第五章虚拟变量第八章虚拟变量
计量经济学第5章 虚拟变量模型
在经济计量模型中除了有量的因素外还有质的因 素,质的因素包括被解释变量为质的因素和解释变量 为质的因素。如果被解释变量为质的因素,主要是逻 辑回归要涉及的内容。本章就解释变量和被解释变量 为质的因素也就是存在虚拟解释变量和虚拟被解释变 量时如何进行参数估计等一系列问题进行讨论。
1
为基础类型截距项。
12
三、虚拟变量的作用 ⑴ 可以描述和测量定性因素的影响。
⑵ 能够正确反映经济变量之间的相互关系,提 高模型的精度。
⑶ 便于处理异常数据。
即将异常数据作为一个特殊的定性因素
1 , 异常时期
D
0
,
正常时期
13
第二节 虚拟解释变量模型
一 、截距变动模型(加法模型)
虚拟变量与其它变量相加,以加法形式引入模
Y i 0 1 D 1 i 2 D 2 i 3 X i u i
Y i ------年支出医疗保健费用支出 X i ------居民年可支配收入
18
1 , 高中
D 1i
0
,
其他
1 , 大学
D 2i
0
,
其他
于是:小学教育程度:
E (Y i X i,D 1 i 0 ,D 2 i 0 )03 X i
7
二、虚拟变量的设置规则
虚拟解释变量模型的设定因为质的因素的多少 和这些因素特征的多少而引入的虚拟变量也会不同。
以一个最简单的虚拟变量模型为例,如果只包 含一个质的因素,而且这个因素仅有两个特征,则 回归模型中只需引入一个虚拟变量。如果是含有多 个质的因素, 自然要引入多个虚拟变量。
8
如果只有一个质的因素,且该质的因素具有 m 个 相互排斥的特征(或类型、属性),那么在含有截距 项的模型中,只能引入 m-1 个虚拟变量,否则会陷入 所谓“虚拟变量陷阱”(dummy variable trap),产 生 完全的多重共线性,会使最小二乘法无解;在不含有 截距项的模型中, 引入 m 个虚拟变量不会导致完全 的多重共线性,不过这时虚拟变量参数的估计结果, 实际上是 D = 1 时的样本均值。
第八章-虚拟变量回归
1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:
虚拟变量
一般地,在虚拟变量的设置中:
• 基础类型、肯定类型取值为1;
• 比较类型,否定类型取值为0。
概念:
同时含有一般解释变量与虚拟变量的模型称为虚拟 变量模型。
例1:为了考察企业职工薪金收入(Yi)的情况, 以工龄(Xi)和性别(Di)为影响因素,建立如 下模型:
Yi 0 1 X i 2 Di i
其中: Di=1,若是男性, Di=0,若是女性。
二、虚拟变量的引入
• 虚拟变量做为解释变量引入模型有两种基本方式:加法 方式和乘法方式。
1、加法方式
上述企业职工薪金模型中性别虚拟变量的引入: Yi 0 1 X i 2 Di i
在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
表中给出了中国1979~2001年以城乡储蓄存款余 额代表的居民储蓄以及以GNP代表的居民收入的数 据。
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
表 5.1.1
储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
R 2 =0.9836
由2与3的t检验可知:参数显著地不等于0,强 烈示出两个时期的回归是相异的,
储蓄函数分别为:
1990年前: 1990年后:
Yˆi 1649.7 0.4116Xi Yˆi 15452 0.8881Xi
三、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定:
如果某个定性变量有m种相互排斥的类型,则模型中只能 引入m-1个虚拟变量。否则会陷入所谓的“虚拟变量陷阱”, 产生完全共线性。
计量经济学-虚拟变量复习题
