数学人教版七年级下册一元一次不等式组典型例题
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
七下数学人教版一元一次不等式练习题及答案
数学:9.3一元一次不等式组同步练习C( 人教新课标七年级下)一、选择题1,关于x 的不等式2x -a ≤-1的解集如图2所示,则aA.0B.-3C.-2D.-12,已知a=32,23x x b ++=,且a>2>b ,那么x 的取值范围是( ) A .x>1 B .x<4 C .1<x<4 D .x<13,若三角形三条边长分别是3,1-2a ,8,则a 的取值范围是( )A .a>-5B .-5<a<-2C .-5≤a≤-2D .a>-2或a<-54,如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( ) A .m>8 B .m≥8 C .m<8 D .m≤8 5,一种灭虫药粉30kg ,含药率是15100,现在要用含药率较高的同种灭虫药粉50kg 和它混合,使混合后含药率大于30%而小于35%,则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%6,韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B 队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A 队有出租车( )A .11辆B .10辆C .9辆D .8辆二、填空题7,代数式1-k 的值大于-1且不大于3,则k 的取值范围是________.8,已知关于x 的不等式组2123x a x b -<⎧⎨->⎩的解集是-1<x<1,那么(a+1)(b-2)的值等于______. 9,不等式组23182x x x>-⎧⎨-≤-⎩的最小整数解是________.10,把一篮苹果分组几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生最多得3个,求学生人数和苹果数?设有x 个学生,依题意可列不等式组为________.11,若不等式组1,21x m x m <+⎧⎨>-⎩无解,则m 的取值范围是______.12,若关于x 的不等式组211,30x x x k -⎧>-⎪⎨⎪-<⎩的解集为x<2,则k 的取值范围是_______.三、解答题13,(20XX 年自贡市)解不等式组⎪⎩⎪⎨⎧+≥+<+4134)2(3x x x x14,要使关于x的方程5x-2m=3x-6m+1的解在-3与4之间,m必须在哪个范围内取值?15,在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,•以使后来到站的旅客能随到随检,至少要同时开放几个检票口?16,某校举行“建校50周年”文娱汇演,评出一等奖5个,二等奖10个,•三等奖15个,学1件:(2)学校要求一等奖的奖品单价是二等奖品单价的5倍,•二等奖奖品单价是三等奖奖品单价的4倍,在总费用不超过1200元的前提下,有几种购买方案?花费最多的一种方案需要多少钱?17,为了迎接20XX年世界杯足球赛,某足协举办了一次足球联赛,•其记分规划及奖励办法如下表所示:A 队当比赛进行12场时,积分共19分(1)通过计算,A 队胜,平、负各几场?(2)若每赛一场,每名参赛队员可得出场费500元.若A •队一名队员参加了这次比赛,在(1)条件下,该名队员在A 队胜几场时所获奖金最多,奖金是多少?数学:9.3一元一次不等式组同步练习( 人教新课标七年级下)一、1,B.解:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3. 2,C.解:由已知a>2>b 即为32222223x a x b +⎧>⎪>⎧⎪⎨⎨+<⎩⎪<⎪⎩建立不等式组再求解. 3,B.解:由三角形边长关系可得5<1-2a<11,解得-5<a<-2.4,B.解:因为不等式组无解,即x<8与x>m 无公共解集,利用数轴可知m≥8.5,C.解:依题意可得不等式15503030353947100,1005030100100100x x +⨯<<<<+解得. 6,B.解:设A 队有出租车x 辆,B 队有(x+3)辆,依题意可得11155561656934(3)56115(3)56185x x x x x x x x ⎧<⎪<⎧⎪⎪⎪>>⎪⎪⎨⎨+<⎪⎪<⎪⎪+>⎩⎪>⎪⎩化简得 解得913<x<11, ∵x 为整数,∴x=10. 二、7,-2≤k<2.解:由已知可得1113k k ->-⎧⎨-≤⎩ 解不等式组得-2≤k<2.8,-8.解:解不等式组2123x a x b -<⎧⎨->⎩可得解集为2b+3<x<12a +,因为不等式组的解集为-1<x<1,所以2b+3=-1,12a +=1,解得a=1,b=-2代入(a+1)(b-2)=2×(-4)=-8. 9,-1.解:先求出不等式组解集为-32<x≤3,其中整数解为-1,0,1,2,3,故最小整数解-1.10,436(1)436(1)3x x x x +≥-⎧⎨+≤-+⎩点拨:设有x 名学生,苹果数为(4x+3)个,再根据题目中包含的最后一个学生最多得3个,即不等关系为0≤最后一个学生所得苹果≤3,所以不等式组为436(1)0436(1)3x x x x +--≥⎧⎨+--≤⎩. 11,m≥2.解:由不等式组x 无解可知2m-1≥m+1,解得m≥2.12,k≥2.解:解不等式①,得x>2.解不等式②,得x<k.因为不等式组的解集为x<2,所以k≥2.三、13,答案:解不等式(1),得463+<+x x1-<x解不等式(2),得334+≥x x3≥x∴原不等式无解14,解方程5x-2m=3x-6m+1得x=412m -+.要使方程的解在-3与4之间,只需-3<412m -+<4.解得-74<m<74. 15,设至少同时开放n 个检票口,且每分钟旅客进站x 人,检票口检票y 人.依题意,得3030,10210,55.a x y a x y a x ny +=⎧⎪+=⨯⎨⎪+≤⎩第一、二两个式子相减,得y=2x .把y=2x 代入第一个式得a=30x .把y=2x ,a=30x 代入③得n≥3.5.∵n 只能取整数,∴n=4,5,…答:至少要同时开放4个检票口.16,解:(1)根据题意,最少花费为:6×5+5×10+4×15=140元.(2)设三等奖的奖品单价为x 元,根据题意得52010451200201204x x x x x ⨯+⨯+≤⎧⎪≤⎨⎪≥⎩解得4≤x≤6,因此有3种方案分别是:方案1:三等奖奖品单价6元,二等奖奖品单价24元,一等奖奖品单价120元.方案2:三等奖奖品单价5元,二等奖奖品单价20元,一等奖奖品单价100元.而表格中无此奖品故这种方案不存在,舍去.方案3:三等奖奖品单价4元,二等奖奖品单价16元,一等奖奖品单价为80元.方案1花费:120×5+24×10+6×15=930元,方案2花费:80×5+16×10+4×15=620元,其中花费最多的一种方案为一等奖奖品单价120元,二等奖奖品单价24元,•三等奖奖品单价6元,共花费奖金930元.点拨:(1)学校买奖品花钱最少,则奖品依次为相册,笔记本,•钢笔等这些单价偏低的商品分别作为一,二,三等奖品.(2)根据题目中包含的不等关系1200⎧⎪⎨⎪⎩费用不超过一等奖奖品单价不大于120三等奖奖品单价不小于4,建立不等式组,再由奖品单价为整数,求出符合题意的整数解.确定购买方案.17,解:(1)设A 队胜x 场,平y 场,负z 场,则12319x y z x y ++=⎧⎨+=⎩用x 表示y ,z 解得:19327y x z x =-⎧⎨=-⎩∵x≥0,y≥0,z≥0且x ,y ,z 均为正整数,∴ 01930270x x x ≥⎧⎪-≥⎨⎪-≥⎩解之得312≤x≤613,∴x=4,5,6,即A 队胜,平,负有3种情况,分别是A 队胜4场平7场负1场,A 队胜5场平4场负3场,A 队胜6场平1场负5场,(2)在(1)条件下,A 队胜4场平7场负1场奖金为:(1500+500)×4+(700+500)×4+500×3=16300元,A 队胜6场平1场负5场奖金为(1500+500)×6+(700+500)×1+500×5=15700元,故A 队胜4场时,该名队员所获奖金最多.点拨:在由已知设胜x 场,平y 场,负z 场,首先根据比赛总场次12场,得分19分,•建立方程组,用x 表示y ,z 最后关键在于分析到题目中隐含的x≥0,y≥0,z≥0且x ,y ,z 为整数从而建立不等式组求到x 的值.(2)把3种情况下的奖金算出,再比较大小.备用题:1,C.1,解:设有x 名学生获奖,则钢笔支数为(3x+8)支,依题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩解得5<x≤612,∵x 为正整数.∴x=6,把x=6代入3x+8=26.答:该校有6名学生获奖,买了26支钢笔.点拨:设出获奖人数,则可表示奖励的钢笔支数,再根据题目中第二个已知条件,每人送5支,最后一人所得支数不足3支,隐含了0≤最后一人所得钢笔支数<3•这样的不等式关系列不等式组,求出x 的取值范围5<x≤612,又x 表示人数应该是正整数,•所以x=6,3x+6=26,因此一共有6名学生获奖,买了26支钢笔发奖品.3,解:设生产甲型玩具x 个,则生产乙型玩具(100-x )个,依题意得:73(100)48025(100)370x x x x +-≤⎧⎨+-≤⎩解之得:4313≤x≤45,∵x 为正整数,∴x=44或45,100-x=56或55,故能实现这个计划,且有2种方案,第1种方案:生产甲型玩具44个,生产乙型玩具56个.第2种方案:生产甲型玩具45个,生产乙型玩具55个.。
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)
七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式组(计算题共50题)1.(2022秋•越秀区校级期末)解不等式组:5−1>4+2≥2−4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5−1>4+2①≥2−4②,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(20231≤3+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.1−≤3+2,由3K23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(20233−1−2<K56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥−12,解不等式r23−2<K56得:x<3,则不等式组的解集为−12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(20231≤−+1+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤−+1①+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2+5≤3(+2)−1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2+5≤3(+2)①−1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2+1≤4−−1<32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2+1≤4−s−1<32②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023≥+1≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3K42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023−3)≤−1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−3)≤s−1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−1)≤4−1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:≥−12,不等式②得:x<4,∴不等式组的解集为:−12≤<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(20233≤13−2<−1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①−2<−1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023+2)≥2+51<K22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(20232)>8+9①2>r23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023−7<3(+1)−1≥7−32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−7<3(+1)①−1≥7−32t,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(−2)≤3−1−2r13>+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(−2)≤3−①1−2r13>+1②,解①得:x≤73,解②得x<−15.故不等式组的解集是:x<−15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023−1)<72≥.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.