七年级数学第四章几何图形初步教案

合集下载

人教版七年级上册数学第4章 几何图形初步 【教学设计】 认识几何图形

人教版七年级上册数学第4章 几何图形初步 【教学设计】 认识几何图形
注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.
【当堂训练】
布置作业:教材P116练习.
当堂检测,及时反馈学习效果.
【知识网络】
提纲挈领,重点突出.
活动
四:
课堂
总结
反思
【教学反思】
①[授课流程反思]
②[讲授效果反思]
对常见几何体的特征的探究让学生感受不同几何体的特殊特征的同时将对几何体的感性认识升华为理性认识,更清晰、准确地理解所学知识.
处理方式:给学生充足的时间进行观察、交流、展示,在学生展示的基础上补充完善.并对几何体进行分析、总结.并给出答案.常见的几何体有:圆柱、圆锥、正方体、长方体、棱柱、棱锥、球等.
内容:引导学生分析圆柱、圆锥、正方体、长方体、棱柱、棱锥、球的特征.
2.根据几何体的特征进行分类
注意:在进行分类时要及时给学生强调分类的标准,让学生感受到分类标准不同,分类的结果也不一样.
3.棱柱及其特征
内容:认识棱柱的顶点、侧棱、侧面、底面,并思考以下问题:
(1)棱柱的侧棱、底面、侧面有何特点?
(2)长方体、正方体是棱柱吗?
(3)棱柱怎样分类?
处理方式:让学生在充分思考的基础上填写下表(教师课件展示表格).
学生活动:展示表格中的内容,并口述自己发现的规律:n棱柱面的个数为n+2,顶点个数为2n,棱的条数为3n.
总结:各部分都在同一平面内的几何图形,是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.
知道几何体的特征是我们认识不同几何体、区别不同几何体的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.
活动

人教版七年级数学上册第四章几何图形初步章节起始课教学设计

人教版七年级数学上册第四章几何图形初步章节起始课教学设计
4.培养学生运用几何图形知识进行简单推理和证明的能力,如通过观察和论证来证明两个三角形全等或相似。
(二)过程与方法
1.通过观察生活中的几何图形,引导学生发现几何图形的美和实用性,培养学生的观察能力和动手操作能力。
2.利用问题驱动的教学方法,激发学生的探究欲望,让学生在解决问题的过程中掌握几何图形的基本知识和技能。
2.每个小组进行汇报,分享他们的发现和讨论成果,其他小组进行评价和补充。
3.鼓励学生提出疑问,并引导他们通过小组讨论解决问题,培养学生的合作意识和解决问题的能力。
(四)课堂练习
在课堂练习环节,我将设计以下练习题:
1.基础题:针对本章所学几何图形的性质和判定方法,设计一些基础题目,让学生巩固所学知识。
本章的学情分析如下:
1.学生在认知方面,对于几何图形的认识还停留在直观阶段,对于图形的性质和判定方法理解不够深入,需要通过具体实例和实际操作来加深理解。
2.在技能方面,学生的尺规作图能力有待提高,对于几何图形的推理和证明能力尚需培养,需要通过课堂讲解和课后练习来逐步提升。
3.在情感态度方面,学生对几何图形的兴趣和好奇心较浓,但部分学生可能对难度较大的几何问题产生恐惧感,需要教师关注并适时给予鼓励和支持。
b.与同学合作,探讨几何图形在科技领域中的应用,如机器人设计、航空航天等,以小组形式提交一份研究报告。
4.思考题:
a.比较三角形、四边形和圆的性质,归纳它们之间的联系和区别。
b.思考如何运用几何图形知识解决实际问题,如城市规划、环境保护等。
作业要求:
1.作业应在规定的时间内完成,要求书写工整、条理清晰。
3.引导学生在解决几何问题的过程中,养成勇于探索、善于思考的良好学习习惯,培养学生的自主学习能力。

七年级数学上册第四章几何图形初步《几何图形:点、线、面、体》

七年级数学上册第四章几何图形初步《几何图形:点、线、面、体》

听课记录:新2024秋季七年级人教版数学上册第四章几何图形初步《几何图形:点、线、面、体》教学目标(核心素养)1.知识与技能:学生能够理解并识别几何图形中的点、线、面、体的基本概念,掌握它们之间的基本关系。

2.过程与方法:通过观察、想象、分类等活动,培养学生的空间想象能力和几何直观能力。

3.情感态度价值观:激发学生对几何学习的兴趣,培养严谨的数学思维习惯,增强对空间形态美的感受。

导入教师行为:1.1 教师利用多媒体展示一组丰富多彩的几何图形图片,包括建筑物、雕塑、自然景物等,引导学生观察并思考:“这些图片中,你能找到哪些几何元素?”1.2 随后,教师提出问题:“在几何学中,最基本的构成元素是什么?”引导学生进入本节课的主题——点、线、面、体。

学生活动:•学生认真观察图片,积极寻找并指出图片中的几何元素,如直线、曲线、平面、球体等。

•听到教师的问题后,学生开始思考并尝试回答,有的学生可能直接说出“点、线、面、体”,有的则可能需要进一步引导。

过程点评:导入环节通过直观的图片展示和贴近生活的问题设置,成功吸引了学生的注意力,激发了他们的学习兴趣,为后续的学习奠定了良好的基础。

教学过程教师行为:2.1 点的教学:•教师首先介绍“点”的概念,强调点是几何图形中最基本的元素,没有大小、形状和方向。

•通过生活中的实例(如地图上的城市标记、屏幕上的像素点等)帮助学生理解点的概念。

学生活动:•学生认真听讲,理解点的概念,并尝试将其与生活中的实例相联系。

过程点评:通过直观的实例和生动的讲解,学生轻松掌握了点的概念。

教师行为:2.2 线的教学:•接着,教师介绍“线”的概念,指出线是由无数个点组成的,有长度但没有宽度和厚度。

•展示直线、射线和线段的定义及区别,通过动画演示帮助学生理解。

学生活动:•学生观看动画演示,认真区分直线、射线和线段的不同之处,并尝试用语言描述它们的特点。

过程点评:动画演示直观生动,有效帮助学生区分了直线、射线和线段的概念。

人教版七年级数学上册第四章几何图形初步(教案)

人教版七年级数学上册第四章几何图形初步(教案)
-空间想象能力的培养:对于由线段和角构成的复杂图形,学生可能缺乏空间想象能力,难以在脑海中形成清晰的图形。
针对以上难点,教师应采取以下措施:
-利用直观教具和实际操作,帮助学生形象理解线段、射线、直线的区别。
-通过具体例题和练习,加强学生对角度换算的理解和记忆。
-通过问题驱动的教学方法,引导学生发现几何图形的性质,并在解决实际问题时应用。
4.培养学生的数据分析观念,使学生能够运用所学的平面图形知识,进行简单的面积计算,并能够解释计算过程和结果。
三、教学难点与重点
1.教学重点
-线段、射线、直线的定义及其性质:这是本章的基础知识,理解这些概念是掌握几何图形的前提。例如,线段的两个端点、射线的起点和延伸方向、直线的无限延伸性质等。
-角的分类及度量:角的分类(周角、平角、直角等)和度量(度、分、秒)是本章的核心内容,对于学生理解图形的角度关系至关重要。
-基本图形的性质:三角形、四边形的性质是后续几何学习的基石,例如,三角形的内角和定理、四边形的对边平行性质等。
-平面图形的识别与面积计算:学会识别常见的平面图形,并能进行简单的面积计算,是本章的实践应用重点。
2.教学难点
-线段、射线、直线的区分:学生容易混淆这三种线的概念,特别是在射线和直线的无限延伸特性上。
-设计不同类型的面积计算题目,让学生通过练习巩固计算方法,并及时纠正错误。
-创设情境,如制作几何模型、绘制图形等,增强学生的空间感知和想象能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《几何图形初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过线段、角和各种平面图形?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索几何图形的奥秘。

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。

本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。

但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。

三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。

2.教学难点:相交线、平行线、垂直的判断和证明。

五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。

2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。

3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。

4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。

六. 教学准备1.教具:直尺、圆规、模型、实物等。

2.课件:制作与本章节内容相关的课件,以便进行直观教学。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。

