浙教版初中数学八年级上册期中测试题1

合集下载

浙教版八年级上数学期中试卷及答案

浙教版八年级上数学期中试卷及答案

八年级第一学期期中检测卷考试时间90分钟,满分120分一、选择题(每小题3分,共30分)1、如图,直线DE 截AB ,AC ,其中内错角有( )对。

A 、1 B 、2 C 、3 D 、42、在一个不透明的袋子里放入2个红球,3个白球和5个黄球,每个球 除颜色外都相同,曾老师摇匀后随意地摸出一球,这个球是红球或白 球的概率为( )。

A 、0.2B 、0.3C 、0.5D 、0.8 3、如图a ∥b ,∠1=45°,则∠2=( )。

A 、45°B 、135°C 、150°D 、50° 4、一个四面体有棱( )条。

A 、5B 、6C 、8D 、12 5、下列各图中能折成正方体的是( )。

6、在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )。

A B C D7、为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间......的说法错误..的是( )。

A 、众数是9B 、中位数是9C 、平均数是9D 、锻炼时间不低于9小时的有14人ABCD锻炼时间(小时)21ba AD ECBA BCF 8、如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分 别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么 ∠DBF =( )。

A 、62ºB 、38ºC 、28ºD 、26º9、以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上; ⑤直棱柱的相邻两条侧棱互相平行但并不一定相等。

其中正确的个数是( )。

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x−2,2x−1.若这两个三角形全等,则x等于( )B. 3C. 4D. 5A. 732.如图,点A,E,F,D在同一直线上,AB//CD,AB=CD,AE=DF,则图中全等三角形共有( )A. 1对B. 2对C. 3对D. 4对3.如图,在△ABC中,点D在AC上,连结BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中等腰三角形共有( )A. 0个B. 1个C. 2个D. 3个4.如图,在△ABC中,AB=AC,若∠BAD=30∘,AD是BC上的高,AD=AE,则∠EDC的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘5.已知关于x的不等式x−a≥1,若x=1是不等式的解,x=−1不是不等式的解,则a的取值范围为( )6.三个连续自然数的和小于15,这样的自然数组共有( )A. 6组B. 5组C. 4组D. 3组7.如图,已知∠BAD=∠CAE,AC=AE,下列添加的条件中不能证明△ABC≌△ADE的是( )A. DE=BCB. AB=ADC. ∠C=∠ED. ∠B=∠D8.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.在探究筝形的性质时,得到下列结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC⋅BD.其中正确的有A. 0个B. 1个C. 2个D. 3个9.已知下列命题: ①若a+b=0,则a与b互为相反数; ②若a>0,则√a2=(√a)2; ③两直线平行,同位角相等; ④若a2+b2=0,则a=0,b=0.其中原命题与逆命题均为真命题的个数为( )A. 4B. 3C. 2D. 110.如图,在△MNP中,∠P=60∘,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为a,MQ=b,则△MGQ的周长为( )A. 2a+12b B. 2b+12a C. a+b D. 2a+2b11.我们知道不等式1+x2<1+2x3+1的解集是x>−5,现给出另一个不等式1+(3x−1)2<1+2(3x−1)3+1,它的解集是( )12.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为( )A. 52<x<72B. 3<x<72C. 3<x≤72D. 52≤x<72第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一次生活常识竞赛共有25道题,答对一题得4分,不答题得0分,答错一题扣2分.若小明有2道题没答,且竞赛成绩高于80分,则小明至多答错了______道题.14.已知不等式组{x≥−a−1 ①,−x≥−b ②在同一条数轴上表示不等式 ①, ②的解集如图所示,则b−a的值为.15.如图,等边△ABC的边长为12cm,M,N两点分别从点A,B同时出发,沿△ABC的边顺时针运动,点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N两点同时停止运动,则当M,N运动时间t=s时,△AMN为等腰三角形.16.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为____________.三、解答题(本大题共9小题,共72分)17.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC的面积是______ ;(每个小正方形的边长为1)(2)△ABC是格点三角形.①在图2中画出一个与△ABC全等且有一条公共边BC的格点三角形;②在图3中画出一个与△ABC全等且有一个公共点A的格点三角形.18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点P,∠A=50°,求∠BPC的度数.19.如图,△ABC的两条角平分线BD,CE相交于点O,∠A=60°.求证:CD+BE=BC.20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.22.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?23.已知关于x的不等式组{x−a⩾05−2x>1(1)若a=−1,求不等式组的解集.(2)若不等式组只有四个整数解,求实数a的取值范围.24.某公司的1号仓库与2号仓库共存粮450吨,如果从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,2号仓库所余粮食就比1号仓库所余粮食多30吨,从1号仓库、2号仓库调运存粮到加工厂的运价分别为120元/吨和100元/吨.(1)求1号仓库与2号仓库原来各存粮多少吨?(2)该公司将两个仓库中原来的存粮共调出300吨运往加工厂进行深加工,若2号仓库调出的粮食不少于1号仓库调出粮食的1.5倍,设从1号仓库调出m吨粮食到加工厂,求m的取值范围;(3)在(2)的条件下,若1号仓库到加工厂的运价可优惠a元/吨(15≤a≤30),2号仓库到加工厂的运价不变,当总运费的最小值为30360元时,请直接写出a的值.25.某超市购进A和B两种商品,已知每件A商品的进货价格比每件B商品的进货价格贵2元,用250元购买A商品的数量恰好与用200元购买B商品的数量相等.(1)求A商品的进货价格;(2)计划购进这两种商品共30件,且投入的成本不超过280元,那么最多购进多少件A商品?答案和解析1.【答案】B【解析】 【分析】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.首先根据全等三角形的性质:全等三角形的对应边相等可得:3x −2与5是对应边,或3x −2与7是对应边,计算发现,3x −2=5时,2x −1≠7,故3x −2与5不是对应边. 【解答】解:∵△ABC 与△DEF 全等,当3x −2=5,2x −1=7,x =73,把x =73代入2x −1中,2x −1≠7,∴3x −2与5不是对应边,当3x −2=7时,x =3,把x =3代入2x −1中,2x −1=5, 故选B .2.【答案】C【解析】 【分析】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS 、HL 。

【浙教版】八年级数学上期中试卷及答案(1)

【浙教版】八年级数学上期中试卷及答案(1)