−1)<7①+2≥t,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4−2≤3(+1)①1−K12<4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(20231<−+21+23.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式K12<1+23,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(20232≥4+1K32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4+1①K32+1②解不等式①得:x≥﹣1,解不等式②得:x<3.∴不等式组的解集为﹣1≤x<3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(20233)<41≤2r13.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.3)<4s−1≤2r13②,由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(20231≤7−32K12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7−32①K12+1②解不等式①,得:x≤4,解不等式②,得:x>﹣1,∴不等式组的解集是﹣1<x≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.1.(2023•河北区一模)解不等式组2>−4①+3≤5②.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2>−4①+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组+5≥4,①4≥7−6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:+5≥4①4≥7−6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023<7①2≥+1②请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3<92>−3+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023+3>−K13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由2−K13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3−2<42(−1)≤3+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3−2<4①2(−1)≤3+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(20232>3(−1)≤7−,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(−1)①≤7−t,解不等式①得:x>−12,解不等式②得:x≤5,∴不等式组的解集为:−12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•鼓楼区校级模拟)解不等式组,并把它的解集表示在数轴上:−1)≤3(1+p①−K12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023<6K12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①K12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023>3(−1).【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8r29>,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3−1≥+1+4<4−2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(20234≥2−1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2−1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023−3<4s14≤r12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.−3<4①14≤r12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022−1<3(−1)K22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由23−K22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(20231)<3−2①1≤r22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3−2①−1≤r22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(20233)≤−4在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤−4①t ,由①得:x ≤2,由②得:x >﹣2,∴不等式组的解集为﹣2<x ≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(−1)>3−22−3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(−1)>3−2①2−3≤5②,解①得x >2,解②得x ≤4.则不等式组的解集是:2<x ≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3−2<4①2(−1)≤3+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022≤3(+1)≥−1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x﹣1≤3(x+1),得:x≤2;由1+23≥−1,得:x≤4;∴不等式组的解集为:x≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4−7<5(−1)2≤18−3+7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4−7<5(−1)①2≤18−3+7②,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+>7−4<4+2,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<4+2,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023−1)≥1−1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.−1)≥1①−1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:−4<2+3−2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3−2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−2)>4≥3r26−1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2K13≥3r26−1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023−1)≥1−5r12<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.−1)≥1①−5r12<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022+22r15,并直接写出这个不等式组的所有负整数解.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.+2①2r15②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(+1)≤7+10−5<K83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(+1)≤7+10①−5<K83②,解不等式①得:x≥﹣2,解不等式②得:x<72,所以不等式组的解集为:−2≤<72,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023−5r12≤1<3(+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.−5r12≤1①<3(+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(−1)<5+1(−1)≥2−4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(−1)<5+1①(−1)≥2−4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(+1)≤7+102−3<K12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(+1)≤7+10①2−3<K12②,解不等式①得,x≥﹣2,解不等式②得,x<53,所以不等式组的解集为﹣2≤x<53,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
人教版七年级下册第九章 不等式与不等式组----一元一次不等式的应用练习(PDF版)
一元一次不等式应用1.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?2.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价﹣进价)3.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.(1)求甲、乙型号手机每部进价多少元?(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.4.某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?5.某电器销售商到厂家选购A、B两种型号的液晶电视机,用30000元可购进A型电视10台,B型电视机15台;用30000元可购进A型电视机8台,B型电视机18台.(1)求A、B两种型号的液晶电视机每台分别多少元?(2)若该电器销售商销售一台A型液晶电视可获利800元,销售一台B型液晶电视可获利500元,该电器销售商准备用不超过40000元购进A、B两种型号液晶电视机共30台,且这两种液晶电视机全部售出后总获利不低于20400元,问:有几种购买方案?在这几种购买方案中,哪种方案获利最多?6.为响应习总书记“扶贫先扶志,扶贫必扶智”的号召,我州北部某市向南部某贫困县中小学捐赠一批书籍和实验器材共360套,其中书籍比实验器材多120套.(1)求书籍和实验器材各有多少套?(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批书籍和实验器材运往该县.已知每辆甲种货车最多可装书籍40套和实验器材10套,每辆乙种货车最多可装书籍30套和实验器材20套.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下,如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?7.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型车不少于2辆,购车费不少于130万元,则有哪几种购车方案?(3)试说明在(2)中哪种方案费用最低?最低费用是多少元?8.某电器超市销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售时段第一周第二周销售数量(台)A型35B型46销售收入(元)12001900(1)求A、B两种型号的电风扇的销售单价各是多少元?(2)若超市准备用不多于7400元的金额再采购这两种型号的电风扇共50台,在全部售完台电风扇情况下,使利润不少于1835元,请你帮助超市设计有哪几种采购方案?9.万美服装店准备购进一批两种不同型号的衣服,已知若购进A型号的衣服9件,B型号的衣服10件共需1810元;若购进A型号的衣服12件,B型号的衣服8件共需1880元.已知销售一件A型号的衣服可获利18元,销售一件B型号的衣服可获利30元.(1)求A、B型号衣服的进价各是多少元;(2)若已知购进的A型号的衣服比B型号衣服的2倍还多4件,且购进的A型号的衣服不多于28件,则该服装店要想获得的利润不少于699元,在这次进货时可有几种进货方案?10.有大小两种货车,已知1辆大货车与3辆小货车一次可以运货14吨,2辆大货车与5辆小货车一次可以运货25吨.(1)1辆大货车与1辆小货车一次可以运货各多少吨?(2)1辆大货车一次费用为300元,1辆小货车一次费用为200元,要求两种货车共用10辆,两次完成80吨的运货任务,且总费用不超过5400元,有哪几种用车方案?请指出费用最低的一种方案,并求出相应的费用.11.