2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。

3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。

4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。

七年级数学《几何图形》教案

七年级数学《几何图形》教案

七年级数学《几何图形》教案教学重点:从现实实物中抽象出几何图形,把立体图形转化为平面图形。

教学难点:立体图形与平面图形之间的转化。

一、板书课题,揭示目标1.——今天,我们一起来学习第4章——图形的认识第1节几何图形。

2.学习目标(1)经历从现实实物体中抽象出几何图形的过程,感受数学来源于生活,并应用于生活实践。

(2)能正确区分立体图形与平面图形。

(3)探索平面图形与立体图形之间的关系,发展空间观念,培养观察、分析、抽象、概括的能力。

二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。

下面,请同学们按照指导(手指投影屏幕)自学。

自学指导复习P112-P114练习以上的内容后,思考并回答:1.什么叫做几何图形?2.什么是立体图形?举两例。

3.你能区分棱柱和棱锥吗?4.什么是平面图形?举两例。

三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。

四、检验学生自学情况。

根据自学指导检验学生自学情况。

五、引导更正,指导运用1.学生训练。

(1)布置任务:看完了的同学,请举手。

(学生举手)好!下面请XX做P114的练习。

(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。

观察板演,找错误。

请大家看黑板,找错误。

找到的请举手。

2.学生更正。

3.学生讨论,评判。

(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第1题图2和3中,不会将两部分结合起来。

(3)第2题中,找不全平面图形。

引导学生说出错因,并更正。

六、当堂训练:作业:p115 A组1、2(书)3(作业本)课堂评价:。

七年级上册数学《几何图形》精品教案范文5篇

七年级上册数学《几何图形》精品教案范文5篇

七年级上册数学《几何图形》精品教案范文5篇七年级上册数学《几何图形》精品教案范文一1、内容结构分析《九年义务教育课程标准实验教科书middot;数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.2、教学重点与难点:教学重点:⑴数学与我们的成长密切相关;⑵数学伴随着人类的进步与发展,人类离不开数学;⑶人人都能学会数学,激发学生学习数学的兴趣;⑷将实际问题转化为数学问题;⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.教学难点:⑴体会数学与我们的成长密切相关;⑵学生剪图拼图的具体操作;⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.3、教学目标:⑴知识与技能:直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.⑵过程与方法:通过对*的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.⑶情感、态度与价值观:在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.4、课时分配4.1几何图形4课时4.2直线、射线、线段3课时4.3角2课时4.4课题学习2课时小结3课时单元测试与评讲3课时七年级上册数学《几何图形》精品教案范文二教学目标:知识与技能:认识常见的几何图形,并能用自己的语言描述常见几何图形的特征过程与方法:1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念情感态度价值观:体验数学学习的乐趣,提高数学应用意识。

人教版七年级数学上册第四章几何图形初步4.3.1角(教案)

人教版七年级数学上册第四章几何图形初步4.3.1角(教案)
同学们,今天我们将要学习的是《角》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过角度的测量问题?”比如,如何测量桌面上的角度,或是屋顶的倾斜角度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角的奥秘。
(二)新课讲授(用时10分钟)
2.发展学生的逻辑推理能力:在学习角的分类和性质过程中,引导学生运用逻辑推理分析问题,掌握角的性质和分类方法。
3.提升学生的数学运算能力:使学生掌握角的度量和特殊角的计算方法,并能熟练进行角度的加减运算。
4.培养学生的数学抽象能力:通过角的图形操作,让学生抽象出角的和差、补角、余角等概念,形成数学抽象思维。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了角的基本概念、分类、性质及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-补角与余角的概念:理解补角和余角的定义,并能够进行计算。
-举例:通过图示或实际例子,解释补角和余角的概念,并指导学生进行相关练习。
-角在实际问题中的应用:将角的知识应用到实际问题中,如计算物体的倾斜角度等。
-举例:设计一些实际问题,如屋顶的倾斜角度,让学生运用所学知识解决问题。
四、教学流程
(一)导入新课(用时5分钟) Nhomakorabea2.教学难点

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

人教版数学七年级上册第四章《几何图形初步》教学设计

人教版数学七年级上册第四章《几何图形初步》教学设计

人教版数学七年级上册第四章《几何图形初步》教学设计一. 教材分析《几何图形初步》是人教版数学七年级上册第四章的内容,主要包括平面几何图形的性质和判定,以及几何图形的对称性、中心对称性和旋转对称性。

本章是学生初步接触几何图形的开始,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

通过本章的学习,学生将掌握几何图形的的基本性质和判定方法,为后续的学习打下基础。

二. 学情分析七年级的学生刚刚接触几何图形,对于图形的性质和判定方法可能感到陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出几何图形,并通过观察、操作、思考等活动,逐步理解和掌握几何图形的性质和判定方法。

同时,七年级学生的学习习惯和思维方式还在形成中,因此在教学过程中,需要注重培养学生的学习兴趣和学习方法,引导学生主动参与课堂活动,提高课堂效果。

三. 教学目标1.知识与技能:使学生掌握平面几何图形的性质和判定方法,了解几何图形的对称性、中心对称性和旋转对称性。

2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的团队合作意识和创新精神。

四. 教学重难点1.重点:平面几何图形的性质和判定方法,几何图形的对称性、中心对称性和旋转对称性。

2.难点:几何图形的判定方法,对称性的理解和应用。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。

2.启发式教学法:通过提问、讨论等方式,引导学生主动思考,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组合作,共同探讨几何图形的问题,培养学生的团队合作意识。

六. 教学准备1.教学用具:黑板、粉笔、多媒体设备等。

2.教学素材:几何图形的相关图片、实例等。

3.教学设计:本节课的教学设计,包括导入、呈现、操练、巩固、拓展、小结等环节。

七. 教学过程1.导入(5分钟)通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。

2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)

2022年人教版七年级数学上册第四章几何图形初步教案  直线、射线、线段(第1课时)

第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。

学生:三角尺、直尺、圆规、铅笔。

六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。

教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。

最新人教版七年级数学上册 第四章 几何图形初步 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第四章 几何图形初步 优秀教案教学设计 含教学反思

第四章几何图形初步4.1 几何图形 (1)4.1.1 立体图形与平面图形 (1)第1课时认识几何图形 (1)第2课时从不同方向看立体图形和立体图形的展开图 (4)4.1.2 点、线、面、体 (8)4.2 直线、射线、线段 (11)第1课时直线、射线、线段 (11)第2课时比较线段的长短 (14)4.3 角 (18)4.3.1 角 (18)4.3.2 角的比较与运算 (21)4.3.3 余角和补角 (25)4.4 课题学习设计制作长方体形状的包装纸盒 (31)4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例 2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.14 5.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.第2课时比较线段的长短【知识与技能】1.结合图形认识线段间的数量关系,学会比较线段的大小.2.知道两点之间的距离和线段中点的含义.【过程与方法】。

人教版七年级上册数学第四章几何图形初步教学设计

人教版七年级上册数学第四章几何图形初步教学设计
4.教师应及时批改作业,给予学生反馈,指导他们改进学习方法,提高学习效果。
3.采用任务驱动法,设计富有挑战性的问题,引导学生主动探究几何图形的性质,培养学生的自主学习能力和解决问题的能力。
-例如,在学习三角形时,可以设计“如何判断三角形的类型?”这一问题,让学生在探究中掌握三角形的性质。
4.强化课堂互动,鼓励学生积极参与讨论、提问和分享,培养学生的合作意识和交流能力。
5.创设实践操作环节,让学生在动手作图、测量和计算中巩固几何知识,提高学生的实践操作能力。
针对以上学情,教师应采取有针对性的教学策略,帮助学生在几何图形初步这一章节中取得良好的学习效果。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握几何图形的基本概念、性质和分类,以及平面图形的周长、面积计算方法。
2.难点:
-理解和运用几何图形的性质解决实际问题,尤其是三角形、四边形和圆的性质。
-掌握尺规作图的方法,并能灵活运用解决简单的几何问题。
人教版七年级上册数学第四章几何图形初步教学设计
一、教学目标
(一)知识与技能
1.让学生掌握几何图形的基本概念,包括点、线、面、角的定义及其相互关系,能够准确地识别和描述生活中常见的几何图形。
2.使学生了解平面图形的分类,掌握三角形、四边形、圆等基本平面图形的性质和特点,能够运用这些性质解决实际问题。
3.培养学生运用尺规作图的能力,掌握基本的作图方法,如作直线、作圆、作角等,并能够利用这些方法解决简单的几何问题。
2.培养学生勇于探索、善于思考、严谨治学的科学态度,让学生在学习过程中体会到几何学的严密性和逻辑性。
3.通过几何知识的学习,引导学生认识到数学与现实生活的紧密联系,培养学生的应用意识和实践能力。

