人教版五年级下册数学重点知识(精华版)
人教版五年级数学下册中知识点、易错点、易错题汇总
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
最新人教版小学数学五年级下册知识点归纳总结
最新人教版小学数学五年级下册知识点归纳总结亲爱的小朋友们,今天我们来聊聊最新人教版小学数学五年级下册的知识点。
这个学期我们学了很多有趣的东西,让我们一起来回顾一下吧!我们学习了分数。
分数是表示一个整体的一部分,有分子和分母组成。
比如,三分之一就是1/3,四分之一就是1/4。
我们还学会了如何比较分数的大小,例如:2/3 >1/2。
这些知识在生活中很有用哦,比如我们可以帮妈妈把蛋糕分成8份,每份就是1/8。
我们学习了小数。
小数是一种特殊的分数,它的分母不是10、100等整数,而是无限不循环的小数。
比如,0.5就是1/2的小数形式。
我们还学会了如何将小数转换为分数,例如:0.75 = 3/4。
这些知识可以帮助我们更好地理解和计算一些问题。
我们学习了几何图形。
几何图形有很多种,比如长方形、正方形、圆形、三角形等等。
我们学会了如何计算它们的面积和周长。
例如,一个长方形的面积是长乘以宽,周长是(长+宽)×2。
这些知识可以帮助我们更好地理解和绘制各种图形。
我们还学习了一些关于时间的知识。
比如,一天有24小时,一小时有60分钟,一分钟有60秒。
我们学会了如何看时钟、计时和做时间表。
这些知识可以帮助我们更好地管理自己的时间哦!我们还学习了一些关于统计的知识。
统计是指对数据进行收集、整理和分析的过程。
我们学会了如何制作简单的统计图表,并通过图表来分析数据。
例如,我们可以画一个柱状图来比较不同班级的成绩高低。
这些知识可以帮助我们更好地理解和应用数据哦!以上就是最新人教版小学数学五年级下册的知识点总结啦!希望你们能够认真学习和掌握这些知识,成为聪明的小数学家!。
【知识学习】五年级数学下册1-3单元知识点归纳(人教版)
五年级数学下册1-3单元知识点归纳(人教版)五年级数学下册1-3单元知识点汇总(人教版)第一单元图形的变换、轴对称图形:把一个图形沿着一条直线折叠后,两边的图形可以完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴。
2、对称点到对称轴的距离相等。
3、旋转要明确绕点,角度和方向。
4、图形变换的基本方式是平移、对称和旋转。
5、等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
第二单元因数和倍数6、2和6是12的因数。
12是2的倍数,也是6的倍数。
因数和倍数的描述:谁是谁的因数,谁是谁的倍数。
7、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是整数(一般不包括0)8、一个数的最小因数是1,最大的因数是它本身。
9、一个数的因数的个数是有限的。
0、一个数的最小倍数是它本身,没有最大的倍数。
1、一个数的倍数的个数是无限的。
2、因数<或=它本身、倍数>或=它本身、最大的因数=最小的倍数=它本身3、个位上是0、2、4、6、8的数是2的倍数。
4、自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
不是2的倍数的数叫奇数。
也就是个位上是1、3、5、7、9的数。
5、自然数分成偶数和奇数,最小的偶数是0,最小的奇数是1。
6、个位上是0或5的数,是5的倍数。
7、个位上是0的数,既是2的倍数,又是5的倍数。
8、奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。
9、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
20、既是2和5的倍数,又是3的倍数的最小三位数是120。
21、同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。
22、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
23、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
人教版五年级下册数学重点知识(精华版)
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
人教版小学五年级(下册)数学知识点总结大全
人教版小学五年级(下册)数学知识点总结大全一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a 的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。
一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。
人教版五年级下册数学知识点归纳总结(最新版)
五年级(下)各单元重点知识归纳第二单元:因数与倍数一、因数和倍数(1).因数和倍数的意义:如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
(2).因数与倍数的关系:因数和倍数是两个不同的概念,但又是一对相互依存的概念,不能单独存在。
(3).找一个数的因数的方法:A.列乘法算式:根据因数的意义,有序地写出两个数的乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因数。
