2008年山东省临沂市毕业中考数学试卷真题(附答案解析)
2024年临沂市中考数学真题试题及答案
2024年山东省临沂市中考数学真题试卷(枣庄、聊城、临沂、菏泽)一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( ) A. 3B.12C.1- D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( ) A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯4. 下列几何体中,主视图是如图的是( )A. B. C. D.5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=- C. ()2332a ba b =D. ()2212a a a a +=+6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A.19B.29C.13D.239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A.52B. 3C.72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm ①1班学生的最低身高小于150cm ①2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________. 14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫--⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈) 【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号) ①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤. 下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题 (1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线 (2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P . ①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年山东省临沂市中考数学真题试卷答案(枣庄、聊城、临沂、菏泽)一、选择题.9. 解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形 ①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DCAE GE AG== ①5AC =,1CE =①514AE AC CE =-=-= ①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG =①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b 根据1班班长的对话,得180x ≤,350x a +=①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =. 故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①2AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
2008年临沂市初中学业水平考试及中考
2008年临沂市初中学业水平考试及中考生物试题一、选择题(本大题共9小题,每小题只有一个正确答案,共18分)1.2008年奥运帆船比赛地——青岛。
是一座美丽的城市,有着丰富的藻类植物资源,海湾浅水处长绿藻,稍深处长褐藻,再深处长红藻。
藻类植物的这种分布主要受哪种因素的影响?()A.阳光B.温度C.气体D.盐度2.在蚕豆根尖上画上等距离的细线,培养一段时间就会发现细线之间距离最大的是()A.根冠B.分生区C.伸长区D.成熟区3.吃馒头时,越吃越感觉甜,是因为()A.淀粉在口腔内被分解成了葡萄糖B.淀粉在口腔内被分解成了麦芽糖C.唾液变成了葡萄糖D.口腔内产生了葡萄糖4.王力是个足球迷,看一场重要比赛时,当自己喜欢的球队进球时,他欢呼雀跃,并且面红耳赤、心跳加快、血压升高。
在这个变化过程中,起调节作用的是()A.神经调节和激素调节B.神经调节C.激素调节D.血液调节5.鲫鱼游泳时,前进的动力主要来自()A.尾鳍的摆动B.胸鳍和腹鳍的摆动C.各种鳍的共同作用D.躯干部和尾鳍的摆动6.下列属于先天性行为的一组是()A.猫捉老鼠、黄牛耕地、老马识途B.狗辨主客、尺蠖拟态、鹦鹉学舌C.大雁南飞、公鸡报晓、惊弓之鸟D.蚂蚁搬家、蜘蛛结网、孔雀开屏7.如果抗倒伏(D)对不抗倒伏(d)为显性,现有两株不稳定遗传的抗倒伏小麦杂交,收获的后代中获得稳定遗传的基因组成(DD)的可能性占()A.25%B.50%C.75% D.100%8.天天的妈妈用某种杀虫剂消灭蚊子,开始使用时效果还不错,但长期使用后发现效果越来越差。
造成这种现象最可能的原因是()A.蚊子是活化石,适应能力特别强B.能抵抗杀虫剂的蚊子存活下来,且大量繁殖C.杀虫剂性能不稳定D.杀虫剂造成蚊子基因变异,使之产生抗药性9.环境污染已成为人类面临的重大威胁,各种污染数不胜数,下列与环境污染无关的是()①酸雨②潮汐③赤潮④水俣病⑤大脖子病⑥痛痛病A.①②③B.②④C.②⑤D.③⑤二、非选择题(本大题共5小题,每空1分,共22分)10.(4分)下图示某生态系统中各成分之间相互依存的关系,请据图回答:(1)图中细菌在生态系统组成成分中属于者,其生殖方式是生殖。
2008年山东省中考数学试题
2008年山东省中考数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分.考试时间为120分钟.2.答Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并在本页正上方空白处写上姓名和准考证号.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(A B C D)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是A .235a a a +=B .3412a a a ⋅=C .236a a a =÷ D .43a a a -=2.右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系是A .内含B .相交C .相切D .外离3.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于A .315° B.270° C .180° D.135°4.如图,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A .(0,0)B .(12,-12) C .(22,-22) D .(-12,12) 5.小华五次跳远的成绩如下(单位:m ):3.9,4.1, 3.9,3.8,4.2.关于这组数据, 下列说法错误的是A .极差是0.4B .众数是3.9C .中位数是3.98D .平均数是3.98第2题图第3题图第4题图6.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是A .2.5B .3.5C .4.5D .5.57.下列四副图案中,不是轴对称图形的是8.已知代数式2346x x -+的值为9,则2463x x -+的值为A .18B .12 C.9 D .79.一个正方体的表面展开图如图所示,每一个面上都写有一个整数, 并且相对两个面上所写的两个整数之和都相等,那么A .a =1,b =5B .a =5,b =1C .a =11,b =5D .a =5,b =1110.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5h t <; B组:0.5h 1h t <≤; C组:1h 1.5h t <≤;D组: 1.5h t ≥.根据上述信息,你认为本次调查数据的中位数落在 A .B 组 B .C 组 C .D 组 D .A 组11.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为 A .22cm B .2cmC .22cm D .21cm12.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙 杯,则乙杯中的液面与图中点P 的距离是 A .43cm B .6cmA. B. C. D.ABOM第6题图第9题图AOB第11题图A B C D 组别人数第10题图第12题图C .8cmD .10cm2008年山东省枣庄市中考数学试题第Ⅱ卷 (非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分.13.如图,在△ABC 中,AB =2,AC =2,以A 为圆心,1为半径的圆与边BC 相切,则BAC ∠的度数是 .14.函数y =211x x +-中,自变量x 的取值范围是 . 15.已知二次函数c bx ax y ++=21(0≠a )与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使21y y >成立的x 的取值范围是 . 16.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .17.将边长分别为2、3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 . 、18.在实数的原有运算法则中,我们补充新运算法则 “ * ” 如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则当x = 2时,(1*)(3*)x x x - =__________.(“ · ” 和 “ – ”仍为实数运算中的乘号和减号)三、解答题:本大题共7小题,共60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分7分)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x=23.ABC第13题图第15题图第17题B ′ ABCE Oxy20.(本题满分7分)一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题: (1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.21.(本题满分8分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.22.(本题满分8分)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.23.(本题满分10分)已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC .连结DE ,DE =15.(1) 求证:AM MB EM MC ⋅=⋅; (2) 求EM 的长;(3)求sin ∠EOB 的值.A BCEDOM24.(本题满分10分)在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ∆=.(1)求点A 与点B 的坐标; (2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.25.(本题满分10分)把一副三角板如图甲放置,其中90ACB DEC == ∠∠,45A = ∠,30D = ∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1E 1相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1CE 1绕着点C 顺时针再旋转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?说明理由.(甲)ACE DB B(乙)AE 1CD 1OF2008年山东省枣庄市中考数学试题参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分就不给分. 一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.105° 14.x ≥-12 且x ≠115.x <-2或x >8 16.-4 17.15418.-2三、解答题:(本大题共7小题,共60分) 19.