Mdva a distance-vector multipath routing protocol
迪杰斯特拉算法题目
迪杰斯特拉算法题目迪杰斯特拉算法(Dijkstra's algorithm)是一种用于解决单源最短路径问题的经典算法。
它可以在加权有向图中找到从一个起点到所有其他顶点的最短路径。
假设我们有一个加权有向图,其中顶点表示位置,边表示路径,每条边都有一个权重(距离或代价)。
现在,我们希望找到从起点到其他所有顶点的最短路径。
迪杰斯特拉算法的基本思想是通过逐步扩展已知最短路径集合来逐步确定最短路径。
具体步骤如下:1. 创建一个距离数组dist[],用于保存起点到每个顶点的最短距离。
起始时,将起点的距离设为0,其他顶点的距离设为无穷大。
2. 创建一个标记数组visited[],用于标记每个顶点是否已经被访问。
起始时,将起点标记为已访问,其他顶点标记为未访问。
3. 重复以下步骤,直到所有顶点都被访问:a. 从未访问的顶点中选择距离起点最近的顶点,并将其标记为已访问。
b. 更新与该顶点相邻的未访问顶点的最短距离。
如果经过该顶点到达某个未访问顶点的路径比当前已知的最短路径更短,则更新该未访问顶点的最短距离。
4. 完成后,dist[]数组中保存的就是起点到其他所有顶点的最短距离。
迪杰斯特拉算法的时间复杂度为O(V^2),其中V是顶点的数量。
该算法在解决单源最短路径问题中非常高效,但要求图中的边权重必须为非负数。
需要注意的是,迪杰斯特拉算法只能解决有向图中的单源最短路径问题,即从一个起点到其他所有顶点的最短路径。
如果需要求解其他类型的最短路径问题,如多源最短路径或负权边的最短路径,可能需要使用其他算法。
vector accumulate函数
vector accumulate函数引言在许多编程语言中,向量(vector)是一种常见的数据结构,用于存储和处理多个元素。
在C ++标准库中,有一个非常有用的函数叫作accumulate函数,可以用来计算容器中的元素的总和、积或者其他自定义的操作。
在本文中,我们将深入探讨vector accumulate函数的用法和功能,并一步步介绍如何使用该函数来实现不同的计算需求。
vector的基本概念在深入讨论vector accumulate函数之前,让我们先了解一下vector的基本概念。
什么是vector?在C ++中,vector是一个容器类模板,用于存储一系列具有相同类型的元素。
它提供了动态数组的功能,并且可以根据需要自动调整大小。
vector类由C ++标准库提供,其定义在头文件中。
vector的使用方法vector的使用非常简单。
首先,我们需要包含头文件,并使用命名空间std来引入vector类。
然后,我们可以使用vector类的构造函数来创建一个vector对象。
例如,以下代码片段创建了一个包含5个整数的vector对象:#include <iostream>#include <vector>int main() {std::vector<int> numbers = {1, 2, 3, 4, 5};for (int number : numbers) {std::cout << number << " ";}return 0;}上述代码将输出:1 2 3 4 5。
vector accumulate函数的功能和用法现在让我们来详细讨论vector accumulate函数的功能和用法。
accumulate函数的定义vector accumulate函数是C ++标准库中的一个函数模板,用于对vector或其他容器中的元素进行累积计算。
matlab蒙特卡洛模拟路径
matlab蒙特卡洛模拟路径蒙特卡洛模拟路径是一种常用的数值模拟方法,它在金融领域、工程学和科学研究中广泛运用。
这种方法使用随机数生成器来模拟系统中的随机变量,并通过多次重复模拟来得出模拟路径。
在Matlab中,我们可以使用随机数生成函数和循环结构来实现蒙特卡洛模拟路径。
下面是一个简单示例:```matlab% 定义模拟参数N = 1000; % 模拟路径的步数T = 1; % 模拟的时间长度dt = T / N; % 时间步长S0 = 100; % 初始股价mu = 0.05; % 平均收益率sigma = 0.2; % 波动率% 生成随机数路径paths = zeros(N+1, 1);paths(1) = S0;for i = 1:Npaths(i+1) = paths(i) * exp((mu - sigma^2/2)*dt + sigma*sqrt(dt)*randn);end% 绘制路径图t = linspace(0, T, N+1);plot(t, paths);title('蒙特卡洛模拟路径');xlabel('时间');ylabel('股价');```在上述示例中,我们定义了模拟路径的步数`N`、模拟的时间长度`T`、时间步长`dt`、初始股价`S0`、平均收益率`mu`和波动率`sigma`。
然后,使用随机数生成函数`randn`来生成服从正态分布的随机数,并根据蒙特卡洛模拟的路径计算公式更新路径值。
最后,使用`plot`函数绘制路径图。
通过蒙特卡洛模拟路径方法,我们可以模拟出多条随机变量路径,并可以根据所定义的参数进行灵活调整。
这种方法不仅可以用于金融领域,还可以应用于其他领域,如物理学、生物学等。
使用python计算马哈顿距离切比雪夫距离欧式距离夹角余弦
使用python计算马哈顿距离切比雪夫距离欧式距离夹角余弦马哈顿距离(Manhattan Distance)是计算两个点在正交坐标系上的绝对距离之和。
在二维空间中,马哈顿距离就是两点之间的横坐标差的绝对值与纵坐标差的绝对值之和。
在三维空间中,马哈顿距离是两点的横坐标差的绝对值、纵坐标差的绝对值和纵坐标差的绝对值之和。
以此类推,马哈顿距离可以拓展到任意维度的空间。
切比雪夫距离(Chebyshev Distance)是计算两个点在各个维度上的最大差值。
在二维空间中,切比雪夫距离就是两点横坐标差的绝对值和纵坐标差的绝对值中的较大值。
在三维空间和更高维度的空间中,切比雪夫距离是两点在每个维度上差值的绝对值中的最大值。
欧式距离(Euclidean Distance)是计算两个点的直线距离。
在二维空间中,欧式距离即两点间的直线距离,可以通过勾股定理计算。
在三维空间和更高维度的空间中,欧式距离也是两点之间的直线距离,可以通过勾股定理的推广形式计算。
夹角余弦(Cosine Similarity)是计算两个向量之间的夹角的余弦值。
夹角余弦越接近1,表示两个向量越相似;夹角余弦越接近-1,表示两个向量越不相似;夹角余弦等于0,表示两个向量正交。
下面是使用Python计算马哈顿距离、切比雪夫距离、欧式距离和夹角余弦的示例代码:首先,我们来实现计算马哈顿距离的函数:```pythondef manhattan_distance(point1, point2):if len(point1) != len(point2):raise ValueError("The dimensions of the two points are not the same.")distance = 0for i in range(len(point1)):distance += abs(point1[i] - point2[i])return distance```接下来,我们来实现计算切比雪夫距离的函数:```pythondef chebyshev_distance(point1, point2):if len(point1) != len(point2):raise ValueError("The dimensions of the two points are not the same.")distance = 0for i in range(len(point1)):distance = max(distance, abs(point1[i] - point2[i]))return distance```然后,我们来实现计算欧式距离的函数:```pythonimport mathdef euclidean_distance(point1, point2):if len(point1) != len(point2):raise ValueError("The dimensions of the two points are not the same.")distance = 0for i in range(len(point1)):distance += (point1[i] - point2[i]) ** 2distance = math.sqrt(distance)return distance```最后,我们来实现计算夹角余弦的函数:```pythonimport numpy as npdef cosine_similarity(vector1, vector2):dot_product = np.dot(vector1, vector2)norm1 = np.linalg.norm(vector1)norm2 = np.linalg.norm(vector2)similarity = dot_product / (norm1 * norm2)return similarity```现在,我们可以测试这些函数了:```pythonpoint1 = [1, 2, 3]point2 = [4, 5, 6]print("Manhattan Distance:", manhattan_distance(point1, point2))print("Chebyshev Distance:", chebyshev_distance(point1, point2))print("Euclidean Distance:", euclidean_distance(point1, point2))print("Cosine Similarity:", cosine_similarity(point1,point2))```以上代码将输出两点之间的马哈顿距离、切比雪夫距离、欧式距离和夹角余弦值。
迪杰斯特拉算法和距离向量算法
迪杰斯特拉算法和距离向量算法迪杰斯特拉算法和距离向量算法1. 概述迪杰斯特拉算法和距离向量算法是图论中常见的两种最短路径算法。
它们在解决网络路由、路径规划等问题时有着广泛的应用。
本文将对这两种算法进行深入研究和比较,以便更好地理解它们的原理和应用。
2. 迪杰斯特拉算法迪杰斯特拉算法,又称单源最短路径算法,是用于计算一个节点到其他所有节点的最短路径的算法。
它采用贪心策略,逐步确定从起点到各个顶点的最短路径,直到找到到达终点的最短路径。
该算法的时间复杂度为O(V^2),V为顶点数,适用于稠密图。
在实际应用中,迪杰斯特拉算法常用于路由算法、网络规划等场景。
其核心思想是通过逐步确定从起点到各个顶点的最短路径,不断更新最短路径值,直到找到到达终点的最短路径。
3. 距离向量算法距离向量算法,又称分布式最短路径算法,是一种在计算机网络中常用的路由算法。
它通过不断交换节点之间的距离向量信息,从而更新各个节点的最短路径值。
该算法的收敛速度取决于网络拓扑结构和距离向量信息的交换频率。
在实际应用中,距离向量算法常用于动态路由协议中,如RIP (Routing Information Protocol)。
其核心思想是通过不断交换距离向量信息,从而更新节点之间的最短路径值,以实现网络路由的动态调整和优化。
4. 深度和广度的比较从深度和广度的角度来比较迪杰斯特拉算法和距离向量算法,可以发现它们各有特点。
迪杰斯特拉算法更注重于单源最短路径的计算,适用于静态网络中的最短路径计算;而距离向量算法更侧重于动态网络路由的调整,适用于动态网络中的路由优化。
从算法原理和应用场景来看,迪杰斯特拉算法更适用于静态网络中的最短路径计算,如在地图导航、网络规划等领域有着广泛的应用;而距离向量算法更适用于动态网络中的路由调整,如在云计算、物联网等领域有着重要的作用。
5. 个人观点和总结从个人观点来看,迪杰斯特拉算法和距离向量算法各有其独特的优势和局限性。
迪杰斯特拉算法和距离向量算法
迪杰斯特拉算法和距离向量算法迪杰斯特拉算法和距离向量算法是两种常用的图论算法,用于解决网络中节点之间的最短路径问题。
它们在解决问题的思路和实现方法上有所不同,下面我来详细介绍这两种算法。
1.迪杰斯特拉算法:迪杰斯特拉算法是一种贪心算法,用于求解带权有向图中源节点到其余所有节点的最短路径。
算法的基本思想是,先初始化一个距离数组,用于存储源点到各个节点的最短路径长度,然后逐步更新数组中的距离值,直到所有节点的最短路径长度被确定。
具体步骤如下:-初始化距离数组,将源节点的距离设置为0,其他节点的距离设置为无穷大(或一个足够大的数)。
-选择一个未标记的节点,将其标记为已访问。
-更新距离数组,遍历该节点的邻居节点,如果通过该节点到达邻居节点的距离更小,则更新距离数组中该邻居节点的距离。
-将最小距离节点标记为已访问,重复以上步骤,直到所有节点都被访问。
迪杰斯特拉算法的时间复杂度为O(N^2),其中N为节点数。
该算法适用于稠密图,即节点之间的连接较多的情况。
2.距离向量算法:距离向量算法是一种分布式算法,用于解决网络中节点之间的最短路径问题。
该算法的核心思想是,每个节点通过与相邻节点进行信息交换,更新自己的距离表,直到达到收敛,即各个节点的距离表不再发生变化。