B.列除法算式:用此数除以大于(1)等于(1)而小于等于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
(4).找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。
二、(2)、((3))、(5)的倍数的特征(1). 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
(2).奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,0也是偶数;不是2的倍数的数叫做奇数。
(3).奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
(4).5的倍数的特征:个位上是0或5的数都是5的倍数.(5).3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、质数和合数(1).质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(2).质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
(3).分解质因数:把一个合数用质数相乘的形式表示出来,就是分解质因数。
(4).分解质因数的方法:A:“树枝”图式分解法;B:短除法分解。
第三单元:长方体和正方体一、长方体(正方体)的特征(1).长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点(2).正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。
最全面人教版数学五年级下册知识点归纳总结
最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
五年级数学下册各单元知识点归纳(3-4单元新人教版)
五年级数学下册各单元知识点归纳(3-4单元新人教版) 2022五年级数学下册各单元知识点归纳(3-4单元新人教版)2022五年级数学下册各单元知识点归纳(3-4单元新人教版)第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)某4=长某4+宽某4+高某4L=(a+b+h)某4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长某12L=a某12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长某宽+长某高+宽某高)某2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长某宽+(长某高+宽某高)某2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长某高+宽某高)某2S=2(ah+bh)贴墙纸正方体的表面积=棱长某棱长某6S=a某a某6用字母表示:S=6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有个面水管、烟囱等都只有4个面。
五年级下册全部数学知识点
五年级下册全部数学知识点
五年级下册数学主要包括以下知识点:
1. 分数的意义和性质:分数的概念、分数的大小比较、分数的加减乘除运算、分数与小数的互化等。
2. 因数和倍数:因数和倍数的概念、公因数和公倍数、最大公因数和最小公倍数、质数和合数等。
3. 长方体和正方体:长方体和正方体的特征、长方体和正方体的表面积和体积、容积的概念和计算等。
4. 分数的加法和减法:同分母分数的加法和减法、异分母分数的加法和减法、分数加减混合运算等。
5. 统计:数据的收集和整理、统计图的认识和绘制、平均数的计算等。
6. 数学广角:找次品、打电话等。
人教版五年级下册数学知识点总结+习题练习(分模块)
人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:38=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
最小的两位数是30,最大的两位数是90。
三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。
如:0、2、4、6、8、10、12、14、16…都是偶数。
人教版五年级数学下册知识点汇总清单(全册)
人教版五年级数学下册知识点汇总(全册)1 观察物体(三)一、能用小正方体摆出从某一方向观察看到指定图形的几何体。
1.从同一方向观察不同的几何体,看到的图形可能相同。
2.观察由小正方体搭成的几何体时,由于前面的小正方体遮挡..了后面的小正方体、左面的小正方体遮挡..了右面的小正方体、右面的小正方体遮挡..了左面的小正方体或者是上面的小正方体遮挡..了下面的小正方体,常会漏数被遮挡的小正方体............。
例如:图1是由5个小正方体搭成的,而不是由4个小正方体搭成的; 图2是由4个小正方体搭成的,而不是由3个小正方体搭成的。
解决此类问题时,一定要具体问题具体分析。
3.在观察物体时,从正面看可以确定所摆的几何体有几层和几...................列.;.从上面看可以确定所摆的几何体有几行和几列....................;.从左面看可以......确定所摆的几何体有几行和几层..............。
二、能根据从不同方向看到的图形搭出几何体。
