2016年期末考试精彩试题解析(概率)

合集下载

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。

概率总复习 期末考试必备 考题及答案

概率总复习 期末考试必备 考题及答案

P( A B )P( B )
j 1 j j
n
, i 1, 2, , n.
称为贝叶斯公式.
事件的相互独立性
(1)两事件相互独立
设 A, B 是两事件 , 如果满足等式 P ( AB ) P ( A) P ( B ). 则称事件 A, B 相互独立, 简称 A, B 独立.
说明 事件 A 与 B 相互独立是指事件 A 出现的 概率与事件 B 是否出现无关.
为在事件 B 发生的条件下事件 A 发生的条件概率.
(2) 条件概率的性质
1 非负性 : P( A B) ≥ 0;
0
2 正则性 : P( B) 1, P( B) 0;
0
30 P ( A1 A2 B) P ( A1 B) P ( A2 B) P ( A1 A2 B);
4 0 P (列可加性 : 设 B1 , B2 , 是两两不相容的事件, 则有
P Bi A P ( Bi A). i 1 i 1
乘法公式
设 P ( A) 0, 则有 P ( AB) P ( B A) P ( A).
设 A, B, C 为事件, 且 P ( AB) 0, 则有
n重伯努利概型的计算公式 设n重伯努利试验中,事件A发生的概率为 p,则A出现k次的概率为:
k P( A) Cn pk (1 p)nk
随机变量
定义 设 E 是随机试验, 其样本空间为 {e }. 若对于每一个 e , 都有一个实数 X (e ) 与之 对应 , 这样得到定义在上的一个单值实值函 数 X (e ), 称X (e )为随机变量 .
说明 全概率公式的主要用处在于它可以将 一个复杂事件的概率计算问题分解为若干个简单 事件的概率计算问题, 最后应用概率的可加性求出 最终结果.

【名师点睛】天津市和平区2016-2017年九年级数学期末专题复习-概率及答案

【名师点睛】天津市和平区2016-2017年九年级数学期末专题复习-概率及答案

2016-2017学年度第一学期 九年级数学期末复习专题 概率姓名:_______________班级:_______________得分:_______________一 选择题:1.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )A.21 B.41 C.43D.1 2.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是( ) A.朝上的点数之和为13 B.朝上的点数之和为12 C.朝上的点数之和为2 D.朝上的点数之和小于33.某超市在“五一”期间开展有奖促销活动,每买100元商品,可参加抽奖一次,中奖的概率为31,小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖二次C.至少能中奖一次D.中奖次数不能确定 4.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( ) A.121 B.125 C.61D.21 5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是( )A.31B.53C.21D.616.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同.摇匀后随机摸出一个,摸到红球的概率是51,则n 的值为( )A.3B.5C.8D.107.如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是( )A.43B.32C.31D.218.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A.54 B.53 C.52 D.51 9.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( ) A.91 B.61 C.31D.2110.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q=0有实数根的概率是( ) A.21 B. 31 C.32 D.65 11.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所线段中任取一条线段,取到长度为3的线段的概率为( ) A.41 B.52 C.32 D.9512.小明随机地在如图的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ) A.21 B.63π C.93π D. 233二 填空题:13.小明把如图所示的矩形纸板ABCD 挂在墙上,E 为AD 中点,且∠ABD =60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.14.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是 .15.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是16.袋中装有大小相同的2个红球和2个绿球,先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是 .17.袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是21,则m 的值是 .18.从长度分别为x(x 为正整数)4、6、8的四条线段中任选三条作边,能构成三角形的概率为41,若长为x 的线段在四条线段中最短,则x 可取的值为_____________.19.有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同.现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后再抽取一张,则两次抽的卡片上的数字的差的绝对值大于1的概率是________.20.在平面直角坐标系中,直线y=﹣x+3与两坐标轴围成一个△AOB .现将背面完全相同,正面分别标有数1,2,3,21,31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 .21.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a ,则a 的值是不等式组⎪⎪⎩⎪⎪⎨⎧+<>+x x x x 213252的解,但不是方程x 2﹣3x+2=0的实数解的概率为 . 22.从﹣23,﹣1,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一次方程组⎩⎨⎧=--=-22y x m y x 有整数解,且使以x 为自变量的一次函数y=(m+1)x+3m ﹣3的图象不经过第二象限,则取到满足条件的m 值的概率为 .三简答题:23.微信红包分为两种“普通红包”和“拼手气群红包”,若甲、乙、丙三维同学各有一次抢微信红包的机会.(1)请用树状图或列表法列举出各种可能的结果;(2)求甲、乙、丙三名学生抢得同一红包的概率;(3)求甲、乙、丙三名学生中至少有两人抢得拼手气红包群红包的概率.24.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.25.某校开展校园“美德少年”评选活动,共有“助人为乐”、“自强自立”、“孝老爱亲”、“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.根据以上信息,解答下列问题:(1)统计表中的a=________,b=________;(2)统计表后两行错误的数据是______________,该数据的正确值是________;(3)校园小记者决定从A,B,C三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.26.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计我校11000名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.27.在一个不透明的盒子里,装有四个分别标有数字﹣1,﹣2,﹣3,﹣4的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(x ,y )落在一次函数y=x ﹣1的图象上的概率; (3)求小强、小华各取一次小球所确定的数x 、y 满足y >x ﹣1的概率.28.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率: (1)从中任取一球,小球上的数字为偶数;(2)从中任取一球记下数字作为点A 的横坐标x ,把小球放回袋中,再从中任取一球记下数字作为点A 的纵坐标y ,点A(x,y)在函数xy 3的图象上.参考答案1、A2、A3、D4、A5、A6、C7、B8、B9、C 10、A 11、B 12、C13、81 14、53 15、135 16、21 17、4;18、1或 2 19、92 20、 53 .21、7222、21.23、【解答】解:(1)用“普”代表“普通红包”,用“拼”代表“拼手气群红包”,画树状图得:则共有8种等可能的结果;(2)∵甲、乙、丙三名学生抢得同一红包的有2种等可能的结果, ∴甲、乙、丙三名学生抢得同一红包的概率为:41; (3)∵甲、乙、丙三名学生中至少有两人抢得拼手气红包群红包的有4种等可能的结果, ∴甲、乙、丙三名学生中至少有两人抢得拼手气红包群红包的概率为:21. 24、【解答】解:(1)不同意他的说法.理由如下: ∵有2名男生和1名女生,∴主持人是男生的概率=32,主持人是女生的概率=31; (2)画出树状图如下:一共有6种情况,恰好是1名男生和1名女生的有4种情况,所以,P (恰好是1名男生和1名女生)=32. 25、.(1)4 0.15 (2)最后一行数据 0.30 (3)列表得:∵共有6种等可能的结果,A ,B 都被选中的情况有2种,∴P(A ,B 都被采访到)=31.26、【解答】解:(1)共调查的中学生家长数是:40÷20%=200(人); (2)扇形C 所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°; C 类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人), 补图如下:(3)根据题意得:11000×60%=6600(人),答:我校11000名中学生家长中有6600名家长持反对态度; (4)设初三(1)班两名家长为A 1,A 2,初三(2)班两名家长为B 1,B 2,一共有12种等可能结果,其中2人来自不同班级共有8种∴P (2人来自不同班级)=32. 27、【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵小强、小华各取一次小球所确定的点(x ,y )落在一次函数y=x ﹣1的图象上的有:(-1,-2),(-2,-3),(-3,-4),∴小强、小华各取一次小球所确定的点(x ,y )落在一次函数y=x ﹣1的图象上的概率为:163; (3)∵小强、小华各取一次小球所确定的数x 、y 满足y >x ﹣1的有:(-1,-1),(-2,-1),(-2,-2),(﹣3,-1),(-3,-2),(-3,-3),(4,-1),(-4,-2),(-4,-3),(-4,-4), ∴小强、小华各取一次小球所确定的数x 、y 满足y >x ﹣1的概率为:85.28、解.(1)从中任取一球,球上的数字为偶数的概率是31;(2)列表得:则点M 坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)(2,3)、(3,1)、(3,2)、(3,3),积为3的有2种, 点A (x,y )在函数x y 3 的图象上概率为92.。