七年级数学第四章教案

七年级数学第四章教案

4.1.1几何图形(第1课时)一、教学目标1.知道图形分为立体图形和平面图形,能辨认常见的立体图形和平面图形.2.知道立体图形的某些面是平面图形,会在立体图形中指出平面图形,培养空间观念.二、教学重点和难点1.重点:辨认常见的立体图形.2.难点:辨认棱柱、棱锥.三、教学过程(教学说明:本节课用到的教具较多,课前需要作认真的准备)(一)创设情境,导入新课师:从今天开始,我们将学习第四章图形认识初步.(板书:第四章几何图形初步)本节课我们首先学习什么是图形.(板书:图形)(二)尝试指导,讲授新课师:什么是图形?在小学里,在日常生活中,我们已经接触过很多图形.师:(出示正方体模型)这是什么图形?生:正方体.(没有学生知道,教师直接告诉)师:(将画有正方体的纸贴到黑板上)这张纸上画的是什么图形?生:正方体.(师板书:正方体)(以下师依次出示长方体、圆柱、圆锥、球的模型,教学过程同上)师:(出示三棱柱模型)这是什么图形?生:……(学生很可能回答不出)师:这个图形叫棱柱.师:(将画有三棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(出示六棱柱模型)这又是什么图形?生:……(学生很可能回答不出)师:这个图形也是棱柱.师:(将画有六棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(三棱柱、六棱柱的棱垂直桌面放置)这两个图形都是棱柱,但它们的形状还是有不一样的地方,有什么不一样的地方?生:……(多让几位同学说)师:(演示三棱柱)这个棱柱相对的这两个面都是三角形,(演示六棱柱)这个棱柱相对的这两个面都是六边形,所以我们把这个棱柱叫做三棱柱,(板书:三)把这个棱柱叫做六棱柱.(板书:六)师:(三棱柱的棱平行桌面放置)三棱柱像我们生活中见过的什么东西?生:……(多让几位同学说)师:三棱柱挺像是一个帐篷.师:(六棱柱的棱垂直桌面放置)六棱柱像我们生活中的什么东西?生:……(多让几位同学说)师:六棱柱挺像是一个茶叶盒.(也可说其它东西)(以下师依次出示四棱锥、五棱锥,教学过程与棱柱教学基本相同)师:(指模型)刚才我们看了正方体、长方体、圆柱、圆锥、球、棱柱、棱锥,这些图形有什么共同的特点呢?(稍停)它们都是立体图形.(板书:立体图形)师:(指板书)这些立体图形在我们生活中都是常见的,请大家把课本翻到118页,(稍停)上面一排印了一些实物,这些实物是什么东西?生:地球仪、魔方、现代汉语词典、沙堆、铅笔、建筑物.师:这些实物是什么立体图形呢?请大家把实物与下面一排的图形用线连起来.(生连线,师巡视)师:说说你是怎么连线的?生:……师:这位同学连得对不对?(有不对的,其他同学纠正)(三)试探练习,回授调节1.师出示一些大图片,让学生找立体图形.(四)试探练习,回授调节练习.2.课本P116(只要求学生回答:各立体图形的表面中包含哪些平面图形?如第一个立体图形的表面中有2个圆,又如第三个立体图形的表面中有2个五边形、5个长方形.如果学生对第五个立体图形的感知有困难,师可以告诉这个立体图形的构成,即上面是一个棱锥,下面是一个长方体.答题用口答形式)(五)归纳小结,布置作业师:本节课我们学习了什么是图形,图形分为立体图形和平面图形.虽然立体图形和平面图形是两种不同的图形,但它们之间是有联系的,什么联系呢?生:立体图形的某些面是平面图形.(作业:P习题1.2.3.做在课本上)121四、课后反思4.1.2点、线、面、体(第1课时)一、教学目标1.认识体、面、线、点的概念,从静态角度认识体、面、线、点之间的关系,即“体由面围成,面面相交成线,线线相交成点”.2.从动态角度认识点、线、面、体之间的关系,即“点动成线,线动成面,面动成体”.3.通过观察图形,了解图形是由点、线、面、体组成的.二、教学重点和难点1.重点:点、线、面、体的概念及其关系.2.难点:点动成线,线动成面,面动成体.三、教学过程(一)创设情境,导入新课师:上节课我们学习了什么是图形,通过学习我们知道,图形分为立体图形和平面图形.(边讲边出示模型)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,而正方形、长方形、三角形、平行四边行、梯形、五边形、六边形、圆、扇形都是平面图形.立体图形与平面图形相互之间是有联系的,立体图形的某些面是平面图形.无论立体图形还是平面图形都是图形,无论我们走到哪里,我们所看到的无处不是图形,我们生活在图形的世界里!小到一粒沙子是图形,大到整座城市也是图形.大家可以欣赏欣赏课本115页上的那个图形,(稍等)这个图形画的是什么?生:北京奥林匹克公园.师:你能把北京奥林匹克公园的情况向大家介绍一下吗?生:北京奥林匹克公园的中心是可容纳8万人的国家体育场,周围分布着田径、体操、游泳等14个场馆,整个公园占地1215公顷,总建筑面积约200万平方米.师:这么大的北京奥林匹克公园也可以看成是一个图形,这个图形真是够大的.大家仔细看看这个图形,里面到底有一些什么东西?生:……(学生列举出来的可能是实物,如建筑物、树等等,要多让几位同学说)师:在这个图形中同学们找出了不少东西,但恐怕还没有找全.老师不用看图形,就敢说,北京奥林匹克公园这个图形中只有四样东西.这么大的图形中怎么只有四样东西?是的,只有四样东西.这就神了,这四样东西是什么东西呢?这四样东西就是点、线、面、体.(板书课题:4.1.2点、线、面、体)本节课我们就来学习点、线、面、体.(二)尝试指导,讲授新课师:任何复杂的图形都是由点、线、面、体组成.(板书:图形由点、线、面、体组成)师:什么是体?(板书:体)有体积的东西都是体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是体.师:你能举出生活中是体的东西?生:……(多让几位同学说)师:生活中的体有很多很多,一个土豆是体,一头牛是体,一个人的身体是体,一幢房子也是体.一样东西只要有体积,不管是什么形状,都是体.师:什么是面?(板书:面,并演示长方体模型)包围着体的是面.这个长方体共有几个面?生:6个.师:(演示长方体模型)这6个面都是平平的.师:(出示圆柱模型)包围着圆柱的是面,这个圆柱有几个面?生:……师:(演示圆柱模型)这个圆柱有3个面,这个面和这个面是平平的,这个面是弯曲的.师:(出示圆锥模型)包围着圆锥的也是面,这个圆锥有2个面,哪一个是平平的?哪一个是弯曲的?(生上台指出来)师:从上面的讨论,我们可以知道,面有两种,一种是平面,一种是曲面.(板书:(平面、曲面))在生活中,我们也能找到平面和曲面的例子,譬如,平静的水面给我们留下平面的印象,而有浪的水面给我们留下曲面的印象.师:什么是线?(板书:线)这就是线.(边讲边画一条直线、一条曲线)线也有两种,笔直的是直线,弯曲的是曲线.(板书:(直线、曲线))师:(指模型)你能在这些立体图形中找出直线和曲线吗?(多让一些学生找)师:在生活中,我们同样能找到很多线的例子,譬如,课桌的边沿、织卡垫的线、寺庙壁画优美的线条、夜晚流星划过天空时的那一道光线,这些都给我们留下线的印象.师:什么是点?(板书:点)这就是点.(边讲边画点)师:知道了点、线、面、体是什么,就不难想像,任何图形都是由点、线、面、体组成的,北京奥林匹克公园这个图形当然也是由点、线、面、体组成的.(三)试探练习,回授调节2.课本P122练习1,2.(四)归纳小结,布置作业师:本节课我们学习了点、线、面、体.图形是由点、线、面、体组成的,点、线、面、体之间有两种联系,第一种关系是什么?生:……师:第二种关系是什么?生:……(作业:阅读4.1几何图形P114-P117)四、课后反思4.2直线、射线、线段(第1课时)一、教学目标1.知道射线、线段的意义,会表示射线和线段,会按语句画出射线和线段.2.知道直线、射线、线段的区别和联系3.会画线段的和、线段的差. 二、教学重点和难点1.重点:画线段的和、差.2.难点:画线段的差. 三、教学过程(一)基本训练,巩固旧知1.用尺子量的方法画一条线段AB ,使线段AB =a.2.用圆规截取的方法画一条线段BC ,使线段BC =b.