∆为正三角形. (1)求证:⊥BC 平面PAC ;(2)若4BC =,10PB =,求点B 到平面DCM 的距离.B CDM -的高,即点B 到平面CDM 的距离;解法二是作BH CD ⊥或其延长线于点H ,然后证明BH ⊥平面CDM ,从而得到BH 的长度为点B 到平面CDM 的距离,进而计算BH的长度即可.因为MCD B BCD M V V --=,所以h S MD S MCD BCD ⋅=⋅∆∆3131,即11333h ⨯=,所以512=h . 故点B 到平面DCM 的距离为512.5.如图(5),已知A 、B 、C 为不在同一直线上的三点,且111////AA BB CC ,111AA BB CC ==.(1)求证:平面ABC //平面111A B C ;(2)若1AA ⊥平面ABC ,且14AC AA ==,3BC =,5AB =,求证:1A C ⊥平面11AB C ;(3)在(2)的条件下,设点P 为1CC 上的动点,求当1PA PB +取得最小值时PC 的长.【答案】(1)详见解析;(2)详见解析;(3)167.6.如下图,在三棱柱111ABC A B C -中,四边形11A ABB 为菱形,1A AB ∠=45,四边形11BCC B 为矩形,若=5AC ,4AB =,3BC =.(1)求证://BC 平面111C B A ; (2)求证:1AB ⊥面1A BC ; (3)求三棱锥111C B A C -的体积.【答案】(1)详见解析;(2)详见解析;(3)【解析】试题分析:(1)由四边形11BCC B 为矩形得到11//BC B C ,再结合直线与平面平行的判定定理即可证明//BC 平面111A B C ;(2)先证CB ⊥平面11AA B B ,进而得到1AB CB ⊥,再由四边(第18题图)BCA1A 1B 1C形11AA B B 为菱形得到1AB ⊥1A B ,最后结合直线与平面垂直的判定定理证明1AB ⊥平面1A BC ;(3)由//BC 平面111A B C ,从而将三棱锥111C A B C -的高转化为点B 到平面111A B C 的距离,计算出高后再利用锥体体积的计算公式计算三棱锥111C A B C -的体积.(3)解:过B 作11BD A B ⊥于D ,由第(1)问已证CB ⊥面11AA B B ,11C B ∴⊥面11AA B B ,11C B BD ∴⊥,BD ∴⊥平面11AA B B ,由题设知BD =,11111111111433232C A B C V A B B C BD -=⨯⋅⋅=⨯⨯⨯⨯=,∴三棱锥111C A B C -的体积是考点:1.直线与平面平行;2.直线与平面垂直;3.三棱锥的体积的计算。

2015年高考真题 理科数学立体几何 专项突破 附答案解析

2015年高考真题 理科数学立体几何 专项突破 附答案解析

2015年全国数学高考试题——立体几何专项突破(理科部分)1.【2015高考新课标2,理19】(本题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)4515.【解析】(1)交线围成的正方形EFGH 如图:(2)作AB EM⊥,垂足为M ,则41==E A AM ,81==AA EM ,∵四边形EFGH 为正方形,∴10===BC EF EH。

∴622=-=EM EH MH ∴AH =10.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示空间直角坐标系xyz D -,则()0010,,A ,()01010,,H ,()8410,,E ,()840,,F ,()0010,,FE =,()860,,HE -=设()z ,y ,x n =是平面EHGF 的法向量,则⎩⎨⎧=∙=∙00HE n FE n 即⎩⎨⎧=+-=086010z y x DDC 1A 1EF A B C B 1∴可取()340,,n =,又()8410,,AF -=∴1554=∙∙==AF n AFn AF ,n cos sin θ∴直线AF 与平面α所成角的正弦值为15154。

【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.【名师点睛】根据线面平行和面面平行的性质画平面α与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面α的法向量,利用sin cos ,n AF θ=<> 求直线AF 与平面α所成角的正弦值.2.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.【答案】(1)详见解析(2)详见解析【解题分析】(1)由三棱锥性质知侧面C C BB 11为平行四边形,因此点E 为C B 1的中点,从而由三角形中位线性质得AC //DE ,由线面平行判定定理得DE //平面C C AA 11。

2015年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2015年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2015 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题:1.(2015安徽文、理)一个四面体的三视图如图所示,则该四面体的表面积是()(A)1(B)1+(C)2(D)2.(2015安徽理)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()(A)若α,β垂直于同一平面,则α与β平行(B)若m,n平行于同一平面,则m与n平行(C)若α,β不平行,则在α内不存在与β平行的直线(D)若m,n不平行,则m与n不可能垂直于同一平面3、(2015北京文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.2【答案】C【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA==考点:三视图.4. (2015北京理)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )俯视图侧(左)视图A .2+ B.4.2+.5【答案】C 【解析】试题分析:根据三视图恢复成三棱锥P-ABC ,其中PC ⊥平面ABC ,取AB 棱的中点D ,连接CD 、PD ,有,PD AB CD AB ⊥⊥,底面ABC 为等腰三角形底边AB 上的高CD 为2,AD=BD=1,PC=1,ABC PD S ∆=1222,2=⨯⨯=,122PAB S ∆=⨯⨯=AC BC==112PAC PBC S S ∆∆==⨯⨯2=,三棱锥表面积表2S =+. 考点:1.三视图;2.三棱锥的表面积.5.(2015福建文)某几何体的三视图如图所示,则该几何体的表面积等于( )A.8+.11+.14+.151112【答案】B【解析】学科网试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为112332⨯⨯=,侧面积为则其表面积为11+B .考点:三视图和表面积.6. (2015广东文) 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A考点:空间点、线、面的位置关系.7.(2015广东理)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 【答案】C .【考点定位】本题考查空间想象能力、推理能力,属于中高档题.8. (2015湖南理)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.【答案】A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.9、(2015湖南文)某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A 、89πB 、827πC 、21)πD 、21)π【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体10、(2015全国新课标Ⅰ卷文、理)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)14斛(B)22斛(C)36斛(D)66斛11、(2015全国新课标Ⅰ卷文、理)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812. (2015全国新课标Ⅱ卷文、理)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 114. (2015全国新课标Ⅱ卷文、理)已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.BOAC16.(2015山东文) 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B)()()【答案】B考点:1.旋转体的几何特征;2.几何体的体积.17.(2015山东理)在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π 【答案】C【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.18. (2015陕西文、理)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D 【解析】试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D 考点:1.空间几何体的三视图;2.空间几何体的表面积.20、(2015浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm 【答案】C考点:1.三视图;2.空间几何体的体积.21、(2015浙江文)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.考点:直线、平面的位置关系.23. (2015浙江理)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤24. (2015重庆文)某几何体的三视图如图所示,则该几何体的体积为( )(A)123π+ (B) 136π (C) 73π (D) 52π【答案】B 【解析】试题分析:由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1;构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯; 故选B.考点:三视图.25.(2015重庆理)某几何体的三视图如图所示,则该几何体的体积为( )A 、13π+ B 、23π+C 、 123π+D 、223π+ 【答案】A【考点定位】组合体的体积.【名师点晴】本题涉及到三视图的认知,要求学生能由三视图画出几何体的直观图,从而分析出它是哪些基本几何体的组合,应用相应的体积公式求出几何体的体积,关键是画出直观图,本题考查了学生的空间想象能力和运算求解能力.二、填空题:1. (2015江苏) 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2015年高考数学立体几何专题试卷(新课标)