一、选择题1.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形2.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒3.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 4.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒5.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对6.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒7.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°8.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个 9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cm B .10cm C .4cm D .6cm 10.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 12.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°二、填空题13.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.14.含30角的直角三角板与直线1l ,2l 的位置关系如图所示,已知12//l l ,30A ∠=︒,160∠=︒,若6AB =,CD 的长为__________.15.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可)16.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.17.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .18.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.19.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 20.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.三、解答题 21.(1)如图1,О是等边ABC 内一点,连接OA OB OC 、、,且3,4,5,OA OB OC ===BAO BCD ≅△△,连接OD .①OBD ∠= __度;(答案直接填写在横线上)②OD =_ __﹔(答案直接填写在横线上)③求BDC ∠的度数.(2)如图2所示,О是等腰直角()90ABC ABC ∠=︒△内一点,连接OA OB OC 、、,BAO BCD ≅△△,连接OD .当OA OB OC 、、满足什么条件时,90ODC ∠=.请给出证明.22.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.已知ABC 为等腰直角三角形,AB AC =,ADE 为等腰直角三角形,AD AE =,点D 在直线BC 上,连接CE .(1)若点D 在线段BC 上,如图1,求证:CE BC CD =-;(2)若D 在CB 延长线上,如图2,若D 在BC 延长线上,如图3,其他条件不变,又有怎样的结论?请分别写出你发现的结论,不需要证明;(3)若10CE =,4CD =,则BC 的长为________.25.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB”,请直接写出∠P 与∠B 、∠C 之间存在的数量关系.26.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O .(1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数;(2)请直接写出BOC ∠与A D ∠+∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A 、B ,根据对顶角的定义判断C ,根据等边三角形的判定判断D .【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B .已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL 可以得出两个三角形全等,故本选项是真命题;C 、相等的角不一定是对顶角,故错误,是假命题;D 、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C .【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.2.A解析:A【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC的度数,进而求出∠CDE的度数.【详解】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A.【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.3.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.4.A解析:A【分析】利用AD=AC,求出∠ADC=∠C=50︒,利用AD=AB,即可求得∠B=∠BAD1252ADC==∠︒.【详解】∵AD=AC ,∴∠ADC=∠C ,∵80CAD ︒∠=,∴∠ADC=∠C=50︒,∵AD=AB ,∴∠B=∠BAD 1252ADC ==∠︒, 故选:A .【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键. 5.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.6.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.7.B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、根据AB =3,BC =4,∠C =40°,不能画出唯一三角形,故本选项不合题意; B 、∠A =60°,AB =4,∠B =45°,能画出唯一△ABC ,故此选项符合题意;C 、∠C =90°,AB =6,不能画出唯一三角形,故本选项不合题意;D 、AB =4,BC =3,∠A =30°,不能画出唯一三角形,故本选项不合题意;故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理. 9.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.C解析:C【分析】设选取的木棒长为xcm ,再根据三角形的三边关系求出x 的取值范围,选出合适的x 的值即可.【详解】解:设选取的木棒长为xcm ,∵两根木棒的长度分别为5cm 和13cm ,∴13cm-5cm <x <13cm+5cm ,即8cm <x <18cm ,∴12cm 的木棒符合题意.故选:C .【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.11.A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a,∴a=(4-2)•180°=360°;∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.12.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、填空题13.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C∠BEA=∠B再根据比例关系设根据三角形内角和定理可求得x再根据三角形外角的性质可得∠AED【详解】解:∵点D在边AC的垂直平分线上点解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C,∠BEA=∠B,再根据比例关系设CAD x DAE x BAE x∠=∠=∠=,根据三角形内角和定理可求得x,再根据三角形外,3,2角的性质可得∠AED.【详解】解:∵点D在边AC的垂直平分线上,点E在边AB的垂直平分线上,∴AD=CD,AE=BE,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.14.3【分析】再根据含角的直角三角形的边角关系证得BC=AB=3根据平行线的性质可求得∠BDC=∠1=60°根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形即可证得CD=BC=3【详解】解析:3【分析】再根据含30角的直角三角形的边角关系证得BC=12AB=3,根据平行线的性质可求得∠BDC=∠1=60°,根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形,即可证得CD=BC=3.【详解】解:∵∠ACB=90°,∠A=30°,∴BC=12AB=3,∠CBD=60°, ∵12//l l ,∴∠BDC=∠1=60°,又∠CBD=60°,∴∠BCD=60°,∴△BCD 为等边三角形,∴CD=BC=3,故答案为:3.【点睛】本题考查了含30角的直角三角形的边角关系、平行线的性质、三角形的内角和定理、等边三角形的判定与性质,熟练掌握含30角的直角三角形的边角关系,证得△BCD 为等边三角形是解答的关键.15.AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC 再添加任意一组角或是AB=CD 即可【详解】∵∠ABC=∠DCBBC=CB ∴当AB=解析:AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC ,再添加任意一组角,或是AB=CD 即可.【详解】∵∠ABC=∠DCB ,BC=CB ,∴当AB=CD 时,利用SAS 证明△ABC ≌△DCB ;当∠A=∠D 时,利用AAS 证明△ABC ≌△DCB ;当∠ACB=∠DBC 时,利用ASA 证明△ABC ≌△DCB ,故答案为:AB=CD (或∠A=∠D 或∠ACB=∠DBC ).【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理是解题的关键. 16.【分析】由角平分线的性质可得点O 到三角形三边的距离相等即三个三角形的ABBCCA 上的高相等利用面积公式即可求解【详解】解:过点O 作OD ⊥AC 于DOE ⊥AB 于EOF ⊥BC 于F ∵O 是三角形三条角平分线的解析:2:3:4【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 上的高相等,利用面积公式即可求解.【详解】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD =OE =OF .∵AB =10,BC =15,CA =20,∴::ABO BCO CAO S S S =(12•AB•OE ):(12•BC•OF ):(12•CA•OD )=::AB BC CA =2:3:4.故答案为:2:3:4.【点睛】本题主要考查了角平分线的性质,掌握角平分线的性质定理和三角形面积的计算方法是解题的关键.17.OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.18.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.19.2b 【分析】先根据三角形三边关系确定>0<0再去绝对值化简即可【详解】∵是△ABC 的三边长∴>0<0=+=2b 故答案填:2b 【点睛】本题主要考查三角形三边关系绝对值的性质和化简问题根据三角形三边关系解析:2b【分析】先根据三角形三边关系,确定a b c +->0,()a b c -+<0,再去绝对值化简即可.【详解】∵,,a b c 是△ABC 的三边长∴a b c +->0,()a b c -+<0,a b c a c b +-+--=a b c +-+b c a +-=2b ,故答案填:2b .【点睛】本题主要考查三角形三边关系、绝对值的性质和化简问题,根据三角形三边关系定理正确去绝对值是解决本题的关键.20.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键.三、解答题21.(1)①60︒;②4;③150︒;(2)2222OA OB OC +=,证明见解析.【分析】(1)①由BAO BCD ≅△△得到,BO BD ABO CBD =∠=∠,继而证明ABC OBD ∠=∠即可解题;②由BAO BCD ≅△△得到BO BD =,结合①结论60OBD ∠=︒,可证明OBD 是等边三角形,即可解题;③根据BAO BCD ≅△△得到=AO CD ,在ODC △中根据三角形三边关系即勾股定理的逆定理,可证明ODC △为直角三角形,继而得到90ODC ∠=,再结合OBD 是等边三角形即可解得60OBD ∠=︒据此解题即可;(2)由,BAO BCD ≅可得90,,OBD ABC BO BD CD AO ∠=∠=︒==,可证明OBD 为等腰直角三角形,根据等腰直角三角形边的关系可得OD =,最后根据直角三角形三边满足勾股定理解题即可.【详解】解:(1)①BAO BCD ≅,BO BD ABO CBD ∴=∠=∠ABO OBC CBD OBC ∴∠+∠=∠+∠即ABC OBD ∠=∠60ABC OBD ∴∠=∠=︒故答案为:60︒;②BAO BCD ≅BO BD ∴=,由①得60OBD ∠=︒OBD ∴△是等边三角形,4OD OB BD ∴===故答案为:4;③BAO BCD ≅AO CD ∴=4,3,5OD DC OC ===222OD DC OC ∴+=ODC ∴为直角三角形90ODC ∴∠= OBD △为等边三角形60BDO ∴∠=︒90+60=150BDC ODC BDO ∴∠=∠+∠=︒︒;(2)当2222OA OB OC +=时,90ODC ∠=︒.理由如下:,BAO BCD ≅90,,OBD ABC BO BD CD AO ∴∠=∠=︒==,OBD ∴△为等腰直角三角形,2OD OB ∴=,当222CD OD OC +=时,OCD 为直角三角形,90ODC ∠=︒2222OA OB OC ∴+=,当OA OB OC 、、满足2222OA OB OC +=时,90ODC ∠=︒.【点睛】本题考查勾股定理及其逆定理、全等三角形的性质、等边三角形的判定、等腰直角三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.23.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.24.(1)见解析;(2)图2:CE CD BC =-;图3:CE BC CD =+;(3)14或6【分析】(1)根据等腰直角三角形的性质得到∠ABC=∠BCA=45°,得到∠BAD=∠CAE ,利用SAS 定理证明ABD ACE △≌△,根据全等三角形的性质得到BD=CE ,结合图形证明; (2)同(1)的方法判断出ABD ACE △≌△,得出BD=CE ,即可解决问题; (3)根据(1)(2)得到的结论代入计算即可.【详解】证明:(1)ABC 、ADE 均是等腰直角三角形,AB AC ∴=,AD AE =,BAC DAE ∠=∠.BAC DAC DAE DAC ∴∠-∠=∠-∠.BAD CAE ∴∠=∠,在ABD △和CAE 中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABD ACE ∴≌,BD CE ∴=.BD BC CD =-,CE BC CD ∴=-.(2)如图2中,CE CD BC =-,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠BAE=∠DAE-∠BAE ,即∠BAD=∠EAC ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴BD=CE ,∴CD=BC+BD=BC+CE即:CE CD BC =-.如图3中,CE=BC+CD .理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE ,∴在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴BD=CE ,∴BD=BC+CD ,即CE=BC+CD .综上所述,若D 在CB 延长线上,如图2中,得到结论:CE CD BC =-,如图3,得到结论:CE BC CD =+.(3)∵在图1、图2中:CE CD BC =-(已证),10CE =,4CD =∴=+=10+4=14BC CE CD∵在图3中:CE=BC+CD (已证),10CE =,4CD =∴=-=10-4=6BC CE CD即:14或6.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)∠A+∠C =∠B+∠D ;(2)①3,4;②110°;③3∠P=∠B+2∠C .【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC 为边的“8字型”有3个,以点O 为交点的“8字型”有4个; ②根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C-∠P=∠P-∠B ,即∠P=12(∠C+∠B ),然后把∠C=120°,∠B=100°代入计算即可; ③与②的证明方法一样得到3∠P=∠B+2∠C .【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N 为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB ), ∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB ). ∴2(∠C-∠P )=∠P-∠B ,∴3∠P=∠B+2∠C .【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义. 26.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.。