具体步骤如下:-初始化距离表,将与自己相邻的节点的距离设置为直连距离,其他节点的距离设置为无穷大。
-与相邻节点进行距离信息的交换,更新自己的距离表。
交换的信息包括相邻节点的距离表以及其他节点当前的最短路径估计。
-通过比较相邻节点的距离表和自己的距离表,选择最短路径更新自己的距离表。
-重复以上步骤,直到各个节点的距离表不再发生变化。
距离向量算法的时间复杂度较难确定,因为每个节点的更新时间取决于网络的拓扑结构和信息交换的速度。
该算法适用于大规模网络和分布式系统,因为每个节点只需要与相邻节点交换信息。
迪杰斯特拉算法和距离向量算法是解决最短路径问题的两种常用算法。
matlab 牛顿法 多维无约束最优化
matlab 牛顿法多维无约束最优化在MATLAB中,你可以使用内置的优化工具箱函数来使用牛顿法进行多维无约束最优化。
具体来说,你可以使用fminunc函数,该函数使用一种基于牛顿法的优化算法。
以下是一个示例:
MATLABfunction [x,fval,exitflag,output] = multidimensional_unconstrained_optimization()
% 定义目标函数
fun = @(x) x(1)^2 + x(2)^2 - 4*cos(x(1)) - 2*cos(x(2));
% 定义初始点
x0 = [0.5,0.5];
% 调用fminunc函数
options = optimoptions('fminunc','Algorithm','quasi-newton');
[x,fval,exitflag,output] = fminunc(fun,x0,options);
end在这个例子中,我们定义了一个目标函数fun,它是一个多维函数,然后我们定义了一个初始点x0。
然后我们调用fminunc函数,并指定我们想要使用的算法为quasi-newton(一种牛顿法)。
最后,我们得到了优化问题的解x,以及目标函数在最优解处的值fval。
注意:这个例子中的目标函数是一个简单的二次函数,其最小值在原点。
因此,对于更复杂的目标函数,你可能需要更精细地调整初始点或选项。
距离矢量路由算法 题目
距离矢量路由算法题目Distance-vector routing algorithm is a type of routing algorithm used in computer networks to determine the best path for data packets to traverse from one node to another. It operates by calculating the distance or cost to reach all possible destinations and updating this information periodically. The most common distance-vector routing algorithm is the Routing Information Protocol (RIP), which uses hop counts to determine the shortest path.距离矢量路由算法是计算机网络中用于确定数据包从一个节点到另一个节点的最佳路径的一种路由算法。
它通过计算到达所有可能目的地所需的距离或成本,并定期更新这些信息来运行。
最常见的距离矢量路由算法是路由信息协议(RIP),它使用跳数来确定最短路径。
One of the drawbacks of distance-vector routing algorithms is the slow convergence time. When a network change occurs, such as a link going down or a new link being added, it takes time for the routing tables to update and converge on the new optimal paths. This delay can result in suboptimal routing decisions and increased latency in data transmission.距离矢量路由算法的一个缺点是收敛时间较慢。
matlab 多维马氏距离
matlab 多维马氏距离马氏距离是一种距离度量方法,与欧几里得距离不同的是,它考虑了数据的协方差矩阵。
在多维数据分析中,马氏距离可以用于度量不同维度之间的关系,以及识别不同类别之间的差异。
在MATLAB中,我们可以使用多种方法来计算多维马氏距离,下面将按照以下步骤进行介绍。
1. 定义数据矩阵和类别向量在MATLAB中,通常我们使用矩阵表示数据集,其中每一行代表一个样本,每一列代表一个维度。
同时,我们也需要定义一个类别向量,来标识数据集中每个样本所属的类别。
例如,我们可以使用以下代码生成一个3维数据集和类别向量:% 生成3维数据集data = rand(50,3);% 生成类别向量,其中0表示第一类,1表示第二类label = [zeros(25,1);ones(25,1)];2. 计算类别均值马氏距离的计算需要用到类别均值和协方差矩阵。
首先,我们可以使用MATLAB自带的mean函数计算每个类别下的均值。
例如,我们可以使用以下代码计算第一类和第二类的均值:% 计算第一类和第二类的均值mu_1 = mean(data(label==0,:));mu_2 = mean(data(label==1,:));3. 计算协方差矩阵计算协方差矩阵是马氏距离计算的另一个重要步骤。
在MATLAB 中,我们可以使用cov函数计算协方差矩阵。
例如,我们可以使用以下代码计算数据集的协方差矩阵:% 计算数据集的协方差矩阵cov_mat = cov(data);4. 计算马氏距离有了类别均值和协方差矩阵后,我们就可以使用mahal函数计算多维马氏距离了。
例如,我们可以使用以下代码计算第一类和第二类样本与其所属类别的马氏距离:% 计算第一类和第二类样本与其对应类别的马氏距离dist_1 = mahal(data(label==0,:),data(label==0,:));dist_2 = mahal(data(label==1,:),data(label==1,:));5. 可视化结果最后,我们可以使用MATLAB自带的scatter函数来可视化结果。
matlab 计算点云切向矢量
matlab 计算点云切向矢量
【最新版】
目录
1.引言
2.点云数据概述
3.切向矢量的计算方法
4.MATLAB 中计算点云切向矢量的实现
5.结论
正文
1.引言
点云数据在三维建模、计算机视觉和机器人导航等领域有着广泛的应用。
在处理点云数据时,切向矢量是一种重要的衍生数据,它可以描述点云数据的局部结构和拓扑特征。
本文将介绍如何使用 MATLAB 计算点云的切向矢量。
2.点云数据概述
点云数据是由一系列三维空间中的点组成的数据集,通常用于描述物体或场景的三维结构。
在 MATLAB 中,点云数据可以表示为一个矩阵,其中每一行表示一个点的三维坐标。
3.切向矢量的计算方法
切向矢量是与点云数据表面上某一点切线方向相切的向量。
在计算切向矢量时,需要首先计算点云数据的表面法向量,然后用单位化的表面法向量与切线方向的向量叉乘得到切向矢量。
4.MATLAB 中计算点云切向矢量的实现
在 MATLAB 中,可以利用点云数据的三维坐标计算表面法向量,然后
根据切线方向的向量和表面法向量计算切向矢量。
具体实现如下:(1)计算表面法向量:首先计算点云数据的梯度矩阵,即三维坐标的偏导数矩阵。
然后对梯度矩阵进行奇异值分解,得到表面法向量。
(2)计算切向矢量:根据切线方向的向量和表面法向量进行叉乘,得到切向矢量。
切线方向的向量可以通过计算点云数据中两点间的向量得到。
5.结论
通过 MATLAB 计算点云切向矢量,可以有效地描述点云数据的局部结构和拓扑特征。
MATLAB中的深度学习算法鲁棒性优化技巧
MATLAB中的深度学习算法鲁棒性优化技巧深度学习算法在近年来取得了显著的发展,并在多个领域展示出了强大的能力。
然而,深度学习算法在应用过程中常常面临着鲁棒性不足的问题。
即便是经过精心设计的算法,在实际应用中也面临着数据的噪声、异常值等问题的干扰。
因此,提升深度学习算法的鲁棒性对于实际应用的成功至关重要。
本文将介绍一些在MATLAB中优化深度学习算法鲁棒性的技巧。
一、数据预处理与特征工程数据预处理是提高算法鲁棒性的关键环节。
不同于传统机器学习算法,深度学习算法对数据的要求更高。
在输入深度学习模型之前,需要对数据进行预处理,包括数据标准化、归一化、缺失值处理等。
这些预处理步骤能够减小数据的噪声,为模型提供更干净、一致的数据输入。
此外,对于特定问题,特征工程也是提高深度学习算法鲁棒性的重要手段。
特征工程通过选择合适的特征、构建新的特征,帮助模型更好地捕捉数据的本质特征。
在MATLAB中,可以使用特征选择工具箱和特征变换工具箱进行特征工程,例如主成分分析(PCA)、线性判别分析(LDA)等。
二、模型选择与调参优化在深度学习算法中,模型的选择和调参优化是关键一环。
合适的模型能够更好地适应实际数据,并表现出更好的鲁棒性。
在MATLAB中,有丰富的深度学习工具箱可供选择,包括Convolutional Neural Network (CNN)、Long Short-Term Memory (LSTM)等。
同时,调参优化也是提高深度学习算法鲁棒性的重要手段。
在模型训练过程中,需要确定合适的学习率、正则化参数、批处理大小等超参数。
通过交叉验证和网格搜索等方法,可以在一定程度上提高模型的鲁棒性。
三、数据增强与对抗训练数据增强是一种有效提高深度学习算法鲁棒性的手段。
通过对训练数据进行扩充,引入多样性和噪声,可以帮助模型更好地应对各种数据情况。
在MATLAB中,可以使用图像增强工具箱实现各种数据增强操作,如翻转、旋转、缩放、裁剪等。
matlab中distance函数用法
matlab中distance函数用法一、介绍MATLAB是一种高级的数学计算软件,它具有许多内置函数,其中distance函数是一个非常有用的函数。
distance函数可以计算两个向量之间的欧几里得距离、曼哈顿距离、切比雪夫距离和余弦相似度等。
在本文中,我们将详细介绍distance函数的用法。
二、语法distance(X,Y):计算X和Y之间的欧几里得距离。
distance(X,Y,'cityblock'):计算X和Y之间的曼哈顿距离。
distance(X,Y,'chessboard'):计算X和Y之间的切比雪夫距离。
distance(X,Y,'cosine'):计算X和Y之间的余弦相似度。
三、参数说明X:m×n矩阵或n维向量,表示第一个向量。
Y:m×n矩阵或n维向量,表示第二个向量。
'cityblock':指定曼哈顿距离。
'chessboard':指定切比雪夫距离。
'cosine':指定余弦相似度。
四、示例1. 计算欧几里得距离```matlabA = [1 2 3; 4 5 6; 7 8 9];B = [1 2 3; 4 5 6; 10 11 12];d = distance(A,B);```输出结果为:```matlabd =0.0000 0.0000 13.9284 0.0000 0.0000 13.9284 2.8284 2.8284 3.4641 ```2. 计算曼哈顿距离```matlabA = [1 2;3 -1];B = [-2 -3;-1 -2];d = distance(A,B,'cityblock'); ```输出结果为:```matlabd =9 85 6```3. 计算切比雪夫距离```matlabA = [1,2,3;4,5,6];B = [7,8,9;10,11,12];d = distance(A,B,'chessboard'); ```输出结果为:```matlabd =6 6 66 6 6```4. 计算余弦相似度```matlabA = [1,2];B = [3,-1];d = distance(A,B,'cosine'); ```输出结果为:```matlabd =-0.0408```五、总结distance函数是MATLAB中非常有用的一个函数,它可以计算欧几里得距离、曼哈顿距离、切比雪夫距离和余弦相似度等。
点云聚类 马氏距离
点云聚类与马氏距离1. 引言点云聚类是计算机视觉和机器学习领域中的一个重要任务,它旨在将大规模的点云数据集划分为若干个具有相似特征的子集。
点云数据通常是由三维空间中的离散点组成,例如激光雷达或摄像头采集到的数据。
而马氏距离是一种常用的距离度量方法,它考虑了数据之间的协方差结构,能够更好地反映数据之间的相关性。
本文将介绍点云聚类任务以及如何使用马氏距离进行点云聚类。
2. 点云聚类2.1 点云表示在进行点云聚类之前,首先需要对点云进行合适的表示。
一种常见的表示方法是使用坐标向量来表示每个点,在三维空间中,一个点可以由其x、y和z坐标构成。
因此,一个包含N个点的点云可以表示为一个N×3维度的矩阵。
2.2 点云聚类算法目前,有许多不同的算法可用于进行点云聚类,其中一些常用的算法包括K-means、DBSCAN和Mean Shift等。