1.从正面、左面和上面看到的图形确定了,这个几何体也就确......定了..。
2.根据从三个不同方向观察到的图形还原几何体,先从上面观察到的图形分析确定基本形状,推测可能出现的各种情况,然后根据从其他两个方向看到的图形综合分析,确定层数和每层小正方体的个数。
3.数组合成几何体的小正方体的个数时,可以先把这个几何体分层、分行或分列统计,然后把每一部分的小正方体的个数相加。
温馨提示:从不同的方向观察几何体,所看到的图形可能相同,也可能不同。
温馨提示:根据从三个不同的方向观察到的图形搭成几何体时,先从上面确定基本形状,然后从正面和左面确定层数和每层的个数。
易错点:仅根据从某一方向观察到的平面图形,是无法判断几何体的摆法的,更无法确定组成这个几何体的小正方体的个数。
2因数与倍数..、.............温馨提示:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数...(一般不包括.....0.).。
人教版五年级数学下册各单元知识点总结
人教版五年级数学下册各单元知识点总结班级。
姓名:第一单元:观察物体1.有几个大小相同的小正方体组成的立体图形,从同一个方向观察,看到的图形可能相同也可能不同。
根据一个方向看到的图形摆立体图形,有多种摆法。
2.从同一个方向观察物体最多只能看到三个面。
几何视图一般是根据三个方向观察到的形状进行绘制。
3.根据两个方向观察到的形状能够确定所用小正方体的个数。
根据三个方向观察到的形状摆小正方体的结果只有一种。
第二单元:因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
2.注意:为了方便,在研究因数和倍数时,我们所说的数指的是自然数(一般不包括0)。
3.找因数的方法:①乘法②除法;找倍数的方法:逐次乘自然数。
4.①一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大的倍数。
②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
一个数的最大因数和最小倍数是相等的,都是它本身。
③1是所有非自然数的因数,也是任一自然数(除0外)的最小因数。
④一个数的因数至少有1个,这个数是1.⑤一个数的因数都小于等于它本身,一个数的倍数都大于等于它本身。
5.因数≤它本身,倍数≥它本身,最大的因数=最小的倍数=它本身。
一个数的倍数一定比它的因数大这种说法是错误的。
一个数越大,它的因数个数就越多;一个数越小,它的因数个数就越少,这种说法也是错误的。
6.2的倍数特征:个位上是2、4、6、8的数都是2的倍数。
自然数中,是2的倍数的数叫做偶数(也是偶数),不是2的倍数的数叫奇数。
7.5的倍数特征:个位上是0或5的数,都是5的倍数。
8.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
个位上是3、6、9的数都是3的倍数,是错误的说法。
9.2和5的倍数特征:个位上是0的数,既是2的倍数,也是5的倍数(就是10的倍数)。
人教版小学五年级下册数学知识点整理(全)
班别:
姓名:
学:
4. 【长方体和正方体的关系】 长方体和正方体都有 6 个面,8 个顶点,12 条棱,正方体是长、宽、高都相
等的长方体,即正方体是特殊的长方体。 5. 【棱长公式】
长方体: 长方体的棱总和=(长+宽+高)×4 长=棱长总和÷4-宽-高 宽=棱长总和÷4-长-高 高=棱长总和÷4-长-宽 正方体: 正方体的棱长总和=棱长×12 正方体棱长=棱长总和÷12 6. 【表面积】 长方体或正方体 6 个面的总面积,叫做它的表面积。 7. 【表面积计算】 长方体: 长方体的表面积=(长×宽+长×高+宽×高)×2
8
14. 【求两数的最小公倍数的方法】 (1)观察两数的关系,是否为特殊情况; ① 两数为倍数关系,较大的数为最小公倍数; ② 两数为互质关系,两数的乘积为最小公倍数; (2)不是特殊情况,可以用列举法,筛选法,分解质因数法,短除法求。
14. 【比较分数大小的方法】 (1)同分母分数相比,分子大的分数就大;(同母子大大) (2)同分子分数相比,分母小的分数反而大。(同子母小大)
有余数,这时,除数和商就是这个数的因数; 如:求 18 的因数: 18÷1=18,18÷2=9,18÷3=6,所以 1,18,2,9,3,6 是 18 的因数。
3. 【因数的特征】 一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身。
4. 【找一个数倍数的方法】 列乘法算式求:用这个数×非 0 自然数,得到的积,就是这个数的倍数。 如:求 2 的倍数: 2×1=2,2×2=4,2×3=6,2×4=8,2×5=10,…。 所以,2 的倍数有:2,4,6,8,…。
5. 【倍数的特征】 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
(完整版)人教版五年级数学下册知识点归纳总结
人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
(完整版)人教版五年级下册数学重点知识(精华版)
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到 3 个面(或说成:最多同时能看到 3 个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
(先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