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,E是BC边上的一点,AB⊥BC于点B,DC⊥BC于点C,AB=BC,∠A=∠CBD,AE与BD相交于点O.有下列结论: ①AE=BD; ②AE⊥BD; ③BE=CD; ④△AOB的面积等于四边形CDOE的面积.其中正确的是( )A. ① ③B. ② ④C. ① ② ④D. ① ② ③ ④2.如图,点D,E,F分别在△ABC的三边上,E是AC的中点,AD,BE,CF相交于点G.已知BD=2DC,S△BDG=8,S△AGE=3,则△ABC的面积为( )A. 25B. 30C. 35D. 403.如图,已知AE⊥AB且AE=AB,BC⊥CD且BC=CD,按照图中所标注的数据,则图中实线所围成的阴影图形的面积S是( )A. 50B. 62C. 65D. 684.已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围分别是( )A. 4<BC<20,2<AD<10B. 4<BC<20,4<AD<20C. 2<BC<10,2<AD<10D. 2<BC<10,4<AD<205.如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则BD的长为( )A. 7B. 8C. 9D. 106.如图,AB=AC,AD=AE,∠B=50∘,∠AEC=120∘,则∠DAC的度数等于( )A. 120∘B. 70∘C. 60∘D. 50∘7.直线l1//l2//l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为( )A. 254B. 252C. 12D. 258.在△ABC中,若∠A:∠B:∠C=2:3:5,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形9.已知a,b为实数,则解可以为−2020<x<2021的不等式组是( )A. {ax>1,bx>1B. {ax<1,bx<1C. {ax>1,bx<1D. {ax<1,bx>110.不等式组{x+9<5x+1,x>a+1的解集是x>2,则a的取值范围是( )A. a≤2B. a≥2C. a≤1D. a>111.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用量x(千瓦时)电费价格(元/千瓦时)0<x≤2000.48200<x≤4000.53x>4000.78七月是用电高峰期,李叔叔计划七月电费支出不超过200元,则李叔叔家七月最多可用电(用电量x取整数)( )A. 100千瓦时B. 396千瓦时C. 397千瓦时D. 400千瓦时12.把一些书分给几名同学,如果每人分3本,那么余6本;如果每人分5本,那么最后一人分到的书不足3本,则书的本数和同学的人数分别为( )A. 27,7B. 24,6C. 21,5D. 18,4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,在△ABC中,∠A=52∘,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是.14.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高线长_________cm.15.如图,直线a,b相交于点O,∠1=50°,点A是直线a上的一个定点,点B在直线b上运动,若以点O,A,B为顶点的三角形是等腰三角形,则∠OAB的度数是.16.五条长度均为整数的线段a1,a2,a3,a4,a5,满足a1<a2<a3<a4<a5,其中a1=1,a5=9,且这五条线段中任意三条都不能构成三角形,则a3=.三、解答题(本大题共9小题,共72分。

浙教版初二上数学期中考试题

浙教版初二上数学期中考试题

八年级第一学期期中考试数学试卷一、选择题(每小题3分,共30分)1、下列各组长度的线段能构成三角形的是( )A 、1.5cm 3.9cm 2.3cmB 、3.5cm 7.1cm 3.6cmC 、6cm 1cm 6cmD 、4cm 10cm 4cm 2、如图1,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A 、两点之间的线段最短;B 、两点确定一条直线;C 、三角形具有稳定性;D 、长方形的四个角都是直角;3.如图,在△错误!未找到引用源。

中,点错误!未找到引用源。

是错误!未找到引用源。

延长线上一点,错误!未找到引用源。

错误!未找到引用源。

=120°, 则错误!未找到引用源。

等于( )A. 60°B.70°C.80° 90°4.小明同学测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来﹙ ﹚ A.13,12,12 B.12,12,8 C.13,10,12D.5,8,45.把不等式组的解集表示在数轴上,下列选项正确的是( )A B C D第7题6.当21-=x 时,多项式12-+kx x 的值是负数,那么错误!未找到引用源。

的值为 ( )A .23-<k B .23<k C .23->k D .23>k7、如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于B ,且PB =5cm ,AC =12,则△APC 的面积是( )cm 2A .30B .40C .50D .608.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =5,BC =8,则△EFM 的周长是 ( )A .13B .18C .15D . 21第8题图 9.如图,已知AB ∥CD ,AD ∥BC ,AC 与BD 交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( ) A.5对 B.6对 C.7对 D.8对 10、若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a ≥1B .a >1C .a ≤- 1D .a<-1第9题图第2题图第15题D BACE二、填空题(每小题4分,共32分)11、命题“相等的角是对顶角”是_________命题( 填“真”或“假”) 12. 如图,△ABC 中,∠C =90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB =10,AC =6,则△ACD 的周长 为_________13.若错误!未找到引用源。

【八年级】八年级上册数学期中考试题(新浙教版有答案)

【八年级】八年级上册数学期中考试题(新浙教版有答案)

【八年级】八年级上册数学期中考试题(新浙教版有答案)来新浙江教育版第八次数学期中考试一、(每小题3分,共30分)1.众所周知△ ABC,ab=AC,∠ a=56°,高度BD和BC之间的夹角为()a.28°b.34°c.68°d.62°2.在△ ABC,ab=3,AC=4,将BC扩展到D,使CD=BC,连接ad,则ad长度的值范围为()a.1<ad<7b.2<ad<14c.2.5<ad<5.5d.5<ad<113.如图所示,在△ 美国广播公司,∠ C=90°,CA=CB,ad平分∠ 驾驶室,与BC相交于D,D⊥ 点E处的AB,AB=6,则△ 黛布是()a.4b.6c.8d.104.使用尺子和指南针使角度等于已知角度。