这些算法通常根据点之间的距离或密度来进行聚类。
在本文中,我们将重点介绍基于马氏距离的点云聚类方法。
3. 马氏距离3.1 距离度量在机器学习和模式识别领域,距离度量是一项重要的任务。
它用于衡量数据之间的相似性或差异性。
马氏距离是一种常用的距离度量方法,它考虑了数据之间的协方差结构,能够更好地反映数据之间的相关性。
3.2 马氏距离计算给定两个向量x和y,它们分别表示两个点在特征空间中的位置。
马氏距离可以通过以下公式计算:d(x,y)=√(x−y)T C−1(x−y)其中,C是协方差矩阵。
协方差矩阵描述了数据中各个特征变量之间的关系。
通过使用协方差矩阵来计算马氏距离,可以考虑数据之间的相关性,使得聚类结果更加准确。
3.3 马氏距离在点云聚类中的应用在点云聚类中,可以使用马氏距离来度量点之间的相似性。
具体而言,对于给定的两个点x和y,在计算马氏距离之前,需要先计算它们之间的协方差矩阵C。
然后,可以使用上述公式计算它们之间的马氏距离。
4. 基于马氏距离的点云聚类算法基于马氏距离的点云聚类算法可以分为以下几个步骤:4.1 数据预处理首先,需要对原始的点云数据进行预处理。
三维路径优化算法matlab
三维路径优化算法matlab英文回答:Three-dimensional path optimization algorithms are used to find the most efficient and optimal paths in a three-dimensional space. These algorithms are commonly used in various fields such as robotics, computer graphics, and computer-aided design.One popular algorithm used for three-dimensional path optimization is the A (A-star) algorithm. This algorithm is a heuristic search algorithm that finds the shortest path between two points in a graph. It uses a combination of the actual cost to reach a node and an estimated cost to reach the goal to determine the most promising path.To explain the A algorithm, let's consider an example of finding the shortest path between two points in a three-dimensional grid. Imagine you are a robot trying to navigate through a maze-like environment with obstacles.Your goal is to reach a specific destination point while avoiding obstacles.In this scenario, the A algorithm would work by exploring the neighboring nodes of the current position and calculating the cost to reach each neighboring node. The cost is determined by adding the actual cost to reach the neighboring node from the starting point and an estimated cost to reach the goal from the neighboring node. The estimated cost is usually calculated using heuristics such as the Euclidean distance or the Manhattan distance.The algorithm then selects the neighboring node with the lowest total cost and continues the process until the goal is reached. By considering both the actual cost and the estimated cost, the A algorithm can efficiently find the optimal path while avoiding unnecessary exploration of the search space.Another example of a three-dimensional path optimization algorithm is the D (D-star) algorithm. This algorithm is often used in dynamic environments where theobstacles or the cost of traversing the space can change over time. The D algorithm continuously updates the path as new information becomes available, allowing the robot or agent to adapt to changes in the environment.For instance, imagine you are a drone navigatingthrough a three-dimensional space where the wind speed and direction can change. The D algorithm would continuously update the path based on the current wind conditions to ensure the drone takes the most efficient route while accounting for the changing wind patterns.中文回答:三维路径优化算法用于在三维空间中寻找最高效和最优路径。
python 马氏距离剔除异常值
python 马氏距离剔除异常值马氏距离是一种常用的统计方法,用于衡量两个样本之间的相似性或距离。
在数据分析和异常检测中,马氏距离常被用来剔除异常值,以提高数据的准确性和可靠性。
异常值是指与大部分数据明显不同的数据点,它们可能是由测量误差、数据录入错误、系统故障或其他非正常情况引起的。
异常值的存在可能会对数据分析和模型建立产生不良影响,因此在数据处理过程中,我们需要找到并剔除这些异常值。
马氏距离的计算方法基于协方差矩阵,通过测量样本点与均值之间的距离来衡量数据点的异常程度。
具体而言,对于一个d维的样本点x,其与均值μ的马氏距离可以表示为:D = sqrt((x - μ)T * S^-1 * (x - μ))其中,S为协方差矩阵的逆矩阵。
马氏距离越大,表明样本点与均值之间的差异越大,也就越有可能是异常值。
在实际应用中,我们可以通过设定一个阈值来判断数据点是否为异常值。
如果某个数据点的马氏距离超过了阈值,就可以将其判定为异常值,并进行相应处理,比如删除、修复或标记。
在使用马氏距离剔除异常值时,需要注意以下几点:1. 数据的分布假设:马氏距离建立在对数据分布的假设上,通常假设数据服从多元正态分布。
如果数据不满足该假设,使用马氏距离可能会导致误判异常值。
2. 协方差矩阵的估计:计算马氏距离需要协方差矩阵的逆矩阵,而协方差矩阵的估计对结果影响很大。
如果样本量较小,估计的协方差矩阵可能不够准确,导致异常值的误判。
3. 阈值的选择:阈值的选择需要根据具体问题和需求进行,一般可以通过经验或者交叉验证等方法确定。
过小的阈值可能会将正常数据当作异常值剔除,而过大的阈值则容易将异常值误判为正常数据。
除了马氏距离,还有其他方法可以用于异常值的检测和剔除,比如箱线图、Z-score等。
这些方法各有优缺点,需要根据具体情况选择合适的方法。
马氏距离是一种常用的剔除异常值的方法,通过测量样本点与均值之间的距离来判断数据的异常程度。
matlab蒙特卡洛如何结合粒子群优化算法
matlab蒙特卡洛如何结合粒子群优化算法蒙特卡洛方法是一种基于随机数的数值计算方法,通过随机抽样来近似求解问题。
而粒子群优化(PSO)算法是一种基于群体智能的优化算法,模拟鸟群觅食行为来寻找最优解。
将蒙特卡洛方法与粒子群优化算法相结合,可以利用蒙特卡洛方法的随机性来增加粒子群优化算法的全局搜索能力和收敛速度。
首先,将问题转化为数学模型,并定义适应度函数。
例如,我们希望通过粒子群优化算法求解一个非线性优化问题。
可以将问题定义为最小化目标函数f(x),其中x为优化变量。
然后,定义适应度函数为适应度等于目标函数的倒数,越小代表适应度越好。
其次,初始化粒子群的位置和速度。
初始位置可以通过蒙特卡洛方法进行随机抽样得到。
例如,如果优化变量是一个n维向量x=(x_1, x_2, ... , x_n),那么可以通过在每个维度上进行随机抽样来生成初始位置。
初始速度也可以通过随机抽样得到。
然后,根据粒子的位置和速度更新规则,进行迭代优化。
在每次迭代中,根据当前位置和速度计算下一时刻的位置和速度。
位置的更新可以通过下式计算得到:x_i(t+1) = x_i(t) + v_i(t+1)其中,x_i(t)为粒子i在时刻t的位置,v_i(t+1)为粒子i在时刻t+1的速度。
速度的更新可以通过下式计算得到:v_i(t+1) = w*v_i(t) + c1*r1*(p_i(t) - x_i(t)) + c2*r2*(p_g(t) -x_i(t))其中,v_i(t)为粒子i在时刻t的速度,w为惯性权重,c1和c2为加速因子,r1和r2为随机因子,p_i(t)为粒子i的个体最优解,p_g(t)为整个粒子群的全局最优解。
迭代计算,直到满足停止条件。
可以设置迭代次数、最大误差、最优解的误差等作为停止条件。
最后,根据得到的最优解进行分析和优化。
可以输出最优解的数值结果,并对结果进行分析和优化。
蒙特卡洛方法和粒子群优化算法的结合将两者的优势相结合,提高了全局搜索能力和收敛速度。
vector accumulate函数
vector accumulate函数一、概述vector accumulate函数是STL中的一个算法函数,用于计算容器中元素的累加和。
该函数可以用于任何支持迭代器的容器,包括vector、list、deque等。
二、函数原型accumulate(first, last, init)参数说明:first:容器中第一个元素的迭代器。
last:容器中最后一个元素之后的迭代器。
init:初始值,即累加和的初值。
返回值:累加和。
三、使用方法1.头文件引入使用accumulate函数需要引入头文件<numeric>。
2.定义容器及初值定义需要计算累加和的容器,并给出初始值。
例如:vector<int> vec = {1, 2, 3, 4, 5};int init = 0;3.调用accumulate函数调用accumulate函数进行计算,并将结果存储在变量sum中。
例如:int sum = accumulate(vec.begin(), vec.end(), init);四、示例代码下面是一个完整的示例代码,展示了如何使用accumulate函数计算vector容器中元素的累加和:#include <iostream>#include <numeric>#include <vector>using namespace std;int main(){vector<int> vec = {1, 2, 3, 4, 5};int init = 0;int sum = accumulate(vec.begin(), vec.end(), init);cout << "The sum of elements in vector is: " << sum << endl; return 0;}五、总结vector accumulate函数是STL中的一个算法函数,用于计算容器中元素的累加和。
距离矢量路由算法
路由算法距离矢量路由算法的具体实现距离矢量路由算法的原理距离向量路由算法(Bellman-Ford Routing Algorithm),作为距离向量协议的一个算法,如RIP, (RIP 跳最大跳数16)BGP。
使用这个算法的路由器必须掌握这个距离表,它告诉在网络中每个节点的最远和最近距离。
在距离表中的这个信息是根据临近接点信息的改变而时时更新的。
这个在算法中的度量公式是跳跃的次数,等待时间,流出数据包的数量等等。
概括地说,距离向量算法要求每一个路由器把它的整个路由表发送给与它直接连接的其它路由器。
路由表中的每一条记录都包括目标逻辑地址、相应的网络接口和该条路由的向量距离。