(二)尝试指导,讲授新课(师出示右图) 师:(指图)这是线段a ,这是线段b ,线段a 与线段b 的和是什么意思? 生:……(多让几位同学发表意见,要肯定学生回答中的合理部分) 师:(在图中比划)把线段a 、线段b 的端点接起来,得到一条线段,这条线段就是线段a 与线段b 的和.怎么画出线段a 线段b 的和呢?请大家做下面的探究题.3.探究题:如图,已知线段a 、b ,画一条线段,使这条线段等于a +b.(生做探究题,师将探究题板书后巡视)师:不少同学画出了线段a 与线段b 的和,你是怎么画的?把你的画法在小组里交流.abba b a(生小组交流,师巡视倾听) 师:(以下师生同步画)下面我们一起来画线段a 与线段b 的和.(边讲边画)先画一条直线,再在直线上画线段AB =a ,怎么画线段AB =a ? 生:……(用尺子量或用圆规截取)师:用圆规截取要方便一些.(边讲边用圆规截取,并标上字母A 、B )然后再画线段BC =b (边讲边用圆规截取,并标上字母C ) 师:(指图)哪一条线段等于a +b ? 生:AC.(多让几位同学回答) 师:(指准图)从画图过程可以看出,AB =a ,BC =b,所以AC =a +b.线段AC 就是所要画的线段(板书:线段AC 就是所要画的线段).师:(指图)这是线段a ,这是线段b ,线段a 与线段b 的差是什么意思? 生:……(多让几位同学发表看法,要肯定学生回答中的合理部分) 师:(在图中比划)在线段a 中减去线段b ,剩下的得到一条线段,这条线段就是线段a 与线段b 的差.怎么画出线段a 与线段b 的差呢?请大家做下面探究题.(师将黑板上探究题中的a +b 改为a -b )4.探究题:如图,已知线段a 、b ,画一条线段, 使这条线段等于a -b.(生做探究题,师巡视引导)师:画好的同学请举手.(生举手)请大家把自己的画法在小组里交流. (生小组交流,师巡视倾听) 师:(以下师生同步画)下面我们一起来画线段a 与线段b 的差.(边讲边画)先画一条直线,再在直线上画线段AB =a.画线段AB =a 可以用尺子量的方法来画,也可以用圆规截取的方法来画,一般来说,用圆规截取方法来画比较方便,我们就用圆规截取方法来画(边讲边用圆规截取,并标上字母A 、B ).然后再画线段BD =b (边讲边用圆规截取,并标上字母D ),(指图)因为画的是线段的差,所以BD 的截取方向与BC 的截取方向正好相反. 师:(指图)哪一条线段等于a -b ? 生:AD.(多让几位同学回答) 师:(指准图)从画图过程可以看出,AB =a ,BD =b,所以AD =a -b.线段AD 就是所要画的线段(板书:线段AD 就是所要画的线段). (三)试探练习,回授调节5.如图,已知线段a 、b 、c ,画一条线段, 使它等于a +b -c.6.如图,已知线段a 、b ,画一条线段,使它等于2a -b.7.如图,填空:(1)BC +CD = ; (2)AC +CD = ;bac ba ba D C B(3)AC-AB=;(4)AD-AB=.(四)归纳小结,布置作业师:本节课我们学习了如何画线段的和、线段的差,哪位同学能用自己的话说说画线段的和与画线段的差有什么不一样?生:……(多让几位同学说)习题9.)(作业:P130四、课后反思:4.3.1角(第1课时)一、教学目标1.会用量角器量角,会用量角器画出任何给定度数的角.2.知道1°=60′,1′=60″,会进行度分互化.二、教学重点和难点1.重点:用量角器量角,画角.2.难点:度分互化.三、教学过程(一)尝试指导,讲授新课师:同学们会用尺子量出一条线段的长度吗?生:会.师:用尺子能量出一条线段的长度,用量角器也能量出一个角的角度,如何用量角器量出一个角的角度呢?请大家完成这道探究题.(师出示探究题)1.探究题:用量角器量出下面两个角的度数.(生做探究题,师巡视指导)师:有些同学已经量出了这两个角的度数,你是怎么量的呢?把你的想法告诉小组里的其他同学.(生小组交流,师巡视倾听)师:下面我们一起来量一量(指第一个角)这个角的度数.(以下师生同步操作)怎么用量角器量角的度数呢?(板书:用量角器量角)第一步:对线(板书:对线),使量角器的零度线与角的一边重合,注意:零度线不是量角器的边缘;第二步:对中(板书:对中),使量角器的圆心与角的顶点重合;第三步:读数(板书:读数),看角的另一边落到量角器的哪一条刻度线上,读出角的度数.这个角的度数是多少?生:45°.(师在图中画弧并标上45°)(以上教学要慢点,必要时可以重复,要讲一步检查一步,检查每一个学生的操作是否到位)师:按照对线、对中、读数三步,请大家再量一下(指第二个角)这个角的度数,(生量角,师巡视)师:下面我们一起来量一量(指第二个角)这个角的度数.(教学过程同上) (二)试探练习,回授调节 2.填空:(1)如图,用量角器量角,∠B = ;(2)如图,用量角器量角,∠O(3)如图,用量角器量角,∠E(4)如图,用量角器量角,∠P = ; 3.如图,填空:(1)如图,用量角器量角,∠A = °; (2)如图,用量角器量角,∠B = °; (3)如图,用量角器量角,∠C = °;(4)∠A +∠B +∠C = °+°+ °= °. (三)尝试指导,讲授新课B AE A P AB C师:给我们一个角,我们会用量角器量出它的度数;反过来,告诉我们一个角的度数,又怎么画出这个角呢?请大家独立完成下面的探究题.(师出示探究题)4.探究题:请你用量角器画出36°角和108°角,通过画角你认为用量角器画角有哪几步?(生做探究题,师巡视指导)师:下面我们一起来画36°角.(以下师生同步操作)怎么用量角器画角呢?(板书:用量角器画角)第一步:画线(板书:画线),画一条射线,射线的端点就是要画角的顶点;第二步:画点(板书:画点),使量角器的零度线与这条射线重合,使量角器的圆心与这条射线的端点重合,在量角器36°刻度线上画点;第三步:画线(板书:画线),以这(指准点)一点为端点,经过这(指准点)一点画射线.这样我们就画出了36°角.(在角上画弧线并标上36°)师:按照画线、画点、画线三步,请大家再画一下108°角.(生画角,师巡视)师:下面我们一起来画108°角.(教学过程同上)(四)试探练习,回授调节5.用量角器画出60°角、120°角.(五)尝试指导,讲授新课师:(出示1度角)这个角的度数是1度,1度角张口已是很小了,为了更精密地度量角,(比划等分过程)我们把1度角60等分,可以想象,每一份角的张口就很小很小了,这每份叫做1分角.所以1度等于60分(边讲边板书:1°=60′).同样道理,我们还可以把1分角60等分,可以想象,每一份角的张口就更小更小了,这每份角叫做1秒角.所以1分等于60秒(边讲边板书:1′=60″).例1 填空:(1)180′=°;(2)43°78′=°′;(3)90°=°60′;(4)51.6°=°′.(六)试探练习,回授调节6.填空:(1)120′=°;(2)5°=′;(3)26°305′=°′; (4)43.2°=°′.(七)归纳小结,布置作业师:本节课我们学习了什么?生:……(作业:P134练习 1.2.P139习题 2.)四、课后反思:4.3.2角的比较与运算(第1课时)一、教学目标1.知道角平分线的意义,会画一个角的平分线.2.会结合图形进行角度的运算. 二、教学重点和难点1.重点:角平分线的意义,角度的运算.2.难点:结合图形进行角度的运算. 三、教学过程(一)尝试指导,讲授新课(师出示右图) 师:(指图)∠AOC 是一个角,(边讲边用彩笔画)射线OB 把∠AOC 分成了两个角,是哪两个角?生:∠AOB 与∠BOC.(师在角上加弧) 师:(指准图)如果∠AOB =∠BOC 的话(板书:∠AOB =∠BOC ),我们就说射线OB 是∠AOC 的角平分线(板书:射线OB 是∠AOC 的平分线) 师:由这个例子,哪位同学来说说什么是角平分线? 生:……(多让几位同学说) 师:(指准图)把一个角分成相等的两个角的射线,叫做这个角的平分线. (二)试探练习,回授调节1.如图,射线AC 是∠BAD 的平分线,∠BAC =25°, 则∠CAD = °,∠BAD = °2.