学校准备举行社团活动,需要向商家购买A,B两种型号的文化衫50件,已知一件A 型号文化衫的售价比一件B型号文化衫的售价贵9元,用200元恰好可以买到2件A型号文化衫和5件B型号文化杉.(1)求A、B两种型号的文化衫每件的价格分别为多少元?(2)如果用于购买A、B两种型号文化杉的金额不少于1500元但不超过1530元,请你求出所有的购买方案?(3)试问在(2)的条件下,学校采用哪种购买方案花钱最少?最少是多少?12.某家电专卖店销售每台进价分别200元、160元的A,B两种型号的电风扇,下表是近两周的销售情况销售时段销售数量销售收入A种型号B种型号第一周3台4台1550元第二周4台8台2600元(进价、售价均保持不变,利销=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?13.某商场准备进一批两种不同型号的衣服,若购进A种型号衣服5件,B种型号衣服2件,则共需720元;若购进A种型号衣服6件,B种型号衣服1件,共需710元(1)求A、B型号衣服进价各是多少元?(2)已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于522元,且购进A型号衣服不多于20件,若已知购进A型号衣服比B型号衣服的2倍少4件,则商店在这次进货中可有几种方案并简述有哪几种购货方案.14.2018年暑期临近,学生们也可轻松逛逛商场,选择自己心仪的衣服.安岳上府街一服装店老板打算不错失这一良机,计划购进甲、乙两种T恤.已知购进甲T恤2件和乙T 恤3件共需310元;购进甲T恤1件和乙T恤2件共需190元(1)求甲、乙两种T恤每件的进价分别是多少元?(2)为满足市场需求,服装店需购进甲、乙两种T恤共100件,要求购买两种T恤的总费用不超过6540元,并且购买甲T恤的数量应小于购买甲乙两种T恤总数量的,请你通过计算,确定服装店购买甲乙两种T恤的购买方案.15.为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?16.某中学拟组织七年级师生去参观苏州博物馆.下面是张老师和小芳、小明同学有关租车问题的对话:张老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了5辆60座和3辆45座的客车到苏州博物馆,一天的租金共计6750元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车则可少租1辆,且有一辆车上的人不足一半.”根据以上对话,解答下列问题:(1)客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)求出满足条件的a的值.(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有哪几种租车方案?17.实验中学为了奖励在学校《诗词大会》上获奖的同学,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费650元,求甲、乙两种奖品各购买了多少件.(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求学校有几种不同的购买方案.18.为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金220万元,改造两所A类学校和一所B类学校共需资金200万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过360万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?19.为实现区域教育均衡发展,我县对薄弱学校全面进行办学条件的改善,计划为某学校购进一批电脑和电子白板,经过市场考察得知,购买2台电脑和3台电子白板需要5.5万元,购买4台电脑和5台电子白板需要9.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据该学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购进方案?20.某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案,它们分别是什么?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少,此种方案是什么?(提示:可设购进B款汽车x辆)21.攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?22.某校准备为七年级同学庆祝最后一个“儿童节”,至少需要甲种鲜花266朵,乙种鲜花169朵,制成A、B两种造型共16束.要求A造型用甲种鲜花18朵,乙种鲜花10朵;B 造型用甲种鲜花16朵,乙种鲜花11朵,送某花店制作.(1)花店共有几种制作方案?分别有哪几种?(2)若A种造型每束鲜花可获得利润12元,B种造型每束鲜花可获得利润10元.如果你是店主,你选择哪种制作方案?说明理由.一元一次不等式的应用1.解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,,解得,,答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,,解得,20≤m≤22,∵m为整数,∴m=20,21,22,∴共有三种购买方案,方案一:购买A型扫地车20辆,B型扫地车20辆;方案二:购买A型扫地车21辆,B型扫地车19辆;方案三:购买A型扫地车22辆,B型扫地车18辆;∵y=25m+20(40﹣m)=5m+800,∴当m=20时,y取得最小值,此时y=900,答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.2.解:(1)设A型号家用净水器每台进价为x元,B型号家用净水器每台进价为y元,根据题意知,解得:,答:A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)设商家购进A型号家用净水器m台,则购进B型号家用净水器(20﹣m)台,根据题意,得:,解得:12≤m≤15,因为m为整数,所以m=12或13或14或15,则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.3.解:(1)设甲型号手机的每部进价为x元,乙型号手机的每部进价为y元,根据题意,得:,解得:,答:甲型号手机的每部进价为1000元,乙型号手机的每部进价为800元;(2)设购进甲型号手机a部,则购进乙型号手机(20﹣a)部,根据题意,得:,解得:8≤a≤10,∵a为整数,∴a=8或9或10,则进货方案有如下三种:方案一:购进甲型号手机8部,购进乙型号手机12部;方案二:购进甲型号手机9部,购进乙型号手机11部;方案三:购进甲型号手机10部,购进乙型号手机10部.(3)设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.4.解:(1)设购进甲乙两种纪念品每件各需要x元和y元,依题意得:,解得答:购进甲乙两种纪念品每件各需80元和40元.(2)设购进甲种纪念品m件,则乙种纪念品(100﹣m)件,依题意得:,解得50≤m≤60,∵m只能取正整数,∴m=50,51,52,53,54,55,56,57,58,59,60,所以共有11种进货方案;(3)因为甲种纪念品获利最高,所以甲种纪念品的数量越多总利润越高,因此选择购进甲种纪念品60件,乙种纪念品40件利润最高,总利润=60×30+40×12=2280(元).答:购进甲种纪念品60件,购进乙种纪念品40件利润最大,最大利润为2280元.5.解:(1)设A型液晶电视机每台x元,B型液晶电视机每台y元,根据题意得:,解得:.答:A型液晶电视机每台1500元,B型液晶电视机每台1000元.(2)设购进A型液晶电视机a台,则购进B型液晶电视机(30﹣a)台,根据题意得:,解得:18≤a≤20.∵a为整数,∴a=18、19、20,∴30﹣a=12、11、10,∴有三种购买方案,方案一:购进A型液晶电视机18台,B型液晶电视机12台;方案二:购进A型液晶电视机19台,B型液晶电视机11台;方案三:购进A型液晶电视机20台,B型液晶电视机10台.方案一获利:18×800+12×500=20400(元);方案二获利:19×800+11×500=20700(元);方案三获利:20×800+10×500=21000(元).∵20400<20700<21000,∴方案三获利最多.6.解:(1)设书籍和实验器材分别为x、y套.根据题意得:解得:故书籍和实验器材分别为240套,120套.(2)设安排甲型号的货车a辆,则安排乙型号的货车(8﹣a)辆.根据题意得:解得:0≤a≤4又∵a取整数,∴a=1,2,3,48﹣a=7,6,5,4,∴共有4种方案,如下:方案一:甲1辆,乙7辆方案二:甲2辆,乙6辆方案三:甲3辆,乙5辆方案四:甲4辆,乙4辆(3)方案一:1000+7×900=7300(元)方案二所需运费:2×1000+6×900=7400(元)方案三所需运费:3×1000+5×900=7500(元)方案四所需运费:4×1000+4×900=7600(元)故运输部门应选择方案一,他的运费最少,最少运费是7300元.7.解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得:,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3,∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;(3)方案一的费用为:2×18+4×26=140(万元)、方案二的费用为:3×18+3×26=132(万元),所以方案二的费用最低,最低费用为132万元.8.解:(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则,解得:33.5≤a≤35,∵a为整数,∴a=34或35,方案一:采购A型34台B型16台;方案二:采购A型35台B型15台.9.解:(1)设A型号衣服进价是x元/件,B型号衣服进价是y元/件,由已知得:,解得:.答:A型号衣服进价是90元/件,B型号衣服进价是100元/件.(2)设购进B型号衣服m件,则购进A型号衣服(2m+4)件,由已知得:,解得:9≤m≤12,∵m为正整数,∴m=10、11、12,∴有三种购货方案:方案一:购进B型号衣服10件、A型号衣服24件;方案二:购进B 型号衣服11件、A型号衣服26件;方案三:购进B型号衣服12件、购进A型号衣服28件10.解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨和3吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵两次完成80吨的运货任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大货车用5台、小货车用5台时,总费用最低,最低费用为5000元.11.解:(1)设:A型文化衫每件x元,B型文化衫每件(x﹣9)元.∴2x+5(x﹣9)=200.解得:x=35 x﹣9=26答:购买一件A型文化衫和一套B型文化衫各需35元和26元.(2)设购买A型文化衫a件,则购买B型(50﹣a)件依题意得:1500≤35a+26(50﹣a)≤1530.解得:≤a≤25.∵a为整数,所以a=23、24、25所以共有3种方案.方案一:购买A型文化衫23件,购买B型文化衫27件.方案二:购买A型文化衫24件,购买B型文化衫26件.方案三:购买A型文化衫25件,购买B型文化衫25件.(3)方案一花费2070元,方案二花费2160元,方案三花费2250元.所以,方案一:即:学校购买A型文化衫23件,购买B型文化衫27件花钱最少,最少花费2070元.12.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,,解得:,答:A、B两种型号电风扇的销售单价分别为250元、200元;(2)设购买A种型号的电风扇m台,则B种型号的电风扇(20﹣m)台,则解得,8≤m≤9,故A、B两种型号的电风扇的采购方案有二种,方案一:购买A种型号的电风扇8台,则B种型号的电风扇12台;方案二:购买A种型号的电风扇9台,则B种型号的电风扇11台.(3)方案一获得的利润为:8×(250﹣200)+12×(200﹣160)=880(元),方案二:获得的利润为:9×(250﹣200)+11×(200﹣160)=890(元).所以,购买A种型号的电风扇9台,则B种型号的电风扇11台获得利润最大,最大利润为890元.13.解:(1)设A种型号的衣服每件x元,B种型号的衣服y元.由题意列方程组,得解这个方程组,得答:A种型号的衣服每件100元,B种型号的衣服110元;(2)设B型号衣服购进m件,则A型号衣服购进(2m﹣4)件,由题意列不等式组,得解这个不等式组,得9≤m≤12∵m为正整数,∴m可取得整数值是9,10,11,12,当m=9时,2m﹣4=14;当m=10时,2m﹣4=16;当m=11时,2m﹣4=18;当m=12时,2m﹣4=20;∴2m﹣4=14、16、18、20.答:有四种进货方案:(1)B型号衣服购买9件,A型号衣服购进14件;(2)B型号衣服购买10件,A型号衣服购进16件;(3)B型号衣服购买11件,A型号衣服购进18件.(4)B型号衣服购买12件,A型号衣服购进20件.14.解:(1)设甲种T恤每件进价为x元,乙种T恤每件进价为y元.由题意得解得(答:甲种T恤每件进价为50元,乙种T恤每件进价为70元.(2)设商场购进甲种T恤a件,则购进乙种T恤为(100﹣a)件.根据题意得:(6分)解得23≤a<25(7分)∵a为整数,∴a为23或24∴当a=23时,100﹣a=77;当a=24时,100﹣a=76(8分)∴有两种购买方案,方案一:购买甲种T恤23件,购买乙种T恤77件,方案二:购买甲种T恤24件,购买乙种T恤76件.15.解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,,解得,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元.