)3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形: 先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
例如:如右图是从上面看到的搭积木的形状,请你画一画。
2、会搭积木第二单元:因数与倍数【在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)】1、熟记概念:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数。
在整数乘法中,因数是积的因数,积是因数的倍数。
例如:12÷2=6 → 12 是2(或者6)的倍数,2(或者6)是12 的因数。
2×6=12→ 12是2(或者6)的倍数,2(或者6)是12的因数。
一个数因数的个数是有限的,一个数倍数的个数是无限的。
例如:12 的最小因数是( 1 ),最大的因数是(12 )。
一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
例如:18 的最小倍数是(18 )。
一个不为0 的自然数,既是它本身的最小倍数,又是它本身的最大因数。
例:⑴一个数的最大因数等于它的最小倍数。
(× )⑵一个数(0 除外)的最大因数等于它的最小倍数。
(√ )⑶一个数的最大的因数和最小倍数都是18,这个数是(18 )。
2、整数中,是2 的倍数的数叫做偶数(0 也是偶数)。
偶数就是我们以前说的双数。
不是 2 的倍数的数叫做奇数,也就是以前我们说的单数。
人教版五年级数学下册(全册)知识点汇总
人教版五年级数学下册(全册)知识点汇总第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
五年级下册人教版数学知识点
五年级下册人教版数学知识点一、因数与倍数。
1. 因数和倍数的概念。
- 在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
例如:12÷2 = 6,12是2和6的倍数,2和6是12的因数。
- 因数与倍数是相互依存的,不能单独说某个数是因数或倍数。
2. 找一个数的因数和倍数的方法。
- 找一个数的因数:从1开始,一对一对地找。
例如,18的因数有1、2、3、6、9、18。
- 找一个数的倍数:用这个数分别乘1、2、3……。
例如,3的倍数有3、6、9、12……。
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
3. 2、3、5的倍数的特征。
- 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
- 5的倍数的特征:个位上是0或5的数都是5的倍数。
- 既是2的倍数又是5的倍数的特征:个位上是0的数。
- 3的倍数的特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
例如,123各位数字之和为1 + 2+3=6,6是3的倍数,所以123是3的倍数。
4. 奇数和偶数。
- 奇数:不是2的倍数的数叫做奇数。
个位上是1、3、5、7、9的数是奇数。
- 偶数:是2的倍数的数叫做偶数。
个位上是0、2、4、6、8的数是偶数。
- 奇数+奇数 = 偶数;偶数+偶数 = 偶数;奇数+偶数 = 奇数。
二、质数与合数。
1. 质数和合数的概念。
- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如,2、3、5、7、11等都是质数。
- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
例如,4、6、8、9、10等都是合数。
- 1既不是质数也不是合数。
2. 100以内的质数。
- 2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
三、长方体和正方体。
人教版五年级下册数学学霸笔记(全册知识点汇总+练习题)
第三单元长方体和正方体
知识点:
1、由 6 个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫 做 长 方 体 。两 个 面 相 交 的 边 叫 做 棱 。三 条 棱 相 交 的 点 叫 做 顶 点 。相 交 于 一 个 顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点: (1)有 6 个面,8 个顶点,12 条棱,相对的面的面积相等,相对的棱的长 度相等。 (2)一个长方体最多有 6 个面是长方形,最少有 4 个面是长方形,最多有 2 个面是正方形。
(2)一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数 是它本身。
第3页,共34页
一个数的因数的求法:成对地按顺序找。 (3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。 (4)2、3、5 的倍数特征