示意图如下∠a′o′b′=∠aob的依据是a、(s.s.s.)b.(s.a.s.)c.(a.s.a.)d.(a.a.s.5.举一个错误命题的反例:“任何角度的补码都不小于这个角度”。

正确的反例是()a.∠α=60&ord;,∠α的补角∠β=120&ord;,∠β>∠αB∠ α=90&ord∠ α互补角∠ β=900&ord∠ β= ∠ αc.∠α=100&ord;,∠α的补角∠β=80&ord;,∠β<∠αd、两个角相互补充(问题3)6.△abc与△abc中,条件①ab=ab,②bc=bc,③ac=ac,④∠a=∠a,⑤∠b=∠b,⑥∠c=∠c,则下列各组条件中不能保证△abc≌△abc的是()A.①②③B①②⑤C①③⑤D②⑤⑥7.如图,在△abc中,ab=ac,高bd,ce交于点o,ao交bc于点f,则图中共有全等三角形()a、 7对B.6对C.5对D.4对8.如图,在△abc中,∠c=90°,ac=bc,ad平分∠bac交bc于点d,de⊥ab于点e,若△deb的周长为10c,则斜边ab的长为()a、 8cb.10cc.12cd.20c9.如图,△abc与△bde均为等边三角形,ab<bd,若△abc不动,将△bde绕点b旋转,则在旋转过程中,ae与cd的大小关系为()a、 AE=CDB。

浙教版八年级上学期数学期中考试试卷(附答案)

浙教版八年级上学期数学期中考试试卷(附答案)

浙教版八年级上学期数学期中考试试卷(附答案)一、单选题(共12题;共24分)1.下列长度的三条线段,能组成三角形的是( )A. 1,1,2B. 2,3,7C. 1,4,6D. 3,4,52.如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A. 60°B. 33°C. 30°D. 23°3.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A. ①和②B. ②和③C. ①和③D. ①②③4.如图,AB∥CD,AD平分∠BAC,∠C=80°,则∠D的度数为( )。

A. 50°B. 55°C. 70°D. 80°5.已知AB=AC=BD,则∠1与∠2的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1﹣∠2=180°6.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE ∥ BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE= BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A. 1个B. 2个C. 3个D. 4个7.放学以后,小明和小强从学校分手,分别沿东南方向和西南方向回家,若小明和小强行走的速度都是40米/分,小明用15分钟到家,小强用20分钟到家,小明家和小强家的距离为()A. 600米B. 800米C. 1000米D. 不能确定8.如图,AB为⊙O的直径,CD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠A的度数为()A. 45°B. 30°C. 22.5°D. 37.5°9..如图,已知≌,A和B,C和D分别是对应顶点.如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 4cmB. 5cmC. 6cmD. 7cm10.下列说法中正确的是()A. 两腰对应相等的两个等腰三角形全等B. 面积相等的两个等腰三角形全等C. 能够完全重合的两个三角形全等D. 两个锐角对应相等的两个直角三角形全等11.有下列命题:(1)有一个角是60°的三角形不一定是等边三角形;(2)两个无理数的和不一定是无理数;(3)各有一个角是100°,腰长为8cm的两个等腰三角形全等;(4)不论m为何值,关于x的方程x2+mx﹣m﹣1=0必定有实数根.其中真命题的个数为()A. 1个B. 2个C. 3个D. 4个12.如图所示,三角形ABC的面积为1cm2。

【浙教版】初二数学上期中试卷及答案(1)

【浙教版】初二数学上期中试卷及答案(1)