2015年高考数学立体几何专题试卷(新课标)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2015年高考数学立体几何专题试卷(新课标)1.(本小题满分12分)如图,四棱锥P ABCD -中,PAB ∆是正三角形,四边形ABCD 是矩形,且平面PAB ⊥平面ABCD ,2PA =,4PC =.(Ⅰ)若点E 是PC 的中点,求证://PA 平面BDE ;(Ⅱ)若点F 在线段PA 上,且FA PA λ=,当三棱锥B AFD -的体积为43时,求实数λ的值.【答案】(Ⅰ)证明见解析;(Ⅱ).32 【解析】试题分析:(Ⅰ)将证明线面平行转化为线线平行,通过做辅助线可证明出EQ //PA ,线面平行的判定定理可证出//PA 平面BDE ;(Ⅱ)如图所示作辅助线,通过题意可先分3431=⋅⋅==∆--FM S V V ABD ABD F AFD B 将问题转化为求BC ,由面面垂直的性质定理得PO ⊥平面ABCD ,进而FM ⊥平面ABCD ,得到BC ⊥平面PAB ,故2223BC PC PB =-=,进而确定332=FM ,再由2323====33FM FA PO PA λλλ⇒⇒ 试题解析:(Ⅰ)如图,连接AC ,设ACBD Q =,又点E 是PC 的中点,则在PAC ∆中,中位线EQ //PA , 3分又EQ ⊂平面BDE ,PA ⊄平面BDE .试卷第2页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以//PA 平面BDE 5分(Ⅱ)依据题意可得:2PA AB PB ===,取AB 中点O ,所以PO AB ⊥,且3PO =又平面PAB ⊥平面ABCD ,则PO ⊥平面ABCD ; 6分作//FM PO 于AB 上一点M ,则FM ⊥平面ABCD , 因为四边形ABCD 是矩形,所以BC ⊥平面PAB ,则PBC ∆为直角三角形8分所以2223BC PC PB =-=,则直角三角形ABP ∆的面积为1=232ABP S AB AD ∆⋅=412323==3333B AFD F ABD ABD V V S FM FM FM --∆==⋅=⇒ 10分由//FM PO 得:2323====33FM FA PO PA λλλ⇒⇒ 12分考点:1、线面平行问题与线线平行问题的互化;2、面面垂直与线面垂直问题的互化;3、综合分析能力.2.(本小题满分12分)如图几何体中,四边形ABCD 为矩形,36,2,AB BC BF CF DE EF ======4,//EF AB ,G 为FC 的中点,M 为线段CD上的一点,且2CM =.(Ⅰ)证明:AF//面BDG ;(Ⅱ)证明:面BGM ⊥面BFC ; (Ⅲ)求三棱锥F BMC -的体积V.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】(Ⅰ)(Ⅱ)证明见解析;(Ⅲ)三棱锥F BMC -的体积为322. 【解析】 试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键. (3)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(Ⅰ)连接AC 交BD 于O 点,则O 为AC 的中点,连接OG ,因为点G 为CF 中点,所以OG 为AFC ∆的中位线,所以//OG AF , 2分 AF ⊄面BDG , OG ⊂面BDG , ∴//AF 面BDG 5分(Ⅱ)连接FM ,2BF CF BC ===,G 为CF 的中点, BG CF ∴⊥,2CM =,4DM ∴=,//EF AB ,ABCD 为矩形, 7分//EF DM ∴,又4EF =,EFMD ∴为平行四边形, 8分 2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥, MG BG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC . 10分(Ⅲ)11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯,因为3GM BG ==,22BM =,所以122122BMG S =⨯⨯=,所以22233F BMC BMC V S -=⨯=. 12分 考点:(1)线面平行的判定;(2)面面垂直;(3)几何体的体积3.(本小题满分12分)如图,AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,四边形ABCD 为矩形,且1,2==AD AB ,平面ABCD ⊥平面ABE .(1)求证:BE ⊥平面DAE .CABDE FGMO试卷第4页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)当点E 在AB 的什么位置时,四棱锥ABCD E -的体积为33. 【答案】(1)详见解析 (2)点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33. 【解析】试题分析:第(1)问先证明线线垂直,再证明线面垂直;第(2)问探求点E 在»AB 的什么位置时,四棱锥E ABCD -的体积为33,从研究BAE α∠=的大小着手思考,通过体积建立关系求出α的大小. 试题解析:(1)因为四边形ABCD 为矩形,所以DA AB ⊥, 又平面ABCD ⊥平面ABE ,且平面ABCD I 平面ABE AB =, 所以DA ⊥平面ABE ,而BE ⊆平面ABE ,所以DA ⊥BE .又因为AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,所以AE BE ⊥. 因为DA AE A =I ,所以BE ⊥平面DAE .(2)因为平面ABCD ⊥平面ABE ,过点E 作EH AB ⊥交AB 于点H ,则EH ⊥平面ABCD .在Rt BAE △中,记BAE α∠=(02πα<<),因为2AB =,所以2cos AE α=,sin 2cos sin sin 2HE AE αααα=⋅==,所以11221sin 2sin 2333E ABCD ABCD V S HE αα-=⨯=⨯⨯⨯=.由已知33E ABCD V -=,所以23sin 233α=,即3sin 22α=. 因为02πα<<,所以23πα=,即6πα=;或223πα=,即3πα=.于是点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………考点:立体几何中的线面关系和四棱锥体积. 4.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 是正方形,⊥SA 底面ABCD ,AB SA =,点M 是SD 的中点,SC AN ⊥且交SC 于点N .(Ⅰ)求证:平面⊥SAC 平面AMN ; (Ⅱ)求二面角M AC D --的余弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)33. 【解析】试题分析:方法1:(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴又底面ABCD 是正方形,DA DC ⊥∴ ⊥∴DC 平面SAD , AM DC ⊥∴ 又AD SA = ,M 是SD 的中点,SD AM ⊥∴,⊥∴AM 面SDC AM SC ⊥∴ ,然后再根据线面垂直的判定定理,即可得出结果.(Ⅱ)取AD 的中点F ,则SA MF //.作AC FQ ⊥于Q ,连结MQ .⊥SA 底面A B C D , ⊥∴MF 底面A B C D AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角,解三角形即可求出结果.解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,利用空间向量在立体几何中的应用,即可求出结果.试题解析:证明(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴ 又底面ABCD 是正方形,DA DC ⊥∴⊥∴DC 平面SAD , AM DC ⊥∴又AD SA = ,M 是SD 的中点,SD AM ⊥∴, ⊥∴AM 面SDC AM SC ⊥∴试卷第6页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………由已知SC AN ⊥, ⊥∴SC 平面AMN . 又⊂SC 面SAC ,∴面⊥SAC 面AMN 6分 (Ⅱ)取AD 的中点F ,则SA MF //. 作AC FQ ⊥于Q ,连结MQ .