(本题满分7分)解:原式=()()()()x x x x x x x 1221112⨯--+-+-…………………………………………2分=11-+x x +1 =12-x x . …………………………………………………………………5分 当x =23时,原式=223213⨯-=-4.……………………………………………………7分 20.(本题满分7分)解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.枚举法:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5)共有6种.…4分 (1)P (构成三角形)=4263=; …………………………………………………5分 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案DDBBCCADABCB(2)P (构成直角三角形)=16; …………………………………………………6分 (3)P (构成等腰三角形)=36=12. ……………………………………………7分21.(本题满分8分)解:设规定日期为x 天.由题意,得163=++x x x . …………………………………… 3分 解之,得 x =6.经检验,x =6是原方程的根. ……………………………………5分 显然,方案(2)不符合要求; 方案(1):1.2×6=7.2(万元); 方案(3):1.2×3+0.5×6=6.6(万元). 因为7.2>6.6,所以在不耽误工期的前提下,选第三种施工方案最节省工程款. ………………8分 22.(本题满分8分)解:(1)在Rt △B ′OC 中,tan ∠OB ′C =34,OC =9, ∴934OB ='. ………………………………………………………………………2分 解得OB ′=12,即点B ′ 的坐标为(12,0). ………………………………………3分 (2)将纸片翻折后,点B 恰好落在x 轴上的B ′ 点,CE 为折痕, ∴ △CBE ≌△CB ′E ,故BE =B ′E ,CB ′=CB =OA .由勾股定理,得 CB ′=22OB OC '+=15. … …………………………………4分 设AE =a ,则EB ′=EB =9-a ,AB ′=AO -OB ′=15-12=3. 由勾股定理,得 a 2+32=(9-a )2,解得a =4.∴点E 的坐标为(15,4),点C 的坐标为(0,9). ·········· 5分 设直线CE 的解析式为y =kx +b ,根据题意,得 9,415.b k b =⎧⎨=+⎩ …………… 6分解得9,1.3b k =⎧⎪⎨=-⎪⎩∴CE 所在直线的解析式为 y =-13x +9. …………………8分23.(本题满分10分)解:⑴ 连接AC ,EB ,则∠CAM =∠BEM . ……………1分A BCEDO MF又∠AMC =∠EMB , ∴△AMC ∽△EMB . ∴EM MBAM MC=,即AM MB EM MC ⋅=⋅.………3分 (2) ∵DC 为⊙O 的直径,∴∠DEC =90°,EC =22228(15)7.DC DE -=-= ………………………4分∵OA =OB =4,M 为OB 的中点,∴AM =6,BM =2. …………………………………5分 设EM =x ,则CM =7-x .代入(1),得 62(7)x x ⨯=-.解得x 1=3,x 2=4.但EM >MC ,∴EM=4. …………………………………………7分 (3) 由(2)知,OE =EM =4.作EF ⊥OB 于F ,则OF =MF =41OB =1. ………………8分在Rt △EOF 中,EF =,15142222=-=-OF OE …………………………9分∴sin ∠EOB =415=OE EF . ……………………………………………………………10分 24.(本题满分10分)解:(1)由解析式可知,点A 的坐标为(0,4). …………………………………1分 ∵1462OAB S BO ∆=⨯⨯=,∴BO =3. ∴点B 的坐标为(-3,0). ………………………………………………………2分 (2)把点B 的坐标(-3,0)代入4)1(2+-+-=x k x y ,得2(3)(1)(3)40k --+-⨯-+=. 解得351-=-k . …………………4分∴所求二次函数的解析式为4352+--=x x y . …………………………………5分 (3)因为△ABP 是等腰三角形,所以①当AB =AP 时,点P 的坐标为(3,0). …………………………………………6分 ②当AB =BP 时,点P 的坐标为(2,0)或(-8,0). …………………………8分 ③当AP =BP 时,设点P 的坐标为(x ,0).根据题意,得3422+=+x x .解得 67=x .∴点P 的坐标为(67,0). ……………………………………10分综上所述,点P 的坐标为(3,0)、(2,0)、(-8,0)、(67,0).25.(本题满分10分)54123 OFB1ECA 1D解:(1)如图所示,315∠=,190E ∠= ,∴1275∠=∠=. ………………………………1分 又45B ∠=,∴114575120OFE B ∠=∠+∠=+= . ………3分 (2)1120OFE ∠= ,∴∠D 1FO =60°.1130CD E ∠= ,∴490∠= .··················· 4分 又AC BC = ,6AB =,∴3OA OB ==.90ACB ∠= ,∴116322CO AB ==⨯=. ·············· 5分 又17CD = ,∴11734OD CD OC =-=-=.在1Rt AD O △中,222211345AD OA OD =+=+=. ········· 6分 (3)点B 在22D CE △内部. ···················· 7分 理由如下:设BC (或延长线)交22D E 于点P ,则2153045PCE ∠=+= . 在2Rt PCE △中,27222CP CE ==, ………… ········ 9分 72322CB =<,即CB CP <,∴点B 在22D CE △内部. ……………10分声明:本资料由 考试吧( ) 收集整理,转载请注明出自 服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。
2008年山东省泰安市中考数学试卷详细解析版
2008年山东省泰安市中考数学试卷一、填空题(共8小题,每小题3分,满分24分)1.(3分)﹣2的绝对值的结果是.2.(3分)计算的结果是.3.(3分)将x+x3﹣x2分解因式的结果是.4.(3分)在如图所示的单位正方形网格中,将△ABC向右平移3个单位后得到△A′B′C′(其中A、B、C的对应点分别为A′、B′、C′),则∠BA′A的度数是度.5.(3分)不等式组的解集为.6.(3分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为.(结果保留根号的形式)7.(3分)四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=.(用含m、n、θ的式子表示)8.(3分)如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3…P2008的位置,则点P2008的横坐标为.二、选择题(共11小题,每小题3分,满分33分)9.(3分)如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.10.(3分)下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a511.(3分)如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③12.(3分)分式方程的解是()A.﹣ B.﹣2 C.﹣ D.13.(3分)如图,在⊙O中,∠AOB的度数为m,C是弧ACB上一点,D、E是弧AB上不同的两点(不与A、B两点重合),则∠D+∠E的度数为()A.m B.180°﹣C.90°+D.14.(3分)在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为()A.B.C.D.15.(3分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.16.(3分)函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.当x>0时,该函数在x=1时取得最小值2C.在每个象限内,y的值随x值的增大而减小D.y的值不可能为117.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.18.(3分)如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°19.(3分)如图所示是二次函数y=﹣x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是()A.4 B.C.2πD.8三、解答题(共7小题,满分63分)20.(8分)用配方法解方程:6x2﹣x﹣12=0.21.(7分)为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份一月二月三月四月五月六月七月A型销售量(单位:台)10141716131414B型销售量(单位:台)6101415161720(1)完成下表(结果精确到0.1):平均数中位数方差A型销售量14 4.3B型销售量1418.6(2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).22.(9分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.23.(9分)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.24.(10分)如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O 交AC于点E,点D是BC边的中点,连接DE.(1)求证:DE与⊙O相切;(2)若⊙O的半径为,DE=3,求AE.25.(10分)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.26.(10分)在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于点E,P,F,且∠BPF=60度.(1)如图1,写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;(2)若直线l向右平移到图2,图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;(3)探究:如图1,当BD满足什么条件时(其它条件不变),PF=PE?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)2008年山东省泰安市中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题3分,满分24分)1.(3分)﹣2的绝对值的结果是2.【分析】根据绝对值的定义直接求得结果.【解答】解:﹣2的绝对值是2.故答案为:2.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)计算的结果是3.【分析】由表示9的算术平方根,根据算术平方根的定义即可求出结果.【解答】解:∵32=9,∴=3.故填3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(3分)将x+x3﹣x2分解因式的结果是x(x﹣)2.【分析】多项式的各项中有公因式x,可以先提取公因式x,然后再利用完全平方公式继续分解.【解答】解:x+x3﹣x2,=x(+x2﹣x),=x(x﹣)2.【点评】本题考查提公因式法,公式法分解因式,关键在于提取公因式后要进行二次因式分解,分解因式要彻底,直到不能分解为止.4.(3分)在如图所示的单位正方形网格中,将△ABC向右平移3个单位后得到△A′B′C′(其中A、B、C的对应点分别为A′、B′、C′),则∠BA′A的度数是45度.【分析】根据题意,画出图形,由平移的性质求得结果.【解答】解:如图所示,平移后AA′=3,而过点B向AA′引垂线,垂足为D,∴BD=4,A′D=4,∴∠BA′A=45°.【点评】本题考查平移的基本性质.经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意结合图形解题的思想.5.(3分)不等式组的解集为.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:先解不等式组中的每一个不等式的解集得:.再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集为:2<x.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.