当一个路由器从它的相邻处收到更新信息时,它会将更新信息与本身的路由表相比较。
如果该路由器比较出一条新路由或是找到一条比当前路由更好的路由时,它会对路由表进行更新:将从该路由器到邻居之间的向量距离与更新信息中的向量距离相加作为新路由的向量距离。
在距离向量路由算法中,相邻路由器之间周期性地相互交换各自的路由表备份。
当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。
距离矢量路由算法在理论中可以工作,但在实践中有一个严重的缺陷:虽然它总是能够达到正确的答案,但是它收敛到正确答案的速度非常慢,尤其是,它对于好消息的反应非常快,但是对于坏消息的反应非常迟缓。
程序源代码(c语言)#include ""#include "" n");getch();return;}elseprintf("\n路由表初始:\n");InitData(pfile);fclose(pfile);for (i = 0; i<ROUTNUM; i++){printf("%c||", i + 65);for (j = 0; j < ROUTNUM; j++)if (data[i][j].dis > 0)printf("<%c %d> ", j + 65, data[i][j].dis);printf("\n");} .] : ", 0, ROUTNUM - 1);scanf("%d", &start);printf("输入终点路由节点数字(%d-%d)[0代表A,1代表B...] : ", 0, ROUTNUM - 1); scanf("%d", &end);if (start == end || start < 0 || start > 6 || end < 0 || end > 6){printf("\n输入错误,请按任意键退出\n");getch();return;}else{int cur = start;int total = 0;if (data[start][end].dis < 0){printf("没有路由路径发现!\n");getch();return;}printf("%c->", cur + 65);while (data[cur][end].from >= 0) rom].dis; rom + 65);cur = data[cur][end].from; is;printf("%c\n总的路由距离= %d", end + 65, total);getch();return;}}void InitData(FILE *pfile){char num[10];int i = 0;char c;int m, n;fseek(pfile, 0, 0); 不是文件尾部且m<7循环.{for (n = 0; !feof(pfile) && n < 7; n++){while (!feof(pfile)){c = fgetc(pfile); is = atoi(num);isdata[m][n].from = -1; 题路由权值只能0到9*/ {num[i++] = c;} /*end of else if*/} /*end of while*/} /*end of for (n = 0*/} /*end of for (m = 0*/}void OutputRoutData(){int i, j;printf(" ");for (i = 0; i < ROUTNUM; i++){printf(" %c ", i + 65);}printf("\n");for (i = 0; i < ROUTNUM; i++){printf("%c ", i + 65);for (j = 0; j < ROUTNUM; j++){if (data[i][j].dis < 0) is>=10)printf(" %d", data[i][j].dis);elseprintf(" %d", data[i][j].dis);if (data[i][j].from < 0) rom + 65); is > 0) is < 0) is = data[send][i].dis + data[recv][send].dis; rom = send; is > data[send][i].dis + data[recv][send].dis)is = data[send][i].dis + data[recv][send].dis; rom= send; is > 0)次验证均正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MDV A:A Distance-Vector Multipath RoutingProtocolSrinivas Vutukury,J.J.Garcia-Luna-AcevesAbstract—Routing protocols using the Distributed Bellman-Ford(DBF) algorithm converge very slowly to the correct routes when link costs in-crease,and in the case when a set of link failures results in a network parti-tion,DBF simply fails to converge,a problem which is commonly referred to as the count-to-infinity problem.In this paper,we present thefirst distance vector routing algorithm MDV A that uses a set of loop-free invariants to prevent the count-to-infinity problem.MDV A,in addition,computes mul-tipaths that are loop-free at every instant.In our earlier work we shows how such loop-free multipaths can be used in traffic load-balancing and minimizing delays,which otherwise are impossible to perform in current single-path routing algorithms[15].I.I NTRODUCTIONRouting protocols construct tables at each node that specify for each destination the next-hop to use for data packet forward-ing.It is required that the routing tables computed by them be free of loops when the network is stable.In dynamic environ-ments,a more stringent requirement is that the routing tables be loop-free not only when network is stable but at every instant because,loops even if temporary can rapidly degrade perfor-mance.In our recent work[15],we described a load-balancing routing framework to obtain“near-optimal”delays,a key com-ponent of which is a fast responsive routing protocol that de-termines multiple successor choices for packet forwarding such that the routing graphs implied by the routing tables are free of loops even during network transitions.By load-balancing traffic over these multiple next-hop choices,congestion and delays can be significantly reduced.Our goal in this paper is therefore to develop a distance-vector routing algorithm that is suitable for implementing near-optimal routing as described in[15]. Though routing is a very old problem in computer net-works,most of the solutions to date are unsuitable for load-balancing and implementing the near-optimal framework men-tioned above.The widely deployed routing protocol RIP pro-vides only one next-hop choice for each destination and does not prevent temporary loops from forming.Cisco’s EIGRP[1] ensures instantaneous loop-freedom but can provide only a sin-gle loop-free path to each destination at any given router.The link-state protocol OSPF offers a router multiple choices for packet-forwarding only when those choices offer the minimum distance.When there isfine granularity in link costs metric,as in the case of optimal routing,there is less likelihood that multiple paths with equal distance exist between each source-destination pair,which means the full connectivity of the network is still not used for load-balancing.Also,OSPF and other algorithms based on topology-broadcast(e.g.,[13],[10])incur too much commu-nication overhead when link costs change frequently.Also they This work was supported in part by the Defense Advanced Research Projects Agency(DARPA)under grants F30602-97-1-0291and N66001-00-1-8942. Srinivas Vutukury is with the Computer Sciences Department and J.J.Garcia-Luna-Aceves is with the Computer Engineering Department at University of California,Santa Cruz,USA.do not provide instantaneous loop-freedom which is desirableespecially when on-line link-cost measurement is used. Several routing algorithms based on distance vectors havebeen proposed in the literature([7],[8],[9],[11],[16]to namea few).However,with the exception of DASM[16],all ofthem are single-path algorithms.A few routing algorithms have been proposed that use partial topology information(re-fer[6],[12]and the references therein)to eliminate the mainlimitation