(2)设新建m个地上停车位,则新建(50﹣m)个地下停车位,由题意可知,0.1m+0.4(50﹣m)≤11且m≤33,解得30≤m≤33,因为m为整数,所以m=30或m=31或m=32或m=33,对应的50﹣m=20或50﹣m=19或50﹣m=18或50﹣m=17,答:有4种建造方式;16.解:(1)设60座和45座的客车每辆每天的租金分别是x元、y元,由题意得解得答:60座和45座的客车每辆每天的租金分别是900元和750元(2)由已知,七年级人数为(45a+15)人由题意解得因为a为整数∴a=8(3)由(2)七年级共45×8+15=375人设60座和45座车分别为m辆n辆则60m+45n=3754m+3n=25则有m=解得n∴n为可取0﹣8的整数∵m为整数∴n=3时,m=4n=7时,m=1∴租车方案有两种:方案一:60座4辆,45座3辆方案二:60座1辆,45座7辆17.解:(1)设甲购买了x件乙购买了y件解得答:甲购买了5件乙购买了15件(2)设购买甲奖品为a件.则乙奖品为(20﹣a)件,根据题意可得:解这个不等式组为≤a≤8∵a为整数∴a=7.8有两种购买方案①购买甲奖品7件,乙奖品13件②购买甲奖品8件,乙奖品12件18.解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a万元和b万元.依题意得:解得:答:改造一所A类学校和一所B类学校所需的改造资金分别为60万元和80万元;(2)设今年改造A类学校x所,则改造B类学校为(6﹣x)所,依题意得:解得:2≤x≤4∵x取整数∴x=2,3,4.方案一:改造A类学校2所,改造B类学校4所.方案二:改造A类学校3所,改造B类学校3所.方案三:改造A类学校4所,改造B类学校2所.19.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:解之得:答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30﹣a)台,则∴15≤a≤17,∵a取整数,即a=15,16,17.∴共有三种购进方案:方案一:购进电脑15台,电子白板15台;方案二:购进电脑16台,电子白板14台;方案三:购进电脑17台,电子白板13台.20.解:(1)设购进A款汽车每辆x辆,则购进B款汽车(20﹣x)辆,依题意得:129≤7.5x+6(20﹣x)≤135.解得:6≤x≤10,∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(2)设总获利为W万元,购进B款汽车x辆,则:W=(9﹣7.5)(20﹣x)+(8﹣6﹣a)(15﹣x)=(0.5﹣a)x+30.当a=0.5时,(1)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车14辆时对公司更有利.21.解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.22.解:(1)设制造A种造型x束,则制造B种造型(16﹣x)束,,解得,5≤x≤7,∵x为整数,∴x=5,6,7,∴有三种制作方案,方案一:制造A种造型5束,则制造B种造型11束;方案二:制造A种造型6束,则制造B种造型10束;方案三:制造A种造型7束,则制造B种造型9束;(2)如果我是店主,我选择方案三:制造A种造型7束,则制造B种造型9束这种制作方案,理由:设利润为w元,w=12x+10(16﹣x)=2x+160,∵5≤x≤7,x为整数,∴当x=7时,w取得最大值,即如果我是店主,我选择方案三:制造A种造型7束,则制造B种造型9束这种制作方案.。
七年级数学下册《一元一次不等式组》练习题及答案(人教版)
七年级数学下册《一元一次不等式组》练习题及答案(人教版)一、单选题 1.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]5.75,55,4π==-=-如果132x +⎡⎤=⎢⎥⎣⎦则x 的取值范围是( )A .57x ≤<B .57x <<C .57x <≤D .57x ≤≤2.八年级某班部分学生去植树,若每人平均植树4棵,还剩9棵,若每人平均植树5棵,则最后一名学生有但棵数不足2棵.若设同学人数x 人,则下列列式正确的是( )A .49504952x x x x +->⎧⎨+-<⎩B .49504952x x x x +-≥⎧⎨+-<⎩C .495(1)0495(1)2x x x x +-->⎧⎨+--<⎩D .()()4951049512x x x x ⎧+--≥⎪⎨+--<⎪⎩3.若关于x 的不等式组()1022113x a x x ⎧-->⎪⎪⎨-⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之积是( ) A .0 B .1 C .2 D .34.不等式组21223x x x ->+⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A . B . C .D .5.不等式20-1x x -⎧⎨≤⎩>的解集在数轴上表示正确的是( ) A .B .C .D . 6.如果点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,那么符合条件的点有( )个A .2B .3C .4D .57.不等式组32531x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C . D.8.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否15≥”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )A .3x ≥B .37x ≤<C .37x <≤D .7x ≤ 9.不等式组2{3x x >≤的解集在数轴上表示正确的是( ) A . B .43 C .3 D .2226-55(,) 10.定义一种新运算:2ab ab a =+则不等式组(2)21 52x x -<⎧⎪⎨≤⎪⎩的负整数解有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.某种药品的说明书上,贴有如下的标签,一次服用这种药品的剂量范围是________~________mg .12.若a<b,则x a x b>⎧⎨≤⎩的解集是______. 13.不等式组112260x x ⎧≥-⎪⎨⎪+>⎩的解集为________.14.不等式组360x x m->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______.15.不等式组112237xx⎧-<⎪⎨⎪-≤-⎩的解集是______.三、解答题16.解不等式组36021 xx+≥⎧⎨-≤-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.17.(1)计算:3216+1927-⨯--(2)解不等式组:1>043xx x+⎧⎨+>⎩并把不等式组的整数解写出来.18.已知方程组713x y ax y a+=-+⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)当a为何整数时,不等式2ax+x>2a+1的解集为x<1?19.(1)解方程:241111xx x-+=-+(2)解不等式组:273(1)15(4)2x xx x--⎧⎪⎨-+≥⎪⎩<①②20.已知关于x的不等式12x≤8-32x+2a的解集表示在数轴上,如图所示(1)求a的值;(2)是否存在整数k,使得方程组26x y kx y a+=⎧⎨-=+⎩的解满足x>1,y≤1,若存在,求出k的值;若不存在,请说明理由.。
人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (35)
人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)开学初,李芳和王平去文具店购买学习用品,李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔笔记本共36件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不多于钢笔数的2倍,共有多少种购买方案?请你一一写出.【答案】(1)每支钢笔9元,每本笔记本3元;(2)共有4种购买方案,见解析.【解析】【分析】(1)设每支钢笔x元,每本笔记本y元,根据“李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买钢笔m支,则购买笔记本(36−m)本,根据奖品的总价不超过200元及笔记本数不多于钢笔数的2倍,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【详解】解:(1)设每支钢笔x元,每本笔记本y元,依题意,得:318 2430x yx y+=⎧⎨+=⎩,解得:93x y =⎧⎨=⎩, 答:每支钢笔9元,每本笔记本3元;(2)设购买钢笔m 支,则购买笔记本(36−m )本,依题意,得:()9336200362m m m m ⎧+-≤⎨-≤⎩, 解得:112153m ≤≤. ∵m 为整数,∴m =12,13,14,15.∴共有4种购买方案,方案1:购买12支钢笔,24本笔记本;方案2:购买13支钢笔,23本笔记本;方案3:购买14支钢笔,22本笔记本;方案4:购买15支钢笔,21本笔记本.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.42.(1)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. (2)解不等式组:()33121318x x x x -⎧+>+⎪⎨⎪--≤-⎩.【答案】(1)6024x y =⎧⎨=-⎩(2)21x【解析】【分析】 (1)方程组整理后,利用加减消元法求出解即可;(2)根据不等式的性质求出两个不等式的解集,根据找不等式组解集的规律解答即可.【详解】解:(1)方程组整理得:34842348x y x y +=⎧⎨+=⎩①②, ②×3−①×2得:y =−24,把y =−24代入②得:x =60,则方程组的解为6024x y =⎧⎨=-⎩; (2)解:()33121318x x x x -⎧+>+⎪⎨⎪--≤-⎩①②, 由①得:x <1,由②得:x ≥−2,∴不等式组的解集是−2≤x <1.【点睛】此题考查了解二元一次方程组以及解一元一次不等式组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法;解不等式组的关键是根据不等式的解集求出各不等式的解集.43.解不等式组513(1)1242x x x x +>-⎧⎪⎨-≥-⎪⎩,并求出它的整数解. 【答案】不等式组的解集是723x -<≤,它的整数解为1-,0,1,2. 【解析】【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:由①,得 5133x x +>-5331x x ->--24x >-2x >-由②,得148x x -≥-481x x -≥-+,37x -≥-73x ≤ ∴此不等式组的解集是723x -<≤∴它的整数解为1-,0,1,2.【点睛】此题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.44.(1)解不等式组:203(51)48x x x -≤⎧⎨+>-⎩(2)分解因式:22m m -(3)解分式方程:6122x x x +=-+ 【答案】(1)x ⩾2;(2)m(m −2);(3)x=1.【解析】【分析】(1)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.(2)直接把公因式m 提出来即可.(3)去分母后得出整式方程,求出方程的解,再进行检验即可.【详解】(1)203(51)48x x x -≤⎧⎨+>-⎩①② ∵解不等式①得:x ⩾2,解不等式②得:x>−1,∴不等式组的解集为x ⩾2.(2)m 2−2m=m(m −2).(3)方程两边都乘以(x+2)(x-2)得:x (x+2)+6(x-2)=(x+2)(x-2), 解这个方程得:x=1,检验:∵把x=1代入(x+2)(x-2)≠0,∴x=1是原方程的解,即原方程的解为:x=1.故答案为:x=1.【点睛】此题考查解分式方程,因式分解-提公因式法,解一元一次不等式组,解题关键在于掌握运算法则.45.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[][]5.754π=-=-,.(1)如果[]2a =-,求a 的取值范围;(2)如果132x +⎡⎤=⎢⎥⎣⎦,求满足条件的所有整数x . 【答案】(1)21a -≤<-;(2)所有整数x 的值为5,6.【解析】【分析】(1)根据[a]=-2,得出-2≤a <-1,求出a 的解即可;(2)根据题意得出1342x +≤<,求出x 的取值范围,从而得出满足条件的所有正整数的解.【详解】解:(1)∵[a]=-2,∴a 的取值范围是:-2≤a <-1;故答案为:21a -≤<-.(2)由题意得:1342x +≤< 解得57x ≤<,∴所有整数x 的值为5,6.【点睛】此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.46.(1;(2)解不等式组21040x x -≥⎧⎨->⎩①②,并把解集在数轴上表示出来.【答案】(1)15;(2)142x ≤<,见解析. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:(1)原式5113415=++-=, (2)21040x x -≥⎧⎨->⎩①② 由①得:x ≥12, 由②得:x <4,∴不等式组的解集为142x ≤<, 数轴如围所示.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.47.