一、选择题1.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm2.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 3.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .34.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =6.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°7.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 8.在尺规作图作一个角的平分线时的两个三角形全等的依据是( ) A .SASB .AASC .SSSD .HL 9.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 10.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒11.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°12.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40二、填空题13.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 14.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.15.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.16.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).17.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).18.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.19.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 向上平移4个单位长度所得到的△A 1B 1C 1,并写出点A 1,B 1的坐标; (2)画出△DEF 关于x 轴对称后所得到的△D 1E 1F 1,并写出点E 1,F 1的坐标; (3)△A 1B 1C 1和△D 1E 1F 1组成的图形是轴对称图形,请画出它的对称轴.22.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.23.如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交BA ,BC 于点M ,N ;再以点N 为圆心,MN 长为半径作弧交前面的弧于点F ,作射线BF 交AC 的延长线于点E .②以点B 为圆心,BA 长为半径作弧交BE 于点D ,连接CD .请你观察图形,解答下列问题.(1)由尺规作图可证得BMN BFN ≌△△,依据是____________;(2)求证:ABC DBC △≌△;(3)若100BAC ∠=︒,50E ∠=︒,求∠ACB 的度数.24.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.25.如图,△ABC 中,D 为AC 上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB 的角平分线分别交BD、BA于点E、F.(1)若α=90°,判断∠BEF和∠BFE的大小关系并说明理由;(2)是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.26.如图,A、O、B三点在同一直线上,OE,OF分别是∠BOC与∠AOC的平分线.求:(1)当∠BOC=30°时,∠EOF的度数;(2)当∠BOC=60°时,∠EOF等于多少度?(3)当∠BOC=n°时,∠EOF等于多少度?(4)观察图形特点,你能发现什么规律?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB即可.【详解】解:∵AB=AC,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD⊥AC,∴∠BDA=90°,∴AB=2BD,点B到边AC的距离是3cm,即BD=3cm,∴AB=2BD=6cm,【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.2.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式.【详解】解:∵AB AC =,ACE x ∠=,∴ ∠ACB=∠ABC=x+∠BCE ,∵CE DE =,BCD y ∠=∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角,∴∠ABC=∠D+∠BCD ,即 x+∠BCE= y+∠BCE+ y ,即x=2y , ∴()101802y x x =<<︒, 故选:B .【点睛】 本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.3.B解析:B【分析】由已知可以写出∠B 和∠C ,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k ∠A=(36k )°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B .【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .4.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.5.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.6.B解析:B根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF , ∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 7.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;8.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS .故选:C .【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.9.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.10.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.11.A解析:A【分析】延长BC 交刻度尺的一边于D 点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt △CDE 中,利用内角和定理求解.【详解】如图,延长BC 交刻度尺的一边于D 点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 12.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.二、填空题13.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A =30°过B 作BD ⊥AC 于D ∵∠A =30°AB =1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A =30°,过B 作BD ⊥AC 于D ,∵∠A =30°,AB =10,∴BD =12AB =5, ∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.14.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD 在一条直线上∵∴△ABD 是等边三角形∴△ABD 的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC △△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 15.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积【详解】解:过点D 作DE ⊥B解析:120【分析】过点D 作DE ⊥BA 的延长线于点E ,利用角平分线的性质可得出DE =DC =8,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD ,可求出四边形ABCD 的面积.【详解】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.又∵BD 平分∠ABC ,∠BCD =90°,∴DE =DC =8,∴S 四边形ABCD =S △ABD +S △BCD , =12AB•DE +12BC•CD , =12×12×8+12×18×8, =120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE =8是解题的关键.16.∠B=∠C (或∠ADC=∠AEB 或AB=AC )【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE 两个条件对应相等故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD【详解】∵∠A=∠解析:∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠A,AD=AE两个条件对应相等,故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD.【详解】∵∠A=∠A,AD=AE,∴当∠B=∠C时,可利用AAS证明ABE≌ACD;当∠ADC=∠AEB时,可利用ASA证明ABE≌ACD;当AB=AC时,可利用SAS证明ABE≌ACD;故答案为:∠B=∠C(或∠ADC=∠AEB或AB=AC).【点睛】此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键.17.①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC从而得到△BDF和△CEF都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE;③由②得:△ADE的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF,EF=EC,从而得到△BDF和△CEF都是等腰三角形;②同①有DB=DF,EF=EC,所以DE=DF+EF=BD+CE;③由②得:△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;④因为∠ABC不一定等于∠ACB,所以∠FBC不一定等于∠FCB,所以BF与CF不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵△ABC中,∠ABC与∠ACB的平分线交于点F,∴∠DBF=∠FBC,∠ECF=∠FCB,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF,EF=EC,即△BDF和△CEF都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE,故②正确;∴△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;故③正确;∵∠ABC不一定等于∠ACB,∴∠FBC不一定等于∠FCB,∴BF与CF不一定相等,故④错误;由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.18.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=,∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2n θ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 19.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.20.10或50【分析】分点P 在AB 的上方点P 在AB 与CD 的中间点P 在CD 的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P 在AB 的上方;(2)如图解析:10或50【分析】分点P 在AB 的上方、点P 在AB 与CD 的中间、点P 在CD 的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P 在AB 的上方,30,20BPD PBA ∠=︒∠=︒,150BPD PBA ∴∠=∠+∠=︒,//AB CD ,150CDP ∴∠=∠=︒;(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.三、解答题21.(1)图见解析,A 1(3,2),B 1(4,1);(2)图见解析,E 1(﹣2,﹣3),F 1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A 1,B 1,C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出点D 1,E 1,F 1的坐标,然后描点即可; (3)直线C 1F 1和C 1F 1的垂直平分线都是△A 1B 1C 1和△D 1E 1F 1组成的图形的对称轴.【详解】解:(1)如图,△A 1B 1C 1为所作,A 1(3,2),B 1(4,1);(2)如图,△D 1E 1F 1为所作,E 1(﹣2,﹣3),F 1(0,﹣2);(3)如图,直线l 和直线l ′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示:111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 23.(1)SSS ;(2)见解析;(3)65°.【分析】(1)根据同圆的半径相等,BM=BN=BF ,MN=FN ,符合了SSS ;(2)根据(1)知,∠ABC=∠DBC ,BC 是公共边,BA=BD ,符合SAS 原理;(3)△ABE 中,求出∠ABD=30°,从而求得∠ABC=15°,利用三角形外角和定理即可得到答案.【详解】(1)根据基本作图,得BM=BF ,BN=BN ,MN=NF ,符合SSS 原理,故应该填SSS ;(2)由(1)得ABC DBC ∠=∠.∵AB =DB ,BC =BC ,∴△ABC ≌△DBC (SAS );(3)∵∠BAC =100°,∠E =50°,∴∠ABE =30°,∵△MBN ≌△FBN ,∴∠ABC=∠DBC , ∴1152DBC ABE ∠=∠=︒,∴∠ACB =∠DBC +∠E =15°+50°=65°.【点睛】本题主要考查了基本作图,解答时,清楚同圆半径相等,熟记三角形全等判定的基本原理是解题的关键.24.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.25.(1)∠BEF=∠BFE ,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF ,等量代换得到∠BEF=∠BFC ,于是得到∠BEF=∠BFE ;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE ;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF 平分∠ACB ,∴∠DCE=∠BCF ,∴∠DEC=∠BFC ,∵∠DEC=∠BEF ,∴∠BEF=∠BFC ,即∠BEF=∠BFE ;(2)∵∠BEF=∠EBC+∠ECB ,∠BFE=∠A+∠ACF ,∠ECB=∠ACF ,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A ,∵∠EBC=∠ABC-∠ABD=α-∠ABD ,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD ,∴∠BEF-∠BFE=(α-∠ABD )-(180°-α-∠ABD )=2α-180°,若∠BEF >∠BFE ,则∠BEF﹣∠BFE>0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.26.(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC求得∠AOC,再由∠BOC和∠AOC的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°,∴∠EOF=60°+30°=90°;(3)∵∠BOC=n,∴∠AOC=180°-n,OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=90°-12n,∠COF=12∠COA=12n,∴∠EOF=90°-12n+12n=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.。

浙教版八年级上数学期中检测试卷及答案

浙教版八年级上数学期中检测试卷及答案

浙教版八年级上数学期中检测试卷及答案(总5页)-本页仅作为预览文档封面,使用时请删除本页-DCB A米C1.如图1A.2.如图2A.3. A. 三棱锥 B. 立方体 C. 球体 D. 四面体4.下列说法错误的是( )A.等腰三角形两腰上的中线相等B.等腰三角形顶角平分线上任一点到底边两端的距离相等C.等腰三角形的中线与高重合D.5.右图几何体的俯视图是( )6. 到三角形三边距离相等的点是三角形三条( )A. 中线的交点B. 角平分线的交点C. 高的交点D. 垂直平分线的交点7.右图是某地的长方形广场的示意图,如果小明要从A 角走到C ) A. 90米 B. 100米 C. 120米 D. 140米 8.如果等腰三角形的一个外角等于100度,那么它的顶角等于( )A. 100︒B. 80︒C. 8040︒︒或D. 8020︒︒或 9.与红砖、足球类似的几何体分别是( )A. 长方形、圆B.长方体、球C.长方形、球D. 长方体、圆 10.若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( )A. 2α B. 902α︒+ C. 902α︒- D. 90α︒-1132456二、填空题(每小题3分,共30分)11. 两条平行线被第三条直线所截,得到的一对同位角的平分线的位置关系是___. 12. 直五棱柱的底面是____边形.13. AD 是等腰三角形ABC 底边上的高,请写出一个正确的结论:________. 14. 有两棵树,一棵树高8米,另一棵树高2米,两棵树相距8米,一只小鸟从一棵树梢飞到另一棵树梢,至少要飞_____米.15.直角三角形两条直角边的长分别为24和7,则斜边上的中线等于_____16.如图是一个立方体表面展开图,将图折叠起来,得到一个立方体,则3的对面是____(填数字)17.如果一个三角形是轴对称图形,且有一个角是60度,那么这个三角形有___条对称轴. 18. 画三视图必须遵循的法则是长对正,高平齐,_____。

浙教版八年级数学上册期中测试卷(附答案)

浙教版八年级数学上册期中测试卷(附答案)

浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。

【浙教版】初二数学上期中试卷(及答案)(1)

【浙教版】初二数学上期中试卷(及答案)(1)