第五章 虚拟变量复习题一、单项选择题 1、虚拟变量( A )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素2、设某地区消费函数中,消费支出不仅与收入x 有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。
假设边际消费倾向不变,考虑上述年龄构成因素的影响时,该消费函数引入虚拟变量的个数为 ( C )A 1个B 2个C 3个D 4个3、在经济发展发生转折时期,可以通过引入虚拟变量方法来表示这种变化。
例如,研究中国城镇居民消费函数时。
1991年前后,城镇居民商品性实际支出Y 对实际可支配收入X 的回归关系明显不同。
现以1991年为转折时期,设虚拟变量⎩⎨⎧=年以后;年以前;1991019911t D ,数据散点图显示消费函数发生了结构性变化:基本消费部分下降了,边际消费倾向变大了。
则城镇居民线性消费函数的理论方程可以写作:( D )。
A 、ttt u XY ++=10ββB 、ttt tt u XD XY +++=210βββC 、tt tt u D XY +++=210βββD 、ttt t tt u XD D XY ++++=3210ββββ4、对于含有截距项的计量经济模型,若想将含有m 个互斥类型的定性因素引入到模型中,则应该引入虚拟变量个数为 ( B ) A m B m-1 C m+1 D m-k5、对于一个回归模型中不包含截距项,若将一个具有m 个特征的质的因素引入进计量经济模型,则虚拟变量数目为( A ) A.m B.m-1C.m-2D.m+1 6、设某计量经济模型为:ii i u D Y ++=βα,其中iY 大学教授年薪,⎩⎨⎧=女教授男教授01i D ,则对于参数α、β的含义,下列解释不正确的是( B )A. α表示大学女教授的平均年薪;B. β表示大学男教授的平均年薪;C. α+ β表示大学男教授的平均年薪;D. β表示大学男教授和女教授平均年薪的差额7、个人保健支出的计量经济模型:iii i XD Y μβαα+++=221 ,其中iY 保健年度支出;iX个人年度收入;虚拟变量⎩⎨⎧=大学以下大学及以上012i D ;iμ满足古典假定。
第八章 虚拟变量
Company Logo
9
一、为什么引入虚拟变量
(2)把虚拟变量取值为0所对应的类别称作基础类别。
例如:按上面对“学历”的赋值方法,“无学历”为 基础类别。
(3)当定性变量含有m个类别时,不能把虚拟变量的值 设成如下形式:
0 (第一个类别)
D
1
(第二个类别)
m 1 (第m个类别)
这种赋值法在一 般情形下与虚拟变 量赋值是完全不同 的两回事。
(因为D不能作为Eviews的用户变量名,所以取D1)
Company Logo
28
三、测量斜率变动
Company Logo
29
三、测量斜率变动
trade 0.2818 0.0746time 35.8809D 1.2559timeD
(1.35) (6.2)
(8.4)
(9.6)
还有虚拟变量的两项都是显著的,所以
Company Logo
10
一、为什么引入虚拟变量
(4)回归模型可以只用虚拟变量作解释变量,也可以 用定量变量和虚拟变量一起作解释变量。
Company Logo
11
二、用虚拟变量测量截距变动
❖ 下面给出的模型都属于测量截距变动的模型。
中使用虚拟变量时,回归函数就不再是连续 的了,分段线性回归可以既使用虚拟变量描述出模型 结构变化,又可以使回归函数保持连续,其中每一段 都是线性的。
Company Logo
31
四、分段线性回归
❖ 考虑下面的模型
Yt 0 1X t 2 ( X t X b1)D1 ut
其中Xb1表示结构发生变化的t=b1时刻的Xt的值。
Company Logo
4
一、为什么引入虚拟变量
第08章 虚拟变量(讲稿)
第8章 虚拟变量(dummy variable )在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。