如图,射线OB 是∠AOC 的平分线,∠AOC =120°, 则∠AOB = °,∠BOC = °3.如图,射线OC 是∠AOB 的平分线,则:(1)∠AOB=2∠ =2∠ ;(2)∠(第2题图) (第3题图)COACD BAOB AC4.如图,射线OP 是∠AOB 的平分线,则: (1)∠AOB = °; (2)∠AOP = °.5.用量角器画出下面各角的平分线OP.6.思考题:如图,射线OB 是∠AOC 的平分线, ∠AOC =60°,∠AOD =80°,则 (1)∠BOC = °; (2)∠COD = °; (3)∠BOD = °. (三)尝试指导,讲授新课例1 计算:(1)37°28′+44°49′; (2)25°36′×4; (先让生尝试,师再讲解)例2 如图,O 是直线AB 上一点,∠AOC =53°17′,求∠BOC 的度数.师:请大家对照这个图,仔细地把题目读几遍,弄清楚这道题目已知是什么,要求的是什么.(生读题) 师:(指准图)O 是直线AB 上一点,可见∠AOB 是平角,∠AOB =180°. 师:(指准图)∠AOC =53°17′(在图中标上53°17′),求∠BOC 的度数(在图中标上问号).怎么求∠BOC 的度数? 生:…… 师:(指准图)∠BOC =∠AOB -∠AOC ,∠AOB =180°,∠AOC =53°17′,所以可以求出∠BOC 的度数.(以下师边讲边按下面样子板书)解:∠BOC =∠AOB -∠AOC =180°-53°17′=179°60′-53°17′P AOBABC D OA B C O OBAOBABAOB=126°43′.(四)试探练习,回授调节7.计算:(1)27°48′+53°34′= (2)90°-78°19′= (3)40°24′×3=8.填空:如图,∠AOB =135°,OC 是∠AOB 的平分线,则∠AOC = ° ′.9.填空:如图,OC 是∠AOB 的平分线,∠COD =31°28′,则∠AOC = °,∠AOD = ° ′.(第8题图) (第9题图) (五)归纳小结,布置作业师:本节课我们学习了一个角的平分线的概念,还学习了角度的运算.什么是一个角的平分线? 生:……(作业:P 139习题3.5.选做题P 140习题9.) 四、课后反思:4.3.3余角和补角(第1课时)一、教学目标1.知道互为余角、互为补角的意义,会求一个角余角和补角的度数.2.知道等角的补角或余角相等,培养初步的推理能力. 二、教学重点和难点1.重点:余角与补角的概念,等角的补角或余角相等.2.难点:证明等角的补角或余角相等.三、教学过程 (一)基本训练,巩固旧知A BC D A O C B CB1.如图,∠AOC 是直角,填空: (1)∠AOB +∠BOC = °;(2)如果∠AOB =30°,那么∠BOC = °. 2.如图,∠AOB 是平角,填空: (1)∠BOC +∠AOC = °;(2)如果∠AOC =140°,那么∠BOC = °. (二)尝试指导,讲授新课(师出示右图)师:(指图)图中有两个角,∠1与∠2,把这两个角拼在一起,也就是∠1+∠2.现在请问:∠1+∠2等于多少度? 生:90°.(师板书:∠1+∠2=90°)师:如果两个角的和等于90°,就说这两个角互为余角.(指图)∠1与∠2的和等于90°,就说∠1与∠2互为余角(板书:∠1与∠2互为余角),也就是说∠1是∠2的余角,∠2也是∠1的余角. (师出示右图)师:(指图)图中有两个角,∠3与∠4,把这两个角拼在一起,也就是∠3+∠4.现在请问:∠3+∠4等于多少度?生:180°.(师板书:∠3+∠4=180°)师:如果两个角的和等于180°,就说这两个角互为补角.(指图)∠3与∠4的和等于180°,就说∠3与∠4互为补角(板书:∠3与∠4互为补角),也就是说∠3是∠4的补角,∠4也是∠3的补角. (三)试探练习,回授调节5.填空:∠1=35°,∠1的余角= °,∠1的补角= °.6.已知:∠1=29°,∠2=51°,∠3=61°,∠4=129°,则∠ 与∠互为余角,∠ 与∠ 互为补角.7.如图,填空:(1)∠AOD 的余角是∠ ; (2)∠COD 的余角是∠ ;(3)∠AOD 的补角是∠ ;(4)∠BOD 的补角是∠ . 8.课本P 139习题7. (四)尝试指导,讲授新课 (师出示例1)2134D A O B C CBO A例1 如图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?师:请大家结合图形把例1默读两遍.(生默读)师:同桌之间互相说说例1的意思,例1告诉了我们什么?问的是什么?(同桌之间互相说)师:让我们一起来看看例1告诉了我们什么?问的是什么? 师:(指准图)∠1与∠2互补是什么意思? 生:∠1+∠2=180°. 师:(指准图)∠3与∠4互补是什么意思? 生:∠3+∠4=180°.师:除了∠1与∠2互补,∠3与∠4互补这两个条件,例1还告诉了我们什么? 生:∠1=∠3. 师:(指准图)根据∠1与∠2互补,∠3与∠4互补,∠1=∠3这三个已知条件,你认为∠2与∠4相等吗? 生:相等.(多让几位同学回答后板书:答:∠2与∠4相等)师:∠2与∠4为什么相等呢?你能根据上面说的三个已知条件,说服别人,让别人真正相信∠2与∠4相等吗? 生:……(多让几位同学说)师:让我们一起来看看,从例1的三个已知条件,如何得到∠2与∠4相等? 师:因为∠1与∠2互补(板书:因为∠1与∠2互补),所以∠2=180°-∠1(板书:所以∠2=180°-∠1);因为∠3与∠4互补(板书:因为∠3与∠4互补),所以∠4=180°-∠3(板书:所以∠4=180°-∠3);又因为∠1=∠3(板书:又因为∠1=∠3),所以∠2=∠4.(板书:所以∠2=∠4) 师:请大家仔仔细细地把这个说理过程默读上几遍.(生默读) 师:对∠2=∠4的说理过程大家有什么疑问吗?(师要鼓励学生提出疑问,学生可能对疑问表述不清,师要“猜出”学生的疑问,并帮助他们把疑问表述清楚,在此基础上可先让其他同学解答,然后师再解答,要尽量让学生把各种疑问都说出来,本节课一定要舍得在这里花时间) 师:大家提了不少疑问,老师也有一个疑问要提.什么疑问呢?∠2与∠4相等,这从图上就看得出来,何必还要搞一个说理过程呢? 生:……(多让几位同学发表看法)师:通过同学们的开导,老师明白了,光凭眼睛看就得出∠2=∠4是不一定靠得住,根据三个已知条件,通过说理过程,才能证明∠2=∠4.这就好比法官要3412证明一个人是小偷,法官不能说,因为这个人像小偷,所以这个人就是小偷,法官必须拿出证据,通过说理过程,才能证明这个人是小偷.法官拿出来的证据就相当于例1中的三个已知条件,法官证明的结论:这个人是小偷,就相当于例1中要证明的结论:∠2=∠4.既然法官需要有一个证明某人是小偷的过程,同样,我们也需要有一个证明∠2=∠4的过程.师:好了,例1告诉我们,(指准图)∠1与∠2互补,∠3与∠4互补,∠1=∠3,那么∠2=∠4.通过例1,我们能得到补角的一个什么性质呢? 生:……(多让几位同学说)师:等角的补角相等(板书:等角的补角相等).师:哪位同学来解释一下,等角的补角相等是什么意思? 生:…… 师:(指准图)∠1与∠3是等角,∠2是∠1的补角,∠4是∠3的补角,所以∠2与∠4相等,这就是等角的补角相等. (五)试探练习,回授调节9.完成下面的解答过程:如图,∠1与∠2互余,∠3与∠4互余, 如果∠1=∠3,那么∠2与∠4相等吗? 为什么?答:∠ 与∠ 相等.因为∠1与∠2互余,所以∠2= . 因为∠3与∠4互余,所以∠4= .又因为∠1=∠3,所以∠ =∠ . 从中,你得出的结论是 .(六)归纳小结,布置作业师:本节课我们学习了余角和补角(板书课题:4.3.3余角和补角),什么叫做互为余角?什么叫做互为补角? 生:……师:关于补角和余角有两个结论,是哪两个结论? 生:……(作业:P 139练习2.3.P 138练习1.P 140复习题13.) 四、课后反思:友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!1243。