⊥SA 底面ABCD , ⊥∴MF 底面ABCD AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角设aAB SA ==,在MFQRt ∆中221a SA MF ==,a FQ 42=,a FQ MF MQ 4622=+= 33cos ==∠∴MQ FQ FQM 11分 所以二面角M AC D --的余弦值为3312分 解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,由于AB SA =,可设1===AS AD AB , 则()(),0,1,0,0,0,0B A ()()()1,0,0,0,0,1,0,1,1S D C ,⎪⎭⎫⎝⎛21,0,21M 3分 ⎪⎭⎫⎝⎛=∴21,0,21AM ,()1,1,1--=CS 4分0=∙CS AM , CS AM ⊥∴又AN SC ⊥ 且A AM AN = ⊥∴SC 平面AMN .又⊂SC 平面SAC 所以,平面SAC ⊥平面AMN 6分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)⊥SA 底面ABCD AS ∴是平面ABCD 的一个法向量,()1,0,0=AS 7分 设平面ACM 的一个法向量为()z y x n ,,=()0,1,1=AC ,⎪⎭⎫ ⎝⎛=21,0,21AM ,则⎪⎩⎪⎨⎧=∙=∙00AM n AC n 得()1,1,1--=n 9分 33,cos ->=<∴n AS 11分 ∴二面角M AC D --的余弦值是3312分. 考点:1.线面垂直的判定;2.面面垂直的判定. 5.(本小题满分13分)如图,三棱柱111ABC A B C -中,侧棱垂直底面,︒=∠90ACB ,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:1DC ⊥平面BDC ;(2)若12AA =,求三棱锥1C BDC -的体积. 【答案】(1)见解析 (2)13【解析】试题分析:对应第一问,关键是要掌握线面垂直的判定,把握线线垂直的证明方法,第二问注意椎体的体积公式的应用.试题解析:(1)由题设知1,BC CC BC AC ⊥⊥,1AC CC C =,∴BC ⊥平面11ACC A . (2分) 又∵1DC ⊂平面11ACC A ,∴1DC BC ⊥. (3分)由题设知1145o ADC A DC ∠=∠=,∴190oCDC ∠=,即1C D DC ⊥. (4分)∵DCBC C =,∴1DC ⊥平面BDC . (6分)(2) ∵12AA =,D 是棱1AA 的中点,112AC BC AA ==试卷第8页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴1,1AC BC AD === (7分) ∴222CD AD AC =+=,12DC = (9分)∴1CDC Rt ∆的面积11122122S CD DC =⋅=⨯⨯= (10分) ∴311131311=⨯⨯=⋅=-BC S V CDC B (11分) ∴3111==--CDC B BDC C V V ,即三棱锥1C BDC -的体积为13. (13分)考点:线面垂直的判定,椎体的体积. 6.(本题满分12分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,PA AB = ,点E 是PD 的中点,作EF PC ⊥交PC 于F .(Ⅰ)求证:PB ∥平面EAC ; (Ⅱ)求证:PC ⊥平面AEF ; (Ⅲ)求二面角A PC D --的大小. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)60︒. 【解析】 试题分析:(Ⅰ)连结BD ,与AC 交于G .由中位线可得EG ∥PB .根据线面平行的判定定理可证得PB ∥平面EAC .(Ⅱ)由PA ⊥底面ABCD 可证得PA CD ⊥,又因为ABCD 是正方形,根据线面垂直判定定理可证得CD ⊥平面PAD ,从而可得CD AE ⊥.根据等腰三角形中线即为高线可得AE PD ⊥,根据线面垂直判定定理可证得AE ⊥平面PCD ,从而可得AE PC ⊥又EF PC ⊥可得PC ⊥平面AEF .(Ⅲ)以点A 为坐标原点建立空间直角坐标系. 设1AB =,可得各点的坐标,从而可得各向量坐标.根据向量垂直数量积为0可得面APC 和面DPC 的法向量.根据数量积公式可得两法向量夹角的余弦值,可得两法向量夹角. 两法向量夹角与二面角相等或互补.由观察可知所求二面角为锐角.试题解析:解:(Ⅰ)连结BD ,与AC 交于G , ∵ABCD 是正方形,∴则G 为BD 的中点 ∵E 是PD 的中点, ∴EG ∥PB∵EG ⊂平面EAC ,PB ⊄平面EAC ∴PB ∥平面EAC 3分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)∵PA ⊥底面ABCD ,CD ⊂平面ABCD ∴PA CD ⊥∵CD AD ⊥,PA AD A = ∴CD ⊥平面PAD 4分 ∵AE ⊂平面PAD , ∴CD AE ⊥∵E 是PD 的中点,PA AD = ∴AE PD ⊥ ∵PD CD D =∴AE ⊥平面PCD 6分 而PC ⊂平面PCD , ∴AE PC ⊥又EF PC ⊥,AE EF E =PC ⊥平面AEF 8分(Ⅲ)如图建立空间直角坐标系,点A 为坐标原点,设1AB =则(0,0,1),(1,1,0),(0,1,0),(1,0,0)(0,0,1)(1,0,1)AP AC DC PD ====-=- 9分 设平面APC 的法向量是111(,,)m x y z =,则0,0AP m AC m ⋅=⋅=, 所以10z =,110x y +=,即(1,1,0)m =- 10分 设平面DPC 的法向量是222(,,)n x y z =,则0,0DC n PD n ⋅=⋅= 所以20y =,220x z -=,即(1,0,1)n = 11分11cos ,222m n m n m n⋅<>===⋅⋅,即面角A PC D --的大小为60︒. 12分考点:1线面平行;2线面垂直;3空间向量法解决立体几何问题.7.如图,一简单几何体的一个面ABC 内接于圆O ,,G H 分别是,AE BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .试卷第10页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:GH ∥平面ACD ;(2)若2,1AB BC ==,23tan =∠EAB ,试求该几何体的V. 【答案】(1)证明见解析;(2)1V =. 【解析】试题分析:(1)证明线面垂直需通过证明面面垂直,根据题意,G H 分别是,AE BC 的中点,连接,GO OH ,利用三角形的中位线性质,易证:平面GOH ∥平面ACD ;(2)方法一:将所求几何体分割为两个三棱锥,E ABC E ACD --,同时三棱锥E ABC -的底面积为ABC S ∆,高为EB ,三棱锥E ACD -的底面积为ACD S ∆和高DE ,进而求得两个三棱锥的体积,进而求得所求三棱锥的体积:1V =;方法二:所求体积为四棱锥A BCDE V -,根据题意底面积为矩形BCDE 的面积,高为AC ,利用椎体的体积公式得到所求. 试题解析:(1)证明:连结,GO OH ∵,GO AD OH AC ∥∥.∴GO ∥平面,ACD OH ∥平面ACD ,又GO 交HO 于O ∴平面GOH ∥平面ACD ∴GH ∥平面ACD(2)法一:∵ACD E ABC E V V V --+= ∵2,1AB BC ==∵23tan =∠EAB ∴3,322=-==BC AB AC BE .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………ACD E ABC E V V V --+=21133213131=⨯⨯⨯⨯=⋅=∆-DE S V ACD ACD E .21313213131=⨯⨯⨯⨯=⋅=∆-EB S V ACB ACB E∴12121=+=+=--ACD E ABC E V V V法二:∵DC ⊥平面ABC ∴DC AC ⊥ 又∵AC BC ⊥ ∴AC ⊥平面BCDE ∵2,1AB BC ==. ∵23tan =∠EAB ∴3,322=-==BC AB AC BE ∴ 13313131=⨯⨯⨯=⋅⋅=-AC S V BCDE BCDE A 矩形 考点:1.直线和平面平行的判定定理;2.椎体的体积.8.(本小题共14分)如图,将矩形ABCD 沿对角线BD 把△ABD 折起,使A 点移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:BC ⊥D A 1;(2)求证:平面CD A 1⊥平面BC A 1;(3)若AB=10,BC=6,求三棱锥BCD A -1的体积. 【答案】(1)、(2)详见解析;(3)48.【解析】试题分析:(1)由题意可知O A 1⊥平面BCD ,所以BC ⊥O A 1,又由已知可知BC CO ⊥,由线面垂直的判定定理可得D A 1⊂平面CD A 1,所以D A BC 1⊥;(2)欲证平面CD A 1⊥平面BC A 1,需证BC A D A 11平面⊥,又因为D A 1⊥B A 1.由(1)知BC ⊥D A 1,所以BC A D A 11平面⊥;(3)转换顶点可得11A BCD D A BC V V --=,代入计算即可. 试题解析:(1)因为1A 在平面BCD 上的射影O 在CD 上,试卷第12页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以O A 1⊥平面BCD. 又BC ⊂平面BCD , 所以BC ⊥O A 1.又BC ⊥CO ,CO O O A =⋂1,⊂CO 平面CD A 1,O A 1⊂平面CD A 1,所以BC ⊥平面CD A 1. 又D A 1⊂平面CD A 1, 所以D A BC 1⊥.(5分) (2)因为矩形ABCD , 所以D A 1⊥B A 1. 由(1)知BC ⊥D A 1.又⊂=⋂BC B B A BC ,1平面BC A B A BC A 111,平面⊂, 所以BC A D A 11平面⊥. 又CD A D A 11平面⊂,所以平面CD A BC A 11平面⊥.(10分) (3)因为BC A D A 11平面⊥, 所以C A D A 11⊥.因为CD=10,61=D A ,所以81=C A . 