of topology-broadcast algorithms;however,these al-gorithms are not loop-free at every instant.Recently,we intro-duced MPDA[15],which is thefirst routing algorithm based on link-state information that construct multipaths to each des-tination that are loop-free at every instant.In this paper,wepresent a new routing algorithm MDV A(Multipath Distance-Vector Algorithm),which is thefirst distance vector algorithmthat uses the loop-free invariants introduced in[15],solves the count-to-infinity problem and computes multipaths to destina-tions.We provide formal proofs for the safety and liveness prop-erties of MDV A,and compare its performance to other routingalgorithms through simulations.The paper is organized as follows.In Section II we discussthe main convergence problem facing a typical distance-vector algorithm and outline a solution that addresses those problems.Section III describes MDV A and Section IV provides the cor-rectness proof for the algorithm.A performance comparisonthrough simulations is provided in Section V.Section VI con-cludes the paper.II.O VERVIEW OF THE A PPROACHA.Problem FormulationA computer network is modelled as a graph,where is set of nodes(routers)and is the set of edges(links).Let be the set of neighbors of node.The problemconsists offinding the successor set at each router for each des-tination,denoted by,so that when router receivesa packet for destination,it can forward it to one of the neigh-bor routers in the successor set.By repeating this processat every router,the packet is expected to reach the destination. If the routing graph,a directed subgraph of,is definedby the directed link set,a packet destined for follows a path in.Two properties determinethe efficiency of the routing graph constructed by the protocol:loop-freedom and connectivity.It is required that be free of loops,at least when the network is stable,because routing loops degrade network performance.In a dynamic environment,it is desirable that be loop-free at every instant,i.e.,if and are parameterized by time,then should be free of loops at any time.Observe that if there is at most one element in each,then is a tree and there is only one path fromTABLE IN OTATIONSet of nodes in the networkNext-hop choices at for destination Distance of node to as known toDistance of node to as reported by to Distance to reported by node to its neighbors Set of neighbors that are waiting for replies Distance of node to inBecause the implied by,is acyclic at every in-stant,the above relations indicate a contradiction.Therefore, circular computation is impossible if the above mentioned con-ditions are enforced.Notice that we intend to propagate the distances along the shortest-multipath which itself is com-puted using the distances.This“bootstrap”approach–comput-ing using diffusing computation along and simultane-ously constructing and maintaining–is central to MDV A. How can we ensure that is always loop-free?To do this we use a new variable,called the feasible distance,which is an‘estimate’of the distance in that is equal to when the network is in stable state,but to prevent loops during periods of network transitions,it is allowed to differ temporar-ily from.Let be the distance of to as notified to by.To ensure loop-freedom at every instant,and must satisfy the Loop-Free Invariant(LFI)conditions intro-duced in[15].The LFI conditions capture all previous loop-free conditions([5],[16])in a unified form that simplifies protocol design.The conditions areLoop-free Invariant Conditions(LFI)[15]:(1)(2) The invariant conditions(1)and(2)state that,for each desti-nation,a node can choose a successor whose distance to,as known to,is less than the distance of node to that is known to its neighbors.Theorem1is reproduced here for convenience. Theorem1:[15]If the LFI conditions are satisfied at any time,then the implied by the successor sets is loop-free.For proof of this theorem the reader is refered to[15].The above theorem suggests that any distributed routing protocol (link-state or distance-vector)attempting tofind loop-free short-est multipaths must compute,and such that the LFI conditions are satisfied,and such that at convergence=minimum distance from to.III.M ULTIPATH D ISTANCE-V ECTOR A LGORITHMIn essence,MDV A uses DBF to compute and therefore ,while always propagating distances along the to pre-vent count-to-infinity problem and ensure termination.Each node maintains a main table that stores,the successor set ,the feasible distance,the reported distance,and ,which is the shortest distance possible through the succes-sor set.The table also stores,the set of waiting neighbors in a diffusing computation.Each node also maintains a neighbor table for each neighbor that contains the dis-tance of neighbor to as communicated by.The link table stores the cost of adjacent link to each neighbor.At startup time,a node initializes all distances in its tables to infinity and all sets to null.If a link is down its cost is considered infinity.The distance to unreachable nodes are considered to be infinity. Nodes executing MDV A exchange information using mes-sages which can have one or more entries.An entry or distancevector is of the form[,,],where is the distance of the node sending the message to destination and the type is one of QUERY,UPDATE and REPLY.We assume that messages trans-mitted over an operational link are received without errors andin the proper sequence and are processed in the order received. Nodes invoke the procedure shown in Figure1to process distance vectors.An event is the arrival of a message,the change in cost of an adjacent link,or a change in status(up/down)of an adjacent link.When an ad-jacent link becomes available,the node sends an