K:概率(理科2016年) Word版含答案

K:概率(理科2016年) Word版含答案

数 学K 单元 概率 K1 随事件的概率18.K1,K6,K8 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.K2 古典概型7.K2、K4 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.7.56 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为56.14.F1,K2 如图1­2所示,在平面直角坐标系xOy 中,O 为正八边形A 1A 2…A 8的中心,A 1(1,0).任取不同的两点A i ,A j ,点P 满足OP →+OA i →+OA j →=0,则点P 落在第一象限的概率是________.图1­214.528 共有C 28=28(个)基本事件,其中使点P 落在第一象限的基本事件共有C 23+2=5(个),故所求概率为528.K3 几何概型4.K3 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12 C.23 D.344.B 由题意可知满足条件的时间段为7:50~8:00,8:20~8:30,共20分钟,故所求概率为2040=12.14.K3 在上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.14.34 若直线与圆相交,则|5k |1+k 2<3,解得-34<k <34.由几何概型公式得P =34-(-34)1-(-1)=34.K4 互斥事件有一个发生的概率7.K2、K4 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.7.56 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为56.K5 相互对立事件同时发生的概率16.I1,K5 A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数.(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)16.解:(1)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2, (5)事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知,P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.K6 离散型随机变量及其分布列12.K6 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.12.32 由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率P =1-12×12=34. ∵2次独立重复试验成功次数X 满足二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32. 10.K3 从区间随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2n mC.4mnD.2m n10.C 由题意可知(x i ,y i )(i =1,2,…,n )在如图所示的正方形中,两数平方和小于1的点在如图所示的阴影中.由几何概型概率计算公式知π41=m n ,∴π=4mn .18.K1,K6,K8 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.19.K6,K7 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .19.解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +BCD +A CD +AB D +ABC .由事件的独立性与互斥性,得P (E )=P (ABCD )+P (BCD )+P (A CD )+P (AB D )+P (ABC )=P (A )P (B )P (C )P (D )+P ()P (B )P (C )P (D )+P (A )P ()P (C )P (D )+P (A )P (B )P ()P (D )+P (A )P (B )P (C )P ()=34×23×34×23+2×14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512, P (X =6)=34×23×34×23=36144=14.故随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.16.K6 某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.16.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13, 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.K7 条件概率与事件的独立性19.K6,K7 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .19.解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +BCD +A CD +AB D +ABC .由事件的独立性与互斥性,得P (E )=P (ABCD )+P (BCD )+P (A CD )+P (AB D )+P (ABC )=P (A )P (B )P (C )P (D )+P ()P (B )P (C )P (D )+P (A )P ()P (C )P (D )+P (A )P (B )P ()P (D )+P (A )P (B )P (C )P ()=34×23×34×23+2×14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512, P (X =6)=34×23×34×23=36144=14.故随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.K8 离散型随机变量的数字特征与正态分布18.K1,K6,K8 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.K9 单元综合19.K9某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:图1­5以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?19.解:(1)由柱状图并以频率代替概率可得,1台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X 的分布列为(2)由(1)知P (X ≤18)=0.44,P (X ≤19)=0.68,故n 的最小值为19. (3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E (Y )=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.04 “计数原理与概率”模块(1)已知(1+2x )4(1-x 2)3=a 0+a 1x +a 2x 2+…+a 10x 10,求a 2的值.(2)设袋中共有8个球,其中3个白球、5个红球,从袋中随机取出3个球,求至少有1个白球的概率.解:(1)因为(1+2x )4二项展开式的通项为C r 4(2x )r,r =0,1,2,3,4. (1-x 2)3二项展开式的通项为C r 3(-x 2)r,r =0,1,2,3. 所以a 2=C 24·22·C 03+C 04·C 13·(-1)=21. (2)从袋中取出3个球,总的取法有C 38=56(种); 其中都是红球的取法有C 35=10(种).因此,从袋中取出3个球至少有1个白球的概率是 1-C 35C 38=2328.4. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln(3a -1)<0成立的概率是( )A.13B.23C.12D.144.A 由ln (3a -1)<0得13<a<23,则用计算机在区间(0,1)上产生的随机数a 使不等式ln (3a -1)<0成立的概率是13.3. 根据历年气象资料统计,某地四月份刮东风的概率是830,既刮东风又下雨的概率是730,则该地四月份在刮东风的条件下下雨的概率是 ( ) A. 830 B. 730 C.78 D.8153.C 记“某地四月份刮东风”为事件A ,“某地四月份下雨”为事件B ,则P(A)=830,P(AB)=730,所以P( |B A)=P (AB )P (A )=78.1. 在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两个科目考试成绩的统计图如图K50­1所示,其中“科目一”成绩为D 的考生恰有4人.(1)分别求该考场的考生中“科目一”和“科目二”成绩为A 的考生人数;(2)已知在该考场的考生中,恰有2人的两科成绩均为A ,从至少一科成绩为A 的考生中随机抽取2人进行访谈,设这2人中两科成绩均为A 的人数为随机变量X ,求X 的分布列和数学期望.图K50­11.解:(1)该考场中“科目一”的成绩为D 的考生人数所占频率为1-0.2-0.375-0.25-0.075=0.1,所以该考场人数为4÷0.1=40.于是“科目一”的成绩为A 的考生人数为40×0.075=3,“科目二”的成绩为A 的考生人数为40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.(2)因为“科目一”和“科目二”成绩为A 的考生人数均为3,又恰有2人的两科成绩等级均为A ,所以还有2人只有一个科目得分为A ,即至少有一科成绩为A 的考生共有4人.随机变量X 的可能取值为0,1,2.P ()X =0=C 22C 24=16,P ()X =1=C 12·C 12C 24=46=23,P ()X =2=C 22C 24=16,所以X 的分布列为X 的数学期望E ()X =0×6+1×3+2×6=1.4. 近年来,全国很多地区出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.一般来说,老年人(年满60周岁,包括60周岁)从情感上不太支持禁放烟花爆竹,而中青年人(18周岁至60周岁)则相对理性一些.某市环保部门就是否赞成禁放烟花爆竹对400位老年人和中青年人进行了随机问卷调查,调查结果如下表:(1) (2)从上述不赞成禁放烟花爆竹的市民中按年龄结构用分层抽样法取出13人,再从这13人中随机地挑选2人了解他们春节期间在烟花爆竹上的消费情况.假设老年人花费500元左右,中青年人花费1000元左右.用Χ表示它们在烟花爆竹上消费的总费用,求Χ的分布列和数学期望.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),4.解:(1)因为k =140×260×200×200≈4.396>3.841,所以有95%以上的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关. (2)因为140∶120=7∶6,所以13人中有老年人7人,中青年人6人. X 可能的取值为2000,1500,1000,P(X=2000)=C26C213=526,P(X=1500)=C17C16C213=713,P(X=1000)=C27C213=726,所以X的分布列为所以 E(X)=2000×26+1500×13+1000×26=13≈1462.。

概率期末试题及答案

概率期末试题及答案

概率期末试题及答案一、选择题(共10题,每题2分,共计20分)1. 设A、B、C为三个事件,且P(A)=0.3,P(B)=0.4,P(C)=0.5,P(A∩B)=0.2,P(B∩C)=0.3,P(A∩C)=0.1,P(A∩B∩C)=0.08,则P(A∪B∪C)等于:a) 0.3b) 0.4c) 0.5d) 0.58【答案】d) 0.582. 掷骰子,事件A为出现奇数点数,事件B为出现小于等于3的点数,事件C为出现6的点数。

若P(A)=2/3,P(B)=1/2,P(B∩C)=1/6,则P(A'∪B'∩C')等于:a) 1/4b) 2/3c) 5/6d) 3/8【答案】b) 2/33. 设事件A与事件B独立,且P(A)=0.4,P(B)=0.3,则P(A∩B)等于:a) 0.12b) 0.2c) 0.3d) 0.7【答案】b) 0.24. 甲、乙交替投掷一枚硬币,甲先投掷,连续投掷两次出现正面的概率为:a) 1/4b) 1/2c) 3/4d) 1/8【答案】d) 1/85. 一批产品共有100个,其中10个有缺陷。

从中随机抽取4个,不放回,抽到2个有缺陷的概率为:a) 0.009b) 0.018c) 0.090【答案】b) 0.0186. 一袋中有5个红球,3个蓝球,2个绿球。

从中任取3个球,其中至少有一个红球的概率为:a) 13/14b) 10/14c) 6/14d) 5/14【答案】a) 13/147. 甲、乙、丙三人轮流掷硬币,直到有两个人出现正面为止。

如果甲先掷,丙第二掷,则甲胜的概率为:a) 4/9b) 5/9c) 1/3d) 2/3【答案】a) 4/98. 一次选择题考试,每道题有4个选项,若考生瞎猜答题,且每题只答一次,则至少答对一半问题的概率为:a) 3/16c) 11/16d) 13/16【答案】d) 13/169. 一批产品中有10%的次品。

从中连续抽取10个,完好品占多于8个的概率为:a) 0.135b) 0.650c) 0.900d) 0.945【答案】d) 0.94510. 某镇犯罪率为0.1%,警察部门外聘一位顾问,他说某人是罪犯的概率为99%。