1) 个位上是 0,2,4,6,8 的数都是 2 的倍数。 2)一个数各位上的数的和是 3 的倍数,这个数就是 3 的倍数。 3)个位上是 0 或 5 的数,是 5 的倍数。 4)能同时被 2、3、5 整除(也就是 2、3、5 的倍数)的最大的两位数 是 90,最小的三位数是 120。 同时满足 2、3、5 的倍数,实际是求 2×3×5=30 的倍数。 5)如果一个数同时是 2 和 5 的倍数,那它的个位上的数字一定是 0。 3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。 如:6 的因数有:1、2、3(6 除外),刚好 1+2+3=6,所以 6 是完全数, 小的完全数有 6、28 等 4、自然数按能不能被 2 整除来分:奇数、偶数。 奇数:不能被 2 整除的数。叫奇数。也就是个位上是 1、3、5、7、9 的数。 偶数:能被 2 整除的数叫偶数(0 也是偶数),也就是个位上是 0、2、4、 6、8 的数。 最小的奇数是 1,最小的偶数是 0. 关系: 奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。 5、自然数按因数的个数来分:质数、合数、1、0 四类. 质数(或素数):只有 1 和它本身两个因数。 合数:除了 1 和它本身还有别的因数(至少有三个因数:1、它本身、别的 因数)。 1: 只有 1 个因数。“1”既不是质数,也不是合数。 最小的质数是 2,最小的合数是 4,连续的两个质数是 2、3。 每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
人教版五年级数学知识点汇总(上下册)
人教版五年级数学知识点汇总(上下册)第一章自然数1.1 自然数的认识•自然数的产生和本质•自然数的表示方法1.2 数数•数数的方法和要求•数数中的问题和解决方法1.3 数的大小比较•数的大小比较•大小比较中的问题和解决方法1.4 简单的数的应用问题•凑整百、凑整千的应用•好评率和差评率的计算第二章算法初步2.1 每位数字的意义•位的认识和意义•数码之间的关系和计算方法2.2 竖式计算•两位数的竖式加减法•借位和退位的方法2.3 题目变形•简单的乘法运算及应用•认识简单的分数第三章分数3.1 分数的认识•分数的意义和表示方法•分数的大小比较3.2 分数的简化和扩分•分数的简化和它们的意义•如何将一个分数扩大或缩小3.3 分数的加减•分数的加减运算•小学生运算中的常见问题3.4 分数和小数•小数的基本概念和计算•分数化为小数和小数化为分数第四章量和单位4.1 长度•长度的认识和实际应用•厘米、分米、米之间的转换4.2 时间•时间的认识和实际应用•分钟、小时之间的转换4.3 质量•质量的认识和实际应用•克、千克之间的转换第五章图形5.1 平面直角坐标系•平面直角坐标系的认识•横、纵坐标的意义和用法5.2 对称图形与旋转图形•对称图形的概念和应用•旋转图形的意义和操作方法5.3 立体图形•立体图形的认识和应用•立方体、长方体、正方体的认识和计算第六章数据和图表6.1 读懂图表•图表的种类和构成•图表的阅读和分析方法6.2 收集数据•调查数据的方法和注意事项•对数据进行整理、表格化和图示化6.3 排序和统计•排序、统计数据和解决实际问题•极差、中位数、平均数的应用以上就是人教版五年级数学知识点的汇总。
通过本文档的学习,将对小学生数学的基本知识点和初步运算有更加全面的了解。
五年级下册数学知识点总结人教版
五年级下册数学知识点总结人教版五年级下册数学知识点总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法; ⑵进一法; ⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级下册数学重点知识.第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面).的图形就可以确定立体图形的形状并还原立体图形.(先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列.)3、从一个方向看到的图形摆立体图形,有多种摆法.4、从多个角度观察立体图形:先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数.例:1会画三视图(画一画)从正面看从左面看从上面看2、会搭积木例如:如右图是从上面看到的搭积木的形状,请你画一画.从正面看从侧面看从上面看第二单元:因数与倍数.【在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)】1、熟记概念:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数.在整数乘法中,因数是积的因数,积是因数的倍数.例如:12÷2=6→12是2(或者6)的倍数,2(或者6)是12的因数.2×6=12→12是2(或者6)的倍数,2(或者6)是12的因数.一个数因数的个数是有限的,一个数倍数的个数是无限的.例如:12的最小因数是(1),最大的因数是(12).一个数的最小因数是1,最大因数是它本身.一个数的最小倍数是它本身,没有最大倍数.例如:18的最小倍数是(18).一个不为0的自然数,既是它本身的最小倍数,又是它本身的最大因数.例:⑴一个数的最大因数等于它的最小倍数.(×)⑵一个数(0除外)的最大因数等于它的最小倍数.(√)⑶一个数的最大的因数和最小倍数都是18,这个数是(18).2、整数中,是2的倍数的数叫做偶数(0也是偶数).偶数就是我们以前说的双数.不是2的倍数的数叫做奇数,也就是以前我们说的单数.3、2的倍数的特征:个位上是0、2、4、6、8的数.5的倍数的特征:个位数是0或5的数.3的倍数的特征:一个数各个数位上的数的和是3的倍数.2和5的倍数的特征:个位上是0的数.3和5的倍数的特征:个位是0或者5的并且各个数位上的数字之和能被3整除的数.2和3的倍数的特征:个位是0、2、4、6、8并且各个数位上的数字之和能被3整除的数.2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数.4、一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数).