所以48686213111=⨯⨯⨯⨯==--BC A D BCD A V V .(14分) 考点:空间线线垂直、线面垂直的判定性质,多面体体积.9.如图,四棱柱1111ABCD A B C D -的底面为菱形,AC ,BD 交于点O ,1AO ⊥平面ABCD ,12AA BD ==,22AC =.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)证明:1AC ⊥平面11BB D D ; (2)求三棱锥1A C CD -的体积. 【答案】(1)见解析;(2)23【解析】试题分析:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD ,又因为1AO ⊥平面ABCD ,所以1A O BD ⊥.因为1AC A O O ⋂=,所以BD ⊥平面1A AC ,所以1BD A C ⊥. 2分由已知12AA =,22AC =,又1,AO OC AO AC =⊥,所以112AC A A ==, 所以22211A A A C AC +=,所以11A C A A ⊥,因为11B B A A ∥,所以11A C B B ⊥, 4分 因为1BD B B B ⋂=,所以1AC ⊥平面11BB D D . 6分 (2)连接11A C ,因为11AA CC ∥且11AA CC =,所以四边形11ACC A 是平行四边形, 所以11A C AC ∥, 8分 所以三棱锥1A C CD -的体积111113A C CD C ACD A ACD ACD V V V S AO ---∆===⨯ 10分11112222234123AC BD AO =⋅⋅⋅⋅=⋅⋅⋅=. 12分 考点:本题考查线面垂直的判定,求棱锥的体积点评:解决本题的关键是掌握线面垂直的判定定理,10.(本题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,四边形ABCD 为平行四边形,60DAB ∠=︒,24AB PA AD ===,试卷第14页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若E 为PC 中点,求证:PA ∥平面BDE (2)求三棱锥D BCP -的体积 【答案】(1)见解析;(2)4 【解析】 试题分析:(1)连结AC 交BD 于点O ,连结OE , ∵ABCD 为平行四边形,∴O 是AC 的中点, 又∵E 是PC 的中点, ∴OE ∥PA又PA ⊄平面BDE,OE ⊂平面BDE ∴PA ∥平面BDE (2)13D PBC P DBC DBC V V S PD --∆==⋅ 又22124sin 6023,232DBC S PD PA AD ∆=⨯⨯==-= ,所以4D PBC V -= 考点:本题考查线面平行的判定,求棱锥的体积点评:解决本题的关键是在平面BDE 中找出与PA 平行的线。

2015高考数学(新课标I版)分项汇编专题10立体几何(含解析)理

2015高考数学(新课标I版)分项汇编专题10立体几何(含解析)理

专题10 立体几何一.基础题组1. 【2013课标全国Ⅰ,理6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).A.500π3cm3 B.866π3cm3 C.1372π3cm3 D.2048π3cm3【答案】:A2. 【2012全国,理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6 B.9 C.12 D.18【答案】B3. 【2011全国新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【答案】D4. 【2006全国,理7】已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )(A )16π (B )20π (C )24π (D )32π 【答案】C5. 【2005全国1,理2】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为( )A .8π2B .8πC .4π2D .4π 【答案】B6. 【2005全国1,理4】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33 C .34 D .23【答案】A7. 【2010新课标,理14】正视图为一个三角形的几何体可以是__________.(写出三种) 答案:三棱锥、圆锥、四棱锥(答案不唯一)8. 【2014课标Ⅰ,理19】(本小题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.AA 1B1CC 1【答案】(Ⅰ)详见解析;(Ⅱ)17z yOAA 1BB 1CC 19. 【2013课标全国Ⅰ,理18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.10. 【2008全国1,理18】(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.11. 【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三数学立体几何专题训练1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+12π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3cm 3D.2 048π3cm 3解析:选A.如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=500π3(cm 3).3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 解析:选D.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( )A.23B.33C.23D.13 解析:选A.法一:如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =23.法二:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面B D C 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面B D C 1的一个法向量为n =(2,-2,1).设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC →=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( )A.23B.33C.23D.13解析:选A.法一:如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =23.法二:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面B D C 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面B D C 1的一个法向量为n =(2,-2,1).设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC →=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.6.(2013·高考山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B.由正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,∴V =13×22×2=83.四棱锥的侧面是全等的等腰三角形,底为2,高为5,∴S 侧=4×12×2×5=4 5.7.(2013·高考山东卷)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12B.π3C.π4D.π6 解析:选B.如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠P AO =POAO =3,∴∠P AO =π3.8.(2013·高考浙江卷)设m 、n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β解析:选C.A 项,当m ∥α,n ∥α时,m ,n 可能平行,可能相交,也可能异面,故错误; B 项,当m ∥α,m ∥β时,α,β可能平行也可能相交,故错误; C 项,当m ∥n ,m ⊥α时,n ⊥α,故正确;D 项,当m ∥α,α⊥β时,m 可能与β平行,可能在β内,也可能与β相交,故错误.故选C.9.(2013·高考新课标全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解析:选A.根据已知条件作出图形:四面体C 1-A 1D B ,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.10.(2013·高考安徽卷)在下列命题中,不是公理的是( ) A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线 解析:选A.A ,不是公理,是个常用的结论,需经过推理论证; B ,是平面的基本性质公理; C ,是平面的基本性质公理; D ,是平面的基本性质公理. 11.(2013·高考北京卷)如图,在正方体ABC D-A 1B 1C 1D 1中,P 为对角线B D 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个解析:选B.如图,取底面ABC D 的中心O ,连接P A ,PC ,PO . ∵AC ⊥平面DD 1B ,又PO ⊂平面DD 1B ,∴AC ⊥PO .又O 是B D 的中点,∴P A =PC .同理,取B 1C 与BC 1的交点H ,易证B 1C ⊥平面D 1C 1B ,∴B 1C ⊥PH . 