概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc

概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。

2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。

3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。

4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。

25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。

6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。

7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。

8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。

0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。

0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。

若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。

a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。

华南师范大学数学专业2016级下学期专业试卷及答案解析-信计091概率统计A

华南师范大学数学专业2016级下学期专业试卷及答案解析-信计091概率统计A

《概率论与数理统计》试卷(A )适用专业:信计091 考试日期:2011年7月 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1.设事件B A ,互不相容,若()(),5.0,3.0==B P A P 则()AB P 为__________. 设事件B A ,相互独立,若()(),5.0,3.0==B P A P 则()AB P 为__________.2.设n ξξξ,,21 为取自母体服从正态分布()2,σμN 的子样,ξ为子样均值,2nS为子样方差。

则ξ服从的分布为____________,()nS n 1--μξ服从的分布为_____________.3. 设n ξξξ,,21 为取自母体服从正态分布()1,0N 的子样,则∑=ni i12ξ服从的分布为_____________.4. 设ξ与η相互独立,分别是服从自由度为n 及m 的2x 分布的随机变量,则mn ηξς=服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设B A ,为互不相容事件,且()(),0,0>>B P A P 则结论正确的有( ) (A )()0>B A P (B )())(A P B A P > (C) ()0=B A P (D) ()()()B P A P B A P = 2、设随机变量ξ的概率密度函数为()x ϕ,且有()x ϕ()x -=ϕ,()x F 是ξ的分布函数,则对任意实数a ,有( ) (A )()()dx x a F a⎰-=-01ϕ (B )()()dx x a F a ⎰-=-021ϕ (C)()()a F a F =- (D)()()12-=-a F a F3、设随机变量X 服从正态分布()2,σμN,则随着σ的增大,()σμ<-X P ( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数()x ϕ一定满足( )(A )()10≤≤x ϕ;(B )定义域内单调不减;(C )()1=⎰+∞∞-dx x ϕ;(D )()1lim =+∞→x x ϕ。

2015-2016概率统计(B)答案

2015-2016概率统计(B)答案

广州大学2015-2016学年第二学期考试卷参考答案课 程:概率论与数理统计 考 试 形 式:闭卷考试一、选择题(每小题2分,总计10分)1.下列给出的数列中,可用来描述某一随机变量分布律的是( D ).(A )25i p i =,5,4,3,2,1=i ; (B )6)5(2i p i -=,3,2,1,0=i ;(C )1453i p i =,5,4,3,2,1=i ; (D )302i p i =,4,3,2,1=i .2.设事件A 与B 同时发生的概率()0P AB =,则( C ).(A)事件A 与B 相互独立; (B)事件A 与B 不相关; (C)()()()P A B P A P B =+ ; (D)事件AB 为不可能事件.3.已知2.0)(=A P ,2.0)(=B P ,A 与B 互斥,则=-)(A B P ( B ). (A )0.04; (B )0.2; (C )0.16; (D )0.4.设()f x ,()F x 分别为某连续型随机变量的概率密度函数和分布函数,则( B ). (A)()f x 连续; (B)()()F x f x '=; (C)()()f x F x '=; (D)lim ()1x f x →+∞=.5.设)4,2(~N X , 若Y =( A ), 则~(0,1)Y N .(A)22-X ; (B)24X -; (C)24X +; (D)42X +. 二、填空题(每小题2分,总计10分)1. 袋中有6个红球,2个白球.从中任取3个,则恰好取到2个红球的概率是___2815___. 2. 已知()0.4P A =,()0.5P B =,6.0)|(=A B P ,则()P A B = 0.66 . 3.每次试验中A 出现的概率为p ,在三次试验中A 出现至少一次的概率是6463,则p = 0.75 .4.设离散型随机变量X 的分布律为X 0 1 3 P 0.6 0.1 0.3其分布函数为()F x ,则(2)F = 0.7 .5.设321,...,),64,3(~x x N X 为X 的一个样本,则样本均值X 的方差为 2 . 三、(本题满分8分)袋中有红球7个, 白球3个, 从中抽3个, 求(1)抽到3个红球的概率()P A ;(2)抽到至多2个白球的概率()P B .解:(1) 247)(31037==C C A P ……(4分)(2) ()1()P B P B =-120119131033=-=CC = ……(8分) 四、(本题满分10分)设某批产品中, 甲, 乙, 丙三厂生产的产品分别占35%, 25%, 40%, 各厂的产品的次品率分别为4%, 2%, 5%, 现从中任取一件, 经检验发现取到的产品为次品, 求该产品是甲厂生产的概率.解:记事件0:“该产品是次品”, 事件2A :“该产品为乙厂生产的”, 事件3A :“该产品为丙厂生产的”,事件B :“该产品是次品”.------2分 由题设,知%,35)(1=A P %,25)(2=A P %,40)(3=A P1(|)4%P B A =,2(|)2%P B A =,3(|)5%P B A =,------5分 由全概率公式得31()()(|)i i i P B P A P B A ==∑%39=.------8分由贝叶斯公式(或条件概率定义), 得1(|)P A B 1()()P A B P B =11()(|)()P A P B A P B =3914=.------10分 五、(本题满分8分) 设随机变量X 的分布律为试求:(1)随机变量21Y X=+的分布律;(2)Y 的分布函数. 解:(1) 随机变量Y 的分布律为……(5分)(2) ⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=y y y y y F 51526.0211.010)( ……(8分)六、(本题满分14分)设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数;(3) P {0≤X <1,0≤Y <2}.解:(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有(,)(,)d dy xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰七、(本题满分为10分)袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?解:(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立八、(本题满分10分)某市保险公司开办一年人身保险业务, 被保险人每年需交付保险费200元, 若一年内发生重大人身事故, 其本人或家属可获2.5万元赔金. 已知该市人员一年内发生重大人身事故的概率为0.005,现有5000人参加此项保险, 问保险公司一年内从此项业务所得到的总收益在0到75万元之间的概率是多少?2t x -(,)n p ,其中5000n =,0.005p =.------2分 保险公司一年内从此项业务所得到的总收益为X 5.2500002.0-⨯万元.------5分 所求概率为)4010()755.2500002.00(≤≤=≤-⨯≤X P X P ------6分995.0252540)1(995.0252510⨯-≤--≤⎩⎨⎧⨯-=p np np X P ------7分 )3()3(-Φ-Φ≈------8分 1)3(2-Φ=------9分 =0.9974.-----10分十、(本题满分10分)设分别自总体21N(,)μσ和22N(,)μσ中抽取容量为n 1,n 2的两个独立样本,其样本方差分别为2212,S S . 试证:对于任意常数a ,b (a +b =1),Z =a 21s +b 22s 都是σ2的无偏估计,并确定常数a ,b ,使D(Z)达到最小.解 由题意,2212,S S 相互独立, ()()222212,E S E S σσ==则2222221212()()()()()E Z E aS bS aE S bE S a b σσ=+=+=+=所以,Z 是2σ的无偏估计. 又22211~(1)1S n n σχ-- ()211(1)2(1)D n n χ-=-,所以()2444222111111222211111122(1)1(1)(1)1n n D S D S D S n n n n n σσσσσσ⎛⎫--⎛⎫===-= ⎪ ⎪----⎝⎭⎝⎭ 同理 ()422221D S n σ=-因此有()24242222222241212121222()()21111a b a b D aS bS a D S b D S n n n n σσσ⎛⎫+=+=+=+ ⎪----⎝⎭由于a +b =1, 由10题的结果,可得当11212n a n n -=+-,21212n b n n -=+-,D(Z)有极小值,最小值为:224412122()2112a b D Z n n n n σσ⎛⎫=+=⎪--+-⎝⎭。