例如:2的因数:1、2.3的因数:1、3.5的因数:1、5.7的因数:1、7.所以,2、3、5、7都是质数.一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数.例如:4的因数:1、2、4.6的因数:1、2、3、6.所以4和6都是合数.5、求一个数的因数的方法:(1)列乘法算式找;(看哪两个数相乘的积是要求的数,这两个数就是这个数的因数.要从自然数1开始,一对一对去找不要遗漏.)(2)列除法算式找.(这个数除以那些整数,商是整数而没有余数,那么商和除数就是这个数的因数.)例:18的因数有哪几个?6、求一个数的倍数的方法:(1)列乘法算式找;(用这个数乘以不是0的自然数得到的积就是这个数的倍数,要从自然数1开始.)(2)列除法算式找.(哪个数除以这个数,商是整数而没有余数,那么那个数就是这个数的倍数.)例:4的倍数有哪些?50以内8的倍数有哪些?7、倍数和倍的区别:倍可以运用于整数、小数、分数,而倍数只能运用于整数.例:15是3的5倍,可以说15是3的倍数.1.5是0.3的5倍,不能说1.5是0.3的倍数.8、如果两个数都是一个数的倍数,那么这两个数的和(差)也是这个数的倍数.例如:14是7的倍数,21是7的倍数.14和21的和也是7的倍数.64是8的倍数,32是8的倍数.64和32的差也是8的倍数.9、个位上是0、2、4、6、8的数都是2的倍数.自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数.例:按2的倍数的特征,自然数分成(奇数)和(偶数).最小的偶数是(0),最小的奇数是(1).所有的自然数,不是奇数就是偶数.(√)10、奇数偶数的性质关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数+奇数=偶数;偶数+奇数=奇数;任意多个偶数的和都是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)除2外所有的正偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半.(6)奇数×奇数=奇数;偶×数偶数=偶数;奇数×偶数=偶数;(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.(8)奇数×奇数=奇数质数×质数=合数11、①一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数).质数只有(2)个因数.②一个数,如果除了1和它本身还有别的因数,这样的数叫做合数.合数至少有(3)个因数.③1只有一个因数,所以1不是质数,也不是合数.12、按因数的个数,把非零的自然数分成1、质数和合数.最小的质数是(2),2是唯一的偶质数.最小的合数是(4),20以内的质数有2、3、5、7、9、11、13、17、19.20以内合数有:4、6、8、9、10、12、14、15、16、18、20.100以内质数表:3571113171923例:①10以内既是奇数,又是合数的数是(9).②在7、17、27、37、47、57、67、77、87、97这10个数中,质数有:7、17、37、47、67、97.合数有27、57、77、87.③判断:所有的质数都是奇数,所有的合数都是偶数.(×)两个质数的和是偶数.(×)两个质数相乘,积是合数.(√)例:最小的奇数是1;最小的偶数是0;最小的质数是2;最小的合数是4;8是一位数中最大的偶数;9是一位数中最大的奇数;1不是质数,也不是合数.连续的两个质数是2、3.13、把一个合数写成几个质数相乘的形式就是分解质因数.例如:把30分解质因数.方法一:树状图式分解法.(先把30分解成两个数(1除外)相乘的形式,30分解成2×15,2是质数,不需要再分解,15是合数,需再进行分解,15可以分解成3×5.直到所有因数都是质数为止.方法二:短除法.除数和商都不能是1,因为1不是质数.把除数和商写成相乘的形式.1、树状图式分解法.2、短除法.230315530=2×3×5第三单元:长方体和正方体熟记概念(2)长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形).①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等).有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形.①有12条棱;②12条棱全部相等.(3)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.302153530=2×3×5(4)正方体是长、宽、高都相等的特殊长方体.(如右图)体积:物体所占空间的大小.常见的体积单位:立方厘米(cm³)、立方分米(dm³)、立方米(m³).棱长为1cm的正方体,体积是1cm³;棱长为1dm的正方体,体积是1dm³;棱长为1m的正方体,体积是1m³.容积:箱子、油桶、仓库等所能容纳物体的体积.常见的容积单位:升(L)、毫升(mL).