七年级数学上册第四章 几何图形初步教案

七年级数学上册第四章 几何图形初步教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形【教学目标】1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.一、自主预习阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.二、例题精讲知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1)(2)(3)(4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.三、巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球),圆锥),正方体),圆柱体),长方体) 四、课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形【教学目标】1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.一、自主预习阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.二、例题精讲知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D三、巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1)(2)(3)(4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.四、课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体【教学目标】1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.一、自主预习阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.二、例题精讲知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆三、巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.四、课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2直线、射线、线段第1课时直线、射线、线段【教学目标】1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.一、自主预习阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.二、例题精讲例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)①②③④A.①②B.②④C.③④D.①④三、巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线.其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略四、课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别. 3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时 比较线段的长短及线段的性质【教学目标】1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义. 3.会运用“两点之间,线段最短”的性质解决生活中的实际问题. 一、自主预习阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图. 2.点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点. 3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短. 4.连接两点间的线段的长度,叫做这两点的距离. 二、例题精讲知识点1 线段的中点及等分点例1 (《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm , 所以AC =AB +BC =7 cm. 因为点O 是线段AC 的中点, 所以OC =12AC =3.5 cm.所以OB =OC -BC =3.5-3=0.5(cm). 知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】 如图,平面上有A 、B 、C 、D 四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P 的位置,使它与4个村庄的距离之和最小.解:连接AC 、BD 的交点即为P 点的位置,如图. 三、巩固训练1.下列说法正确的是(D)A .连接两点的线段就叫做两点间的距离B .在所有连接两点的线中直线一定最短C .线段AB 就是表示点A 到点B 的距离D .线段AB 的长度是点A 到点B 的距离 2.如图,下列关系式中与图不符合的式子是(C)A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC3.为比较两条线段AB 与CD 的大小,小明将点A 与点C 重合使两条线段在一条直线上,点B 在CD 的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB=16 cm,C是AB上一点,且AC=10 cm,D是AC的中点,E是BC的中点,求线段DE 的长.解:因为D是AC的中点,AC=10 cm,所以DC=12AC=5 cm.又因为AB=16 cm,所以BC=AB-AC=6 cm.因为E是BC的中点,所以CE=12BC=3 cm.所以DE=DC+CE=8 cm.四、课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎪⎨⎪⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3角4.3.1角【教学目标】1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.一、自主预习阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.二、例题精讲知识点1角的定义和表示方法例1(《名校课堂》4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠3三、巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1 B.2 C.3 D.42.若∠A=20°20′,∠B=20.20°,∠C =20.5°,则下面的结论正确的是(D)A.∠A=∠B B.∠A=∠CC.∠C=∠B D.∠A,∠B,∠C两两不等3.如图,能用一个字母表示的角有∠B,用三个大写字母表示∠1为∠MCB,∠2为∠AMC.第3题图第4题图4.如图,A,O,D三点在一条直线上,写出图中小于平角的角:∠AOC,∠AOE,∠COE,∠COD,∠EOD.5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.(1)以B 为顶点的角有几个?把它们表示出来; (2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC. (2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC. (3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角.四、课堂小结 角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算【教学目标】1.会用量角器度量角,并会比较两个角的大小. 2.会根据图形判断角的和差倍分. 3.记住角平分线的定义. 一、自主预习阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .二、例题精讲知识点1 角的大小比较例1 (教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小; (2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上, 所以∠AOB 是平角. 因为OD 平分∠AOB , 所以∠AOD =12∠AOB =90°.由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角, 所以∠AOB >∠AOC >∠AOD >∠AOE. (2)等量关系有:∠COE =∠EOD +∠COD , ∠AOB =2∠AOD =∠AOE +∠BOE , ∠DOB =∠COD +∠BOC. 【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小; (2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】 在∠AOB 的内部任取一点C ,作射线OC ,则一定存在(A) A .∠AOB >∠AOC B .∠AOB <∠BOC C .∠BOC >∠AOC D .∠AOC >∠BOC 知识点2 角度的运算 例2 计算: (1)90°-36°12′15″ (2)32°17′53″+42°42′7″ (3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″. (2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″. (4)53°÷6=8°50′.【点拨】 度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°; (2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°; (4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算. 知识点3 与角平分线有关的计算例3 如图,OC 是∠AOD 的平分线,OE 是∠DOB 的平分线. (1)如果∠AOB =130°,那么∠COE 是多少度?(2)在(1)的条件下,如果∠COD =20°,那么∠BOE 是多少度?解:(1)因为OC 是∠AOD 的平分线, 所以∠COD =12∠AOD.因为OE 是∠BOD 的平分线, 所以∠DOE =12∠BOD.所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD).因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB , 所以∠COE =12∠AOB.因为∠AOB =130゚, 所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°, 所以∠DOE =∠COE -∠COD =45°. 又因为OE 平分∠DOB , 所以∠BOE =∠DOE =45°. 【跟踪训练2】如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON 等于135°.三、巩固训练1.射线OC在∠AOB内部,下列四个选项不能判定OC是∠AOB的平分线的是(C)A.∠AOB=2∠AOC B.∠AOC=12∠AOBC.∠AOC+∠BOC=∠AOB D.∠AOC=∠BOC2.如图,在横线上填上适当的角:(1)∠BOD=∠BOC+∠COD=∠AOD-∠AOB;(2)∠AOB=∠AOC-∠COB=∠AOD-∠BOD;(3)∠BOC=∠AOC-∠AOB=∠AOD-∠COD-∠AOB.第2题图第3题图3.如图,若OC平分∠AOB,∠AOB=60°,则∠1=30°.4.已知∠AOB=80°,∠AOC=40°,则∠BOC的度数为120°或40°.5.计算:(1)15°37′+42°51′;(2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O是直线CD上的点,OA平分∠BOC,∠AOC=35°,求∠BOD的度数.解:因为O是直线CD上的点,OA平分∠BOC,∠AOC=35°,所以∠BOC=2∠AOC=70°.所以∠BOD=180°-∠BOC=110°.四、课堂小结角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎪⎨⎪⎧度量法叠合法角的运算角平分线4.3.3 余角和补角【教学目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等. 3.理解方位角的概念,会用角描述方向,解决实际问题. 一、自主预习阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角. 3.性质:等角(同角)的余角相等,等角(同角)的补角相等. 4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×) (3)如果一个角有补角,那么这个角一定是钝角.(×) (4)互补的两个角不可能相等.(×) (5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×) (7)如果∠A =25°,∠B =75°,那么∠A 与∠B 互为余角.(×) (8)如果∠A =x°,∠B =(90-x)°,那么∠A 与∠B 互余.(√) 二、例题精讲 知识点1 余角、补角例1 如图,点O 在直线AB 上,OD 平分∠COA ,OE 平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB 的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA 表示东北方向; (2)射线OB 表示北偏西30°;(3)射线OC 表示南偏西60°;(4)射线OD 表示正南方向;(5)射线OE 表示南偏东50°.三、巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A .20°B .40°C .50°D .60°2.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为(C)A .69°B .111°C .141°D .159° 3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A .1B .2C .3D .44.如图,OD 平分∠BOC ,OE 平分∠AOC.若∠BOC =70°,∠AOC =50°.(1)求出∠AOB 及其补角的度数;(2)请求出∠DOC 和∠AOE 的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.解:(1)∠AOB =∠BOC +∠AOC =70°+50°=120°,其补角为180°-∠AOB =180°-120°=60°.(2)∠DOC =12∠BOC =35°,∠AOE =12∠AOC =25°.∠DOE 与∠AOB 互补.理由:∠DOE =∠DOC +∠COE =35°+25°=60°,∠DOE +∠AOB =60°+120°=180°,故∠DOE 与∠AOB 互补.四、课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

教学设计课程名称:2024秋季七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》教学目标(核心素养)1.空间观念:通过余角和补角的概念学习,增强学生的空间感知能力,理解角与角之间的相对关系。