概率经典测试题附答案解析

概率经典测试题附答案解析
【答案】A
【解析】
【分析】
根据题意,用黑色方砖的面积除以正方形地砖的面积即可.
【详解】
停在黑色方砖上的概率为: ,
故选:A.
【点睛】
本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )

概率经典测试题含解析

概率经典测试题含解析

概率经典测试题含解析一、选择题1.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.5.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.6.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.7.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( )A.mn一定等于12B.mn一定不等于12C.mn一定大于12D.投掷的次数很多时,mn稳定在12附近【答案】D【解析】某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则投掷的次数很多时mn稳定在12附近,故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.下列事件中,属于随机事件的是().A.凸多边形的内角和为500︒B.凸多边形的外角和为360︒C.四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况, ∴这两个球上的数字之积为奇数的概率是21=126.故选A .【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.下列事件是必然事件的是( )A .打开电视机正在播放动画片B .投掷一枚质地均匀的硬币100次,正面向上的次数为50C .车辆在下个路口将会遇到红灯D .在平面上任意画一个三角形,其内角和是180︒ 【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D .【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.15.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握:必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.16.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.17.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,现给出以下四个结论:(1)AE =CF ;(2)△EPF 是等腰直角三角形;(3)S 四边形AEPF =12S △ABC ;(4)当∠EPF 在△ABC 内绕顶点P 旋转时始终有EF =AP .(点E 不与A 、B 重合),上述结论中是正确的结论的概率是( )A.1个B.3个C.14D.34【答案】D【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到选项A,B,C都是正确的,当EF=AP 始终相等时,可推出222AP PF=,由AP的长为定值,而PF的长为变化值可知选项D不正确.从而求出正确的结论的概率.【详解】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴1245EAP BAC∠=∠=︒,12AP BC CP==.(1)在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP∴AE=CF.(1)正确;(2)由(1)知,△AEP≌△CFP,∴PE=PF,又∵∠EPF=90°,∴△EPF是等腰直角三角形.(2)正确;(3)∵△AEP≌△CFP,同理可证△APF≌△BPE.∴12AEP APF CPF BPE ABCAEPFS S S S S S=+=+=V V V V V四边形.(3)正确;(4)当EF=AP始终相等时,由勾股定理可得:222EF PF=则有:222AP PF=,∵AP的长为定值,而PF的长为变化值,∴2AP与22PF不可能始终相等,即EF与AP不可能始终相等,(4)错误,综上所述,正确的个数有3个,故正确的结论的概率是34.故选:D.【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.18.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.20.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.。