底面积:长方体或正方体地面的面积.1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形.2、在一个长方体中,相对的面完全相同,相对的棱长度相等.3、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.4、正方体是由6个完全相同的正方形围成的立体图形.5、正方体可以看成是长、宽、高都相等的长方体.它是一种特殊的长方体.6、长方体或正方体6个面的总面积,叫做它的表面积.长方体或正方体底面的面积叫做底面积.7、物体所占空间的大小叫做物体的体积.8、箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积.长方体或正方体容器容积的计算方法,跟体积的计算方法相同.但要从容器里面量长、宽、高.(所以,对于同一个物体,体积大于容积.)9、计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml.10、长方体和正方体都有:8个顶点,12条棱,6个面.11、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab S=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)没盖的正方体表面积=棱长×棱长×5长方体体积(容积)=长×宽×高V=abh正方体体积(容积)=棱长×棱长×棱长V=a3长方体(或正方体)体积=底面积×高V=sh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h 高=体积÷长÷宽h=V÷a÷b生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面.注意1:用刀分开物体时,每分一次增加两个面.(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍(正方体的棱长扩大a倍),则表面积扩大a2倍,体积扩大a3倍.(如长、宽、高各扩大3倍,表面积就会扩大到原来的9倍,体积就会扩大到原来的27倍).注意3:一个长方体和一个正方体的棱长总和相等,但体积不一定相等.注意4:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变.12、知道长方体的棱长和、表面积、体积求其它量的方法:(1)方程法:设要求的量为X,按公式列方程.(2)算术法:如:长方体的长=棱长总和÷4-宽-高正方体的棱长=棱长和÷12长方体的长=体积÷宽÷高正方体的棱长的平方=表面积÷613、单位换算(换算方法:大单位×进率=小单位小单位÷进率=大单位大到小除以进率,小到大乘进率)长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)面积单位:1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)体积、容积单位:1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米1立方厘米=1毫升1升=1000毫升质量单位:1吨=1000千克1千克=1000克人民币:1元=10角1角=10分1元=100分时间单位1时=60分1分=60秒1时=3600秒15、将石头或物体放入水箱中算物体体积的方法:(1)知道两次水的深度:石头的体积=长×宽×(放入后的水深-放入前的水深)(2)知道放入前或放入后的体积石头的体积=放入后的体积-放入前的体积第四单元:分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示.2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”.(也就是把什么平均分什么就是单位“1”.)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位.如4/5的分数单位是1/5.把4米长的绳子平均剪成5段,每段长是(4/5)米,【在分数的后面有单位时就用总数量÷总份数=总数量/总份数(带单位)】每段是全长(这根绳子)的(1/5).(这里是把全长或”这根绳子”看作单位“1”,平均分成几份就是几分之一)6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变(4)1等于任何分子和分母相同的分数7.分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变.8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数.一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数.反之则不可以.9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分.如:2/5和1/4可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数.一位小数,分母是10;两位小数,分母是100……如:0.3=3/100.03=3/1000.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.33/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大.