一、选择题1.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个2.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 4.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,DE 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或36.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .47.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 8.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A.OA=OB B.AC=BC C.∠A=∠B D.∠1=∠2y =0,则以x、y的值为两边长的等腰三角形周长是9.已知实数x、y满足|x-4|+ 8()A.20或16 B.20 C.16 D.1810.已知三角形的两边长分别为1和4,则第三边长可能是()A.3 B.4 C.5 D.611.下列长度的三条线段能组成三角形的是()A.3,3,4 B.7,4,2 C.3,4,8 D.2,3,512.下列长度的四根木棒,能与3cm,7cm长的两根木棒钉成一个三角形的是()A.3cm B.10cm C.4cm D.6cm二、填空题13.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=________14.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是____.15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=8cm,DE=3cm,AE=2,求AC的长为_____cm.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.17.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.18.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.19.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.20.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题21.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.22.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 25.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数26.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.2.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.3.C解析:C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.C解析:C【分析】∠=∠,根据线段垂直平分线的性质得到DB=DC,进根据角平分线的定义得到ABD CBD∠=∠,根据三角形内角和定理列式计算即可.而得到DBC C【详解】∠,∵BD平分ABC∠=∠,∴ABD CBD⊥,E是BC中点,∵DE BC∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.7.B解析:B根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.8.B解析:B【分析】根据题意可以得到∠AOC=∠BOC ,OC=OC ,然后即可判断各个选项中条件是否能判定△AOC ≌△BOC ,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC ,OC=OC ,∴若添加条件OA=OB ,则△AOC ≌△BOC (SAS ),故选项A 不符合题意;若添加条件AC=BC ,则无法判断△AOC ≌△BOC ,故选项B 符合题意;若添加条件∠A=∠B ,则△AOC ≌△BOC (AAS ),故选项C 不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO ,则△AOC ≌△BOC (ASA ),故选项D 不符合题意;故选:B .【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答. 9.B解析:B根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.10.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.11.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、3+3>4,能构成三角形,故此选项正确;B、4+2<7,不能构成三角形,故此选项错误;C、3+4<8,不能构成三角形,故此选项错误;D、2+3=5,不能构成三角形,故此选项错误.故选:A.此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.12.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.二、填空题13.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.14.【分析】过点D作DE⊥BA的延长线于点E利用角平分线的性质可得出DE =DC=8再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD可求出四边形ABCD的面积【详解】解:过点D作DE⊥B解析:120【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD,可求出四边形ABCD的面积.【详解】解:过点D作DE⊥BA的延长线于点E,如图所示.又∵BD平分∠ABC,∠BCD=90°,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×12×8+12×18×8,=120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.15.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE ∥BC ,∴∠DFB=∠CBF ,∠EFC=∠FCG ,∴∠DBF=∠DFB ,∠FCE=∠EFC ,∴BD=FD ,EF=CE ,∴BD-CE=FD-EF=DE ,∴EF=DF-DE=BD-DE=8-3=5cm ,∴EC=5cm ,∴AC=AE+EC=2+5=7cm ,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.16.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S△ABC=12×3×9-7.5=6 cm2【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S△ABC的面积的表示.18.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE ∥BC ∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=解析:75︒【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE ∥BC ,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.19.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE 是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】 根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒, BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.22.15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.图见解析,9DE =或3DE =【分析】分直线l 不经过线段AB 和直线l 经过线段AB 两种情况画图,证明△ACD ≌△CBE 即可求出DE 的长.【详解】解:如图1∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=DC+CE=9;如图2,∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=CE-CD=3;∴9DE =或3DE =.【点睛】本题考查了全等三角形的判定与性质,根据题意分类画图证明全等三角形是解题关键. 25.∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.26.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE⊥,∴线段BE的长度是点B到直线AE的距离,故答案是:B,AE;(4)∵AE是直角三角形AEF的直角边,AF是直角三角形AEF的斜边,<,∴AE AF∵BF是直角三角形ABF的斜边,AF是直角三角形ABF的直角边,∴AF BF<,∴AE AF BF<<,<<.故答案是:AE AF BF【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.。

浙教版八年级上册数学期中测试卷(含答案)

浙教版八年级上册数学期中测试卷(含答案)

期中测试卷一、选择题(每小题3分,共30分)1.下列四个图形中,不是轴对称图形的是( )。

2.如图是某地区的长方形大理石广场示意图,如果小琴要从A 角走到C 角,至少走( )。

A.90mB.100mC.120mD.140m3.若m>n ,下列不等式不一定成立的是( )。

A.m+2>n+2B.2m>2nC.22n m > D.22n m > 4.若△ABC 三边长a ,b ,c 满足|a+b -7|+|a -b -1|+(c -5)2=0,则△ABC 是( )。

A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分△ABC ,交CD 于点E ,BC=8,DE=4,则△BCE 的面积等于( )。

A.32B.16C.8D.46.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是( )。

A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤77.下列命题中,真命题有( )。

△有一个角为60°的三角形是等边三角形;△底边相等的两个等腰三角形全等;△有一个角是40°,腰相等的两个等腰三角形全等;△一边上的中线等于这条边的一半的三角形是直角三角形;A.1个B.2个C.3个D.4个8.如图在4×4方格中作以AB 为一边的Rt△ABC ,要求点C 也在格点上,这样的Rt□△ABC 能作出( )。

A.2个B.3个C.5个D.6个9.如图△是一个直角三角形纸片,△A=30°,BC=4cm ,将其折叠,使点C 落在斜边上的点C'处折痕为BD ,如图△,再将△沿DE 折叠,使点A 落在DC'的延长线上的点A'处,如图△,则折痕DE 的长为( )。

A.cm 38 B 32cm C.2√2cm D.3cm10.如图,△ABC 和△ADE 都是等腰直角三角形,△BAC=△DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )。