update mes-sage[UPDATE,,]for each destination over the link. When an adjacent link fails,the neighbor table asso-ciated with neighbor is cleared and the cost of the link is set to infinity,after which,for each destination the procedureis invoked.Similarly, when an adjacent link cost to changes,is set to the new cost and(UPDATE,,,)is invoked for each destination.When a message is received from neigh-bor,is invoked for each en-try of the message.Computing distances to each destination can be performed in-dependently.Hence,in the rest of the description,the working of the algorithm is described with respect to a particular destina-tion.A node can be in ACTIVE or PASSIVE state with respect to a destination and is represented by variable.A node is in ACTIVE state when it is engaged in a diffusing computation and waiting for replies from neighbors.Initially,we assume that all nodes are in PASSIVE state.As long as link cost decrease, MDV A works identically to DBF and the nodes will remain in PASSIVE state.This is because the condition on line9always fails and lines17-24are always executed.works in such a way that when in PASSIVE state,the conditionalways holds, which can be infered from lines8and23.However,if the dis-tance to a destination increases,either because an adjacent link cost changed or a message is received from a neighbor,the con-dition on line9succeeds and the node engages in a diffusing computation.A diffusing computation is initiated by sending query messages to all the neighbors with the best distance through,and waiting for the neighbors to reply(lines14-15). If the increase in distance is due to a query from a successor, the neighbor is added to to indicate that it is waiting for a reply so that a reply can be given when the node transits to PAS-SIVE state(lines11-12).When all replies are received,the node can be sure that the neighbors have incorporated the distances that the node reported,and is safe to transit to PASSIVE state. At this point,can be increased and new neighbors can be added to without violating the LFI conditions.When in ACTIVE state,if a query message is received froma neighbor not in,a reply is given immediately.On the other hand,if the query is from a neighbor in,a test is made to verify if increased beyond the previously re-00.procedure01.is the type,is the neighbor,is the distance,is the destination02.begin03.if(then send[REPLY,j,0]to;endif04.;05.;06.;07.if then08.;09.if then10.;11.if then12.;13.endif14.;15.,send[QUERY,,]to neighbor;16.else17.;18.foreach do19.if then send[REPLY,,]to;20.else if(send[UPDATE,,]to;21.endif22.done23.;24.;25.endif26.else27.if then28.if then;29.else send[REPLY,,]to;30.endif31.endif32.endif33.;34.endFig.1.Distance vector processing in MDV A.ported distance(line28).If it did not,a reply is sent imme-diately.However,if increased,no reply is given and the query is blocked by adding to.The replies to neigh-bors in are deferred until that time when the node is ready to transit to PASSIVE state.After receiving all replies,one of two things can happen:either the ACTIVE phase ends or it continues.If the distance increased again after receipt of all replies,the ACTIVE phase is extended by sending new set of queries,otherwise the ACTIVE phase ends.In the case the ACTIVE phase continues,no replies are issued to the pending queries in.Otherwise,all replies are given and the node transits to PASSIVE state satisfying the PASSIVE-state invariant.IV.C ORRECTNESS P ROOFSTo prove the correctness of MDV A consider the following two mutually exclusive and exhaustive cases:(1)some link costs change,but the distances to destinations either decrease or re-main unchanged(2)some link costs increase,resulting in an increase in distances to some destinations.MDV A works identi-cal to DBF when distances to destinations only decrease and thesame proof of DBF applies[2].To state this formally,assumethe network is stable up to time and all nodes have the correctdistances.At time,the costs of some links decrease.Since the distances in the tables are such that,within some finite time,,.MDV A and DBF behave differently,when some link costsincrease such that distances between some source-destinationpairs increase.In this case,for some and. Both DBF and MDV Afirst increase to a value greater than ,after which the distances monotonically decrease until they converge to the correct distances.MDV A and DBF,how-ever,differ on how they increase the distances.DBF does it step-by-step in small bounded increments until.How-ever,when,this leads to the count-to-infinity prob-lem.In contrast,MDV A uses diffusing computations to quickly raise so that,after which it functions similar to scenario1described above,and the distances converge to the correct values as before.After the end of all diffusing computa-tions MDV A works just like DBF.In summary,to show that MDV A terminates,it is sufficient to show that:(1)the are loop-free at every instant(Theo-rem2),(2)every diffusing computation completes within afinite time(Theorem3),and(3)there is afinite number of diffusing computations(Theorem5).Finally,we show that MDV A con-verges to correct distances when it terminates in Theorem5. Theorem2:For a given destination,the constructed by MDV A is loop-free at every instant.Proof:The proof is by showing that the LFI conditions are satisfied during every ACTIVE and PASSIVE phase.Let be the time when the transition from PASSIVE to ACTIVE state starts at node for.The proof is by induction on.At node initialization time,all distance variables are initialized to infinite and hence,.Assume the LFI conditions are true up to time.Then(3) At any time,from lines6,8,14and23in the pseudocode in Figure1,and because,if follows that(4) and therefore,for and,we have(5)(6)Let the queries sent at,the start time of the ACTIVE phase, be received at a particular neighbor at.From Eq.