又H 是B 1C 的中点,∴PB 1=PC ,∴P A =PB 1=PC . 同理可证P A 1=PC 1=P D. 又P 是B D 1的三等分点, ∴PB ≠P D 1≠PB 1≠P D ,故点P 到正方体的顶点的不同距离有4个. 12.(2013·高考辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210C.132D .310 解析:选C.因为直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则O D ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.13.(2013·高考浙江卷)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 解析:选A.设P 1=f α(P ),P 2=f β(P ),则PP 1⊥α,P 1Q 1⊥β,PP 2⊥β,P 2Q 2⊥α. 若α∥β,则P 1与Q 2重合、P 2与Q 1重合,所以PQ 1≠PQ 2,所以α与β相交. 设α∩β=l ,由PP 1∥P 2Q 2,所以P ,P 1,P 2,Q 2四点共面. 同理P ,P 1,P 2,Q 1四点共面.所以P ,P 1,P 2,Q 1,Q 2五点共面,且α与β的交线l 垂直于此平面.又因为PQ 1=PQ 2,所以Q 1、Q 2重合且在l 上,四边形PP 1Q 1P 2为矩形.那么∠P 1Q 1P 2=π2为二面角α-l -β的平面角,所以α⊥β.14.(2013·高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B .1C.2+12 D. 2 解析:选D.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.15.(2013·高考江西卷)一几何体的三视图如图所示,则该几何体的体积为( ) A .200+9π B .200+18π C .140+9π D .140+18π解析:选 A.由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V =10×4×5+9π=200+9π.16.(2013·高考四川卷)一个几何体的三视图如图所示,则该几何体可以是( ) A .棱柱 B .棱台 C .圆柱 D .圆台解析:选D.由俯视图是圆环可排除A ,B ,由正视图和侧视图都是等腰梯形可排除C ,故选D.17.(2013·高考广东卷)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D .1解析:选B.如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B.18.(2013·高考广东卷)设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β解析:选B.选项A ,若l ∥α,l ∥β,则α和β可能平行也可能相交,故错误; 选项B ,若l ⊥α,l ⊥β,则α∥β,故正确; 选项C ,若l ⊥α,l ∥β,则α⊥β,故错误;选项D ,若α⊥β,l ∥α,则l 与β的位置关系有三种可能:l ⊥β,l ∥β,l ⊂β,故错误.故选B.19.(2013·高考湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A .1 B. 2C.2-12D.2+12解析:选C.当正方体的俯视图是面积为1的正方形时,其正视图的最小面积为1,最大面积为 2.因为2-12<1,因此所给选项中其正视图的面积不可能为2-12,故选C.20.(2013·高考江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥C D ,正方体的六个面所在的平面与直线C E ,E F 相交的平面个数分别记为m ,n ,那么m +n =( )A .8B .9C .10D .11解析:选A.取C D 的中点H ,连接E H ,HF .在四面体C DE F 中,C D ⊥E H ,C D ⊥FH ,所以C D ⊥平面E FH ,所以AB ⊥平面E FH ,所以正方体的左、右两个侧面与E F 平行,其余4个平面与E F 相交,即n =4.又因为C E 与AB 在同一平面内,所以C E 与正方体下底面共面,与上底面平行,与其余四个面相交,即m =4,所以m +n =4+4=8.21.(2013·高考重庆卷)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803 C .200 D .240解析:选C.由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200.22.(2013·高考广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163D .6解析:选B.由三视图可还原出四棱台的直观图如图所示,其上底和下底都是正方形,边长分别是1和2,与底面垂直的棱为棱台的高,长度为2,故其体积为V =13×(12+1×4+22)×2=143,故选B.23.(2013·高考广东卷)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥ nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β 解析:选D.如图,在长方体ABC D-A 1B 1C 1D 1中,平面BCC 1B 1⊥平面ABC D ,BC 1⊂平面BCC 1B 1,BC ⊂平面ABC D ,而BC 1不垂直于BC ,故A 错误.平面A 1B 1C 1D 1∥平面ABC D ,B 1D 1⊂平面A 1B 1C 1D 1,AC ⊂平面ABC D ,但B 1D 1和AC 不平行,故B 错误.AB ⊥A 1D 1,AB ⊂平面ABC D ,A 1D 1⊂平面A 1B 1C 1D 1,但平面A 1B 1C 1D 1∥平面ABC D ,故C 错误.故选D.24.(2013·高考新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.解析:如图,设球O 的半径为R ,则 由AH ∶HB =1∶2得HA =13·2R =23R ,∴OH =R3.∵截面面积为π=π·(HM )2, ∴HM =1.在Rt △HMO 中,OM 2=OH 2+HM 2,∴R 2=19R 2+HM 2=19R 2+1,∴R =324.∴S 球=4πR 2=4π·(324)2=92π.答案:92π25.(2013·高考新课标全国卷Ⅱ)已知正四棱锥O -ABC D 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.解析:V 四棱锥O -ABC D =13×3×3h =322,得h =322, ∴OA 2=h 2+(AC 2)2=184+64=6.∴S 球=4πOA 2=24π. 答案:24π 26.(2013·高考浙江卷)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析:由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3). 答案:24 27.(2013·高考大纲全国卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°= 3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4,所以球O 的表面积为4πR 2=16π.答案:16π 28.(2013·高考江苏卷)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -A DE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.解析:设三棱柱的底面ABC 的面积为S ,高为h ,则其体积为V 2=Sh .因为D ,E 分别为AB ,AC 的中点,所以△A DE 的面积等于14S .又因为F 为AA 1的中点,所以三棱锥F -A DE 的高等于12h ,于是三棱锥F -A DE 的体积V 1=13×14S ·12h =124Sh =124V 2,故V 1∶V 2=1∶24.答案:1∶24 29.(2013·高考北京卷)某四棱锥的三视图如图所示,该四棱锥的体积为________.解析:由几何体的三视图可知该几何体是一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为V =13×9×1=3.答案:3 30.(2013·高考北京卷)如图,在棱长为2的正方体ABC D-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.解析:如图,过点E 作EE 1⊥平面A 1B 1C 1D 1,交直线B 1C 1于点E 1,连接D 1E 1,DE ,在平面D 1DEE 1内过点P 作PH ∥EE 1交D 1E 1于点H ,连接C 1H ,则C 1H 即为点P 到直线CC 1的距离.当点P 在线段D 1E 上运动时,点P 到直线CC 1的距离的最小值为点C 1到线段D 1E 1的距离,即为△C 1D 1E 1的边D 1E 1上的高h .∵C 1D 1=2,C 1E 1=1,∴D 1E 1=5,∴h =25=255.答案:25531.(2013·高考福建卷)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:由三视图知组合体为球内接正方体,正方体的棱长为2,若球半径为R ,则2R =23,∴R = 3.∴S 球表=4πR 2=4π×3=12π.答案:12π 32.(2013·高考辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.答案:16π-1633.