(3分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为4或.(结果保留根号的形式)【分析】根据题意作图,题中指出两条对角线所夹锐角为60°而没有指明是哪个角,所以做题时要分两种情况进行分析,从而得到最后答案.【解答】解:已知梯形的上下底的和是4,设AB+CD=4,对角线AC与BD交于点O,经过点C作对角线BD的平行线CE交AB的延长线于点E.(1)当∠DOC=60度时,∠ACE=60°,△ACE是等边三角形,边长AC=CE=AE=4,作CF⊥AE,CF=4×sin60°=4×=2;因而面积是×4×2=4;(2)当∠BOC=60度时,∠AOB=180°﹣60°=120°,又BD∥CE,∴∠ACE=∠AOB=120°,∴△ACE是等腰三角形,且底边AE=4,因而∠CEA==30°,作CF⊥AE,则AF=FE=2,CF=2×tan30°=,则△ACE的面积是×4×=.而△ACE的面积等于梯形ABCD的面积.因而等腰梯形的面积为4或.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法,通过这条辅助线可以把两对角线的夹角的问题转化为三角形的角的问题.7.(3分)四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD 的面积S= mnsinθ .(用含m 、n 、θ的式子表示)【分析】设AC 、BD 交于O 点,在①图形中,设BD=m ,OA +OC=n ,所以S 四边形ABCD =S△ABD+S △BDC ,由此可以求出四边形的面积;在②图形中,作AE ⊥BD 于E ,CF ⊥BD 于F ,由于AC 、BD 夹角为θ,所以AE=OA•sinθ,CF=OC•sinθ,∴S四边形ABCD =S △ABD +S △BDC =BD•AE +BD•CF=BD•(AE +CF ),由此也可以求出面积.【解答】解:如图,设AC 、BD 交于O 点,在①图形中,设BD=m ,OA +OC=n , 所以S 四边形ABCD =S △ABD +S △BDC =m•OC +m•OA=mn ; 在②图形中,作AE ⊥BD 于E ,CF ⊥BD 于F , 由于AC 、BD 夹角为θ, 所以AE=OA•sinθ,CF=OC•sinθ, ∴S 四边形ABCD =S △ABD +S △BDC =BD•AE +BD•CF=BD•(AE +CF )=mnsinθ. 故填空答案:mnsinθ.【点评】此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.8.(3分)如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3…P2008的位置,则点P2008的横坐标为2008.【分析】本题可根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,P2005、P2006的横坐标是2005,P2007的横坐标是2006.5,P2008、P2009的横坐标就是2008.故答案为:2008.【点评】本题的解答体现了由特殊到一般的数学方法,这一解答问题的方法在考查本节的知识点时经常用到,是在研究特例的过程中总结规律.二、选择题(共11小题,每小题3分,满分33分)9.(3分)如图是由相同小正方体组成的立体图形,它的左视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从左面看可得到左边第一竖列为3个正方形,第二竖列为2个正方形,故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10.(3分)下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a5【分析】根据合并同类项法则、幂的乘方、单项式乘法的运算方法,利用排除法求解.【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2•3a3=2×3a2•a3=6a5,正确.故选:D.【点评】本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.11.(3分)如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【解答】解:①▱ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD是菱形;故①正确;②▱ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故②错误;③▱ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD 是菱形;故③正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD是菱形;故④错误.故选:A.【点评】此题考查了菱形的判定与矩形的判定定理.此题难度不大,注意掌握菱形的判定定理是解此题的关键.12.(3分)分式方程的解是()A.﹣ B.﹣2 C.﹣ D.【分析】首先找出最简公分母,本题最简公分母为(x+2)(x﹣2),然后把分式方程转化成整式方程求解.【解答】解:去分母得x(x+2)﹣1=(x﹣2)(x+2).解得x=﹣,代入检验得(x+2)(x﹣2)=﹣≠0,所以方程的解为:x=﹣,故选A.【点评】本题考查解分式方程的能力,解分式方程是要把分式方程化成整式方程进行解答,同时还要注意分式方程一定要进行检验.解分式方程要注意不要漏乘.13.(3分)如图,在⊙O中,∠AOB的度数为m,C是弧ACB上一点,D、E是弧AB上不同的两点(不与A、B两点重合),则∠D+∠E的度数为()A.m B.180°﹣C.90°+D.【分析】根据圆心角与弧的关系及圆周角定理不难求得∠D+∠E的度数.【解答】解:∵∠AOB的度数为m,∴弧AB的度数为m,∴弧ACB的度数为360°﹣m,∴∠D+∠E=(+)=(360°﹣m)÷2=180°﹣.故选:B.【点评】本题利用了一个周角是360°和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(3分)在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为()A.B.C.D.【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可.【解答】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为.故选A.【点评】数目较少,可用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.【分析】折叠后形成的图形相互全等,利用三角函数的定义可求出.【解答】解:根据题意,BE=AE.设CE=x,则BE=AE=8﹣x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8﹣x)2=62+x2解得x=,∴tan∠CBE===.故选:C.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.16.(3分)函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.当x>0时,该函数在x=1时取得最小值2C.在每个象限内,y的值随x值的增大而减小D.y的值不可能为1【分析】将每个选项代入到图形中,检验正确与否.【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y=2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D 选项结论正确.所以,结论不正确的是C.故选:C.【点评】此题考查了学生的综合解题能力,涉及的知识点有:函数的图象、一元二次方程等,用了分类讨论的思想.17.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.【点评】主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.18.(3分)如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】设出圆锥的母线长和底面半径,利用圆锥的侧面积等于其底面积的2倍,得到圆锥底面半径和母线长的关系,然后利用圆锥侧面展开图的弧长=底面周长即可得到圆锥侧面展开图所对应扇形圆心角的度数.【解答】解:设母线长为R,圆锥侧面展开图所对应扇形圆心角的度数为n,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面积=×2πr×R=πRr=2×πr2,∴R=2r,∵=2πr=πR,∴n=180°.故选:D.【点评】本题考查了圆锥的计算以及扇形的面积公式,圆的面积公式,弧长公式,圆的周长公式等知识,利用圆锥与展开图对应情况是解题关键.19.(3分)如图所示是二次函数y=﹣x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是()A.4 B.C.2πD.8【分析】本题不能硬求面积,要观察找一个范围,然后选一个合适的答案.由图形可知阴影部分的面积介于一个三角形和一个半圆之间,问题就好解决了.【解答】解:函数y=﹣x2+2与y轴交于(0,2)点,与x轴交于(﹣2,0)和(2,0)两点,则三点构成的三角形面积s1==4,则以半径为2的半圆的面积为s2=π×=2π,则阴影部分的面积s有:4<s<2π.因为选项A、C、D均不在S取值范围内.故选:B.【点评】此题主要考函数面积的近似估算.三、解答题(共7小题,满分63分)20.(8分)用配方法解方程:6x2﹣x﹣12=0.【分析】首先将二次项系数化为1.然后移项,把常数项移到等号的右边,方程左右两边同时加上一次项系数一半的平方,则左边是完全平方式,右边是常数项,即可直接开方求解.【解答】解:原式两边都除以6,移项得,配方,得,(x﹣)2==()2,即x﹣=或x﹣=﹣,所以x1=,x2=﹣.【点评】本题主要考查了配方法,是解一元二次方程常用的一种基本方法.21.(7分)为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份一月二月三月四月五月六月七月A型销售量(单位:台)10141716131414B型销售量(单位:台)6101415161720(1)完成下表(结果精确到0.1):平均数中位数方差A型销售量14 4.3B型销售量1418.6(2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).【分析】(1)根据平均数、方差的计算公式进行解答;(2)画图时描点要准确.【解答】解:(1)A型销售量平均数:=14;B型销售量中位数15,A型销售量方差=[(10﹣14)2+(14﹣14)2+(17﹣14)2+(16﹣14)2+(13﹣14)2+(14﹣14)2+(14﹣14)2]=4.3;(2)建议如下:从折线图来看,B型冰箱的月销售量呈上升趋势,若考虑增长势头,进货时可多进B型冰箱.【点评】本题考查折线统计图的制作与从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.22.(9分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.23.(9分)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)=∴w总额==0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.24.(10分)如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O 交AC于点E,点D是BC边的中点,连接DE.(1)求证:DE与⊙O相切;(2)若⊙O的半径为,DE=3,求AE.【分析】(1)根据切线的判定定理只需证明OE⊥DE即可;(2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长.【解答】解:(1)证明:连接OE,BE,∵AB是直径.∴BE⊥AC.∵D是BC的中点,∴DC=DB.∴∠DBE=∠DEB.又OE=OB,∴∠OBE=∠OEB.∴∠DBE+∠OBE=∠DEB+∠OEB.即∠ABD=∠OED.但∠ABC=90°,∴∠OED=90°.∴DE是⊙O的切线.(2)法1:∵∠ABC=90°,AB=2,BC=2DE=6,∴AC=4.∴BE=3.∴AE=;法2:∵(8分)∴(10分)∴.(12分)【点评】此题主要考查切线的判定及勾股定理等知识点的综合运用.25.(10分)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.26.(10分)在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于点E,P,F,且∠BPF=60度.(1)如图1,写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;(2)若直线l向右平移到图2,图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;(3)探究:如图1,当BD满足什么条件时(其它条件不变),PF=PE?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)【分析】(1)△BPF∽△EBF与△BPF∽△BCD这两组三角形都可由一个公共角和一组60°角来证得.(2)成立,证法同(1).(3)先看PF=PE能得出什么结论且∠BPF=60°,因为∠PFB=90°,所以∠PBF=90﹣60=30°,因此当BD平分∠ABC时,PF=PE.【解答】(1)答:△BPF∽△EBF与△BPF∽△BCD.以△BPF∽△EBF为例,证明如下:∵∠BPF=∠EBF=60°,∠BFP=∠BFE,∴△BPF∽△EBF.(2)解:均成立,均为△BPF∽△EBF,△BPF∽△BCD.(3)BD平分∠ABC时,PF=PE.证明:∵BD平分∠ABC,∴∠ABP=∠PBF=30°.∵∠BPF=60°,∴∠BFP=90°.∴PF=PB.。