(4) and the fact that the update messages sent,if any,betweenand specify non-increasing distances,we have(7) Let be the time when all replies are received and ACTIVE phase ends.During the ACTIVE phase the value of remains unchanged and no new is reported during this period(lines 27-31).Furthermore,during PASSIVE phase,only decreasing values of are reported.Then from Eq.(6)it follows that(8) At,irrespective of whether the node transits to PASSIVE state or continues in the ACTIVE phase,from Eq.(4)we have(9)In the case that the ACTIVE phasefinally ends,we havefor.In the PASSIVE phase, can only remain constant or decrease until the next AC-TIVE phase at.Therefore,the LFI conditions are satisfied in the interval.On the other hand,if the ACTIVE phasecontinues,new queries are sent at time.Assume all replies for these queries are received at time.From similar argument as above,it follows that for.Thus irrespective of how long the ACTIVE phase continues,the invari-ant holds between[,].From induction,therefore,the LFI conditions hold at all times.It then follows from Theorem1that is loop-free at all times.Theorem4:A node can have only afinite number of ACTIVE phases.Proof:Assume towards a contradiction that there is a node that does go through an infinite number of PASSIVE to ACTIVE transitions.An active phase transition occurs either because of a query from a successor or a link-cost increase of an adjacent link.Because link costs can change only afinite number of times,the infinite PASSIVE-ACTIVE phase transitions must have been triggered by an infinite number of queries from a neigh-bor.Let that neighbor be.Now,by the same argument,is sending an infinite number of queries because it is receiving an infinite number of queries.But this argument cannot be contin-ued for ever because there is only afinite number of nodes in the network.Because the reply to the neighbor in the successor set causing the phase transition is blocked and the routing graphsare loop-free at every instant(Theorem2),there must be a node that transits to ACTIVE state only because of adjacent link cost changes.This implies that a link must change its cost infinite number of times—a contradiction of assumption.Therefore,a node cannot have an infinite number of ACTIVE phases.V.P ERFORMANCE A NALYSISThe storage complexity is of,as each of the neighbor tables and the main distance table has a size of entries.The computation complexity is the time taken to process a distance vector and it is easy to see thattakes.The time complexity is278181356171691514131110124Fig.2.Example topologythe time it takes for the network to converge after a set of link-cost changes in the network and the communication complexity is the amount of message overhead required for propagating a set of link-cost changes.In a dynamic environment,the timing and range of link cost changes occur in complex patterns that are often determined by the traffic on the network,because of which obtaining closed form expressions for time and communication complexity is impossible.An approximate analysis that is pro-vided in[8]for the case in which communication is synchronous throughout the network also apply to MDV A.We use simulations to compare the control overhead and con-vergence time of MDV A with that of DBF,MPDA[15]and topology broadcast(TOPB).The main purpose of these simu-lations is to give some qualitative explanation for the behavior of MDV A.The reason for choosing DBF and TOPB is that DBF is based on vectors of distances and does not use diffusing com-putations,while TOPB represents an ideal upper bound on per-formance of the widely used routing protocols OSPF and IS-IS. The reason for choosing MPDA is that it has been shown to be very efficient compared to TOPB,in terms of communica-tion overhead.MDV A achieves loop-freedom through diffusing computations that,in some cases,may span the whole network. In contrast,MPDA uses only neighbor-to-neighborsynchroniza-tion.It is interesting to see how convergence times and control message overheads are effected by the synchronization mecha-nisms.A comparison of several algorithms that does not include MPDA and MDV A is given in[3].Simulations are performed on the topology shown in Fig.(2). The simulator used is an event-driven real-time simulator called CPT.We assume the computation time to be negligible compared to the communication times.The bandwidth and propagation delays of each link are5MB and100s respectively.In back-bone networks,links and nodes are highly reliable and change status much less frequently than link costs which are a function of the traffic on the link.This is particularly true in near-optimal routing of[15],in which the link costs are periodically mea-sured and reported.For this reason,in this paper we focus on comparing the algorithms in scenarios when multiple link-cost changes occur.In each experiment,all links are initially set at unit cost and then each link cost is changed by amounts determined by the We thank Nokia Wireless Routers for allowing us using the C++Protocol Toolkit11.21.41.61.822.22.400.511.522.533.54M i l l i s e c o n d sLink-cost Increase Factor KComparison of Convergence Times’DBF’’MDVA’’MPDA’’TOPB’Fig.3.Average convergence times.,.2530354045505560657000.511.522.533.54K i l o b y t e sLink-cost Increase Factor: KComparison of Control Message Overhead’DBF’’MDVA’’MPDA’’TOPB’Fig.4.Average message overhead.,.0.911.11.21.31.41.51.600.511.522.533.54M i l l i s e c o n d sLink-cost Increase Factor: KComparison of Convergence Times’DBF’’MDVA’’MPDA’’TOPB’Fig.5.Average convergence