例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。
这些因素也应该包括在模型中。
1。
虚拟变量由于定性变量通常表示的是某种特征的有和无,所以量化方法可采用取值为1或0。
这种变量称作虚拟变量,用D 表示。
虚拟变量应用于模型中,对其回归系数的估计与检验方法与定量变量相同。
⎩⎨⎧=不具有某属性具有某属性01D 例:表示季节的虚拟变量⎩⎨⎧=其它春季011D ⎩⎨⎧=其它夏季012D ⎩⎨⎧=其它秋季013D ⎩⎨⎧=其它冬季014D2.测量截距移动设有模型,y t = β0 + β1 x t + u加法方式增加虚拟变量y t = β0 + β1 x t + β2D + u t ,其中y t ,x t 为定量变量;D 为定性变量。
当D = 0 或1时,上述模型可表达为, β0 + β1x t + u t , (D = 0) y t = (β0 + β2) + β1x t + u t , (D = 1)2040600204060X Y图8.1 测量截距不同D = 1或0表示某种特征的有无。
反映在数学上是截距不同的两个函数。
若β2显著不为零,说明截距不同;若β2为零,说明这种分类无显著性差异。
例:中国成年人体重y (kg )与身高x (cm )的回归关系如下:–105 + x D = 1 (男) y = - 100 + x - 5D =–100 + x D = 0 (女) 注意:① 若定性变量含有m 个类别,应引入m -1个虚拟变量,否β0β0+β2D = 1D =0则会导致多重共线性,称作虚拟变量陷阱。
②关于定性变量中的哪个类别取0,哪个类别取1,是任意的,不影响检验结果。
③定性变量中取值为0所对应的类别称作基础类别(base category)。
3测量斜率变化以上只考虑定性变量影响截距,未考虑影响斜率,即回归系数的变化。
计量经济学课件虚拟变量
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。
庞浩计量经济学课件第八章虚拟变量回归资料重点
初中、小学及以下)作为解释变量引入下面的
模型中。
Yi 1 1 X i ui
0, 其他
0, 其他
0, 其他
D2i 1, 初中 D3i 1, 高中 D4i 1, 大专及以上
Yi 1 1 X i 2 D2i 3 D3i 4 D4i ui
7
三、虚拟变量的作用
虚拟变量可以作为下列因素的代表: 属性因素 非精确计量的数量因素 偶然因素或政策因素 时间序列分析中的季节(或月份)因素 用于分段回归
Di 1, 表示男性
3
二、虚拟变量的设置规则
1.虚拟变量个数的设置规则 若定性因素有m个相互排斥的类型(或属性、水
平),则: 在有截距项的模型中,只能引入m-1个虚拟变
量,否则会陷入“虚拟变量陷阱”(即:出 现完全的多重共线性); 在无截距项的模型中,可以引入m个虚拟变量, 不会导致完全的多重共线性。
第八章 虚拟变量回归
第一节 第二节 第三节 第四节
虚拟变量 虚拟解释变量的回归 虚拟被解释变量 案例分析
1
第一节 虚拟变量
一、虚拟变量的基本概念 二、虚拟变量的设置规则 三、虚拟变量的作用
2
一、虚拟变量的基本概念
定量因素:指那些可直接测度的数值型因素。
定性因素:也称为属性因素,指不能直接测度的,说 明某种属性或状态存在与否的非数值型因素。
解释变量包含一个定量变量和一个分为两种类型 定性变量的回归
解释变量包含一个定量变量和一个两种以上类型 的定性变量的回归
解释变量包含一个定量变量和两个定性变量的回 归
10
解释变量只有一个分为两种相互排斥类型 的定性变量,而无定量变量的回归
假定文化程度、职业、性别等不变,研究农村居 民与城镇居民的年平均可支配收入是否有差异。
虚拟变量模型
§5.2 滞后变量模型
§5.1
虚拟变量模型
一、虚拟变量的含义 二、虚拟变量的设置 三、虚拟变量的引入
一、虚拟变量的含义
•一种人为构造的、取值仅为“1”或“0”的变量
1. 定量变量和定性变量
定量变量:测度等级为间距(interval)或比率(ratio)尺度的变量,