广东省14市2016届高三上学期期末考试数学文试题分类汇编:概率与统计

广东省14市2016届高三上学期期末考试数学文试题分类汇编:概率与统计

广东省14市2016届高三上学期期末考试数学文试题分类汇编 概率与统计一、选择题 1、(东莞市2016届高三上学期期末)网上大型汽车销售店销售某品牌A 型汽车,在2015双十一期间,进行了降价促销,该型汽车的价格与月销售量之间有如下关系:已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:$80y bx =+,若A 型汽车价格降到19万元,预测月销售量大约是(A )39 (B )42 (C )45 (D )502、(清远市2016届高三上学期期末)在某次测量中得到的A 样本数据如下:72,74,74,76,76,76,77,77,77,77.若B 样本数据恰好是A 样本数据每个都减2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差3、(汕头市2016届高三上学期期末)从数字1、2、3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( ) A .13 B .16 C .12 D .234、(汕尾市2016届高三上学期调研)在区间(0,100)上任取一数x , 则 lg x >1的概率是 ( ) A .0.1 B.0.5 C.0.8 D.0.95、(韶关市2016届高三上学期调研)在某次测量中得到的A 样本数据如下:41,44,45,51,43,49,若B 样本数据恰好是A 样本数据每个都减5后所得数据,则A ,B 两样本的下列数据特征对应相同的是A .众数B .中位数C .平均数D .标准差 6、(湛江市2016年普通高考测试(一))投掷一颗骰子两次,将得到的点数依次记为,a b ,则直线0ax by -=的倾斜角大于4π的概率为 A 、512 B 、712 C 、13 D 、127、(肇庆市2016届高三第二次统测(期末))一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是(A )25 (B ) 310 (C )15 (D )7108、(珠海市2016届高三上学期期末)已知点P 是边长为2的正方形内任一点,则点P 到四个顶点的距离均大于1的概率是( )A .4π B .44π- C .14 D .3π参考答案:1、B2、D3、A4、D5、D6、A7、B8、B二、填空题 1、(潮州市2016届高三上学期期末)在区间[-3,5]上随机取一个数a ,则使函数2()24f x x ax =++无零点的概率是 _2、(佛山市2016届高三教学质量检测(一)(期末))从某班5位老师中随机选两位老师值班,有女老师被选中的概率为710,则在这5位老师中,女老师有_______人. 3、(惠州市2016届高三第三次调研)某校有,A B 两个文学社团,若,,a b c 三名学生各自随机选择参加其中的一个社团,则三人不在同一个社团的概率为 . 4、(茂名市2016届高三第一次高考模拟)某小卖部为了了解热茶销售量y (杯)与气温x (°C )之间的关系,随机统计了某4天卖出的热茶杯数与当天气温,并制作了对照表:由表中数据算得线性回归方程^y bx a =+中的b ≈-2,预测当气温为-5°C 时,热茶销售量为 杯。

河北省定州市2016届九年级上学期期末考试数学试题解析(解析版)

河北省定州市2016届九年级上学期期末考试数学试题解析(解析版)

一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各点中,在函数y=-3x的图象上的点是()A.(12,-6) B.(-12,-6) C.(2, -6) D.(-2,6)【答案】A.考点:反比例函数图象上点的坐标特征.2.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是() A.相交 B.相切 C.相离 D.不确定【答案】A.【解析】试题解析:因为⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,∴3.5<4,∴直线l与⊙O的位置关系是相交,故选A.考点:直线与圆的位置关系.3.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()【答案】B.【解析】试题解析:∵90°的圆周角所对的弦是直径,∴其中的圆弧为半圆的是B.故选B.考点:圆周角定理.4.若反比例函数y=2kx+,当x<0时,y随x的增大而增大,则k的取值范围是()A.k>-2 B.k<-2 C.k>2 D.k<2【答案】B.考点:反比例函数的性质.5.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0. 9cm B.1cm C.3.6cm D.0.2cm【答案】A.【解析】试题解析:∵DE∥BC,∴AD AEDB EC=,即2 1.81EC=,∴EC=0.9(cm).故选A.考点:平行线分线段成比例.6.如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于()A.55° B.60° C.65° D.80°【答案】B.【解析】试题解析:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=12BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选B.考点:旋转的性质.7.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接 BC,若∠A=36°,则∠C等于() A.36° B.54° C.60° D.27°【答案】D.【解析】试题解析:连接OB,考点:切线的性质.8.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B.【解析】试题解析:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.考点:利用频率估计概率.9.小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2 B.240πcm2 C.260πcm2 D.480πcm2【答案】B.【解析】试题解析:根据圆的周长公式得:圆的底面周长=20π.圆的底面周长即是扇形的弧长,∴扇形面积=202422lrπ⨯==240πcm2.故选B.考点:扇形面积的计算.10.二次函数y=ax2+b(b>0)与反比例函数y=ax在同一坐标系中的图象可能是()【答案】B.【解析】试题解析:A、对于反比例函数y=ax经过第二、四象限,则a<0,所以抛物线开口向下,故A选项错误;B、对于反比例函数y=ax经过第一、三象限,则a>0,所以抛物线开口向上,b>0,抛物线与y轴的交点在x轴上方,故B选项正确;C、对于反比例函数y=ax经过第一、三象限,则a>0,所以抛物线开口向上,故C选项错误;D、对于反比例函数y=ax经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴的交点在x轴上方,故D选项错误.故选B.考点:1.二次函数的图象;2.反比例函数的图象.11.如图,在平面直角坐标系中,点A、B均在函数y=kx(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2) B.(2,3) C.(3,2) D.(4,32)【答案】C.考点:1.切线的性质;2.反比例函数图象上点的坐标特征.12.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)【答案】B.【解析】试题解析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选B.考点:1.相似三角形的判定;2.坐标与图形性质.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.若抛物线y=2x2-8x-1的顶点在反比例函数y=kx的图像上,则k的值为。

2016-2017学年高二数学(理科)下学期期末考试试题分析

2016-2017学年高二数学(理科)下学期期末考试试题分析

2016-2017学年度高二期末考试数学试题分析(理科)一、试题分析:1、本套试题题型按高考新课标模式命制,考试范围包括选修2-2,选修2-3,选修4-4,选修4-5的所有内容。