2.逻辑推理:掌握余角和补角的性质,能够运用这些性质进行逻辑推理,解决相关问题。

3.数学表达:学会使用数学语言(如“互为余角”、“互为补角”)准确描述角与角之间的关系。

4.实际应用:理解方位角的概念,能够将余角和补角的知识应用于解决实际问题中,如方向判断。

教学重点•理解余角和补角的定义及性质。

•掌握利用余角和补角性质进行角的推理和计算。

教学难点•灵活运用余角和补角的性质解决复杂问题。

•理解方位角与余角、补角之间的关系,并应用于实际情境。

教学资源•多媒体课件(包含余角和补角的动态演示、方位角的实例)。

•几何图形教具(如可旋转的角模型)。

•练习题集,包含基础题、提高题和拓展题。

教学方法•直观演示法:利用多媒体和教具展示余角和补角的形成过程,帮助学生直观理解。

•讲授法:介绍余角和补角的定义、性质及方位角的概念。

•讨论法:组织学生讨论余角和补角在实际生活中的应用,促进思维碰撞。

•实践操作法:通过动手操作,让学生亲身体验余角和补角的性质。

教学过程要点导入新课:•从日常生活中的实例出发,如直角三角形的两个锐角关系,引导学生思考角与角之间的特殊关系,引出余角和补角的概念。

新课教学:1.余角和补角的定义:•介绍余角和补角的定义,强调“和为90°”与“和为180°”的关键特征。

•通过实例演示,让学生直观感受余角和补角的形成过程。

2.性质探索:•引导学生探索余角和补角的性质,如“同角的余角相等”、“同角的补角之差为90°”等。

•通过小组讨论,让学生自行发现并总结性质。

3.方位角的应用:•介绍方位角的概念,说明其与余角、补角的关系。

•通过实例(如地图上的方向判断)展示方位角的应用,加深学生理解。

福安市九中七年级数学上册 第4章 几何图形初步 4.1 几何图形 4.1.2 点、线、面、体教案 新

福安市九中七年级数学上册 第4章 几何图形初步 4.1 几何图形 4.1.2 点、线、面、体教案 新

第四章几何图形初步4.1 几何图形【知识与技能】(1)了解几何体、平面和曲面的意义,能正确判断围成几何体的面是平面还是曲面.(2)了解构成几何图形的基本元素是点、线、面,理解点、线、面经过运动变化形成的几何图形.【过程与方法】经历探索点、线、面、体的关系的数学活动,提高空间想象能力和抽象思维能力.【情感态度与价值观】经历本节课的数学活动,使学生养成主动探索、求知的学习态度,激发学生对数学的学习兴趣,并让学生体验数学活动中小组合作的重要性.正确判断围成的立体图形的面是平面还是曲面,探索点、线、面、体之间的关系.理解点、线、面经过运动变化后形成的图形.多媒体课件,长方体模型、圆柱模型情境:多媒体演示西湖风光,垂柳、波澜不惊的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.一、思考探究,获取新知探究:教师出示一个长方体模型,请同学们认真观察.1.学生首先独立思考,然后小组讨论,最后得出结论.2.各小组公布讨论后的结论.在小组讨论过程中,教师巡视,及时给予指导,对小组公布的结论,教师给予鼓励性评价.3.教师总结:几何体的概念.长方体是一个几何体,还有我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.几何体也简称体.教师提问:观察长方体和圆柱,说出围成这两个几何体的面有哪些?这些面有什么区别?4.教师给出面的分类.通过对上面问题的解决,给出面的分类:平面和曲面.5.教师用多媒体放映生活中一些常见的“点动成线,线动成面,面动成体”的例子,让学生观察.(1)通过观察,你能得出什么结论?(2)小组讨论得出结论.(3)教师指导学生学习教材内容.师生互动,学生得出结论:点动成线,线动成面,面动成体.教师对学生的结论进行正面评价,并把学生的结论板书.二、典例精析,掌握新知例1(1)人在雪地上行走,他的脚印形成一条,这说明了的数学原理.(2)体是由围成的,面和面相交成,线和线相交成 .(3)点动成,线动成,面动成 .【解】(1)线点动成线(2)面线点(3)线面体本节课通过丰富的实例,认识点、线、面、体,并感受它们之间的关系:点动成线,线动成面,面动成体.教材P122习题4.1第5题二元一次方程组的应用一、选择题1.y=kx+b中,x=-2时,y=-17;x=2时,y=11,则k、b值分别为()(A)k=7,b=3(B)k=-7,b=3(C)k=7,b=-3(D)k=-7,b=-32.某工厂生产一种产品,若15个人手工做,2台机器做,一天可做435件产品;若9人手工做,5台机器做,一天可做717件,若每人每天手工做x件,每台机器每天做y件,则x、y应满足()(A)(B)(C)(D)3.等式x=1,2,-3时,y的值分别为0,3,28,x=-1时y为()(A)2(B)4(C)6(D)84.甲、乙两人赛跑,若甲让乙先跑12米,甲跑6秒可追上乙;若乙比甲先跑2.5秒,则甲跑5秒可追上乙,若甲每秒跑x 米,乙每秒跑y米,则()(A)(B)(C)(D)5.甲、乙各存书若干本,若甲给乙10本,则乙比甲所剩的书多5倍,若乙给甲10本,则甲、乙两人的书数相等,那么甲、乙各有书()(A)甲18本、乙38本(B)甲38本、乙18本(C)甲20本,乙30本(D)甲30本,乙20本6.某人乘船由A地顺流到B地,再逆流到C地,共用4小时,已知船在静水中速度为7.5千米/时,水流速度为2.5千米/时,若A.C两地相距10千米,则A.B两地相距()千米.(A)20(B)(C)20或(D)10或二、填空题1.甲乙两数之和是25,两数之差是32,则这两数是_______.2.已知长江比黄河长386千米,黄河长度的6倍比长江的5倍多1284千米,若设长江长为x千米,黄河长y千米,则方程组为______.3.甲乙二人相距18千米,二人同时出发,若同向而行,甲9小时可追上乙;若相对而行,3小时相遇.若设甲速度为x千米/时,乙为y千米/时,则方程组为_______.4.某工程队44人,每人每天可挖土5方,或每人每天运土6方,使每天挖出的土全运完的分工是______.三、解答题1.某工程队计划在695米线路上分别装米和米长两种规格的水管共100根,问这两种水管各需多少根?2.若甲、乙两库共存粮95吨,现从甲库运出存粮的,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各在多少吨粮食?3.通讯员在规定的时间内由A地前往B地.如果他每小时走35公里,那么他就要迟到2小时;如果他每小时走50公里,那么他就可以比规定时间早到1小时,求A.B两地间的距离.4.要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合于3天完成任务,问甲、乙两个工程队每天各能修路多少千米?参考答案一、1.C 提示:将与代入y=kx+b中,得,用加减消元法求解即可;2.B提示:一天内手工做的产品数+ 一天内机器做的产品数=一天内生产的产品总数;3.C提示:将x、y值分别代入,列出三个方程组,运用消元法可求出的值,其中消元时可以两两式子相减得出关于A.b的二元一次方程组求解;4.D提示:找等量关系,列方程组,甲跑的路程=乙跑的路程,注意弄清甲、乙跑的时间分别是什么;5.A提示:设甲、乙各有x、y本书,则可列方程组;6.A.二、1.28.5与-3.5 提示:设两数分别为x、y,则可列方程组;2.;3.提示:若相向而行,则等量关系为:甲走的路程=乙走的路程,若相对而行,则等量关系为:甲走的路程+乙走的路程=总路程(18);4.24人挖土,20人运土提示:设x人挖土,y人运工,则有:x个人挖的土数=y人运的土数,又x+y=44,所以可列方程组求解;三、1.分析本题中有两个未知数——规格为8.25米长水管的根数与规格为6.25米长水管的根数.题目中恰有两个相等关系:(1)8.25米长的水管根数十6.25米长水管根数=100根(2)8.25米长水管总米数十6.25米长水管的总米数=线路的总米数解:设8.25米长规格的水管需根,6.25米长规格的水管根,根据题意,得解这个方程组,得答:需规格为米长的水管35根,需规格为6.25米长的水管65根.注意:在实际生活中,我们常常遇到象例1这样的问题,我给出的解法是列出二元一次方程组求解.同学们想一想,还有没有其他的方法?能不能列出一元一次方程来解呢?如果能,比较两者的不同,看一看哪种方法简单?然后自己归纳出列二元一次方程组解应用题的步骤.2.分析:本题有两个未知数——甲仓库原存粮与乙库原存粮;有两个相等关系:(1)甲仓库原存粮吨数+乙仓库原存粮吨数=95吨(2)乙仓库剩余粮食吨数=2倍甲库剩余粮食吨数解:设甲仓库原存粮食吨,乙仓库原存粮食y吨,根据题意,得解这个方程组,得答:甲仓库原存粮食45吨,乙仓库原存粮食50吨.3.分析这里有两个未知数——规定时间和A.B两地间距离.有两个相等关系:(1)通讯员速度以35公里/小时走完全程用的时间-2小时=规定时间(2)通讯员速度为50公里/小时走完全程用的时间+1小时=规定时间解:设A.B两地间的距离为公里,规定时间为y小时.根据题意,得解方程组,得答:A.B两地间的距离为350公里.4.分析:这里有两个未知数——甲工程队每天修路的千米数和乙工程队每天修路的千米数;有两个相等关系:(1)甲2天修路的长+甲、乙合修2天的公路长=公路总长(2)乙2天修路的长+甲、乙合修3天的公路长=公路总长解:设甲每天修公路千米,乙每天修公路y千米,根据题意,得解方程组,得答:甲每天修公路90千米,乙每天修公路30千米.第六章概率初步1 感受可能性【知识与技能】通过猜想与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的.【过程与方法】使学生在教师的指导下自主地发现问题、探究问题、获得结论,感受数学和实际生活的联系,进一步开展学生合作交流的能力和数学表达能力.【情感态度】通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯。

部编人教版七年级数学上册第4章 几何图形初步 【创新教案】 正方体的展开与折叠

部编人教版七年级数学上册第4章 几何图形初步 【创新教案】 正方体的展开与折叠
先想一想,再折一折,并与同学交流。
3.正方体中,有哪个面与3相对?哪些面与3相邻?
(第3题)(第4题)
4.如果“你”在前面,那么谁在后面?
四、课堂小结
这节课你有什么收获?
六、教学反思
《数学课程标准》提出:“实践活动是培养学生进行主学生动手实践的重要意义和作用。本节课的内容决定了课堂教学以活动为主,从“做数学”出发,以学生的实际操作和主体参与为主。在本节课的教学过程中下面几方面有等改进:
“展开与折叠”是中继“丰富的图形世界”之后的一个学习内容,在本章教材的编排顺序中起着承上启下的作用。本节是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解多面体可由平面图形围成,而立体图形可按不同方式展开成平面图形,更重要的是让学生通过观察、思考和自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,养成研究性学习的良好习惯,为后续章节的学习打下基础。
生1:7条棱。我是从正方体剪开,点出来的。
生2:我从正方体的展开图中可以看出有5条棱未剪开,正方体共有12条棱,所以剪了7条棱。
师:当我们解决问题时,有时从问题的逆向来着手思考,更有利于解决。
2)同一种正方体纸盒沿不同顺序先后剪开棱展开的平面图形是否相同?
3.请学生到讲台上展示自己的平面图并粘贴到黑板上指定位置。
(等同学们在黑板上贴到了11种正方体的展开图后,在多媒体上展示这11种展开图)
4.1)让学生观察上面的11种正方体的展开图有没有什么规律?
2)小组讨论这些正方体展开图可分为几类?哪几号展开图可以分为一类?
生1:把1、2、3、4、5、6归为一类,因为它们中间是4块相连的,7、8、9、11归为一类,因为它们中间是3块相连的,10归为一类,只是两块相连。