如需求量、价格、收入、产量等
测度等级名义nominal或顺序ordinal尺度的变量如性别教育程度等其取值为类别或顺序可用数值表示但数值不具有实际含义仅是表示类别或序次的代码实际建模中考虑定性变量的影响是必要的但直接使用定性变量的取值则具有不合理性直接使用定性变量的不合理性例
第五章 经典单方程计量经济学模型专门问题
§5.1 虚拟变量模型
Yi 1 X i 2 E1i+ 3 E2i 4 E3i i
大多数研究者认为 ,在一个含有截距的方程中,他们能更容易地处 理他们通常感兴趣的问题,是否有某个组与基准组有所不同以及有 多大不同,所以在方程中包括截距更方便。
——肯尼迪(Kennedy)
三、虚拟变量的引入
虚拟变量做为解释变量引入模型有两种基本方式: 加法方式和乘法方式。
◦ 其取值为具有实际含义的数据 ◦ 可以在建模过程中直接使用这些变量及其数据
定性变量:测度等级名义(nominal)或顺序(ordinal)尺度的变量,
如性别、教育程度等
◦ 其取值为类别或顺序,可用数值表示,但数值不具有实际含义,仅是表示
类别或序次的代码
性别(1-男;0-女)、教育程度(1-小学、2-初中、3-高中、4-大学)
• 其差异为:
E(男)-E(女)= 2
• 可以看出,虚拟变量对应的回归系数β2表示:虚拟变量取值为1所代表 的类别(男)相对于参照类别(取值为0,女)在因变量上的平均差异, 反映出定性变量取值的变化对因变量的影响 • 从回归模型上看,两个组上的回归模型的差异主要在于截距的不同
计量经济学第八章 虚拟变量
Yi X i Di X i i
如果该模型设定正确,此时有:
E(Yi
)
(
X
)
i
X
i
D 1 D0
可见,城镇ቤተ መጻሕፍቲ ባይዱ民的边际消费倾向为 ( ) ,农
村居民的边际消费倾向为 。
如果不同属性类别对应的截距项和斜率项都 是有差异的,可在回归模型中同时引入虚拟 变量的加法方式和乘法方式,结果如下:
1 东部 D1 0 其他
1 中部 D2 0 其他
若考虑不同区域居民对应回归模型截距的不同 ,可构建模型如下:
Yi 1D1i 2 D2i X i i
则有:
E (Yi
)
( (
2) 1)
X i X i
Xi
Yi Di X i Di X i i
对于城镇居民和农村居民这两个类别,有总 体回归函数如下:
E(Yi
)
(
)
( X i
)X
i
D 1 D0
可见, 和 分别表示城镇居民与农村居民
的消费函数在截距和斜率上的差异。
注:
对于包含多个类别(M个)的属性变量,构 建M-1个虚拟变量,如在消费模型中,考虑 区域因素(东部,中部,西部)影响,可构 建2个虚拟变量:
Yi 1D1i 2 D2i (D1i D2i ) X i i
• 则有: ( 1 2 ) Xi
E
(Yi
)
( 1) Xi ( 2 ) Xi
虚拟变量-文档资料
令Y代表年薪, X代表教龄,建立模型:
Y B B X B D B D B D u i 0 1 i 2 2 i 3 3 i 4 4 i i
可以看出基准类是本科女教师,B0为刚参加工作的本 科女教师的工资;B1为参加工作时间对工资的影响;B2 是性别差异系数;B3和B4为学历差异系数,B3是硕士学 历与本科学历的收入差异,B4是博士学历与本科学历的 收入差异;通过上述分析,我们可以确定Bi的符号。
实质:加法方式引入虚拟变量改变的是截距;乘法方式 引入虚拟变量改变的是斜率。
一、加法类型 (1)一个两种属性定性解释变量而无定量变量的情形
例:按性别划分的教授薪金
(2)包含一个定量变量,一个定性变量模型
设有模型,yt = 0 + 1 xt + 2D + ut
,
其中yt,xt为定量变量;D为定性变量。当D = 0 或1时,上述模型可表达为,
例1:你在研究学历和收入之间的关系,在你的样 本中,既有女性又有男性,你打算研究在此关系中, 性别是否会导致差别。 例2:你在研究某省家庭收入和支出的关系,采集 的样本中既包括农村家庭,又包括城镇家庭,你打 算研究二者的差别。 例3:你在研究通货膨胀的决定因素,在你的观测 期中,有些年份政府实行了一项收入政策。你想检 验该政策是否对通货膨胀产生影响。