分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较.13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数.21=0.541=0.2543=0.7551=0.252=0.453=0.64=0.881=0.12583=0.37585=0.62587=0.875201=0.05251=0.04.14、公因数只有1的两个数,叫做互质数.两个数互质的特殊判断方法:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;15、几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做它们的最大公因数.几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数.16、求最大公因数和最小公倍数方法(分解质因数法)12=2×2×316=2×2×2×2最大公因数是:2×2=4(相同乘)最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)①倍数关系:最大公因数就是较小数.最小公倍数是较大数②互质关系:最大公因数就是1最小公倍数是它们乘积③一般关系:较大数翻倍法注意1:“求一个数是(占)另一个数的几分之几”的问题的解题办法:用前面那个数除以后面一个数.注意2:最大公因数应用题的标志词:最多;最小公倍数应用题的标志词:至少第五单元:图形的变换1、物体旋转注意:(1)旋转中心;(2)要旋转的点;(3)旋转方向;(常见的有45°,90°,180°等).(描述物体旋转时,要说出旋转中心,旋转方向,和旋转度数.即:2.长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合.等边三角形绕中点旋转120度与原来重合.3.旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(5)旋转中心是唯一不动的点.3.生活中的旋转:电风扇、车轮、纸风车3.特殊旋转(1)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合.等边三角形绕中点旋转120度与原来重合.4.旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点.5.图形旋转的特点旋转前后图形形状和大小都不变.每组对应点与旋转中心的连线所成角的度数都等于旋转角度.各对应点之间的距离也相等.6.旋转图形的画法7、利用平移和旋转作图.第六单元:分数的加法和减法1、分数的加减,分母不变,分子相加减:同分母分数相加、减,分母不变,只把分子相加减.分母不同的分数,要先通分才能相加减.2、分数加法的简算(1)、加法(2)、减法(扩号前是减号,去括号或加括号后要变号)(三)分数加减混合运算1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算.2、整数加法的交换律、结合律对分数加法同样适用.重点:熟记概念(1)同分母分数加减法:①分母不变,分子相加、减;②能约分要约成最简分数.交换律:a+b=b+a 结合律:a+b+c=a+(b+c)a-b-c=a-(b+c)如果是减号要带符号交换a-b-c=a-c-ba-(b+c)=a-b-c a-(b-c)=a-b+c例如:21848138183==+=+;418281-381-83===(2)异分母分数加减法:①通分;②分母不变,分子相加、减;③能约分要约成最简分数.例如:18111819189101891810929129252195==+=+=⨯⨯+⨯⨯=+;181181189101891810929129252195====⨯⨯⨯⨯=————(3)分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.没有括号的按照从左至右的顺序进行计算;有括号的先算括号里面的,然后算括号外面的.异分母分数加减的混合运算,计算过程中,如果没有括号,几个分数可以一次性通分进行计算;也可以分步通分,分步计算.2、技巧方法(1))1(1111+=+n n n n —(n 为非零自然数)例如:613213121=⨯=—;110111101111101=⨯=—;10099199981541431321211⨯+⨯++⨯+⨯+⨯+⨯1001991(991981()5141(4131()3121()211(-+-++-+-+-+-=1001=1009910011=-=(2))0(11互质,且都不为和b a aba b b a +=+例如:211073377131=⨯+=+(3)分数的简便运算加法结合律:767165++加法交换律:533152+-连减的性质:136137412--=)(767165++=315352-+=)(136137412+-=165+=311-=1412-=51=2=11(课上补减法去括号题型)(4)解方程x+37=34x-512=38109-x=51第六单元:统计技巧方法例:在方格里画出先向下平移3格,再向右平移4格后的图形.画出ΔAOB绕O点顺时针旋转90度后的图形.画出绕O点顺时针旋转90°后的图形.打电话:规律——同时,人人不闲着,每人都在传.(技巧:已知人数依次(1)逐个法:所需时间最多.(2)分组法:相对节约时间.第八单元:数学广角1、找次品的最优方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差1.数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次244~729个物体,保证能找出次品需要测的次数是6次。