解不等式组:-103-13(1)x x x ⎧⎪⎨⎪≤+⎩<①②,并把解集在数轴上表示出来. 【答案】−2⩽x<3,数轴见解析;【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】-103-13(1)x x x ⎧⎪⎨⎪≤+⎩<①②, 解不等式①得,x<3,解不等式②得,x ⩾−2,所以,不等式组的解集是−2⩽x<3在数轴上表示如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.48.解不等式组:2543422133x x x x +⎧<-⎪⎪⎨⎪+>-⎪⎩,并写出其整数解. 【答案】不等式组的整数解为0,1.【解析】【分析】 对不等式2543x x +<-,两边乘以3,去分母,然后通过去括号、移项、系数化为1求出不等式的解,对不等式422133x x +>-两边乘以3,然后再通过移项、合并同类项,系数化为1,求出不等式解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解,然后把它的整数解写出来.【详解】 解:由不等式2543x x +<-, 两边乘以3可得:25123x x +<- 解得75x <; 由不等式422133x x +>-,两边乘以3可得:4632x x +>- 解得12x ->; ∴1725x -<<. ∴不等式组的整数解为0,1.【点睛】主要考查了一元一次不等式组解集的求法及其整数解,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,来求出不等式组的解.49.(1)因式分解:()222224a b a b +-; (2)解分式方程:21133x x x-=---; (3)解不等式组:()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩;【答案】(1)()()22a b a b -+;(2)2x =;(3)12x -≤<. 【解析】【分析】(1)先用平方差公式分解,再用完全平方公式分解;(2)根据解分式方程的方法求解即可,并注意检验;(3)先解不等式组中的每一个不等式,再取其解集的公共部分即可.【详解】解:(1)()222224a b a b +-=2222(2)(2)a b ab a b ab +-++=()()22a b a b -+ (2)方程两边同时乘以(x -3),得231x x -=-+解得:2x =经检验,2x =是原方程的根.所以,原方程的根是2x =.(3)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①②, 解不等式①,得x <2,解不等式②,得x ≥-1,∴不等式组的解集是12x -≤<.【点睛】本题考查了多项式的因式分解、分式方程的解法和一元一次不等式组的解法,属于基础题型,熟练掌握分解因式的方法、分式方程和一元一次不等式组的解法是解题的关键.50.解方程组、不等式:(1)解方程组5212237x y x y +=⎧⎨+=⎩; (2)解不等式912311632x x x +---≤+. 【答案】(1)21x y =⎧⎨=⎩;(2)1x ≥. 【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【详解】解:(1)5212237x y x y +=⎧⎨+=⎩①② ①×3-②×2得:11x=22解得:x=2把x=2代入②得:y=1∴方程组的解为:21x y =⎧⎨=⎩; (2)去分母得,()()92126331x x x +--≤+-,去括号,得924693x x x +-+≤+-,移项,得496329x x x +-≤-+-,合并同类项,得44x -≤-,系数化为1,得1x ≥.【点睛】此题考查了解一元一次不等式,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.。
人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (53)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某个不等式的解集在数轴上如图所示,这个不等式可以是()A.2x-1≤3 B.2x-1<3 C.2x-1≥3 D.2x-1>3【答案】A【解析】分析:先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.x ,故本选项正确;详解:A、此不等式组的解集为:2B、此不等式组的解集为x<2,故本选项错误;C、此不等式组的解集为:x≥2,故本选项错误;D、此不等式组的解集为x>2,故本选项错误.故选A.点睛:用数轴表示不等式的解集时,当不等号是“≥”时,分界点用实心圆点,方向向右,当不等号是“≤”时,分界点用实心圆点,方向向左,当不等号是“>”时,分界点用空心圆圈,方向向右,当不等号是“<”时,分界点用空心圆圈,方向向左.22.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000 B.10000 C.15000 D.20000【答案】B【解析】分析:设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.详解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+31100x×10≤159800+46100x×10,解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里.故选B.点睛:本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语句,弄清各数量间的关系,列出不等式;同时注意每百公里燃油成本是31元,不是一公里是31元.23.某单位为一中学捐赠了一批新桌椅,学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .80B .100C .120D .200【答案】C【解析】分析:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据总人数列不等式求解可得. 详解:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据题意,得:2x +2x ⩽300, 解得:x ⩽120,∴最多可搬桌椅120套,故选:C.点睛:本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.24.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( )A .10x-5(20-x)≥120B .10x-5(20-x)≤120C .10x-5(20-x)> 120D .10x-5(20-x)<120【解析】分析:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.详解:根据题意,得10x-5(20-x)>120.故选C.点睛:此题要特别注意:答错或不答都扣5分.至少即大于或等于.25.把不等式2x﹣3≤﹣5 的解集在数轴上表示,正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式基本步骤:移项、合并同类项化简可得.详解:移项,得:2x≤-5+3,合并同类项,得:2x≤-2,∴x≤-1故选:C.点睛:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.不等式1-2x<5-1x的负整数解有()2A.1个B.2个C.3个D.4个【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-22,3所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.27.海安市核心价值观知识竞赛中共20道选择题,答对一题得10分,满分200分,答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若想通过预赛,那么至少答对()A.10道题B.12道题C.14道题D.16道题【答案】B【解析】【分析】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80,解不等式可得.【详解】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80去括号:10x-100+5x≥80∴15x≥180解得:x≥12因此选手至少要答对12道故选:B【点睛】本题考核知识点:列不等式解应用题.解题关键点:根据不等关系列出不等式.28.不等式组221xx-≤⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】分析:先解不等式①,再解不等式②,然后按照含等号的取实心,不含等号的取空心,大于向右,小于向左,在数轴上标出.详解:解不等式①可得:2x≥-,解不等式②可得:3x<,在数轴上表示为:故选D.点睛:本题主要考查解不等式组,并在数轴上正确表示不等式组的解集,解决本题的关键是要熟练掌握解不等式的方法和在数轴上表示不等式解集.29.下列不等式中,解集不同的是().A.5x>10与3x>6 B.6x-9<3x+6 与x<5C.x<-2与-14x>28 D.x-7<2x+8与x>15【答案】D【解析】【分析】分别求出每个选项中每一个不等式的解集,比较即可得.【详解】A.不等式5x>10的解集是x>2,3x>6的解集是x>2,相同,故不符合题意;B. 6x-9<3x+6 的解集是x<5,与x<5相同,故不符合题意;C. x<-2,-14x>28的解集是x<-2,相同,故不符合题意;D. x-7<2x+8的解集是x>-15,与x>15不相同,故符合题意,故选D.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤是解题的关键.30.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【答案】A【解析】分析:首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再把解集在数轴上表示出来即可.详解:移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:.故选A.点睛:本题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.。
【多套试卷】人教版七年级数学下册第九章一元一次不等式(组)解法专题
人教版七年级数学下册第九章一元一次不等式(组)解法专题一.例题讲解:例题:解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2.当a -1=0,则ax -x -2>0无解.当a -1>0,则x>2a -1. 当a -1<0,则x<2a -1. 二.对应训练:1.求不等式2x -7<5-2x 正整数解.2.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m.3.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立? 4.解不等式:x 3>1-x -36. 5.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.6.解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型2 解一元一次不等式组一.例题讲解:例题:求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解. 解:解不等式①,得x ≤5.解不等式②,得x <23. ∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.二.对应训练:1.解不等式组:⎩⎪⎨⎪⎧2x -1>3,①2+2x ≥1+x.②2.解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②3.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上. 4.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 类型3 关于字母系数问题一.例题讲解:例题:若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围. 解:解不等式①,得x >-25. 解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3.∴1<a ≤32. 二.对应训练:1.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是_______. 2.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( ) A .4 B .5 C .6 D .73.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为( ) A .1 B .2 C .3 D .44.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥25.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是( ) A .a ≥-1 B .a <-1 C .a ≤1 D .a ≤-16.不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是______. 7.不等式组2≤3x -7<8的解集为________.8.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为___. 9.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0.②并依据a 的取值情况写出其解集.10.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围. 11.已知不等式组⎩⎪⎨⎪⎧x>2,x<a 人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y 中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m >n ,则下列不等式中一定成立的是( )A. m +2<n +3B. 2m <3nC. a -m <a -nD. ma 2>na 23.数a 、b 在数轴上的位置如图所示,则下列不等式成立的是( )A. a >bB. ab >0C. a +b >0D. a +b <04.若关于x 的一元一次不等式组的解集是x <5,则m 的取值范围是( ) A. m ≥5 B. m >5 C. m ≤5 D. m <55.某商品的标价比成本价高m %,根据市场需要,该商品需降价n %出售,为了不亏本,n 应满足( )A. n ≤mB. n ≤C. n ≤D. n ≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本( )A. 5本B. 6本C. 7本D. 8本 7.不等式组的解集在数轴上表示正确的是( )A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (83)