2008-2012临沂市函数部分中考题
2008—20122008 12.如图,直线)0(>=kkxy与双曲线xy2=若A、B两点的坐标分别为A()11,yx,B()22,yx,2y的值为()A.-8 B. 4 C.14.如图,已知正三角形ABC的边长为1,E、F、=BF=CG,设△EFG的面积为y,AE的长为x26.(本小题满分13分)如图,已知抛物线与x交于点C(0,3)⑵设抛物线的顶点为D,使得△PDC存在,请说明理由;⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。
2009 14.矩形ABCD中,8cm6cmAD AB==,.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:2cm),则y与x之间的函数关系用图象表示大致是下图中的()A DFCHB(第14题图)19.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是_____ 24.(本小题满分10分)在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题: (1)甲摔倒前,________的速度快(填甲或乙);(2)甲再次投入比赛后,在距离终点多远处追上乙?26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.(第24题图)2010 11.已知反比例函数x y 7-=图象上三个点的坐标分别是A (﹣2,1y )、B (﹣1,2y )、C (2,3y ),能正确反映1y 、2y 、3y 的大小关系的是 A .321y y y >>B .231y y y >>C .312y y y >>D .231y y y >>24.(本小题满分10分)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1、y 2千米,y 1、y 2与x 的函数关系图象如图所示。
精品解析:2023年山东省临沂市中考数学真题(解析版)
试卷类型:A2023年临沂市初中学业水平考试试题数学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I 卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算(7)(5)---的结果是()A.12-B.12C.2- D.2【答案】C 【解析】【分析】直接利用有理数的减法法则进行计算即可.【详解】解:2(7)(5)()57=----+=-;故选C .【点睛】本题考查有理数的减法,熟练掌握减一个负数等于加上它的相反数,是解题的关键.2.下图中用量角器测得ABC ∠的度数是()A.50︒B.80︒C.130︒D.150︒【答案】C 【解析】【分析】由图形可直接得出.【详解】解:由题意,可得130ABC ∠=︒,【点睛】本题考查角的度量,量角器的使用方法,正确使用量角器是解题的关键.3.下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是()A.B. C. D.【答案】B 【解析】【分析】依次观察各建筑物的图片即可作出判断,注意所有的看到的棱都应表现在主视图中.【详解】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A ,B 两处桂花的位置关于小路对称,在分别以两条小路为x ,y 轴的平面直角坐标系内,若点A 的坐标为(6,2)-,则点B 的坐标为()A.(6,2)B.(6,2)--C.(2,6)D.(2,6)-【答案】A 【解析】【分析】根据关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,进行求解即可.【详解】解:由题意,得:点B 的坐标为(6,2);【点睛】本题考查坐标与轴对称.熟练掌握关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,是解题的关键.5.在同一平面内,过直线l 外一点P 作l 的垂线m ,再过P 作m 的垂线n ,则直线l 与n 的位置关系是()A.相交B.相交且垂直C.平行D.不能确定【答案】C 【解析】【分析】根据“在同一平面内,垂直于同一直线的两直线互相平行”即可作出判断.【详解】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .【点睛】本题考查平行线的判定.掌握平行线判定的方法是解题的关键.6.下列运算正确的是()A.321a a -=B.222()a b a b -=-C.()257a a = D.325326a a a ⋅=.【答案】D 【解析】【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a -=,故选项错误,不符合题意;B 、222()2a b a ab b -=-+,故选项错误,不符合题意;C 、()2510aa =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.7.将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A.60° B.90°C.180°D.360°【答案】B【分析】根据旋转的性质,以及正多边形的中心角的度数,进行判断即可.【详解】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .【点睛】本题考查旋转图形,正多边形的中心角.熟练掌握旋转的性质,正多边形的中心角的度数的求法,是解题的关键.8.设m =,则实数m 所在的范围是()A.5m <-B.54m -<<- C.43m -<<- D.3m >-【答案】B 【解析】【分析】根据二次根式的加减运算进行计算,然后估算即可求解.【详解】解:m ===-=-∵=<<∴54-<-<-,即54m -<<-,故选:B .【点睛】本题考查了二次根式的加减运算,无理数的估算,正确的计算是解题的关键.9.在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D 【解析】【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.10.正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为5310m ,设土石方日平均运送量为V (单位:3m /天),完成运送任务所需要的时间为t (单位:天),则V 与t 满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【答案】A 【解析】【分析】根据题意,列出函数关系式,进行作答即可.【详解】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .【点睛】本题考查反比例函数的实际应用.读懂题意,正确的列出函数关系式,是解题的关键.11.对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A .k > B.0kb < C.0k b +> D.12k b =-【答案】C 【解析】【分析】首先根据一次函数的性质确定k ,b 的符号,再确定一次函数(0)y kx b k =+≠系数的符号,判断出函数图象所经过的象限.【详解】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负.12.在实数, , a b c 中,若0,0a b b c c a +=->->,则下列结论:①|a |>|b |,②0a >,③0b <,④0c <,正确的个数有()A.1个B.2个C.3个D.4个【答案】A 【解析】【分析】根据相反数的性质即可判断①,根据已知条件得出b c a >>,即可判断②③,根据=-b a ,代入已知条件得出0c <,即可判断④,即可求解.【详解】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共4小题,每小题3分,共12分)13.已知菱形的两条对角线长分别为6和8,则它的面积为______.【答案】24【解析】【分析】根据菱形面积等于两条对角线乘积的一半进行计算即可.【详解】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形面积等于两条对角线乘积的一半.14.观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,____________2n =.【答案】()()111n n -++【解析】【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.15.如图,三角形纸片ABC 中,69AC BC ==,,分别沿与BC AC ,平行的方向,从靠近A 的AB 边的三等分点剪去两个角,得到的平行四边形纸片的周长是____________.【答案】14【解析】【分析】由平行四边形的性质推出DF BC ∥,DE AC ∥,得到 ∽ADF ABC ,BDE BAC ∽△△,利用相似三角形的性质求解即可.【详解】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.16.小明利用学习函数获得的经验研究函数22y x x=+的性质,得到如下结论:①当1x <-时,x 越小,函数值越小;②当10x -<<时,x 越大,函数值越小;③当01x <<时,x 越小,函数值越大;④当1x >时,x 越大,函数值越大.其中正确的是_____________(只填写序号).【答案】②③④【解析】【分析】列表,描点、连线,画出图象,根据图象回答即可.【详解】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.【点睛】本题考查二次函数、反比例函数与不等式等知识,解题的关键是理解题意,学会画出函数图象,利用图象解决问题,属于中考常考题型.三、解答题(本大题共7小题,共72分)17.(1)解不等式1522xx --<,并在数轴上表示解集.(2)下面是某同学计算211a a a ---的解题过程:解:211a a a ---22(1)11a a a a -=---①22(1)1a a a --=-②2211a a a a -+-=-③111a a -==-④上述解题过程从第几步开始出现错误?请写出正确的解题过程.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】【分析】(1)根据解不等式的步骤,解不等式即可;(2)根据分式的运算法则,进行计算即可.【详解】解:(1)1522x x --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.【点睛】本题考查解一元一次不等式,分式的加减运算.熟练掌握解不等式的步骤,分式的运算法则,是解题的关键.18.某中学九年级共有600名学生,从中随机抽取了20名学生进行信息技术操作测试,测试成绩(单位:分)如下:81908289999591839293879294889287100868596(1)请按组距为5将数据分组,列出频数分布表,画出频数分布直方图;(2)①这组数据的中位数是_____________;②分析数据分布的情况(写出一条即可)_____________;(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】【分析】(1)根据极差和组距,可以判断组数,确定分点后,列频数分布表进行统计即可;再将频数分布表中的数据用频数分布直方图表示出来,最后从图表中观察整体的情况,得出结论;(2)①根据中位数的定义求解即可;②根据频数分布直方图即可解答;(3)用样本估计总体即可求解.