选择题、填空题注重基础性和灵活性,解答题则更多考查了运算能力和思维能力。

2、本次命题的突出特点是:以基础知识、基本概念和基本方法为主,突出对知识和技能的考查;以数学思想方法为命题主线,突出对学生思维能力的考查,试题难度偏难。

二、答卷分析:本套试卷共23道试题,1--21题为必做题,22、23为选做题,具体各试题分析如下:1、本题考查复数中虚数单位的周期性和基本运算。

是一道基础试题,绝大多数学生都能做出正确选项,个别学生出错的主要原因是运算不过关。

2、本题考查排列数组合数公式,属于基础题型,学生基本都能做对。

3、本题考查归纳推理,极个别学生出错。

4、本题考查复数的基本概念和基本运算,属于基本题型,相对较易,多数学生都能正确解答。

5、本题考查反证法中命题的假设,都的否定,多数学生都能正确解答。

6、本题考查排列组合的概率问题。

学生对排列组合掌握不够,答卷的正确率较低。

7、本题考查导函数图像,属于基础题型。

得分率较高。

8、本题考查二项式定理。

由于两个式子相乘,增加了题目的难度,大多数学生未能得分。

9、本题考查正态分布,考查基本性质。

本题难度不大,由于不能更好的利用图像解题,得分率较低。

10、本题通过考查函数在给定区间上的最值,求参数a的取值范围,由于学生计算能力差,错误现象比较严重。

11、本题为多选题,以类比推理为载体,考查函数性质、圆锥曲线、数列等的基本性质,增加了题目的难度,学生选对的少。

12、本题考查有限制条件的排列,涉及不相邻问题和特殊元素,学生的失分率很高。

13、本题考查回归分析中2R的意义,属于基础题型,部分学生没记准,得分率较低。

14、本题考查二项式定理,学生对通项公式记忆不准,不会灵活应用赋值法变形转化。

15、本题考查复合求导和导数的几何意义。

16年数三概率论解析

16年数三概率论解析

16年数三概率论解析2016年的数学三概率论解析是高考数学考试中的一道题目。

这道题目主要涉及概率论的知识,考察考生对概率计算和条件概率的理解和运用能力。

下面我将从多个角度对这道题目进行全面解析。

首先,我们来看题目的具体内容,假设A、B、C三个事件满足P(A∩B∩C)=0,且P(A∪B∪C)=1,已知P(A)=0.6,P(A∩B)=0.3,P(A∩C)=0.2,求P(B∩C)。