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)以方程组2127x y tx y t+=-⎧⎨-=+⎩的解x,y分别作为某个点的横、纵坐标,得到一个点(x,y),若点(x,y)在第四象限,则t的取值范围是( ) A.-5<t<-2 B.t>-2 C.-2<t<5D.t>-5【答案】B【解析】解这个方程组得2{5x ty t=+=--,又因点(x,y)在第四象限,可得20{50tt+--,解得t>-2,故选B.点睛:先求出解方程组的解,然后根据第四象限内点的坐标特征,列出关于t的不等式组,从而得出t的取值范围.22.如图,在数轴上表示不等式组120xx>⎧⎨->⎩的解集,其中正确的是()A.B. C.D.【答案】B【解析】解不等式组得:2x>,故选B.23.对于不等式组131722523(1)x xx x⎧-≤-⎪⎨⎪+>-⎩,下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是522x -<≤ 【答案】B【解析】分别解两个不等式得到x ≤4和x >﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.解:,解①得x ≤4,解②得x >﹣2.5,所以不等式组的解集为﹣2.5<x ≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B .“点睛”本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解. 24.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集是35x ≤<,则b a 的值是( )A .-2B .12-C .-4D .14- 【答案】A【解析】......{22 1......x a b x a b -≥-<+①②解①得,a ≥a+b ,解②得,x ≤212b a ++ , 又∵35x ≤<,3{2152a b b a +=++= 解得3{6a b =-= ∴2b a=- ; 故选A .25.若不等式组30x a x >⎧⎨-≤⎩,只有三个正整数解,则a 的取值范围为( ) A .0a 1≤<B .0a 1<<C .0a 1? <≤D .0a 1≤≤【答案】A【解析】解不等式组得:a<x ≤3,因为只有三个整数解,∴0≤a<1;故选A .26.已知关于x 的不等式组无解,则a 的取值范围是 A .a ﹥2B .a ≥ 2C .a ﹤2D .a ≤2 【答案】A【解析】先求出不等式组的两个不等式的解集,再根据不等式组无解即可得到关于a的不等式,解之即可得出a 的取值范围.解:解不等式①得,x a ≥ ;解不等式②得,2x ≤因为此不等式组无解,所以a ﹥2故选A.点睛:本题主要考查不等式组的解集.解题的关键在于要先用含字母a 的式子表示第一个不等式的解集,再根据不等式组无解来列关于a 的不等式.27.若不等式组643x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( ) A .m >3B .m =3C .m ≤3D .m <3【答案】C【解析】 643x x x m +<-⎧⎨>⎩①② 解①得3x >;∵不等式组的解集是x >3,∴m ≤3 .故选C.点睛:首先解第一个不等式求得不等式的解集,然后根据不等式组解集的确定方法,求得m 的范围.28.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物劵各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张【答案】D【解析】【分析】根据题意可列出一个整式方程,但要分情况讨论结果要符合“只有2元和5元两种面值的人民币”和“无需找零钱”两个条件,注意不要漏解.【详解】解:设付出2元钱的张数为x ,付出5元钱的张数为y ,且x ,y 的取值均为自然数,依题意可得方程:2x+5y=33.则 x=3352y x -=, 解不等式组335020y y -⎧≥⎪⎨⎪≥⎩ 解得3305y ≤≤, 又∵y 是整数.∵y=0或1或2或3或4或5或6.又∵x 是整数.∵y=1或3或5. 从而此方程的解为:45x y =⎧⎨=⎩,141x y =⎧⎨=⎩,由45xy=⎧⎨=⎩得9x y+=,由141xy=⎧⎨=⎩得15x y+=.所以付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是9张和15张.故选D.【点睛】本题考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.要注意题解要符合生活常识.29.如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.5【答案】C【解析】由图可知,AD=AB+BC+CD,∵AD=10,CD=2,∵AB+BC=8,设AB=x,则BC=8−x,所以8282x x x x -<+⎧⎨->-⎩①② , 解不等式∵得x >3,解不等式∵得,x <5,所以,不等式组的解集是3<x <5,综合各选项,只有C 符合。
初中数学 人教版七年级下册 第九章一元一次不等式典型例题和常见题型
一元一次不等式典型例题题型一:求不等式的特殊解例1)求x+3<6的所有正整数解2)求10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来。
4)设不等式2x-a≤0只有3个正整数解,求正整数题型二:不等式与方程的综合题例关于X的不等式2x-a≤-1的解集如图,求a的取值范围。
不等式组{1591+++xxmx的解集是x>2,则m的取值范围是?若关于X、Y的二元一次方程组{3135=+=-+yxpyx的解是正整数,求整数P的值。
题型三确定方程或不等式中的字母取值范围例k为何值时方程5x-6=3(x+k)的值是非正数已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围已知在不等式3x-a≤0的正整数解是1,2,3,求a的取值范围。
若方程组{kyxyx=-=+34532的解中x>y,求K的范围。
如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,求m的范围。
若|2a+3|>2a+3,求a的范围。
若(a+1)x>a+1的解是x<1,求a的范围。
若{148-+xxax的解集为>3,求a的取值范围。
如果{98≥--axbx 的整数解为1、2、3,求整数a、b的值。
题型五求最小值问题题型六不等式解法的变式应用例根据下列数量关系,列不等式并求解。
X除以2的商加上2,至多为5。
A与b两数和的平方不可能大于3。
例x取何值时,2(x-2)-(x-3)-6的值是非负数?题型七解不定方程例求方程4x+y-20=0的正整数解。
已知{axax>--<-223无解,求a的取值范围。
题型八比较两个代数式值的大小例已知A=a+2,B=a2-a+5,C=a2+5a-19,求B与A,C与A的大小关系题型九不等式组解的分类讨论例解关于x的不等式组{axaxxaxa38..44)1(2..2)2(--+--+常见题型一、选择题1、在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )A.-1<m<3 B.m>3 C.m<-1D.m>-1答案:A2、已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B. C. D.答案:D3、四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是( D )A、 B、 C、 D、4、把不等式组的解集表示在数轴上正确的是()答案:C5、不等式的解集是()A.B.C.D.答案:C6、若不等式组有实数解,则实数的取值范围是()A.B.C.D.答案:A7、若,则的大小关系为()A.B.C. D.不能确定答案:A8、不等式—x—5≤0的解集在数轴上表示正确的是()答案:B9、不等式<的正整数解有( )(A)1个(B)2个(C)3个(D)4个答案:C10、把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.答案:B11、不等式组,的解集是()A. B. C. D.无解答案:C12、不等式组的解集在数轴上可表示为()A B C D答案:D13、实数在数轴上对应的点如图所示,则,,的大小关系正确的是()A.B.C. D.答案:D14、如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b答案:C15、不等式组的解集在数轴上表示正确的是()答案:C16、把不等式组的解集表示在数轴上,正确的为图3中的()A. B. C. D.答案:B17、用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为()答案:A18、不等式组的解集在数轴上可表示为()答案:A19、在数轴上表示不等式组的解集,正确的是()答案:A二、填空题20、已知3x+4≤6+2(x-2),则的最小值等于________. 答案:121、如图,已知函数和的图象交点为,则不等式的解集为.答案:22、不等式组的解集为.答案:23、不等式组的整数解的个数为.答案:424、已知关于的不等式组的整数解共有3个,则的取值范围是.答案:25、不等式组的解集是.答案:25、直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为.答案:<-127、已知不等式组的解集为-1<x<2,则(m+n)2008=__________.答案:1三、简答题28、解不等式组解:解不等式(1),得.解不等式(2),得.原不等式组的解是.29、解不等式组并写出该不等式组的最大整数解.解:解不等式x+1>0,得x>-1 解不等式x≤,得x≤2∴不等式得解集为-1<x≤2 ∴该不等式组的最大整数解是230、若不等式组的整数解是关于x的方程的根,求a的值。
人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)
人教版七年级数学下册第九章第二节一元一次不等式习题(含答案)学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【答案】最多可以购买菊花20盆.【解析】【分析】设需要购买绿萝x 盆,则需要购买菊花(30-x )盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花x 盆,则需要购买绿萝()30x -盆,则()16830400x x +-≤,解之得:20x ≤.答:最多可以购买菊花20盆 .【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.42.重百超市对出售A 、B 两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a 的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.【答案】(1)a=10;(2)当0<x≤33时,选择方案一得最大优惠;当x >33时,采用方案二更加优惠,理由见解析【解析】【分析】(1)根据题意列出50×120×0.7+40×150×(1-a%)=9600方程解答即可;(2)根据题意列出两种方案的需付款,进而比较即可.【详解】解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即只能即0<x≤33时,选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当0<x≤33时,选择方案一得最大优惠;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)【点睛】本题考查一元一次方程和一元一次不等式的应用,解题的关键是明确题意,列出正确的方程或不等式,找出所求问题需要的条件.43.(1)计算:22(9)3---÷+(2)解不等式:2(5)4x->x>.【答案】(1)4;(2)7【解析】【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式13344=++=4; (2)2(5)4x ->,2104x -> ,214x >,7x >.