浙教版数学八年级上册期中考试试题及答案

浙教版数学八年级上册期中考试试题及答案

浙教版数学八年级上册期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D . 2.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 3.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .ll 道4.把不等式组13264x x +≥⎧⎨--⎩>﹣中每个不等式的解集在同一条数轴上表示出来,正确的为( ) A . B . C . D . 5.如图,在ABC 中,55A ︒∠=,45B ︒∠=,那么ACD ∠的度数为( )A .110B .100C .55D .456.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1 B .2 C .3 D .47.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .88.用反证法证明a b >时,应假设( )A .a b <B .a b ≤C .a b ≥D .a b9.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( )A .1B .1.5C .D .410.如图,将矩形ABCD 沿EM 折叠,使顶点B 恰好落在CD 边的中点N 上.若AB=6,AD=9,则五边形ABMND 的周长为( )A .28B .26C .25D .22二、填空题 11.在数学课上,老师要求同学们利用一副三角板画出两条平行线.小明的画法如下:步骤一:运用三角板一边任意画一条直线l ;步骤二:按如图方式摆放三角板;步骤三:沿三角板的直角边画出直线AB 、CD ;这样,得到AB ∥CD .小明这样画图的依据是_____.12.x 的35与12的差不小于6,用不等式表示为_____. 13.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.14.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.15.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影部分是一个小正方形EFGH ,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH 的面积为_____.16.如图,将等腰直角三角形ABC (∠B=90°)沿EF 折叠,使点A 落在BC 边的中点A 1处,BC=8,那么线段AE 的长度为__.三、解答题17.解下列不等式(组):(1)2(x+3)>4x-(x-3) (2)()x 2x 52x 3x 28<⎧-⎪⎨⎪--≤⎩18.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).19.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.20.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.21.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.22.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.23.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)参考答案1.D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.B【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.3.A【分析】设小明答对的题数是x道,根据“总分不会低于60分”列出不等式5x﹣2(20﹣2﹣x)≥60,解不等式求得x的取值范围,根据x为整数,结合题意即可求解.【详解】设小明答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥1357,∵x为整数,∴x的最小整数为14,故选A.【点睛】本题了一元一次不等式的应用,关键是设出相应的未知数,以得分做为不等量关系列不等式求解.4.B【详解】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.5.B【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.B【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.7.B【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【详解】∵AD是△ABC的中线,∴S△ABD=S△ACD=12S△ABC,∵点E是AD的中点,∴S△ABE=S△ADE=12S△ABD,S△CDE=S△CAE=12S△ACD,∵S△ABE=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=12S△ABC=12×8=4;∴阴影部分的面积为4,故选B.【点睛】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分,此题难度不大.8.B【分析】熟记反证法的步骤,直接填空即可.要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选B.【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.A【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=5,BC=3,即可推出BD的长度.【详解】延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC-EC=5-3=2,∴BE=2,∴BD=1.故选A.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.A【分析】如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.【详解】如图,由题意得:BM=MN(设为λ),CN=DN=3;∵四边形ABCD为矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五边形ABMND的周长=6+5+5+3+9=28,故选A.【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.11.内错角相等,两直线平行.【解析】【分析】由作图知∠ABC=∠BCD=90°,根据“内错角相等,两直线平行”即可判定AB∥CD.【详解】由作图知∠ABC=∠BCD=90°,所以AB∥CD,所以小明这样画图的依据是内错角相等,两直线平行,故答案为:内错角相等,两直线平行.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握平行线的判定.12.35x﹣12≥6.【详解】根据题意得35x﹣12≥6.13.10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.14.37【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据∠ACB=37°.等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∠ACB=37°,∴∠CDB=∠CBD=12故答案为37.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.15.1【解析】【分析】利用勾股定理求得直角边的较短边,进一步根据正方形EFGH的面积=大正方形面积-4个直角三角形面积即可求得正方形EFGH的面积.【详解】,正方形EFGH的面积=5×5-4×3÷2×4=25-24=1.故答案为:1.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键.16.5.【详解】分析:由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8-x,且A1B=4,在Rt△A1BE 中,利用勾股定理可列方程,则可求得答案.详解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A 1为BC 的中点,∴A 1B=4,设AE=A 1E=x ,则BE=8-x ,在Rt △A 1BE 中,由勾股定理可得42+(8-x )2=x 2,解得x=5,故答案为5.点睛:本题主要考查折叠的性质,利用折叠的性质得到AE=A 1E 是解题的关键,注意勾股定理的应用.17.(1) x <3;(2)﹣1≤x <2.【解析】试题分析:()1按照解不等式的步骤解不等式即可.()2分别解不等式,找出解集的公共部分即可.试题解析:(1)去括号,得:2643x x x +>-+,移项,得:2436x x x ,-+>-合并同类项,得:3x ,->-系数化为1,得:3x ;<(2)()252328xx x x ①②⎧<-⎪⎨⎪--≤⎩解不等式①,得:2x ,<解不等式②,得:1x ≥-,则不等式组的解集为12x .-≤<18.(1)证明见解析;(2)证明见解析;(3)②.【分析】(1)欲证明AE=CD ,只要证明△ABE ≌△CBD ;(2)由△ABE ≌△CBD ,推出BAE=∠BCD ,由∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∠ABC=90°,可得∠NMC=90°; (3)结论:②;作BK ⊥AE 于K ,BJ ⊥CD 于J .理由角平分线的判定定理证明即可.【详解】(1)证明:∵∠ABC=∠DBE ,∴∠ABC+∠CBE=∠DBE+∠CBE ,即∠ABE=∠CBD ,在△ABE 和△CBD 中,AB CBABE CBD BE BD⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CBD ,∴AE=CD .(2)∵△ABE ≌△CBD ,∴∠BAE=∠BCD ,∵∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∵∠ABC=90°,∴∠NMC=90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE=CD ,S △ABE =S △CDB , ∴12•AE•BK=12•CD•BJ ,∴BK=BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB=BD ,显然可不能,故①错误.故答案为②.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.19.等腰三角形各边的长为10cm ,10cm ,1cm .【解析】试题分析:分腰长与腰长的一半是6cm 和15cm 两种情况,求出腰长,再求出底边,然后利用三角形的任意两边之和大于第三边进行判断即可.试题解析:如图所示,在ABC ∆中,AB AC =,AD BD =,设BD x =,BC y =,由题意有6215x y x x +=⎧⎨+=⎩ , 解得51x y =⎧⎨=⎩, 或 1526x y x x +=⎧⎨+=⎩, 解得213x y =⎧⎨=⎩, ∵三角形任意两边之和大于第三边.∴ 5x = , 1y = ,即这个三角形的腰为10cm ,底为1cm .20.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个;方案①最省钱【详解】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过800元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m +30(20-m )≤800.解得:m ≤10.又∵m ≥8,∴8≤m ≤10.∵篮球的个数必须为整数,∴m 只能取8、9、10.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球10个,排球10个,费用为800元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.21.证明见解析.【分析】求出∠ABC=∠ACB ,求出∠DBC=12∠ABC ,根据等腰三角形性质和三角形外角性质求出∠E=12∠ACB ,推出∠E=∠DBC 即可. 【详解】∵AB=AC∴∠ABC=∠ACB ,∵BD 平分∠ABC ,∴∠DBC=12∠ABC , ∵CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=12∠ACB , ∴∠E=∠DBE ,∴BD=DE .【点睛】本题考查了三角形内角和定理,三角形外角性质和等腰三角形的性质和判定的应用,主要考查学生的推理能力和计算能力.22.(1)7米;(2)15m ;(3)玛丽在荡绳索过程中离地面的最低点的高度MN 为2米.【分析】(1)作差.(2) 作AE ⊥OM ,BF ⊥OM,证明在△AOE 和△OBF 相似,可以计算出OE +OF 长度,最后算出OM 长度.(3)利用勾股定理求出半径长度,作差求MN 长度.【详解】(1)10-3=7(米).(2)作AE ⊥OM 于E,,BF ⊥OM 与F ,∵∠AOE +∠BOF =∠BOF +∠OBF =90°,∴∠AOE =∠OBF ,在△AOE 和△OBF 中,OEA BFO AOE OBF OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OBF (AAS ),∴OE=BF ,AE=OF ,即OE+OF=AE+BF=CD =17(m )∵EF=EM ﹣FM=AC ﹣BD =10﹣3=7(m ),∴2EO+EF =17,则2EO =10,所以OE =5m ,OF =12m ,所以OM=OF+FM =15m.(3)由勾股定理得ON=OA =13,所以MN =15﹣13=2(m ).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米.【点睛】本题考查全等三角形的判定和性质,作出正确的辅助线构造全等三角形的关键.23.(1)6;(2)【分析】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论PA+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【详解】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A1D=2,∴在Rt△A1DC中,A1∴AP+BP+CP的最小值是:.【点睛】此题是几何变换综合题,主要考查了图形的旋转的性质,画出图形是解本题的关键,也是难点.。

浙教版初中数学八年级上册期中测试卷(较易)(含答案)