【小问1详解】解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;【小问2详解】解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);【小问3详解】解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.如图,灯塔A 周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行6海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos320.848,tan 320.625;sin 580.848,︒︒︒︒≈≈≈≈cos580.530tan58 1.6︒≈︒≈,)【答案】渔船没有触礁的危险【解析】【分析】过点A 作AD BC ⊥,分别解Rt ADC 和Rt ADB ,求出AD 的长,即可得出结论.【详解】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD x ABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.【点睛】本题考查解直角三角形的应用—方向角问题.解题的关键是添加辅助线,构造直角三角形.20.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】【分析】(1)设这台M 型平板电脑的价值为x 元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【小问1详解】解:设这台M 型平板电脑的价值为x 元,由题意,得:150********x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;【小问2详解】解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.21.如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.【答案】(1)见解析(2)43π【解析】【分析】(1)连接AO 并延长交BC 于点F ,根据O 是ABC 的外接圆,得到AO BC ⊥,由平行线的性质,得到AO AE ⊥,即可得证.(2)连接OC ,等边对等角,求出BAC ∠的度数,圆周角定理求出BOC ∠度数,得到BOC 为等边三角形,求出半径和COD ∠的度数,利用弧长公式进行计算即可.【小问1详解】证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;【小问2详解】解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD 的长为120241803ππ⨯=.【点睛】本题考查切线的判定,圆周角定理,求弧长,等腰三角形的性质,等边三角形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.22.如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.【答案】(1))21AB BD -=,(2)见解析(3)见解析【解析】【分析】(1)勾股定理求得2BC =,结合已知条件即可求解;(2)根据题意画出图形,证明CBD CEF ≌,得出=45E DBC ∠=∠︒,则EF BD ∥,即可得证;(3)延长,BA EF 交于点M ,延长CH 交ME 于点G ,根据角平分线以及平行线的性质证明EG EC =,进而证明()AAS AHC FHG ≌,即可得证.【小问1详解】解:∵90,A AB AC∠=︒=∴BC =,∵BC AB BD=+AB BD=+即)1AB BD =;【小问2详解】证明:如图所示,∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC=∴CBD CEF≌∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥【小问3详解】证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AH HF=【点睛】本题考查了全等三角形的与判定,等腰三角形的性质与判定,勾股定理,平行线的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.23.综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A ,B ,C ,D ,E 五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:售价(元/盆)日销售量(盆)A2050B3030C1854D2246E2638数据整理(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆)日销售量(盆)模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系;拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】【分析】(1)按照从小到大的顺序进行排列即可;(2)根据表格数据,进行求解即可;(3)①设定价应为x 元,根据题意,列出一元二次方程,进行求解即可;②设每天的利润为w ,列出二次函数表示式,利用二次函数的性质,进行求解即可.【小问1详解】解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;【小问3详解】①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.【点睛】本题考查一元二次方程和二次函数的实际应用.从表格中有效的获取信息,正确的列出方程和二次函数,是解题的关键.。
2008年临沂市初中学生学业考试与高中招生考试试题及答案
2008年临沂市初中学生学业考试与高中招生考试试题及答案语文一、积累(15分)1.汶川大地震给震区人民带来巨大灾难。
如今灾区人民正进入抚平创伤、重建家园的关键时期,请你给灾区的同学们送上一句话,或表达同情,或鼓舞信心,或抚慰他们受伤的心灵。
力求书写正确、规范、美观。
(2分)2.加点字读音全都相同的一项是()(2分)A.商酌烧灼着迷远见卓识B.喧闹渲染漩涡头晕目眩C.蕴藏酝酿孕育润物无声D.琐屑亵渎交卸一泻千里3.下列每组词语中都有一个错别字,请用横线标出,并将正确字写在方框内。
(2分)A.毛骨竦然合辙押韵鞠躬尽瘁怡然自得B.抑扬顿挫同舟共济美味佳肴多难兴帮C.众志成城油嘴猾舌慷慨大方张皇失措D.风餐露宿相安无事重峦叠障周而复始4.古诗文默写。
(6分)陆游一生作诗近万首,而他总结自己的创作经验却只了了十字:“汝果欲作诗,工夫在诗外。
”后学者普遍认为,这诗外“工夫”主要体现为伟大的爱国思想、宽博的恤民情怀、高尚的道德情操、坚定的理想信念、明晰的责任意识和坚强的民族气节等。
也正是有了这种种诗外的“工夫”,才有了无数启人智慧、教人向善、催人奋进的妙文佳句。
上面画横线的短语分别代表了诗外“工夫”的6个不同角度,请你任选其中5个角度,各默写出一个与其内容相符或相关的古诗文名句。
①爱国思想:②恤民情怀:③道德情操:④理想信念:⑤责任意识:⑥民族气节:5.文学常识及名著知识填空。
(3分)(1)“先生常充左翼先锋,呐喊欲驱长夜黑。
”这是一副纪念联的上联,联中纪念的名人是,他的原名叫。
(2)袁世凯死后,有人拟了这样一副讽骂挽联:“()云:毋人负我,宁我负人,惟公善体斯意;桓温谓:不能留芳,亦当遗臭,后世自有定评。
”其中上联中空缺的即是被后人称为乱世“”(评价性称谓)的(人名)。
(3)“及时雨会神行太保,黑旋风斗浪里白条”是古典名著《水浒传》中以人物绰号组合而成的一个章回目录,其中“及时雨”是,“神行太保”是。
二、古诗文阅读(共15分)阅读下面文言文,做6—10题。
2008年山东省临沂市中考数学试卷及答案
2008年山东省临沂市初中毕业与高中招生考试数学试题满分:120分 时间:120分钟一、选择题(共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的。
1.-31的倒数是( )A . -3B . 3C . 31 D . -312.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( )A . 3.99×109元B . 3.99×1010元C . 3.99×1011元D . 399×102元 3.下列各式计算正确的是( )A . 53232a a a =+B . ()()xy xy xy 332=÷ C . ()53282b b = D . 65632x x x =∙4.下列各图中,∠1大于∠2的结果是( )5.计算29328+-的结果是( )A . 22-B .22 C . 2 D .2236.化简121112+-÷⎪⎭⎫⎝⎛-+a a a a 的结果是( ) A . 1+a B . 11-a C .aa 1- D . 1-a7.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =48.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。
小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( ) A .31 B .41 C .51 D .559.如图是一个包装盒的三视图,则这个包装盒的体积是( ) A . 1000π㎝3 B . 1500π㎝3 C . 2000π㎝3 D . 4000π㎝312A12B12D12C第8题图D10.下列说法正确的是( )A .随机事件发生的可能性是50%。
【真题】临沂市中考数学试卷含答案解析
山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。
历年山东省临沂市中考数学试卷(含答案)
2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求1.(3分)﹣的相反数是()A.B.﹣C.2017 D.﹣20172.(3分)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.(3分)下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b44.(3分)不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.6.(3分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.(3分)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.(3分)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,510.(3分)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π11.(3分)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.1412.(3分)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D 作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.(3分)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.414.(3分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:m3﹣9m=.16.(3分)已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.(3分)计算:÷(x﹣)=.18.(3分)在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是.19.(3分)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P 的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.(7分)计算:|1﹣|+2cos45°﹣+()﹣1.21.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2017年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求1.(3分)(2017•临沂)﹣的相反数是()A.B.﹣C.2017 D.﹣2017【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.2.