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.44.m 是什么自然数时,关于x 的方程()18-82m x x m +=+的解不小于零【答案】m 的值为0,1,2.【解析】【分析】先将m 看成已知,然后解关于x的一元一次方程,然后根据解不小于零,x 的值,列出不等式并求解,最后结合m为自然数的条件即可解答.【详解】解:188()2m x x m -+=+188820m x x m ----=10188x m m -=-++10189x m =-18910m x -= 由题意得x 0≥即189010m -≥1890m -≥2m ≤∵m 为自然数∴m 的值为0,1,2【点睛】本题考查了解一元一次不等式和一元一次方程,弄清题意、列出关于m 的不等式是解答本题的关键.45.解不等式21232x x +--<,并求出非正整数解. 【答案】5x >-,非正整数解为-4,-3,-2,-1,0.【解析】【分析】先求出不等式的解集,然后确定不等式的非正整数解即可.【详解】解:2(2)3(1)12x x +--<243312x x +-+<5x >-非正整数解为-4,-3,-2,-1,0.【点睛】本题考查了解一元一次不等式和不等式的整数解,根据不等式的解集确定非正整数解是解本题的关键.46.某书店最近有,A B 两本散文集比较畅销,近两周的销售情况是:第一周A 销售数量是15 本,B 销售数量是10本,销售总价是230元;第二周A 销售数量是20本,B销售数量是10本,销售总价是280元.()1求,A B散文集的销售单价,()2若某班准备用不超过407元钱购买,A B散文集共45本,求最多能买多少本A散文集?【答案】(1)A散文集的销售单价为每本10元,B散文集的销售单价为每本8元;(2)最多能够买23本A散文集.【解析】【分析】(1)根据题意,列出二元一次方程组求解即可;(2)根据题意,列出不等式,求解即可.【详解】()1设A散文集的销售单价为每本x元,B散文集的销售单价为每本y元根据题意,得1510230 2010280x yx y+=⎧⎨+=⎩解得108 xy=⎧⎨=⎩答:A散文集的销售单价为每本10元,B散文集的销售单价为每本8元()2设能够买a本A散文集,得:()10845407a a+-≤,解得:23.5a≤,则最多能够买23本A散文集【点睛】此题主要考查二元一次方程组以及不等式的实际应用,解题关键是理解题意,列出关系式.47.某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?【答案】(1)A种款式的服装采购了65件,B种款式的服装采购了35件;(2)A种款式的服装最多能采购22件.【解析】【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=35.答:A种款式的服装采购了65件,B种款式的服装采购了35件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤221.2∵m为正整数,∴m的最大值为22.答:A种款式的服装最多能采购22件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.48.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地,(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,求该企业最少需要多少运费?(2)若总运费为5800元,求n的最小值.【答案】(1)①见解析;②企业运费最少需要3840元;(2)n有最小值为221【解析】【分析】(1)①根据题意,直接把产品数量和运费填入表格,即可;②由“运往B 地的件数不多于运往C地的件数”,列出关于x的不等式,求出x的范围,再根据总运费的表达式,求出答案即可;(2)根据题意,列出关于n和x的等式,得到n与x关系式,结合n﹣3x ≥0,求出x的范围,进而即可求解.【详解】(1)①根据信息填表,如下:②由题意,得:200﹣3x≤2x,解得:x≥40,总运费=56x+1600,∵56>0,∴总运费随x增大而增大,∴x=40,该企业运费最少,最少总运费=56×40+1600=3840(元),答:企业运费最少需要3840元;(2)由题意,得:30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x,∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数,∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.49.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元).(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?【答案】(1)31200y x =+;(2)当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)客户甲购买了1400千克苹果.【解析】【分析】(1)根据按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价,即可得到答案;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y 元,分别求出12y y <,12y y =,12y y >的解,即可得到答案;(3)设客户甲购买了x 千克苹果,则乙客户购买了(5000-x)千克苹果,分两种情况,分别列出方程,即可求解.【详解】(1)由题意得:31200y x =+;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y元,当1500x >时,2 3.5y x =,若12y y <,则31200 3.5x x +<,解得2400x >,若12y y =,则31200 3.5x x +=,解得2400x =,若12y y >,则31200 3.5x x +>,解得2400x <.答:当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)设客户甲购买了x 千克苹果,①若50001500x -<,即3500x >,由题意得:(31200)4(5000)18000x x ++-=,解得:3200x =,经检验,不合题意,舍去;②若50001500x -≥,即3500x ≤,由题意得:(31200) 3.5(5000)18000x x ++-=,解得:1400x =,经检验,符合题意.答:客户甲购买了1400千克苹果.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,根据数量关系,列出一次函数解析式和一元一次不等式,是解题的关键.50.今年受猪瘟影响,从年初开始,猪肉价格不断走高.消费者王阿姨发现,9月20日当天猪肉的价格是年初的1.5倍;9月20日当天,王阿姨购买4千克猪肉比年初多花了48元.(1)那么9月20日当天猪肉的价格为每千克多少元?(2)9月20日,按照(1)中的猪肉价格,某售卖点共卖出1000千克猪肉.9月21日,政府决定投入储备猪肉并规定其销售价在9月20日的基础上下调0.7%a 出售.该焦卖点按规定价出售一批储备猪肉和非储备猪肉,该售卖点的非储备猪肉仍按9月20日的价格出售,9月21日当天的两种猪肉总销量比9月20日增加了20%,且储备猪肉的销量占总销量的56,两种猪肉销售的总金额比9月20日至少提高了1%10a ,求a 的最大值. 【答案】(1)9月20日当天猪肉的价格为每千克36元;(2)a 的最大值为25.【解析】【分析】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意列出方程,求解即可;(2)根据题意,分别得出9月20日销售金额、储备猪肉每千克的销售价、9月21日当天的两种猪肉总销量、储备猪肉的销量和销售金额、非储备猪肉的销量和销售金额,列出总金额的不等式,解得即可.【详解】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意,得1.54448x x ⨯-=解得24x =经检验24x =是方程的解,∴1.5241.536x =⨯=答:9月20日当天猪肉的价格为每千克36元;(2)由题意,得9月20日销售金额为:36×1000=36000元 储备猪肉每千克的销售价:36(1-0.7%a )9月21日当天的两种猪肉总销量为:1000(1+20%)储备猪肉的销量为:1000(1+20%)×56储备猪肉销售金额为:36(1-0.7%a )×1000(1+20%)×56非储备猪肉的销量为:1000(1+20%)×16非储备猪肉销售金额为:36×1000(1+20%)×169月21日两种猪肉销售的总金额为:36(1-0.7%a )×1000(1+20%)×56+36×1000(1+20%)×16≥36000(1+1%10a ) 解得%25%a ≤故a 的最大值为25.【点睛】此题主要考查一元一次方程和不等式的实际应用,解题关键是理解题意,列出关系式.。
人教版七年级数学下册第九章一元一次不等式(组)解法专题
人教版七年级数学下册第九章一元一次不等式(组)解法专题一.例题讲解:例题:解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2. 当a -1=0,则ax -x -2>0无解. 当a -1>0,则x>2a -1.当a -1<0,则x<2a -1.二.对应训练:1.求不等式2x -7<5-2x 正整数解.2.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m. 3.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?4.解不等式:x 3>1-x -36.5.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.6.解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型2 解一元一次不等式组一.例题讲解:例题:求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解.解:解不等式①,得x ≤5. 解不等式②,得x <23.∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.二.对应训练:1.解不等式组:⎩⎪⎨⎪⎧2x -1>3,①2+2x ≥1+x.②2.解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②3.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上.4.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 类型3 关于字母系数问题一.例题讲解:例题:若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围. 解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.二.对应训练:1.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是_______.2.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( )A .4B .5C .6D .73.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为( )A .1B .2C .3D .44.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥25.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-16.不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是______.7.不等式组2≤3x -7<8的解集为________.8.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为___.9.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0.②并依据a 的取值情况写出其解集.10.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围. 11.已知不等式组⎩⎪⎨⎪⎧x>2,x<a人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来: (1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。