(2013·高考天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=92π,∴R =32,∴3a =3,∴a = 3.答案: 3 34.(2013·高考陕西卷)某几何体的三视图如图所示, 则其表面积为________.解析:由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.答案:3π35.某几何体的三视图如图所示,则其体积为________.解析:原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为13×π×12×2×12=π3.答案:π336.(2013·高考新课标全国卷Ⅰ)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.解:(1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·OA 1=3.37.(2013·高考安徽卷)如图,正方体ABC D-A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62.解析:①当0<CQ <12时,如图(1).在平面AA 1D 1D 内,作A E ∥PQ , 显然E 在棱DD 1上,连接E Q , 则S 是四边形APQ E.②当CQ =12时,如图(2).显然PQ ∥BC 1∥A D 1,连接D 1Q , 则S 是等腰梯形.③当CQ =34时,如图(3).作BF ∥PQ 交CC 1的延长线于点F ,则C 1F =12.作A E ∥BF ,交DD 1的延长线于点E ,D 1E =12,A E ∥PQ ,连接E Q 交C 1D 1于点R ,由于Rt △RC 1Q ∽Rt △R D 1E ,∴C 1Q ∶D 1E =C 1R ∶R D 1=1∶2,∴C 1R =13.④当34<CQ <1时,如图(3),边接RM (点M 为A E 与A 1D 1交点),显然S 为五边形APQRM .⑤当CQ =1时,如图(4).同③可作A E ∥PQ 交DD 1的延长线于点E ,交A 1D 1于点M ,显然点M 为A 1D 1的中点,所以S 为菱形APQM ,其面积为12MP ×AQ =12×2×3=62.答案:①②③⑤ 38.(2013·高考新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1C D ; (2)求二面角D-A 1C -E 的正弦值.解:(1)证明:连接AC 1,交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接D F ,则BC 1∥D F . 因为D F ⊂平面A 1C D ,BC 1⊄平面A 1C D , 所以BC 1∥平面A 1C D.(2)由AC =CB =22AB ,得AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1C D 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 是平面A 1C E 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0,可取m =(2,1,-2).从而co s n ,m =n·m|n||m|=33,故s in n ,m =63.即二面角D-A 1C -E 的正弦值为63.39.(2013·高考陕西卷)如图,四棱柱ABC D-A 1B 1C 1D 1的底面ABC D 是正方形,O 为底面中心,A 1O ⊥平面ABC D ,AB =AA 1= 2.(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.解:(1)法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D(0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥B D ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D.法二:∵A 1O ⊥平面ABC D ,∴A 1O ⊥B D. 又四边形ABC D 是正方形,∴B D ⊥AC ,∴B D ⊥平面A 1OC , ∴B D ⊥A 1C .又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1.又BB 1∩B D =B , ∴A 1C ⊥平面BB 1D 1D.(2)设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z . 取n =(0,1,-1),由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴co s θ=|co s 〈n ,A 1C →〉|=12×2=12.又0≤θ≤π2,∴θ=π3.40.(2013·高考湖南卷)如图,在直棱柱ABC D-A 1B 1C 1D 1中,A D ∥BC ,∠BA D =90°,AC ⊥B D ,BC =1,A D =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面AC D 1所成角的正弦值.解:法一:(1)证明:因为BB 1⊥平面ABC D ,AC ⊂平面ABC D ,所以AC ⊥BB 1. 又AC ⊥B D ,所以AC ⊥平面BB 1D.而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D. (2)因为B 1C 1∥A D ,所以直线B 1C 1与平面AC D 1所成的角等于直线A D 与平面AC D 1所成的角(记为θ).连接A 1D.因为棱柱ABC D-A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BA D =90°,所以A 1B 1⊥平面A DD 1A 1,从而A 1B 1⊥A D 1.又A D =AA 1=3,所以四边形A DD 1A 1是正方形,于是A 1D ⊥A D 1.故A D 1⊥平面A 1B 1D ,于是A D 1⊥B 1D.由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面AC D 1.故∠A D B 1=90°-θ.在直角梯形ABC D 中,因为AC ⊥B D ,所以∠BAC =∠A D B .从而Rt △ABC ∽Rt △D AB ,故AB DA =BCAB,即AB =DA ·BC = 3. 连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+B D 2=BB 21+AB 2+A D 2=21,即B 1D =21.在Rt △AB 1D 中,co s ∠A D B 1=AD B 1D =321=217,即co s (90°-θ)=217.从而s in θ=217.即直线B 1C 1与平面AC D 1所成角的正弦值为217.法二:(1)证明:易知,AB ,A D ,AA 1两两垂直.如图,以A 为坐标原点,AB ,A D ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D(0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥B D ,所以AC →·BD →=-t 2+3+0=0. 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →, 即AC ⊥B 1D.(2)由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设n =(x ,y ,z )是平面AC D 1的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则n =(1,-3,3).设直线B 1C 1与平面AC D 1所成角为θ,则s in θ=|co s 〈n ,B 1C 1→〉|=|n ·B 1C 1→|n |·|B 1C 1→||=37=217,即直线B 1C 1与平面AC D 1所成角的正弦值为217.41.(2013·高考大纲全国卷)如图,四棱锥P -ABC D 中,∠ABC =∠BA D =90°,BC =2A D ,△P AB 和△P A D 都是边长为2的等边三角形.(1)证明:PB ⊥C D ;(2)求点A 到平面PC D 的距离. 解:(1)证明:如图,取BC 的中点E ,连接DE ,则四边形AB ED 为正方形. 过点P 作PO ⊥平面ABC D ,垂足为O . 连接OA ,OB ,O D ,O E.由△P AB 和△P A D 都是等边三角形知P A =PB =P D ,所以OA =OB =O D ,即点O 为正方形AB ED 对角线的交点,故O E ⊥B D. 又O E ⊥OP ,B D ∩O =O ,所以O E ⊥平面P D B ,从而PB ⊥O E. 因为O 是B D 的中点,E 是BC 的中点, 所以O E ∥C D.因此PB ⊥C D.(2)取P D 的中点F ,连接OF ,则OF ∥PB . 由(1)知,PB ⊥C D ,故OF ⊥C D.又O D =12B D =2,OP =PD 2-OD 2=2,故△PO D 为等腰三角形,因此OF ⊥P D. 又P D ∩C D =D ,所以OF ⊥平面PC D.因为A E ∥C D ,C D ⊂平面PC D ,A E ⊄平面PC D , 所以A E ∥平面PC D.因此点O 到平面PC D 的距离OF 就是点A 到平面PC D 的距离,而OF =12PB =1,所以点A 到平面PC D 的距离为1. 42.(2013·高考山东卷)如图,四棱锥P -ABC D 中,AB ⊥AC ,AB ⊥P A ,AB ∥C D ,AB =2C D ,E ,F ,G ,M ,N分别为PB ,AB ,BC ,P D ,PC 的中点.(1)求证:C E ∥平面P A D ;(2)求证:平面E FG ⊥平面E MN . 证明:(1)法一:如图,取P A 的中点H ,连接E H ,D H . 因为E 为PB 的中点,所以E H ∥AB ,E H =12AB .