(3分)(2017•临沂)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选A.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质,此题难度不大.3.(3分)(2017•临沂)下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4【分析】根据去括号、同底数幂的乘法底数不变指数相加,积的乘方,可得答案.【解答】解:A、括号前是负号,去括号全变号,故A不符合题意;B、不是同底数幂的乘法指数不能相加,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.【点评】本题考查了积的乘方,熟记法则并根据法则计算是解题关键.4.(3分)(2017•临沂)不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5.(3分)(2017•临沂)如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.【分析】根据三视图定义分别作出三视图即可判断.【解答】解:该几何体的三视图如下:主视图:;俯视图:;左视图:,故选:D.【点评】本题主要考查三视图,掌握三视图的定义和作法是解题的关键.6.(3分)(2017•临沂)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选C.【点评】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)(2017•临沂)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n ﹣2)•180°.8.(3分)(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.9.(3分)(2017•临沂)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5【分析】根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数.【解答】解:由题意可得,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,∴这组数据的众数是5,中位数是5,故选D.【点评】本题考查众数和中位数,解答本题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.10.(3分)(2017•临沂)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π【分析】设AT交⊙O于D,连结BD,先根据圆周角定理得到∠ADB=90°,则可判断△ADB、△BDT都是等腰直角三角形,所以AD=BD=TD=AB=,然后利.用弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD故选C.【点评】本题考查了切线的性质,等腰直角三角形的性质,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.11.(3分)(2017•临沂)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.14【分析】根据小圆个数变化规律进而表示出第n个图形中小圆的个数,进而得出答案.【解答】解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.【点评】此题主要考查了图形变化类,正确得出小圆个数变化规律是解题关键.12.(3分)(2017•临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A 错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.【点评】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.13.(3分)(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.【点评】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.14.(3分)(2017•临沂)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN 的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2【分析】由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选C.【点评】本题考查了反比例函数的系数k的几何意义,轴对称﹣最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2017•临沂)分解因式:m3﹣9m=m(m+3)(m﹣3).【分析】先提取公因式,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m3﹣9m,=m(m2﹣9),=m(m+3)(m﹣3).故答案为:m(m+3)(m﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.(3分)(2017•临沂)已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=4.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.(3分)(2017•临沂)计算:÷(x﹣)=.【分析】先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【解答】解:原式=÷=•=,故答案为:.【点评】本题考查了分式的混合运算,能正确运用分式的运算法则进行化简是解此题的关键,注意运算顺序.18.(3分)(2017•临沂)在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是24.【分析】作OE⊥CD于E,由平行四边形的性质得出OA=OC,OB=OD=BD=5,CD=AB=4,由sin∠BDC=,证出AC⊥CD,OC=3,AC=2OC=6,得出▱ABCD的面积=CD•AC=24.【解答】解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;故答案为:24.【点评】本题考查了平行四边形的性质、三角函数、勾股定理等知识;熟练掌握平行四边形的性质,得出AC⊥CD是关键19.(3分)(2017•临沂)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是①③④(填上所有正确答案的符号).【分析】根据向量垂直的定义进行解答.【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.【点评】本题考查了平面向量,零指数幂以及解直角三角形.解题的关键是掌握向量垂直的定义.三、解答题(本大题共7小题,共63分)20.(7分)(2017•临沂)计算:|1﹣|+2cos45°﹣+()﹣1.【分析】根据绝对值的意义、特殊角的三角函数值、二次根式的化简和负指数幂的运算,分别求得每项的值,再进行计算即可.【解答】解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.【点评】本题主要考查实数的运算及特殊角的三角函数值,注意绝对值和负指数幂的运算法则是解题的关键.21.(7分)(2017•临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题:(1)x=50,a=20,b=30;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.(7分)(2017•临沂)如图,两座建筑物的水平距离BC=30m,从A点测得D 点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.【分析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可.【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.23.(9分)(2017•临沂)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC 的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径.【解答】(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.【点评】本题考查了三角形的外接圆的性质、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理是解决问题的关键.24.(9分)(2017•临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?【分析】(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.【点评】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想和分类讨论的数学思想解答.25.(11分)(2017•临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道综合性较强的题目.26.(13分)(2017•临沂)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x 轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m|即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).【点评】本题考查了待定系数法求二次函数的解析式,全等三角形的判定和性质,平行四边形的判定和性质,正确的作出图形是解题的关键.。
2008-2012年临沂市中考数学题型分析
2008-2012临沂市中考数学题型分析一、选择题1.有理数的计算:(第1章)①.(2012•临沂)﹣的倒数是( ) A .6 B .﹣6 C . D .﹣ ②(2011年中考) 下列各数中,比1-小的数是 A .0 B .1 C .﹣2 D .2③(2010年中考) 计算2)1(-的值等于 A .﹣1 B .1 C .﹣2D .2④(2009年中考) 9-的相反数是 A .19B .19-C .9-D .9⑤(2008年中考)-31的倒数是 A .-3 B .3 C .31 D .-31 科学计数法(2012年中考)太阳的半径大约是696000千米,用科学记数法可表示为( )A .696×103千米B .696×104千米C .696×105千米D .696×106千米 (2010年中考).2010年5月1日世界博览会在我国上海举行,世博会开园一周以来,入园人数累计约为1050000人,该数字用科学记数法表示为 --------- 人. 2.整式的运算:(整式的加减,乘除,因式分解, 第2章,第15章) ①(2012•临沂)下列计算正确的是( ) A .2a 2+4a 2=6a 4 B .(a+1)2=a 2+1 C .(a 2)3=a 5 D .x 7÷x 5=x 2 ②(2011年中考)下列各式计算正确的是 A .222()2ab a b -= B .22(1)1a a +=+ C . 623x x x ÷= D .33323a a a +=③(2010年中考)下列各式计算正确的是 A .632x x x =⋅B .2532x x x =+C .632)(x x =D .623x x x ÷=(2010年中考)若12-=-y x ,2=xy ,则代数式(x ﹣1)(y + 1)的值等于 A .222+B .222-C .22D .2④(2009年中考)下列各式计算正确的是A .34x x x +=B .2510·x x x = C .428()x x = D .224(0)x x x x +=≠ ⑤(2008年中考)下列各式计算正确的是A .53232a a a =+B .()()xy xy xy 332=÷ C .()53282b b = D .65632x x x =•3.相交线与平行线:(第5章)12A BC D(第3题图)①(2012•临沂)如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( ) A .40° B .50° C .60° D .140° ②(2011年中考)如图,已知AB ∥CD ,∠1= 70°,则∠2的度数是 A .60° B .70° C .80° D .110° ③(2010年中考)如果∠ α = 60°,那么∠ α的余角的度数是 A .30° B .60° C .90° D .120°④(2009年中考)下列图形中,由AB CD ∥,能得到12∠=∠的是⑤(2008年中考)下列各图中,∠1大于∠2的结果是 4. 