我们可以通过条件概率的性质来解决这道题目。

根据条件概率的定义,我们知道P(A∩B)表示事件A和事件B同时发生的概率,而P(A∩C)表示事件A和事件C同时发生的概率。

题目中已经给出了P(A∩B)和P(A∩C)的值,分别为0.3和0.2。

我们可以利用这些信息来求解P(B∩C)。

首先,我们可以利用概率的加法原理求解P(A∪B∪C)。

根据题目中已知条件,P(A∪B∪C)=1,而P(A)=0.6。

根据概率的加法原理,我们可以得到P(B∪C)=P(A∪B∪C)-P(A)=1-0.6=0.4。

接下来,我们可以利用条件概率的性质来求解P(B∩C)。

根据条件概率的定义,我们知道P(B∩C)=P(B|A∪C)×P(A∪C),其中P(B|A∪C)表示在事件A∪C发生的条件下事件B发生的概率。

根据概率的乘法定理,我们可以将P(B|A∪C)表示为P(B∩A∪C)/P(A∪C)。

由于题目中已知P(A∩B∩C)=0,我们可以得到P(B∩A∪C)=P(A∪C)-P(A∩B∩C)=P(A∪C)=0.4。

将这些值代入公式中,我们可以得到P(B∩C)=0.4/0.4=1。

因此,根据题目中给出的条件,我们可以得出结论,P(B∩C)=1。

综上所述,这道题目的解析涉及了概率论中的条件概率和概率的加法原理的运用。

通过正确理解题目中的条件,并运用相应的概率计算公式,我们可以得出最终的答案P(B∩C)=1。

这道题目考察了考生对概率论知识的理解和运用能力,同时也要求考生具备一定的计算能力和逻辑推理能力。

2016年)概率常考题型解析

2016年)概率常考题型解析

概率知识点及考点分析开封高中 王国平(高中数学 开封市高中数学二坊 )本章主要研究随机事件、互斥事件及概率的意义,并会计算互斥事件的概率;掌握古典概型、几何概型的概率计算.一.知识点解读1.随机事件和确定事件(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C…表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A)=n An为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P(A),称为事件A 的概率,简称为A 的概率. 3.互斥事件与对立事件(1)互斥事件:若A∩B 为不可能事件(A∩B=∅),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.(2)对立事件:若A∩B 为不可能事件,而A ∪B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率:P(A)=1. (3)不可能事件的概率:P(A)=0.(4)互斥事件的概率加法公式:①P(A ∪B)=P(A)+P(B)(A ,B 互斥).②P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n )(A 1,A 2,…,A n 彼此互斥). (5)对立事件的概率:P(A )=1-P(A).5.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 6.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等. 7.古典概型的概率公式P(A)=A 包含的基本事件的个数基本事件的总数8.几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.满足以上条件的试验称为几何概型.9.几何概型中,事件A 的概率计算公式P(A)=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.10.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 二.常考题型分析考点1.事件的关系与运算对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.例1.(2016·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”解析:选D A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.跟踪训练1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年全国各地高三年级期末考试数学精彩试题集锦(概率)戴又发最近各校高三年级期末考试陆续举行.这是高中阶段最后一次期末考试,相信考生、学校及命题人都会高度重视,试题的质量也相对较高.正是因为这次期末考试重要,不少学校采取多校联考,有些地区还组织了统一的质量检测.本人将陆续从众多试卷中,选择具有一定难度的经典试题或有新意精彩试题,做详细解析.希望能作为考生寒假休整期间参考材料.(题号为试卷中的题号)辽宁省沈阳市2016年高三期末检测19. (本小题满分12分)某中学根据2002—2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m、13、n,已知三个社团他都能进入的概率为1 24,至少进入一个社团的概率为34,且m n .(Ⅰ)求m与n的值;(Ⅱ)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数的分布列及期望.解析: (Ⅰ)依题,11324131(1)(1)(1)34mn m n ⎧=⎪⎪⎨⎪----=⎪⎩,解得1214m n ⎧=⎪⎪⎨⎪=⎪⎩ (Ⅱ)由题令该新同学在社团方面获得校本选修课学分的分数为随机变量X ,则X 的值可以为0,1,2,3,4,5,6.而1231(0)2344P X ==⨯⨯=; 1231(1)2344P X ==⨯⨯=;1131(2)2348P X ==⨯⨯=; 1211135(3)23423424P X ==⨯⨯+⨯⨯=;1211(4)23412P X ==⨯⨯=; 1111(5)23424P X ==⨯⨯=;1111(6)23424P X ==⨯⨯=. 于是X 的分布列为:于是,111()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯2312=.陕西省汉中市2016年高三期末教学质量检测(理科)19. (本小题满分12分)为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为23;现记“该选手在回答完n 个问题后的总得分为n S ”. (1)求620S =且()01,2,3i S i ≥=的概率;(2)记5X S =,求X 的分布列,并计算数学期望()E X .解析: (1)当620S =时,即回答6个问题后,正确4个,错误2个.若回答正确第1个和第2个问题,则其余4个问题可任意回答正确2个问题;若第一个问题回答正确,第2个问题回答错误,第三个问题回答正确,则其余三个问题可任意回答正确2个.