times.,.formula ,where is a uniform random value in [0,1].The parameters of the experiment and are real values while is a positive integer.After setting the new link costs,the convergence times and message overheads are measured for each routing algorithm.For each experiment with specific ,and ,several trials are made using different random values for .The averages and probability distributions obtained for each metric and for each set of trials are compared.Fig.3and Fig.4show the average convergence time and av-erage message load,measured over several trials,when the links costs are increased from initial unit cost to a cost using the for-mulawith and .As can 1015202530354000.511.522.533.54K i l o b y t e sLink-cost Increase Factor: KComparison of Control Message Overhead’DBF’’MDVA’’MPDA’’TOPB’Fig.6.Average message overhead.,.00.10.20.30.40.50.60.70.80.9110001200140016001800200022002400P r o b a b i l i t yConvergence Time (ms)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.7.PDF of convergence times.,,.0.10.20.30.40.50.60.70.80.9120253035404550556065P r o b a b i l i t yMessage overload (Kb)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.8.PDF of message overhead.,,.be observed in Fig.3the average convergence times are bestfor MDV A.As can be seen in Fig.4,the average message loads are also low and only MPDA has lower message overhead.Fig-ures 5and 6show the averages when link costs decrease.Ob-serve that DBF and MDV A perform identically as can be seen in the figures.Fig.7and Fig.8show the complete distribution for conver-gence times and message overhead for the case.Observe that the distributions are quite uniform com-pared to DBF.When is increase to 5from 1,the convergence times and message overheads of MDV A,as shown in Fig.9and Fig.10,have not changed much,but the performance of DBF00.10.20.30.40.50.60.70.80.91800100012001400160018002000220024002600P r o b a b i l i t yConvergence Time (ms)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.9.PDF of convergence times.,,.00.10.20.30.40.50.60.70.80.91202530354045505560657075P r o b a b i l i t yControl Message Overhead (Kb)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.10.PDF of message overhead.,,.00.10.20.30.40.50.60.70.80.9170080090010001100120013001400P r o b a b i i t yConvergence Time (ms)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.11.PDF of convergence times.,.has degraded considerably.This is because of the counting-to-infinity problem,which is does not occur in MDV A.Fig.11and Fig.12show the convergence time and mes-sage overhead distribution when link costs decrease (,).(Note that we make sure that link costs do not be-come negative.)Observe that the performance of MDV A and DBF are much the same which is because MDV A essentially functions like DBF when distances to destinations decrease.From these simulations it appears that MDV A is a good choice if low convergence times are desired at the expense of high mes-sage overload while MPDA is preferable if low message over-head is desirable over convergence times.0.10.20.30.40.50.60.70.80.9110152025303540P r o b a b i l i t yMessage Overload (Kb)Probability Distribution Function’DBF’’MDVA’’MPDA’’TOPB’Fig.12.PDF of message overhead.,.VI.S UMMARYThis paper presented a new distributed distance-vector rout-ing algorithm,MDV A,which is free from the count-to-infinity problem,provides multiple next-hop choices for each destina-tion,and the routing graphs implied by them are always loop-free.The novelty of the algorithm lies in its design around a set of loop-free invariant conditions which ensures instantaneous loop-freedom and correct termination of the protocol.Formal proofs are presented to show MDV A’s convergence,correctness and loop-freedom.Through simulation we have compared it to some currently used routing protocols.R EFERENCES[1]R.Albrightson,J.J.Garcia-Luna-Aceves,and J.Boyle.EIGRP-A Fast Routing Protocol Based on Distance world/Interop 94,May 1994.[2] D.Bersekas and R.Gallager.Data networks.2nd ed.Prentice-Hall ,pages 404–410,1992.[3]I.Matta et.al.Transient and Steady-State Performance of Routing Pro-tocols:Distance Vectors vs.Link State.Journal of Internetworking:Re-search and Experience ,6:59–87,1995.[4] E.W.Dijkstra and C.S.Scholten.Termination Detection for Diffusing rmation Processing Letters ,11:1–4,August 1980.[5]J.J.Garcia-Luna-Aceves.Loop-Free Routing Using Diffusing Computa-tions.IEEE/ACM working ,1:130–141,February 1993.[6]J.J.Garcia-Luna-Aceves and J.Behrens.Distributed,scalable routing based on vectors of link states.IEEE Journal on Selected Areas in Com-munications ,October 1995.[7]P.A.Humblet.Another Adaptive Distributed Shortest Path Algorithm.IEEE mun.,39:995–1003,June 91.[8]J.M.Jaffe and F.H.Moss.A Responsive Distributed Routing Algo-rithm for Computer Networks.IEEE mun.,30:1758–1762,July 1982.[9]P.M.Merlin and A.Segall.A Failsafe Distributed Routing Protocol.IEEE mun.,27:1280–1287,September 1979.[10]R.Perlman.Fault-tolerant broadcast of routing puter Networks and ISDN ,7,1983.[11] B.Rajagopalan and M.Faiman.A Responsive Distributed Shortest-Path Routing Algorithm with Autonomous Systems.Internetworking:Re-search and Experience ,2:51–69,March 1991.[12]S.Roy and ing Minimal Source Trees for On-Demand Routing in Ad Hoc COM 2001,2001.[13]J.Spinelli and R.Gallager.Event Driven Topology Broadcast without Sequence Numbers.IEEE mun.,37:468–474,1989.[14] puter networks.3rd ed.Prentice-Hall ,pages 357–358,1996.[15]S.Vutukury and J.J.Garcia-Luna-Aceves.A Simple Approximation to Minimum Delay Routing.Proc.of ACM SIGCOMM ,Sept.1999.[16]W.T.Zaumen and J.J.Garcia-Luna-Aceves.Loop-Free Multipath Rout-ing Using Generalized Diffusing Computations.Proc.IEEE INFOCOM ,March 1998.。