又AB ∥C D ,C D =12AB ,所以E H ∥C D ,E H =C D.所以四边形D C E H 是平行四边形. 所以C E ∥D H .又D H ⊂平面P A D ,C E ⊄平面P A D , 所以C E ∥平面P A D. 法二:如图,连接CF .因为F 为AB 的中点,所以AF =12AB .又C D =12AB ,所以AF =C D.又AF ∥C D ,所以四边形AFC D 为平行四边形. 所以CF ∥A D.又CF ⊄平面P A D ,所以CF ∥平面P A D.因为E ,F 分别为PB ,AB 的中点,所以E F ∥P A . 又E F ⊄平面P A D ,所以E F ∥平面P A D. 因为CF ∩E F =F ,故平面C E F ∥平面P A D. 又C E ⊂平面C E F ,所以C E ∥平面P A D. (2)因为E ,F 分别为PB ,AB 的中点, 所以E F ∥P A .又AB ⊥P A ,所以AB ⊥E F . 同理可证AB ⊥FG .又E F ∩FG =F ,E F ⊂平面E FG ,FG ⊂平面E FG , 因此AB ⊥平面E FG .又M ,N 分别为P D ,PC 的中点,所以MN ∥D C . 又AB ∥D C ,所以MN ∥AB ,所以MN ⊥平面E FG . 又MN ⊂平面E MN ,所以平面E FG ⊥平面E MN . 43.(2013·高考江西卷)如图,四棱锥P -ABC D 中,P A ⊥平面ABC D ,E 为B D 的中点,G 为P D 的中点,△D AB≌△D CB ,E A =E B =AB =1,P A =32,连接C E 并延长交A D 于F .(1)求证:A D ⊥平面CFG ;(2)求平面BCP 与平面D CP 的夹角的余弦值.解:(1)证明:在△AB D 中,因为点E 是B D 中点, 所以E A =E B =ED =AB =1,故∠BA D =π2,∠AB E =∠A E B =π3.因为△D AB ≌△D CB ,所以△E AB ≌△E CB ,从而有∠F ED =∠B E C =∠A E B =π3,所以∠F ED =∠F E A ,故E F ⊥A D ,AF =F D. 又PG =G D ,所以FG ∥P A . 又P A ⊥平面ABC D ,所以GF ⊥A D ,故A D ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则 A (0,0,0),B (1,0,0), C ⎝⎛⎭⎫32,32,0,D(0,3,0), P ⎝⎛⎭⎫0,0,32, 故BC →=⎝⎛⎭⎫12,32,0,CP →=⎝⎛⎭⎫-32,-32,32,CD →=⎝⎛⎭⎫-32,32,0.设平面BCP 的法向量n 1=(1,y 1,z 1), 则⎩⎨⎧12+32y 1=0,-32-32y 1+32z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面D CP 的法向量n 2=(1,y 2,z 2), 则⎩⎨⎧-32+32y 2=0,-32-32y 2+32z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2).从而平面BCP 与平面D CP 的夹角的余弦值为co s θ=|n 1·n 2||n 1||n 2|=43169×8=24. 44.(2013·高考江苏卷)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面E FG ∥平面ABC ; (2)BC ⊥SA . 证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点. 又因为E 是SA 的中点, 所以E F ∥AB .因为E F ⊄平面ABC ,AB ⊂平面ABC ,所以E F ∥平面ABC . 同理E G ∥平面ABC .又E F ∩E G =E , 所以平面E FG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA . 45.(2013·高考江苏卷)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面A D C 1与平面ABA 1所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为co s A 1B →,C 1D →=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面A D C 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面A D C 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面A D C 1与平面ABA 1所成二面角的大小为θ.由|co s θ|=|n 1·n 2|n 1|·|n 2||=29×1=23,得s in θ=53.因此,平面A D C 1与平面ABA 1所成二面角的正弦值为53.46.(2013·高考湖北卷)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.(1)记平面B E F 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与E F 所成的角为α,二面角E-l -C 的大小为β,求证:s in θ=s in αs in β .解:(1)直线l ∥平面P AC .证明如下:连接E F ,因为E ,F 分别是P A ,PC 的中点,所以E F ∥AC .又E F ⊄平面ABC ,且AC ⊂平面ABC ,所以E F ∥平面ABC .而E F ⊂平面B E F ,且平面B E F ∩平面ABC =l ,所以E F ∥l .因为l ⊄平面P AC ,E F ⊂平面P AC ,所以直线l ∥平面P AC .(2)法一(综合法):如图(1),连接B D ,由(1)可知交线l 即为直线B D ,且l ∥AC . 因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC . 已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC =C ,所以l ⊥平面PBC .连接B E ,BF ,因为BF ⊂平面PBC ,所以l ⊥BF . 故∠CBF 就是二面角E-l -C 的平面角,即∠CBF =β.由DQ →=12CP →,作D Q ∥CP ,且D Q =12CP .连接PQ ,D F ,因为F 是CP 的中点,CP =2PF ,所以D Q =PF ,从而四边形D QPF 是平行四边形,PQ ∥F D. 连接C D ,因为PC ⊥平面ABC ,所以C D 是F D 在平面ABC 内的射影.故∠C D F 就是直线PQ 与平面ABC 所成的角,即∠C D F =θ. 又B D ⊥平面PBC ,所以B D ⊥BF ,所以∠B D F 为锐角.故∠B D F 为异面直线PQ 与E F 所成的角,即∠B D F =α,于是在Rt △D CF ,Rt △FB D ,Rt △BCF 中,分别可得s in θ=CF DF ,s in α=BF DF ,s in β=CF BF,从而s in αs in β=BF DF ·CF BF =CFDF=s in θ,即s in θ=s in αs in β.法二(向量法):如图(2),由DQ →=12CP →,作D Q ∥CP ,且D Q =12CP .连接PQ ,E F ,B E ,BF ,B D.由(1)可知交线l 即为直线B D.以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图(2)所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E ⎝⎛⎭⎫12a ,0,c ,F (0,0,c ). 于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c ),BF →=(0,-b ,c ), 所以co s α=|FE →·QP →||FE →||QP →|=aa 2+b 2+c 2, 从而s in α=1-cos 2α=b 2+c 2a 2+b 2+c2.取平面ABC 的一个法向量为m =(0,0,1),可得s in θ=|m ·QP →||m ||QP →|=ca 2+b 2+c 2. 设平面B E F 的一个法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·FE →=0,n ·BF →=0,可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0,取n =(0,c ,b ).于是|co s β|=|m·n||m||n|=b b 2+c2,从而s in β= 1-cos 2β=cb 2+c2.故s in αs in β=b 2+c 2a 2+b 2+c 2·c b 2+c 2=c a 2+b 2+c 2=s in θ,即s in θ=s in αs in β. 47.(2013·高考浙江卷)如图,在四棱锥P -ABC D 中,P A ⊥平面ABC D ,AB =BC =2, A D =C D =7,P A =3,∠ABC =120°,G 为线段PC 上的点.(1)证明:B D ⊥平面APC ;(2)若G 为PC 的中点,求D G 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BG D ,求PGGC的值.解:(1)证明:设点O 为AC ,B D 的交点.由AB =BC ,A D =C D ,得B D 是线段AC 的中垂线, 所以O 为AC 的中点,B D ⊥AC .又因为P A ⊥平面ABC D ,B D ⊂平面ABC D ,所以P A ⊥B D. 所以B D ⊥平面APC . (2)连接OG .由(1)可知,O D ⊥平面APC ,则D G 在平面APC 内的射影为OG ,所以∠OG D 是D G 与平面APC 所成的角.由题意得OG =12P A =32.