现在要考虑城镇居民和农村居民 之间的差异,如何办? 为了对 “城镇居民”、“农村居民” 进行区分,分析各自在住房消费 D1i = 1 D1i = 0 支出 上的差异,设 为城 镇; 为农村。 , 则模型为 Y = + X + D + u 2 ) i 0 1 i 1 1 i( (模型有截距,“居民属性”定性变 量只有两个相互排斥的属性状态 ( m=2),故只设定一个虚拟 变量。)
第八章(虚拟变量回归)_图文
5.社会因素:包括社会治安、城市化水平、消费心理等;
6.行政(政策)因素:包括土地与住房制度、房地产价格政策等;
7.区域因素:包括所处地段的市政基础设施、交通状况等;
8.个别因素:包括朝向、结构、材料、功能设计、施工质量等;
9.房地产投机因素:投机者在房地产市场中的投机活动;
10.自然因素:包括自然环境、地质、地形、地势及气候等。
使用虚拟变量需注意的问题
v 虚拟变量陷阱:若定性变量有m个类别,则引入 m个虚拟变量将会产生完全多重共线性问题,避 免方法:
Ø 只引入(m-1)个虚拟变量 Ø 引入m个虚拟变量但去掉截距项
v 哪种方法更好:包含截距项更方便,可以很容易 地检验某个组与基准组之间是否存在显著差异以 及差异程度。
2、避免落入“ 虚拟变量陷阱”
•男职工本科以上学历的平均薪金:
1.解释变量只有一个分为两种类型的定性变量无 定量变量的回归
这种模型又称方差分析模型
其中:Y为公立学校教师工资,
D=0为农村学校;D=1为城镇学校
分析条件期望:
基础类型:
比较类型:
为差异截距系数,通过对系数 可检验
的 t 检验:
在其他因素不变的条件下,城乡教师的工资是否有显2著323
D=0 表示某种属性或状态不出现或不存在 5
虚拟变量的作用
● 作为属性因素的代表,如性别 ● 作为某些非精确计量的数量因素的代表,
如受教育程度(高中及以下、专科、本科及以上) ● 作为某些偶然因素或政策因素的代表,
如 伊拉克战争、“911事件”、四川汶川大地震 ● 时间序列分析中作为季节(月份)的代表 ● 分段回归——研究斜率、截距的变动 ● 比较两个回归模型的差异 ● 虚拟被解释变量模型:
第八章 虚拟变量1577775632
Yi
α0+α1 α0 Xi
17
对模型 Yi=α0+α1Di+βXi+ ui 使用OLS法,可得:
yˆi ˆ0 ˆ1Di ˆi xi
对α1 进行 t 检验,若α1≠ 0 ,则说明城市居民与农 村居民的消费水平有明显差异。
18
假如还要考虑男女消费水平的差异,消费函数为:
Yi =α0+α1D1i+α2D2i+βXi+ui Yi 为消费水平,Xi 为家庭收入,D1i和D2i为虚拟变量。
37
为了描述交互作用对被解释变量的影响,在模型中 引入虚拟变量的乘积,即
Yi 1 2 D2i 3 D3i 4 ( D2i D3i ) X ui 其中 4 称为交互效应系数。
交互效应是否存在,可借助于交互效应系数的 显著性检验加以判断。
38
3、分段线性回归 在经济关系中常有这样的情况:
40
Yt=β0 +β1t +β2(t- X*)Dt + ut 其中 Yt 为消费支出; t 为年份(t=1955,1956,…,2009);
Dt
1 0
(t x*) (t x*)
x* 1979
上面模型等价于: (1)1979年以前:Yt=β0 +β1t +ut (2)1979年以后:
Yt=β0 - β2 X*+(β1+β2) t + ut
25
二、乘法类型(斜率变动模型) 以乘法形式引入虚拟变量,是在所设定的模型中,
将虚拟解释变量与其他解释变量相乘作为新的解 释变量,以达到调整斜率系数的目的。主要作用 在于: (1)比较两个回归模型; (2)分析因素间的交互影响; (3)提高模型的描述精度。
计量之虚拟变量.
35
经过校正的R2 =0.98263 比较石油冲击前后模型的不同,你可以得 出什么结论?