人教版七年级数学上册《几何图形初步》全章教学案

人教版七年级数学上册《几何图形初步》全章教学案

第四章 几何图形初步(集体案)4.1 几何图形4.1.1 立体图形与平面图主备人: 复核:七年级数学备课组教学目标:1.初步了解立体图形和平面图形的概念.2.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.教法:小组合作探究教学过程一、创设情境,导入新课.1.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)2.展示丰富多彩的图形世界(学观察课本114页图形)二、直观感知,识别图形1.对于各种各样的物体,数学中关注是它们的形状、大小和位置.2.展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.3.观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,长方体等图形.4.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形 ,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等. 有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.三、 实践探究.1. 引导学生观察帐篷,金字塔的图片,从面抽象出棱柱,棱锥.2.你能说说圆柱与棱柱,圆锥与棱锥的区别吗?3.你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?4.下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来(课本115页思考内容)四、课堂小结这节课你有什么收获?五、作业设计课本第121页习题4.1第1、2题;第125页习题4.1第7、8题。

六、教学反思:4.1.1 几何图形(二)(集体案)主备人:复核:七年级数学备课组教学目标1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.教学重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学方法:实验探究教学过程一、创设情景,引入新课1.请欣赏漫画并思考:为什么会出现争执?2. “横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?二、新课学习1.不同角度看直棱柱、圆柱、圆锥、球体.让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2.猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3. 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)4.(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)三、实践与探究1.课本第117页探究:上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?2.再试一试,画出它的三视图.3.怎样画得又快又准?4.用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?四、课堂练习1.课本p118练习1,2题。

初中数学 第4章 几何图形初步 教案及试题

初中数学 第4章 几何图形初步 教案及试题

第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 几何图形初步4.1 几何图形§ 4.1.1 立体图形与平面图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获?5.作业设计课本第123页习题4.1第1、2题;第125页习题4.1第7、8题。

§ 4.1.1 几何图形(二)一、教学目标知识与技能1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.进一步认识立体图形与平面图形之间的关系.4.引导学生把所学的数学知识应用到生活中去,解决身边的数学问题.5.过程与方法在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.6.情感、态度、价值观1).通过活动,形成学生主动探究的意识,丰富学生数学活动的成功经验,激发学生对几何图形的好奇心和对学习的自信心.2).从实物出发,让学生感受到图形世界的无处不在,提高学生学习数学的热情.二、重点与难点重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.三、教学过程1.创设情景,引入新课(1)请欣赏漫画并思考:为什么会出现争执?(2)“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?2.新课学习(1)不同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)(2)猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体) Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.(3) 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)(4)(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)3.实践与探究(1)上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?(2)再试一试,画出它的三视图.(3)怎样画得又快又准?(4)用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?4.参考练习(⒈)图,桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?(⒉)一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是()(3)一个由8个正方体组成的立体图形,从正面和上面观察这个图形时,得到的平面图形如图所示,那么从左面观察这个图形时,得到的平面图形可能是()(4)如图分别是某立体图形三视图,请根据图说出立体图形的名称● 蚊子壁虎 ●蚊子⑴正视图俯视图左视图⑵正视图俯视图右视图5.小结(1)你对本节内容有哪些认识?(2)你有什么收获?有什么感想?有什么困惑?6.作业设计课本第120页练习1 ,课本第124页习题4.1第3、4题§ 4.1.1 几何图形(三)一、教学目标知识与技能⒈了解直棱柱、圆锥等简单立体图形的侧面展开图。

⒉能根据展开图初步判断和制作立体模型。

⒊进一步认识立体图形与平面图形之间的关系。

⒋通过描述展开图,发展学生运用几何语言表述问题的能力。

过程与方法⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。

⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。

⒊通过展开与折叠的活动,体会数学的应用价值。

情感、态度、价值观⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。

⒉通过探讨现实生活中的实物制作,提高学生学习热情。

二、重点与难点重点:直棱柱的展开图。

难点:根据展开图判断和制作立体模型。

三、教学过程1.创设情境,导入课题小壁虎的难题:如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?学生各抒己见,提出路线方案。

教师总结:若在平面上,壁虎只要沿直线爬过去就可以了。

而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。

如图所示:圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可。

若蚊子和壁虎在其他几何体上,如棱锥,正方体……它们展开后是什么图形呢?今天我们就来讨论它们的展开图。

2、新课探究:(1)正方体的表面展开图教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形。

然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图。

.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)(2)其他直棱柱的表面展开图学生从其他直棱柱中任选一种,得到它的展开图,相互交流。

教师指导总结。

(特别是圆柱体展开时,体会怎样展开会得到侧面是一个长方形)(3)让学生分组研究观察三棱锥的展开图。

归纳:从刚才的实践过程中,大家可能已经感受到,同一个几何体,按不同的方式展开,得到的展开图也不同。

(4)你能想象出下面的平面图形可以折叠成什么多面体?动手做做看。

提问:通过实践,说说以上平面图形叠成什么多面体?上面的图〈1〉及图〈3〉可以折叠成正三棱锥,所以它们都是正三棱锥的表面展开图。

图〈2〉不可以折叠成正三棱锥,所以它不是正三棱锥的表面展开图。

归纳:一些平面图形也可以围成立体图形。

(5)提问:是所有的立体图形都能展开成平面图形吗?老师引导得出:是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

3.小结(1)一些立体图形是由平面图形围成的立体图形,沿着它们的一些棱将它剪开,可以把多面体展开成一个平面图形.体现了立体图形与平面图形之间的相互联系。

(2)对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

4.作业设计(1)课本第124页习题4.1第5题(2)课本第125-126页习题4.1第11、12、14题§ 4.1.2 点、线、面、体一、教学目标:知识技能:1、进一步认识点、线、面、体的概念.2、理解点、线、面、体之间的关系.过程与方法通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力.情感、态度、价值观通过联系现实世界中各种常见的几何体及情景,让学生认识数学与现实生活的密切联系.二、教学重、难点重点:点、线、面、体之间的关系.难点:体会点动成线、线动成面、面动成体三、教学过程:1.问题情境[问题1](1)举出一些你所熟悉的立体图形.(2)①你知道这些体是由什么围成的吗?它们有什么不同吗?②面与面相交的地方形成了什么?它们有什么不同呢?③线与线相交之处又得到了什么?(3)举出生活实际中分别给体、面、线、点的形象的例子学生先独立观察、思考,然后再讨论、交流得出以下结论:(1)体是由面围成的.面有两种,平面和曲面.(2)面与面相交的地方形成了线,线有直的也有曲的.(3)线与线相交的地方是点.教师对以上结论加以总结、完善.得出点、线、面、体之间的关系.即“体由面组成,面与面相交成线,线与线相交成点”.教师鼓励学生联想身边熟悉的情景,尽可能多的举出例子,并把课前准备的挂图和物品等展示出来和学生交流.[问题2](学生动手操作、思考并回答问题)(1)①笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?②通过上述运动你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?教师在学生回答问题的基础上总结得到“点动成线”的结论.学生在组内讨论、交流的基础上,举出更多实例.如:蚂蚁搬家;在一望无际的沙滩上;一个孤独的旅行者留下的一排长长的足迹……(2)①汽车雨刷可以看作是一条线,它在档风玻璃上运动时有什么现象?②通过对上面现象的分析你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?①教师让学生拿笔或直尺当雨刷在纸上演示,启发学生类比上一个问题.并鼓励学生用自己的语言说出发现的结论.②学生通过仔细观察图片,动手实践,回答问题.得出“线动成面”的结论.③学生经讨论、交流后举例.如:夜晚街头闪烁的霓虹灯、利用竹条编织的凉席,用扫帚扫地、用刷子刷油、钟表盘上分针时针的运动……(3)①长方形纸片绕它的一边旋转,形成了什么图形?②通过对上面现象的分析你得出了什么结论?③你能再举出一些例子进一步说明这一结论吗?④你能找出它们之间的对应关系吗?教师演示旋转过程,让学生通过观察,大胆猜测,想象.学生在观察、猜测、想象之后独立思考得出结论,再通过动手实践加以验证;最后进行小组讨论、交流,回答问题.得出“面动成体”的结论.学生经小组交流,举出例子.如把三角尺绕其一边旋转形成几何体、一摞壹元硬币……[问题3](1)为什么在中国地图上,北京只是一个点,而在北京市地图上北京几乎占了整个版面?学生先独立思考后讨论、交流.回答问题,同学们之间可以相互补充、纠正.(2)观察下面的图片,你有什么发现?构成几何图形的基本元素是什么?学生观察图片.表述观点.教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.小结.本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素得到丰富多彩的图形世界.3.布置作业.课后收集能反映点、线、面、体之间关系的资料、图片及实物模型.§ 4.2 直线、射线、线段(一)教学目标知识与技能1、在现实情境中理解线段、直线、射线等简单的平面图形。

相关文档
最新文档