在△ABC 中,AC = AB 2+BC 2-2AB ·BC ·cos ∠ABC= 4+4-2×2×2×(-12)=23,所以OC =12AC = 3.在直角△OC D 中,O D =CD 2-OC 2=7-3=2.在直角△OG D 中,tan ∠OG D =OD OG =433.所以D G 与平面APC 所成的角的正切值为433.(3)因为PC ⊥平面BG D ,OG ⊂平面BG D ,所以PC ⊥OG . 在直角△P AC 中,PC =P A 2+AC 2=3+12=15,所以GC =AC ·OC PC =23×315=2155.从而PG =3155,所以PG GC =32.48.(2013·高考北京卷)如图,在四棱锥P -ABC D 中,AB ∥C D ,AB ⊥A D ,C D =2AB ,平面P A D ⊥底面ABC D ,P A ⊥A D ,E 和F 分别是C D 和PC 的中点.求证:(1)P A ⊥底面ABC D ; (2)B E ∥平面P A D ;(3)平面B E F ⊥平面PC D.证明:(1)因为平面P A D ⊥底面ABC D ,且P A 垂直于这两个平面的交线A D ,所以P A ⊥底面ABC D.(2)因为AB ∥C D ,C D =2AB ,E 为C D 的中点, 所以AB ∥DE ,且AB =DE.所以四边形AB ED 为平行四边形.所以B E ∥A D.又因为B E ⊄平面P A D ,A D ⊂平面P A D , 所以B E ∥平面P A D.(3)因为AB ⊥A D ,而且四边形AB ED 为平行四边形, 所以B E ⊥C D ,A D ⊥C D. 由(1)知P A ⊥底面ABC D , 所以P A ⊥C D.所以C D ⊥平面P A D. 所以C D ⊥P D.因为E 和F 分别是C D 和PC 的中点, 所以P D ∥E F .所以C D ⊥E F . 又因为C D ⊥B E ,E F ∩B E =E , 所以C D ⊥平面B E F .所以平面B E F ⊥平面PC D.49.(2013·高考天津卷)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明E F ∥平面A 1C D ;(2)证明平面A 1C D ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1C D 所成角的正弦值.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,且AC =A 1C 1,连接ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE ∥AC .又因为F 为A 1C 1的中点,可得A 1F =DE ,且A 1F ∥DE ,即四边形A 1DE F 为平行四边形,所以E F ∥D A 1.又E F ⊄平面A 1C D ,D A 1⊂平面A 1C D ,所以E F ∥平面A 1C D.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故C D ⊥AB .又由于侧棱A 1A ⊥底面ABC ,C D ⊂平面ABC ,所以A 1A ⊥C D.又A 1A ∩AB =A ,因此C D ⊥平面A 1ABB 1.而C D ⊂平面A 1C D ,所以平面A 1C D ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG ⊥A 1D 交直线A 1D 于点G ,连接CG .由于平面A 1C D ⊥平面A 1ABB 1,而直线A 1D 是平面A 1C D 与平面A 1ABB 1的交线,故BG ⊥平面A 1C D.由此可得∠BCG 为直线BC 与平面A 1C D 所成的角.设棱长为a ,可得A 1D =5a 2,由△A 1A D ∽△BG D ,易得BG =5a5.在Rt △BGC 中,s in∠BCG =BG BC =55.所以直线BC 与平面A 1C D 所成角的正弦值为55.50.(2013·高考四川卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段A D 的中点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面A DD 1A 1;(2)设(1)中的直线l 交AB 于点M ,交AC 于点N ,求二面角A -A 1M -N 的余弦值.解:(1)如图(1),在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .因为AB =AC ,D 是BC 的中点,所以BC ⊥A D ,则直线l ⊥A D.因为AA 1⊥平面ABC ,所以AA 1⊥l .又因为A D ,AA 1在平面A DD 1A 1内,且A D 与AA 1相交,所以直线l ⊥平面A DD 1A 1. (2)法一:连接A 1P ,过点A 作A E ⊥A 1P 于点E ,过点E 作E F ⊥A 1M 于点F ,连接AF . 由(1)知,MN ⊥平面A E A 1, 所以平面A E A 1⊥平面A 1MN .所以A E ⊥平面A 1MN ,则A 1M ⊥A E. 所以A 1M ⊥平面A E F ,则A 1M ⊥AF . 故∠AF E 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BA D =60°,AB =2,A D =1. 又P 为A D 的中点,所以M 为AB 的中点,且AP =12,AM =1.所以在Rt △AA 1P 中,A 1P =52.在Rt △A 1AM 中,A 1M = 2.从而A E =AA 1·AP A 1P =15,AF =AA 1·AM A 1M =12,所以s in θ=AE AF =25.所以co s θ=1-sin 2θ=1-⎝⎛⎭⎪⎫252=155. 故二面角A -A 1M -N 的余弦值为155. 法二:设A 1A =1,则AB =AC =2.如图(2),过点A 1作A 1E 平行于C 1B 1,以点A 1为坐标原点,分别以A 1E →,A 1D 1→,A 1A →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz (点O 与点A 1重合),则A 1(0,0,0),A (0,0,1).因为P 为A D 的中点,所以M ,N 分别为AB ,AC 的中点,故M ⎝⎛⎭⎫32,12,1,N ⎝⎛⎭⎫-32,12,1,所以A 1E →=⎝⎛⎭⎫32,12,1,A 1A →=(0,0,1),NM →=(3,0,0).设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1⊥A 1M →n 1⊥A 1A →,即⎩⎪⎨⎪⎧n 1·A 1M →=0,n 1·A 1A →=0,故有⎩⎪⎨⎪⎧(x 1,y 1,z 1)·⎝⎛⎭⎫32,12,1=0,(x 1,y 1,z 1)·(0,0,1)=0,从而⎩⎪⎨⎪⎧32x 1+12y 1+z 1=0,z 1=0.取x 1=1,则y 1=-3,所以n 1=(1,-3,0). 设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n 2⊥A 1M →,n 2⊥NM →,即⎩⎪⎨⎪⎧n 2·A 1M →=0,n 2·NM →=0,故有⎩⎪⎨⎪⎧(x 2,y 2,z 2)·⎝⎛⎭⎫32,12,1=0,(x 2,y 2,z 2)·(3,0,0)=0,从而⎩⎪⎨⎪⎧32x 2+12y 2+z 2=0,3x 2=0.取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则co s θ=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=⎪⎪⎪⎪⎪⎪(1,-3,0)·(0,2,-1)2×5 =155.故二面角A -A 1M -N 的余弦值为155.51.(2013·高考福建卷)如图,在四棱锥P -ABC D 中,P D ⊥平面ABC D ,AB ∥D C ,AB ⊥A D ,BC =5,D C =3,A D =4,∠P A D =60°.(1) 当正视方向与向量AD →的方向相同时,画出四棱锥P -ABC D 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:D M ∥平面PBC ; (3)求三棱锥D-PBC 的体积.图(1)解:法一:(1)在梯形ABC D 中,如图(1),过点C 作C E ⊥AB ,垂足为E. 由已知得,四边形A D C E 为矩形,A E =C D =3,在Rt △B E C 中,由BC =5,C E =4,依勾股定理得B E =3,从而AB =6. 又由P D ⊥平面ABC D ,得P D ⊥A D ,从而在Rt △P D A 中,由A D =4,∠P A D =60°, 得P D =4 3.正视图如图(2)所示.图(2) 图(3)(2)如图(3),取PB 的中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 的中点,∴MN ∥AB ,MN =12AB =3.又C D ∥AB ,C D =3,∴MN ∥C D ,MN =C D ,∴四边形MNC D 为平行四边形,∴D M ∥CN . 又D M ⊄平面PBC ,CN ⊂平面PBC , ∴D M ∥平面PBC .(3)V D-PBC =V P -D BC =13S △D BC ·P D , 又S △D BC =6,P D =43,所以V D-PBC =8 3.法二:(1)同法一.图(4)(2)如图(4),取AB 的中点E ,连接M E ,DE. 在梯形ABC D 中,B E ∥C D ,且B E =C D , ∴四边形BC DE 为平行四边形, ∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC , ∴DE ∥平面PBC .又在△P AB 中,M E ∥PB ,M E ⊄平面PBC ,PB ⊂平面PBC ,∴M E ∥平面PBC . 又DE ∩M E =E ,∴平面D M E ∥平面PBC .又D M ⊂平面D M E ,∴D M ∥平面PBC .。

相关文档
最新文档