36
第五节 虚拟变量使截距和斜率 均发生改变
仍旧是通货膨胀率I和工业增长率G之间的 关系,可以假设模型为:
I=α 1 + α 2 D+β 1 G+β2GD+ μ (α 1 + α 2 )+(β 1+β2)G+ μ D=1(1988) I= α 1 +β 1 G+ μ D=0 (其他)
27
1 如果年龄小于25 D2 = 0 其他 1 年龄在25到50之间 D3 =
0 其他 1 教育在高中以下
D4=
0 其他
28
1 学历在高中以上但大学以下 D5 =
0 其他 这是一个典型的截距发生改变的例子。例 如: (1) 男性,年龄在25岁以下,大学毕业 (2)女性,年龄在50以上,大学学历
3
一般情况下,一个定性变量所需要的虚拟变量的 个数取决于该定性的变量的类别,如果有n个 类别,所引进的虚拟变量的个数是n-1,比总体 类别的数量少1。例如性别变量,分为两类男 性或女性,需要一个虚拟变量就可以了;如果 地区发展问题,考虑地区差异,假设把全国分 为东部,中部和西部,就需要2个虚拟变量, 令 1 东部 D1= 0 其他
饮食消费 Y 10.0 11.0 12.2 13.3 10.2 11.0 12.3 13.2 10.5 11.1 12.3 13.4 10.4 11.2 12.2 13.4 10.4
国内最终消费支出X 53.5 54.4 56.4 60.6 54.7 55.4 57.6 62.4 56.5 56.4 58.3 62.6 56.7 56.8 58.9 63.7 58.2
第五章虚拟变量-第八章虚拟变量
1
问题的提出
1、计量经济学模型,需要经常考虑属性因素 的影响。例如,职业、战争与和平、繁荣与 萧条、文化程度、灾害、季节 2、属性因素往往很难直接度量它们的大小。 只能给出它们的“Yes—D=1”或”No—D=0”、 或者它们的程度或等级。 3、为了反映属性因素和提高模型的精度, 必须将属性因素“量化”。通过构造0-1型 的人工变量来量化属性因素。
入虚拟变量? (2)如果认为季节因素使利润对销售额的变化额发生变异,
应如何引入虚拟变量?
33
(3)如果认为上述二种情况都存在,又应如何引 入虚拟变量?
请对上述三种情况分别设定利润模型。
34
树立质量法制观念、提高全员质量意 识。20.10.1620.10.16F riday, October 16, 2020 人生得意须尽欢,莫使金樽空对月。02:54:4202:54: 4202:5410/16/2020 2:54:42 AM 安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.10.1602:54:4202:54O ct-2016-Oct-20 加强交通建设管理,确保工程建设质 量。02: 54:4202:54:4202:54F riday, October 16, 2020 安全在于心细,事故出在麻痹。20.10.1620.10.1602: 54:4202:54:42October 16, 2020 踏实肯干,努力奋斗。2020年10月16日上午2时54分 20.10.1620.10.16 追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年10月16日星期 五上午2时54分 42秒02:54:4220.10.16 严格把控质量关,让生产更加有保障 。2020年10月 上午2时 54分20.10.1602:54O ctober 16, 2020 作业标准记得牢,驾轻就熟除烦恼。2020年10月16日星期 五2时54分42秒 02:54: 4216 October 2020 好的事情马上就会到来,一切都是最 好的安 排。上 午2时54分42秒 上午2时54分02:54:4220.10.16 一马当先,全员举绩,梅开二度,业 绩保底 。20.10.1620.10.1602: 5402:54:4202: 54:42Oct-20 牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月16日 星期五2时54分 42秒Fr iday, October 16, 2020 相信相信得力量。20.10.162020年10月 16日星 期五2时54分42秒20.10.16
浙大宁波理工学院计量经济学第五章 虚拟变量(Dummy Variable)
举例: 分析某公司员工的性别对薪水的影响:假设WAGE
为薪水,DUMMY为性别,取1为男性,取0为女性。 设立回归方程: WAGE=α+βDUMMY+μ