二次根式的化简(第21章) ①(2012•临沂)计算:4﹣=②(2011年中考) 计算1126823-+的结果是 A .3223-B .52-C .53-D .22③(2009年中考)计算12718123--的结果是 A .1 B .1- C .32-D .23-④(2008年中考)计算29328+-的结果 A .22-B .22C .2D .223 5.分式的化简:(第16章)①(2012•临沂)化简的结果是( ) A .B .C .D .②(2011年中考)化简211()(1)x x x x---的结果是 A .1xB .1x -C .1x x-D .1x x - ③(2010年中考)(本小题满分6分)先化简,再求值:21)121(2+-÷-+a a a ,其中a = 2. ④(2009年中考)化简22422b a a b b a+--的结果是A .2a b --B .2b a -C .2a b -D .2b a +⑤(2008年中考)化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是 A .1+a B .11-a C .aa 1- D .1-a A C B D 1 2 A C B D1 2A .B . 1 2 AC BD C . B D C A D .1 2(第6题图)ABCD O M6. 圆(第24章)(两圆的位置关系和垂径定理)①(2012•临沂)如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( ) A .1 B .C .D .2②(2011年中考)如图,⊙O 的直径CD=5㎝,AB 是⊙O 的弦,AB ⊥CD , 垂足为M ,OM:OD=3:5,则AB 的长是 A .2㎝B .3㎝C .4㎝D .221㎝③(2010年中考)已知两圆的半径分别是2cm 和4cm ,圆心距是6cm ,那么这两圆的位置关系是 A .外离 B .外切 C .相交 D .内切(2010年中考)14.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°, 此时点B 到了点B ',则图中阴影部分的面积是A .6πB .5πC .4πD .3π④(2009年中考)已知1O ⊙和2O ⊙相切,1O ⊙的直径为9C m ,2O ⊙的直径为4cm .则12O O 的长是A .5cm 或13cmB .2.5cmC .6.5cmD .2.5cm 或6.5cm⑤(2008年中考)如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE的长为( ) A . 23π B . 43π C . 83πD . π37.数据的分析(第20章)①(2011年中考)在一次九年级学生视力检查中,随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8。
年山东省中考数学试题及答案
年山东省中考数学试题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199982008年山东省初中学生毕业与高中阶段学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.2-的相反数是 A .-2B .2C .12D .21-2.只用下列图形不能镶嵌的是A .三角形B .四边形C .正五边形D .正六边形 3.下列计算结果正确的是A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a4.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为A .-1<m <3B .m >3C .m <-1D .m >-1 5.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.图 1B P图 2将纸片展开,得到的图形是6.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于A .1B .2C .1或2D .07.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为A .26元B .27元C .28元D .29元8.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积是A .4πB.π42C .π22D .2π9.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是A .10B .16C .18D .20A .B .C .D .10.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是A .21 B .52 C .53 D .18711.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是 A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<12.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有A .2个B .3个C .4个D .5 个BEDACO绝密★启用前 试卷类型:A山东省2008年初中学生毕业与高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果.13.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为亿帕的钢材.亿帕用科学计数法表示为__________帕(保留两位有效数字).14.如图,已知AB ∥CD ,BE 平分∠ABC , ∠CDE =150°,则∠C =__________.15.分解因式:ab b a 8)2(2+- =____________.16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示).17.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ;ABCDEABCE DO P Q③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°.恒成立的结论有______________(把你认为正确的序号都填上).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分) 先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b-+,其中21+=a ,21-=b .19.(本题满分8分)振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.(1)他们一共调查了多少人(2)这组数据的众数、中位数各是多少(3)若该校共有1560名学生,估计全校学生捐款多少元20.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原/元料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点.求证:CE ⊥BE .22. (本题满分10分) 如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离;(2)求C ,D 之间的距离.23.(本题满分10分) (1)探究新知:ACBDEA BC中山路文化路D 和平路45° 15°30°环城路EF DC如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.24.(本题满分12分)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切图 3(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y山东省二○○八年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.BD 图 2B图 1图 33.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(二、填空题 (9.8106.4⨯;10.120°;11.2)2(b a +;12.2π;13.28元;14.13+n ;15.5216.①②③⑤.三、解答题 (本大题共7小题,共64分): 17.(本题满分6分)解:原式=222))(()()(bab a bb a b a b a b a +-÷+---+ ……………………………2分 =b b a b a b a b 2)())((2-⋅+- …………………………………………3分=ba b a +-)(2. ……………………………………………………………4分当21+=a ,21-=b 时,原式=222222=⨯. …………………………………………………6分 18.(本题满分8分)解:(1)设捐款30元的有6x 人,则8x +6x =42.∴ x =3. …………………………………………………………2分 ∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人). ……………………3分 (2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).…………………6分(3) 全校共捐款:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分19.(本题满分8分)解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000.∴ x =2000. ………………………………………………………………6分 把x =2000代入①得:5y =12000.∴ y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分 20.(本题满分10分)证明: 过点C 作CF ⊥AB ,垂足为F .……………… 1分 ∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°,∴ ∠D =∠A =∠CFA =90°. ∴四边形AFCD 是矩形.AD=CF, BF=AB -AF=1.……………………………… 3分 在R t △BCF 中, CF 2=BC 2-BF 2=8,∴ CF=22.∴ AD=CF=22.………………………………………………………………5分 ∵ E 是AD 中点, ∴ DE=AE=21AD=2.…………………………………………………… 6分在R t △ABE 和 R t △DEC 中, EB 2=AE 2+AB 2=6,ACBD EFEC 2= DE 2+CD 2=3, EB 2+ EC 2=9=BC 2.∴ ∠CEB =90°. (9)分∴ EB ⊥EC . …………………………………………………………………… 10分21.(本题满分10分)解:(1)如图,由题意得,∠EAD =45°∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°.∴ ∠DBC =30°. …………………………2分 又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km .… …………………………………………………5分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1.………………………………8分 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 和即C ,D 之间的距离为332km . ………………………………………………10分 22.(本题满分10分)(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90°.……1分 ∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等,∴ CG =DH . …………………………2分 ∴ 四边形CGHD 为平行四边形.∴ AB ∥CD . ……………………………3(2)①证明:连结MF ,NE . 设点M 的坐标为(x 1,y 1),点N ∵ 点M ,N 在反比例函数xk y =(k >0)的图象上, ∴ k y x =11,k y x =22. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2.