记回答每个问题正确的概率为p ,则23p =,同时回答每个问题错误的概率为13.故所求概率为2222224322121221163333333381P C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)由5X S =可知X 的取值为10,30,50可有()3223325521214010333381P X C C ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()4114415521213030333381P X C C ⎛⎫⎛⎫⎛⎫⎛⎫==+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()5550552111503381P X C C ⎛⎫⎛⎫==+= ⎪⎪⎝⎭⎝⎭. 故X 的分布列为:所以 ()81E X =.湖北省荆门中学2016年1月高三调研考试理科卷18.(本小题满分12分)某学校男子篮球运动队由12名队员组成,每个运动员身高均在180cm 到210cm 之间,测得身高后得到如下所示的频数分布表:(I )试估计该运动队身高的平均值;(II )从中选5人参加比赛,求身高在200cm 以上的人数X 的分布列和数学期望.解析:(Ⅰ)由分布表知,该运动队队员身高得平均值大约为1(182.52187.53192.53197.52202.51207.51)192.512⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅱ)由题意,X 的所有取值为0,1,2,5105127(0)22C P X C ===,4110251235(1)66C C P X C ===,321025125(2)33C C P X C ===.所以X 的分布列为:所以73555()0122266336E X =⨯+⨯+⨯=.山东省青岛市2016高三期末考试理科卷17. (本小题满分12分)某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为89,第二道工序检查合格的概率为910,已知该厂三个生产小组分别每月负责生产一台这种仪器.(I )求本月恰有两台仪器完全合格的概率;(II )若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为ξ,求ξ的分布列和每月的盈利期望.解析: (Ⅰ) 设恰有两台仪器完全合格的事件为A ,每台仪器经两道工序检验完全合格的概率为p ,894=9105p =⨯所以2222334448()(1)()(1)55125P A C p p C =-=-=(Ⅱ) 每月生产的仪器完全合格的台数可为3,2,1,0四种 所以赢利额ξ的数额可以为15,9,3,3-当15ξ=时,333464(15)()5125P C ξ===;当9ξ=时,2234148(9)()55125P C ξ===;当3ξ=时,1234112(3)()55125P C ξ===;当3ξ=-时,03311(3)()5125P C ξ=-==;每月的盈利期望6448121571593(3)10.141251251251255E ξ=⨯+⨯+⨯+-==. 所以每月的盈利期望值为10.14万元.广东省汕头市2016届高三教学质量统一检测19. (本小题满分12分)一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球.(i )求白球的个数;(ii )从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ.(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.解析:(Ⅰ)(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19x C P A C -=-=,1742110865654320998854219998771918171615得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ123P112512512112所以 ξ的数学期望为155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B , 则23()551y P B n =+⨯-231755210+⨯=≤.所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.江西省赣州市2016届高三上学期期末考试 18.(本小题满分12分)为了解某地脐橙种植情况,调研小组在该地某脐橙种植园中随机抽出30棵,每棵挂果情况编成如图所示的茎叶图(单位:个):若挂果在175个以上(包括175)定义为“高产”,挂果在175个以下(不包括175)定义为“非高产”. (1)如果用分层抽样的方法从“高产”和“非高产”中抽取5棵,再从这5棵中选2棵,那么至少有一棵是“高产”的概率是多少?(2)用样本估计总体,若从该地所有脐橙果树(有较多果树)中选3棵,用ξ表示所选3棵中“高产”的个数,试写出ξ的分布列,并求ξ的数学期望.解析:(1)根据茎叶图,有“高产”12棵,“非高产”18棵,用分层抽样的方法,每棵被抽中的概率是51306=. 所以选中的“高产”有11226⨯=棵,“非高产”有11836⨯=棵,用事件A 表示至少有一棵“高产”被选中,则232537()111010C P A C =-=-=.因此至少有一棵是“高产”的概率是710. (2)依题意,抽取30棵中12棵是“高产”, 所以抽取一棵是“高产”的频率为122305=. 频率当作概率,那么从所有脐橙果树中抽取一棵是“高产”的概率是25, 又因为所取总体数量较多,抽取3棵可看成进行3次独立重复试验,所以ξ服从二项分布2(3,)5B .ξ的取值为0,1,2,3,033227(0)(1)5125P C ξ==-=,1232254(1)(1)55125P C ξ==-=, 2232236(2)()(1)55125P C ξ==-=,33328(3)()5125P C ξ===.所以ξ的分布列如下:所以2754368601231251251251255E ξ=⨯+⨯+⨯+⨯=(或26355E ξ=⨯=). 北京市西城区2016年1月高三期末考试(理科)卷解析:(Ⅰ)记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13.(Ⅱ)由题意,X 的所有可能取值为13,15,16,18, 且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,所以X的分布列为:所以3131E X=⨯+⨯+⨯+⨯=.()13151618158888(Ⅲ)x的可能取值为6,7,8.2016年1月31星期日未完待续。

相关文档
最新文档