第五章 虚拟变量 5.3 两分定性变量模型
EViews的输出结果为:
Variable
DUMMY
Coefficient Std.Error
第五章 虚拟变量 5.2 虚拟变量的设置
举例2 公司职员的年薪与工龄(x)和学历(D)
有关。学历分为大专以下、本科生、研究生三个 水平。为了反映学历对职工年薪的影响,可引入 两个虚拟变量: 1 本科 1 研究生 D1= , D2= 0 其他 0 其他 x D D u 年薪模型为: y t 0 1 1 1 1 2 2 t
第五章 虚拟变量 5.2 虚拟变量的设置
当D1=D2=D3=0时,就表示冬季。 如果引入四个虚拟变量,即
1 春季 1 夏季 D1= ,D2= , 0 其他 0 其他 1 秋季 1 冬季 D3= ,D4= 0 其他 0 其他
模型变为,
y D D D D u i 1 1 2 2 3 3 4 4 t
例如: (1)表示性别的虚拟变量可取为
D1=
1
0
男性
女性
(4)表示消费心理的虚拟变量可取为
(2)表示文化程度的虚拟变量可取为 D2= 1 本科及以上学历
D4=
1 0
喜欢某种商品 不喜欢某种商品
0
本科以下学历
(5)表示天气变化的虚拟变量可取为
(3)表示地区的虚拟变量可取为 D3=
1
0
城市
农村
D5=
第8章虚拟变量模型
1 农村居民 D2i = 0 城镇居民
则模型(1)为 Yi 0 1 X i 1D1 2 D2 ui (3) 则对任一家庭都有: , D1 + D2 = 1 D1 + D2 - 1 = 0 即产生完全共线,陷入了“虚拟变量陷阱”。 “虚拟变量陷阱”的实质是:完全多重共线性。
1 1 1 ( X, D) 1 1 1 X 11 X k1 X 12 X k 2 X 13 X k 3 X 14 X k 4 X 15 X k 5 X 16 X k 6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇; D1i = 0 为农村,则模型为
Yi = 0 + 1 X i + 1D1 + ui
的属性状态(
(2)
(模型有截距,“居民属性”定性变量只有两个相互排斥
m 2 ),故只设定一个虚拟变量。)
虚拟变量陷阱
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
Y为香烟消费量;
1 其中:Di= 0 城市 农村 (比较的基础:农村)
那么: E Yi | Di = 1 = ( 0 + 1)
Yi ( 0 1) i Yi 0 i
E Yi | Di = 0 = 0
城市
农村
(2) 一个定性解释变量(两种属性)和一个 定量解释变量的情形
iixy130??????????iixy120??????????iixy10???????3??2??0??33一个定性解释变量四种属性和一个定量解释变量的情形01122331234110010iiiyxdydddxddd????????????????????????例如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D1=
1, 0,
(高中—1,
其它—0)
D2
1 0
(大学及以上—1,
其它—0)
则,截距变动模型:
Yi 0 1 X i 2 D1 3 D2 i
截距和斜率都变动的模型:
Yi 0 1 X i 2 D1 3 D2 4 X i D1 5 X i D2 i
25
例 2、设季节的变化对某种商品的需求量有相当大的影响,该商品
当t = t*时, x=x* 两式计算的y 相等,两条直 线在转折期连接成一条折线
19பைடு நூலகம்
临界折线的图例
y y = b0 + b1 x + b2 ( x-x*) D
y = b0 + b1 x* x
X* ( t*)
20
第一节 运用虚拟变量改变回归直 线的截距
c
D=0正常
Y=b0+b1X
b2 b0
D=1反常 Y=(b0+b2)+b1X
9
三、虚拟变量模型
引入虚拟变量后,回归方程中同时 含有一般解释变量和虚拟变量,称 这种结构的模型为虚拟变量模型
10
四、模型中引入虚拟变量的作用
1、分离异常因素的影响,例如分析我国GDP的 时间序列,必须考虑“文革”因素对国民经济 的破坏性影响,剔除不可比的“文革”因素。 2、检验不同属性类型对因变量的作用,例如 工资模型中的文化程度、季节对销售额的影响。 3、提高模型的精度,相当与将不同属性的样 本合并,扩大了样本容量(增加了误差自由度, 从而降低了误差方差)。
12
2、如果模型中不包含截距项,则一个质 变量有m种特征,只需要引入m个虚拟 变量。