人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________ (2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)20x -= ;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)先求出不等式组的解集,求出不等式组的整数解,再写出方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)解方程3x ﹣1=0得:x =13,解方程23x +1=0得:x =﹣32,解方程x ﹣(3x +1)=﹣5得:x =2,解不等式组25312x x x x -+-⎧⎨--+⎩>>得:34<x <72,所以不等式组25312x xx x-+-⎧⎨--+⎩>>的关联方程是③.故答案为③;(2)解不等式组112132xx x⎧-⎪⎨⎪+-+⎩<>得:14<x<32,这个关联方程可以是x﹣1=0.故答案为x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+12)得:x=2,解不等式组22x x mx m-⎧⎨-≤⎩<得:m<x≤2+m.∵方程3﹣x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m-⎧⎨-≤⎩<的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.【点睛】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式组等知识点,能理解关联方程的定义是解答此题的关键.92.(1)分解因式:3x3﹣27x;(2)解不等式组:21111(21)3x xx x+>-⎧⎪⎨-≤-⎪⎩【答案】(1)3x(x+3)(x﹣3);(2)不等式组的解集为﹣2<x≤3.【解析】分析:(1)先提取公因式3x,再利用平方差公式分解可得;(2)分别求出各不等式的解集,再求出其公共解集.详解:(1)原式=3x(x2-9)=3x(x+3)(x-3);(2)解不等式①,得:x >-2,解不等式②,得:x ≤2,则不等式组的解集为-2<x ≤2.点睛:本题考查的是因式分解和解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.93.解不等式组:426113x x x x >-⎧⎪+⎨≥-⎪⎩,并把解集表示在数轴上.【答案】32x -<≤,将不等式组解集表示在数轴上如图见解析.【解析】【分析】先分别解不等式,再求不等式组的解集,再在数轴上表示解集.【详解】解:解不等式426x x >-,得:3x >-, 解不等式113x x +≥-,得:2x ≤, ∴不等式组的解集为:32x -<≤,将不等式组解集表示在数轴上如图:【点睛】本题考核知识点:解不等式组.解题关键点:分别求不等式的解集.94.(1)计算:2sin45°+(π﹣1)0﹣2|;(2)解不等式组:35131 212 x xxx-<+⎧⎪⎨--≥⎪⎩【答案】(1)1;(2)不等式组的解集为1≤x<3.【解析】分析:(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.详解:(1)原式=2×2+1﹣+1=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥312x-,得:x≥1,则不等式组的解集为1≤x<3.点睛:本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.95.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x6=0-的解为x=3,不等式组x20,x5->⎧⎨<⎩的解集为2x5<<,因为235<<,所以,称方程2x6=0-为不等式组x20,x5->⎧⎨<⎩的关联方程.(1)在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号) (2)若不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<,>的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程21+2x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m-⎧⎨-≤⎩<,的关联方程,求m 的取值范围. 【答案】(1)③;(2)答案不唯一,只要所给一元一次方程的解为1x =即可,如方程:211x -=(3)m 的取值范围是1≤m <2.【解析】分析:(1)求出所给的3个方程的解及所给不等式组的解集,再按“关联方程”的定义进行判断即可;(2)先求出所给不等式组的整数解,再结合“关联方程”的定义进行分析解答即可;(3)先求出所给不等式组的解集和所给的两个方程的解,再结合“关联方程的定义”和“已知条件”进行分析解答即可.详解:(1)解方程 ①520x -=得 :25x =;解方程②3104x +=得:43x =-; 解方程③()315x x -+=-得:2x =;解不等式组 2538434x x x x ->-⎧⎨-+<-⎩ 得:735x <<, ∵上述3个方程的解中只有2x =在735x <<的范围内, ∴不等式组 2538434x x x x ->-⎧⎨-+<-⎩的关联方程是方程③; (2)解不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<>得:1594x <<, ∴原不等式组的整数解为1,∵原不等式组的关联方程的解为整数,∴解为1x =的一元一次方程都是原不等式组的关联方程,∴本题答案不唯一,如:211x -=就是原不等式组的一个关联方程;(3)2? 2? x x m x m -⎧⎨-≤⎩<①② 解不等式①,得:x >m ,解不等式②,得:x ≤m+2,∴原不等式组的解集为m <x ≤m+2,解方程:2x-1= x+2得:x=3,解方程:1322x x ⎛⎫+=+ ⎪⎝⎭ 得:x=2, ∵方程2x-1= x+2和方程方程1322x x ⎛⎫+=+ ⎪⎝⎭都是原不等式组的关联方程, ∵2x =和3x =都在m <x ≤m+2的范围内,∵m 的取值范围是1≤m <2.点睛:“读懂题意,理解“关联方程”的定义,熟练掌握一元一次不等式组的解法”是解答本题的关键.96.解不等式组:3(1)5192.4x x x x -≤+⎧⎪⎨-<⎪⎩, 【答案】-2≤x <1.【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式①,得:x ≥-2.解不等式②,得:x <1.∴不等式组的解集为-2≤x <1.点睛:熟练掌握“解一元一次不等式组的一般步骤及确定不等式组解集的方法:同大取大;同小取小;大小小大,中间找;大大小小,找不了(无解)”是解答本题的关键.97.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩. 【答案】23x -<<.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()311922x x x x ⎧+>-⎪⎨+>⎪⎩①②由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.98.解不等式组:()()202130x x x -≤⎧⎨---⎩> 【答案】-1<x ≤2.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()202130x x x ,①>,②-≤⎧⎪⎨---⎪⎩解不等式∵得:x ≤2 ,解不等式由∵得:x > –1,∴原不等式组的解集为:-1<x ≤2.点睛:熟记“解一元一次不等式组的方法和一般步骤”是解答本题的关键.99.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可. 详解:解不等式x+3≥2x-1,可得:x ≤4;解不等式3x-5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.100.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. 【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可. 详解:解不等式12(x+1)≤2,得:x ≤3, 解不等式2323x x ++≥,得:x ≥0, 则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=6.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
数学人教版七年级下册一元一次不等式组 解应用题
9.3一元一次不等式组的应用
上关一中 杨利娟
例1:解不等式组
x5 x 2 x 3 ( x 1) 5
解:解不等式①得: x<5
解不等式②得:
x≥-1 ∴不等式组的解集为-1≤x<5
追问1:x可取哪些整数? x可取-1,0,1,2,3,4这6个整数。 追问2:x可取那些非负整数? x可取0,1,2,3,4这5个非负整数。
例2例2:为培养学生养成良好的“爱读书,读好书,好读书”的习 惯,我市上关一中举办了“汉字听写大赛”,准备为获奖同学颁奖, 在购买奖品时发现,一个书包和一本词典会花去96元,用262元恰 好可以购买3个书包和2本词典。 问:(1)每个书包和每本词典的价格各是多少元? (2)学校计划用总费用不超过1000元的钱数为获胜的30名同学颁 发奖品(每人一个书包或一本词典),求最多可以购买多少个书包。
(3) ∵乙种纪念品利润较高 ∴购进乙种纪念品数量越多, 总利润越大。
∴选择方案①,可获利最大,最 大利润为:
49×20+51×28=2408(元)
应用一元一次不等式组解决 实际问题的一般思路:
找出
实际问题 解 决 不等关系 列出 不等式 组 成 求 解
结合实 际因素
不等式组
思考题.把价格为20元/千克的甲 种糖果8千克和价格为18元/千克 的乙种糖果若干千克混合,要使 总价不超过400元,且糖果不少于 15千克,所混合的乙种糖果最少 是多少?
解:(1)设A型号家用净水器购进了x台,B型号家用净水器购进了y 台,则 x+y=160 x=100 150x+350y y=60 因此,A型号家用净水器购进了100台,B型号家用净水器购进了60 台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次不等式组典型题型》教学设计
教材分析:本章内容是人教版七年级数学(下)第九章,是在学习了《二元一次方程租》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。
上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《一元一次不等式组典型题型》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。
教学目标:
(1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。
(2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。
(3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。
学习重点:
(1)加深对一元一次不等式组的概念与解集的理解。
(2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。
学习难点:
(1)一元一次不等式组中字母参数的讨论。
(2)运用数轴分析不等式组中参数的范围。
教学难教学难点突破办法:
(1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。
(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。
1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度,能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在.
2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a
x<”与“a
x≤”的区别,为本节课的拓展应用打下基础。
教学步骤:
一、例题教学
例1、解不等式组
3(1)7
25
1
3
x x
x
x
--≤
⎧
⎪
-
⎨
-<
⎪⎩
,并在数轴上表示出解集
例2、解不等式组
3+42 5341 7+263
x x x x
x x
<+
⎧
⎪
-<-⎨
⎪>+
⎩
设计目的:让学生熟练掌握解一元一次不等式组的一般步骤:分别求出各个不等式的解集在数轴上表示出各个不等式的解集;找公共部分;用不等式表示出解集。
例3、(1)若不等式组
233
35
x x
x a
>-
⎧
⎨
->
⎩
有实数解,则a的取值范围为
(2)若不等式组
233
35
x x
x a
>-
⎧
⎨
->
⎩
无解,则a的取值范围为
设计目的:
(1)是让学生掌握基数相同时,确定不等式的解集中是否包含基数;
(2)是掌握有参数条件的不等式组的解集的确定,可结合数轴,体现数形结合思想;
(3)体现分类讨论的思想;
(4)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。
例4、(1)若不等式组
321
x a
x
-≥
⎧
⎨
->-
⎩
的整数解有5个,则a的取值范围为
(2)若不等式组2123x a x b -<⎧⎨->⎩
的解集为11x -<<,则(1)(1)a b +-= 设计目的:(1)学生一般会写成形如“b x a <<”或“b x a ≤≤”的式子,这时可以让学生讨论常数a 与b 的范围,是否有最大或最小值,体现出不等号中是否含等号对解题的影响,为解决下列问题打下基础。
(2)对上述讨论中学生获得的知识的检查和运用,解决问题时一定要结合数轴来分析。
(3)让学生先确定范围内的整数是哪些,再转化为上述问题得到解决
号问题)。
二、本节课小结:
1、学生谈本节收获:优等生谈重点学到什么知识,上进生谈体会。
2、教师小结:这节课主要学习了含参数的不等式组的解集问题,在解决问题中体现出数形结合、分类讨论的数学思想的重要应用,要好好体会。
三、当堂反馈:
1、不等式组2131x x -<⎧⎨≥-⎩
的解集是( ) A.2x < B.1-≥x C.12x -≤< D .无解
2、已知a b <<0,那么下列不等式组中有解的是 ( )
A .⎩⎨⎧<>b x a x
B .⎩⎨⎧-<->b x a x
C .⎩⎨⎧-<>b x a x
D .⎩
⎨⎧>-<b x a x 3、已知不等式组⎩
⎨⎧<>a x x 1无解,则a 的取值范围是( ) A .a ≤1 B .a ≥1 C . a <1 D .a >1
4、不等式a ≤x ≤3只有5个整数解,则a 的范围是
5、若不等式组⎩
⎨⎧<->-3212m x m x 的解集中的任何一个x 值均不在1≤x<3范围内,则m 的取值范围为 .
四、布置作业:见作业本。