∴ S △EFM =k y x 212111=⋅, ………………5S △EFN =k y x 212122=⋅. ………………6分∴S △EFM =S △EFN . ………………----- 7由(1)中的结论可知:MN ∥EF . ………8分 ② MN ∥EF . …………………10分(若学生使用其他方法,只要解法正确,皆给分.) 23.(本题满分12分)AB DC图 1GH解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ………………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD=21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN ABBC=,即45x MN=. ∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BCAC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴当x =4996时,⊙O 与直线B C 相切. (7)分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.BD 图 2B图 1∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .∴ 12AM AO ABAP==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 …………………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F . ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………………… 9分MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.图 4∴当83x=时,满足2<x<4,2y=最大. (11)分综上所述,当83x=时,y值最大,最大值是2.……………………………12分。
2008年全国各地中考数学试卷及详细答案
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。
2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
2008年山东临沂市中考真题
2008年二、单项填空(共15小题,共l5分)16. Bob likes to play_________basketball, so he bought a basketball yesterday.A.\B. anC. theD. a17. On weekends we like to hang out with_________friends.A. weB. usC. oursD. our18. This is not my dictionary. It's_________. She lent it to me this morning.A. my sisterB. my sistersC. my sister'sD. my sisters'19. —What time will you be home?—I don't know. It depends_________the traffic.A. ofB. onC. forD. from20. Nancy doesn't enjoy her job anymore. She's_________because every day she doesexactly the same thing.A. relaxingB. relaxedC. boringD. bored21. —Look, Mr. King is swimming in the pool.—It_________be Mr. King. He has gone to Kunming on vacation.A. canB. can'tC. mustD. mustn't22. He_________a million yuan to Wenchuan since the earthquake.A. has given awayB. gave awayC. have given awayD. gives away23. If a bag is filled with books and pens, it must belong to someone_________works hard.A. whichB. /C. whomD. who24. Many Chinese teenagers dream that they can go to Beijing_________the Olympic Games this summer.A. watchB. watchesC. to watchD. watching25. —_________do you go to the library?—I usually go to the library twice a week.A. How longB. How oftenC. How farD. How many26. If you don't want to_________for plastic bags in most supermarkets, you'11 have to bring your own shopping bag.A. spendB. takeC. payD. cost27. It rained last night, _________?A. wasn't itB. didn't itC. doesn't itD. won't it28. I have_________all of my newspapers, but I can't find the article.A. looked atB. looked afterC. looked forD. looked through29. —Oh, the new school uniform looks ugly! I don't like the color!—_________. I think the uniform is out of style! And girls should wear skirts_________pants!A.Me, neither; instead ofB. Me, too; instead ofC. Me, neither; withoutD. Me, too; without30. Mom wanted to know_________last weekend.A. what Amy doesB. what does Amy doC. what Amy didD. what did Amy do三、完形填空(共10小题,共l0分)根据短文内容,选择最佳答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日 12 时,共收到各类捐赠款物折合人民币约 399 亿元,这个数据用科学记数法表示为
()
A. 3.99×109 元
B. 3.99×1010 元
C. 3.99×1011 元
D. 399×102 元
3.下列各式计算正确的是( )
A. 2a 2 a3 3a5 B. 3xy2 xy 3xy
C. 2b2 3 8b5 D. 2x 3x5 6x6
C.“打开电视,正在播放关于奥运火炬传递的新闻”是必然事件。
D.若甲组数据的方差 S甲2=0.31 ,乙组数据的方差 S乙2 =0.02 ,则
乙组数据比甲组数据稳定。 11.如图,菱形 ABCD 中,∠B=60°,AB=2,E、F 分别是 BC、CD 的中点,连接 AE、EF、AF,则△AEF 的周长为( )
4.下列各图中,∠1 大于∠2 的结果是( )
12
2
2
1
A
B
1
C
1 D2
5.计算
8
32
9 的结果是(
)
2
A. 2
B.
2 C.
32 2 D.
2
2
2
6.化简 1
1 a 1
a2
a 2a
1
的结果是(
)
A. a 1
1 B.
a 1
C. a 1 D. a 1 a
7.若不等式组
3x 2x
a 7
0, 4x
1
的解集为
x
0
,则
a
的取值范围为(
)
A. a>0 B. a=0 C. a>4 D. a=4 8.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼 成的一个大正方形(如图所示)。小亮同学随机地在大正方形及其内部
第 8 题图
区域投针,若直角三角形的两条直角边的长分别是 2 和 1,则针扎到小正方形(阴影)区域
E
A
F
D
B 第 21 题图 C
22.(本小题满分 7 分) 在某道路拓宽改造工程中,一工程队承担了 24 千米的任务。为了减少施工带来的影响,在 确保工程质量的前提下,实际施工速度是原计划的 1.2 倍,结果提前 20 天完成了任务,求 原计划平均改造道路多少千米?
四、认真思考,你一定能成功!(本大题共 2 小题,共 19 分) 23.(本小题满分 9 分) 如图,Rt△ABC 中,∠ACB=90°,AC=4,BC=2,以 AB 上的一点 O 为 圆心分别与均 AC、BC 相切于点 D、E。 ⑴求⊙O 的半径; ⑵求 sin∠BOC 的值。
A. 2 3 B. 3 3
A
B
D
E
F
C 第 11 题图
C. 4 3 D. 3
12.如图,直线 y kx(k 0) 与双曲线 y 2 交于 A、B 两点,若 A、B x
两点的坐标分别为 A x1, y1 ,B x2 , y2 ,则 x1 y2 x2 y1 与 y2 的值为
第 12 题图
()
A. -8 B. 4 C. -4 D. 0
的概率是( )
1
1
A.
B.
3
4
C. 1
D.
5
5
5
9.如图是一个包装盒的三视图,则这个包装盒
的体积是( )
A. 1000π㎝3 B. 1500π㎝3
C. 2000π㎝3 D. 4000π㎝3 10.下列说法正确的是( ) A.随机事件发生的可能性是 50%。
主视图
左视图
第 9 题图
俯视图
B.一组数据 2,3,3,6,8,5 的众数与中位数都是 3。
AD
13.如图,等腰梯形 ABCD 中,AD∥BC,以 A 为圆心,AD 为半 E
径的圆与 BC 切于点 M,与 AB 交于点 E,若 AD=2,BC=6,则⌒DE
BM
C
第 13 题图
的长为( )
A.
3
3
B.
C.
3
D.
3
2
4
8
14.如图,已知正三角形 ABC 的边长为 1,E、F、G 分别是 AB、BC、CA 上
2x y 5, 16.已知 x、y 满足方程组 x 2 y 4, 则 x-y 的值为________.
A
ED
17.某电动自行车厂三月份的产量为 1000 辆,由于市场需求量不断增
大,五月份的产量提高到 1210 辆,则该厂四、五月份的月平均增长率
O
为________. 18.如图,矩形 ABCD 中,AB=2,BC=3,对角线 AC 的垂直平分 线分别交 AD,BC 于点 E、F,连接 CE,则 CE 的长________. 19.如图,以等腰三角形 AOB 的斜边为直角边向外作第 2 个等腰直角 三角形 ABA1,再以等腰直角三角形 ABA1 的斜边为直角边向外作第 3 个等腰直角三角形 A1BB1,……,如此作下去,若 OA=OB=1,则第 n 个等腰直角三角形的面积 Sn=________。 三、开动脑筋,你一定能做对!(本大题共 3 小题,共 20 分)
2008 年山东省临沂市初中毕业与高中招生考试数学试题
满分:120 分 时间:120 分钟
一、选择题(共 14 小题,每小题 3 分,共 42 分)在每小题所给的四个选项中,只有一项是
符合题目要求的。
1 1.- 的倒数是( )
3
A. -3B. 3C. 1 3D. - 1 3
2.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止 5 月 30
A
O
D
BE
C
第 23 题图
24.(本小题满分 10 分)
的点,且 AE=BF=CG,设△EFG 的面积为 y,AE 的长为 x,则 y 关于 x
的函数的图象大致是( )
A E
G
BF
C
第 14 题图
3 4
A
3 4
B
3 4
C
3 4
D
二、填空题(共 5 小题,每小题 3 分,共 15 分)把答案填在题中横线上。
15.分解因式: 9a a3 =___________.
⑵若质量不小于 110 克的油桃可定为优级,估计这批油桃中,优级油桃占油桃总数的百分之
几?达到优级的油桃有多少千克?
21.(本小题满分 7 分) 如图,□ABCD 中,E 是 CD 的延长线上一点,BE 与 AD 交于
点 F, DE 1 CD 。 2
⑴求证:△ABF∽△CEB; ⑵若△DEF 的面积为 2,求□ABCD 的面积。
BF
C
第 18 题图
B2
A1 A
OB
B1
第 19 题图
20.(本小题满分 6 分)
某油桃种植户今年喜获丰收,他从采摘的一批总质量为 900 千克的油桃中随机抽取了 10 个
油桃,称得其质量(单位:克)分别为:
106,99,100,113,111,97,104,112,98,110。
⑴估计这批油桃中每个油桃的平均质量;