13
第一节、变参数模型
一、截距变动模型 虚拟变量D 与其它解释变量在模型中是 相加关系,称为虚拟变量的加法引入方 式。 例如,讨论消费问题,消费水平C主要 由收入水平Y决定,但是当特殊情况出 现时政府会采取对消费品限量供应措施, 因此引入虚拟变量D来表示这些特殊情 况与非特殊情况。
Y=b0+b1X+b2D+e x
21
第二节 运用虚拟变量改变回归直 线的斜率
c C=b0+(b1+b2)x
D=1反常
Y=b0+b1X+b2DX
C=b0+b1x
D=0正常 x
22
第三节 运用虚拟变量同时改变回 归直线的截距和斜率
Y=(b0+b2)+(b1
D=1反常
+b3)x+e
Y=b0+b1X+b2D+b3DX+e
15
二、斜率变动模型
模型中虚拟变量与其它解释变量是相乘关系,
称为虚拟变量的乘法引入方式。
乘法引入方式引起斜率变动
D=1 异常时期
D=0 正常时期
设定模型 Y= b0 + b1 x +b2 D x +e
异常时期模型:(截距相同斜率不同)
Y= b0 + (b1 +b2 ) x +e
正常时期模型:(截距相同斜率不同)
D1 D2 D3 D4 1,
第5章 虚拟变量
1
问题的提出
1、计量经济学模型,需要经常考虑属性因素 的影响。例如,职业、战争与和平、繁荣与 萧条、文化程度、灾害、季节 2、属性因素往往很难直接度量它们的大小。 只能给出它们的“Yes—D=1”或”No—D=0”、 或者它们的程度或等级。 3、为了反映属性因素和提高模型的精度, 必须将属性因素“量化”。通过构造0-1型 的人工变量来量化属性因素。
的需求模型为: Yt 0 1 X 1t 2 X 2t t
式中,Y 是商品的需求量,X1 是价格,X2 时收入, 为了反映四个季节对商品需求量的影响,假定引入四个虚拟变量:
Dit
1 0
(第
i
季度—1,
其它季度—0)( i
1,2,3,4 )
问是否可用普通最小二乘法进行估计?为什么
26
解:通过观察,很容易发现:
Y= b0 + b1 x +e
17
三、截距与斜率同时变动 模型
D=1 异常时期 D=0 正常时期 设定模型 Y=b0+ b1x+ b2D + b3Dx +e 异常时期模型:(截距与斜率均不同) Y= (b0 + b2) + (b1 +b3) x +e 反常时期模型:(截距与斜率均不同) Y= b0 + b1 x +e
18
第二节、数量因素与变参数模型
在经济转折时期,可以建立临界值指标的 虚拟变量模型来反映 设转折时期 t* 转折时期的指标值= x* 虚拟变量 D=1( t >= t*) D=0( t < t*) 模型 y = b0 + b1 x + b2 ( x-x*) D +e t < t* 时 y = b0 + b1 x+ e t >= t* 时 y = b0 -b2 x*+ (b1+ b2) x +e
虚拟变量是一用以反映质的属性 的一个人工变量,通常记为D (Dummy)。 虚拟变量D只取0或1两个值 对基础类型或肯定类型设D=1 对比较类型或否定类型设D=0
7
虚拟变量举例
1 D=
0
0 D=
1
本科学历 非本科学历 “文革”时期 非“文革”时期
8
二、虚拟变量的引入
虚拟变量在模型中,可以作解释变量,也 可以作因变量。 虚拟变量作解释变量时出现在方程的右端 虚拟变量作因变量(被解释变量)时出现 在方程的左端
11
五、虚拟变量设置的原则
在模型中引入多个虚拟变量时,虚拟变量的 个数应按下列原则确定: 1、如果模型中包含截距项,而有 m 种互斥 的属性类型,在模型中引入 m-1 个虚拟变量。 例如,性别有2个互斥的属性,引用2-1=1个 虚拟变量
再如,文化程度分小学、初中、高中、大学、
研究生5类,引用4个虚拟变量
2
模型中引入虚拟变量的必要性
现实经济生活错综复杂,往往要求人们 按照经济变量的质或量的不同,分别进 行处理。因此,回归模型中,往往有必 要引入虚拟变量,以表示这些质的区别。 例如,消费函数,对于平时与战时,萧 条与繁荣,乃至性别、教育程度、季节 性等等,都会因质的有不同表现出不同 的差异。
6
一、虚拟变量的定义
Y=b0+b1x+e 正常时期 D=0正常
23
本章例题
例1设某地区职工工资的收入模型为:
Yt 0 1 X i i
式中,Y 是职工工资收入;X 是工龄 考虑职工收入受教育程度的影响而引入合适的虚拟 变量,对上述模型加以改进。
24
解:教育程度一般分为:高中以下,高中,大学及以上(包括大专) 这样教育程度有三个特征,故引入两个虚拟变量,并设教育程度的 改变,只影响截距的变动。