浙教版初中数学八年级上册期中测试卷(较易)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( )A. B.C. D.2.如图,N,C,A三点在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,△MNC≌△ABC,则∠BCM:∠BCN等于( )A. 1:2B. 1:3C. 2:3D. 1:43.如图,若AB//EF,CE=CA,∠E=65°,则∠CAB的度数为( )A. 25°B. 50°C. 60°D. 65°4.一个直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线的长是( )A. 5B. 6C. 6.5D. 135.不等式3(1−x)>2−4x的解在数轴上表示正确的是( )A. B.C. D.>x的最大整数解为( )6.不等式4−x3A. x=−1B. x=0C. x=1D. x=27.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是( )A. SSSB. SASC. ASAD. AAS8.如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O.若∠A=α,则∠BOC的度数是.( )A. 180∘−12αB. 90∘+12αC. 90∘−12αD. 12α9.下列命题中,正确的是( )A. 等腰三角形顶角的外角平分线与底边平行B. 等腰三角形的高线、中线、角平分线互相重合C. 顶角相等的两个等腰三角形全等D. 等腰三角形的一边不可以是另一边的2倍10.如图,在△ABC中,∠ACB=90°,∠B=30°,点D为AB的中点,若AC=2,则CD的长为( )A. 2B. 3C. 4D. 511.某不等式的解集在数轴上表示如下,该不等式的解是( )A. x≤−2B. x>−2C. x<−2D. x≥−212.若0<a<1,则下列不等式正确的是( )A. a<1<1a B. a<1a<1 C. 1a<a<1 D. 1<1a<a第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 关于x 、y 的方程组{x −y =a +13x +2y =a 的解满足x +y <1,则a 的取值范围是______.14. 如图,已知∠OAB =∠OBC =∠OCD =90°,AB =BC =CD =1,OA =2,则OD =________.15. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .16. 如图,在△ABC 中,∠BAC =80°,∠B =40°,AD 是∠BAC 的角平分线,则∠ADB =________°.三、解答题(本大题共9小题,共72分)17. 如图,在△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连结BD ,CE ,求证:△ABD ≌△AEC .18. 一个零件的形状如图,按规定,若∠A 是90°,∠B 和∠C 分别是32°和21°,则零件合格,检验工人量得∠BDC 是149°,就判定这个零件不合格.请运用三角形的有关知识说明零件不合格的理由.19.如图,D为等腰△ABC底边BC上的一点,AD=DC,∠B=30°.试判断△ABD是不是直角三角形,并说明理由.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这倍,购进数量比第一次少了30支.次每支的进价是第一次进价的54(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?22.已知不等式6x−1>2(x+m)−3+1<x+3的解集相同,求m的值;(1)若它的解集与不等式x−52+1<x+3的解,求m的取值范围.(2)若它的解都是不等式x−5223. 已知关于x ,y 的方程组{x −y =−3x +y =1−3a 的解满足3x +y ≥2,求a 的取值范围. 24. 如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.25. 如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE =CD .(2)若AC =12 cm ,求BD 的长.答案和解析1.【答案】B【解析】解:观察作图痕迹可知:A.CD⊥AB,但不平分,所以A选项不符合题意;B.CD为△ABC的边AB上的中线,所以B选项符合题意;C.CD是∠ACB的平分线,所以C选项不符合题意;D.不符合基本作图过程,所以D选项不符合题意.故选:B.根据题意,CD为△ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,连接CD即可判断.本题考查了作图−基本作图、三角形的角平分线、中线和高、线段垂直平分线的性质,解决本题的关键是掌握三角形的中线.2.【答案】D【解析】【分析】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,∵∠A+∠ABC+∠ACB=180°,∴3x+5x+10x=180,解得x=10,则∠A=30°,∠ABC=50°,∠ACB=100°,∴∠BCN=180°−100°=80°,又∵△MNC≌△ABC,∴∠ACB=∠MCN=100°,∴∠BCM=∠NCM−∠BCN=100°−80°=20°,∴∠BCM:∠BCN=20°:80°=1:4.故选D.3.【答案】B【解析】【分析】本题是等腰三角形的性质:等边对等角,与平行线的性质的综合应用.CE=CA即△ACE 是等腰三角形.∠E是底角,根据等腰三角形的两底角相等得到∠E=∠EAC=65°,由平行线的性质得到:∠EAB=115°,从而求出∠CAB的度数.【解答】解:∵CE=CA,∴∠E=∠EAC=65°,又∵AB//EF,∴∠EAB=180°−∠E=115°,∴∠CAB=∠EAB−∠EAC=50°.故选B.4.【答案】C【解析】【分析】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB=√122+52=13,∵CD为斜边AB上的中线,AB=6.5.∴CD=12故选C.5.【答案】A【解析】解:去括号,得:3−3x>2−4x,移项,得:−3x+4x>2−3,合并,得:x>−1,在数轴上表示为,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变以及在数轴上表示注意空心点和实心点.6.【答案】B>x,【解析】解:4−x34−x>3x,−x−3x>−4,x<1,>x的最大整数解是0.∴不等式4−x3故选:B.根据不等式的解法求出不等式的解集,然后再找出最大整数解即可.本题主要考查了一元一次不等式的解法,在解题时要注意解不等式的步骤和符号.7.【答案】A【解析】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△D′O′C′≌△DOC.故选:A.根据作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.8.【答案】B【解析】【分析】本题考查了三角形的内角和定理、角平分线的定义等知识.根据BO、CO分别是∠ABC与∠ACB的角平分线,用α的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°−α,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°−α)=90°−12α,∴∠BOC=180°−(∠OBC+∠OCB)=90°+1 2α故选B.9.【答案】A【解析】【分析】本题主要考查对于等腰三角形的性质定理的记忆与理解.从各选项提供的已知条件,根据等腰三角形的性质,全等三角形的判定对各个命题进行分析,从而得到答案.【解答】解:A.因为等腰三角形顶角的外角等于两底角的和,作顶角的外角的平分线得到的角就等于等腰三角形的底角,根据内错角相等,两直线平行就可以得到:等腰三角形顶角的外角平分线与底边平行,所以此命题正确;B.应该为等腰三角形底边上的高线,中线,角平分线重合,所以原命题不正确;C.因为顶角相等的两个等腰三角形对应边不一定相等,因而不一定全等,所以原命题不正确;D.等腰三角形的腰可以为底边的两倍,所以原命题不正确;故选A.10.【答案】A【解析】解:∵AC=2,∠B=30°,∠ACB=90°,∴AB=2AC=4,∵点D为AB的中点,AB=2,∴CD=12故选:A.利用直角三角形的性质得到AB长,然后再利用直角三角形斜边上的中线的性质可得答案.此题主要考查了直角三角形斜边上的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.11.【答案】D【解析】【分析】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.根据数轴上不等式的解集得出x≥−2即可.【解答】解:根据数轴上不等式的解集得:x≥−2,故选D.12.【答案】A【解析】【分析】.即可判断出.本题考查了不等式的基本性质,属于基础题.由0<a<1,可得a<1<1a【解答】解:∵0<a<1,∴1<1 aa<1<1 a故选A.13.【答案】a<6【解析】解:{x−y=a+1 ①3x+2y=a ②,①×2+②得:5x=3a+2,即x=3a+25,把x=3a+25代入②得:y=−2a+35,根据题意得:3a+25−2a+35<1,解得:a<6,故答案为a<6.把a看做已知数表示出方程组的解,根据题意不等式求出a的范围即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.【答案】√7【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长,在直角三角形BOC中,由OB与BC的长,利用勾股定理求出OC的长,在直角三角形OCD中,由OC与CD的长,利用勾股定理即可求出OD 的长.【解答】解:∵∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,∴在Rt△AOB中,根据勾股定理得:OB=√OA2+AB2=√4+1=√5,在Rt△BOC中,根据勾股定理得:OC=√BC2+OB2=√5+1=√6,在Rt△COD中,根据勾股定理得:OD=√OC2+CD2=√6+1=√7.故答案为√7.15.【答案】5【解析】解:解方程组{2x −y =33x +2y =8得{x =2y =1.所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故答案为:5.先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案. 本题考查了三角形三边关系及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.16.【答案】100【解析】【分析】本题考查了角平分线定义和性质、三角形外角性质以及三角形内角和,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据角平分线定义求出∠CAD ,再根据三角形外角性质求出即可.【解答】解:∵在△ABC 中,∠BAC =80°,∠B =40°,AD 是△ABC 的角平分线,∴∠C =60°,∠CAD =40°,∴∠ADB =∠CAD +∠C =100°,故答案为100.17.【答案】证明:∵∠BAC =∠DAE ,∴∠BAC −∠BAE =∠DAE −∠BAE ,即∠BAD =∠CAE ,在△ABD 和△AEC 中,{D =AC ∠BAD =∠EAC AB =AE, ∴△ABD≌△AEC(SAS).【解析】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,以及判断两个直角三角形全等的方法HL .根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.18.【答案】解:如图,延长CD交AB于M.∵∠A=90°,∠C=21°,∴∠1=∠A+∠C=90°+21°=111°,∵∠B=32°,∴∠BDC=∠B+∠1=32°+111°=143°.又∵∠BDC=149°,∴这个零件不合格.【解析】延长CD交AB于M,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.19.【答案】【解答】解:△ABD是直角三角形.∵AD=DC,∠B=30°,∴∠DAC=30°,∵△ABC是等腰三角形,∴∠B=∠C=30°,∠BAC=120°,∴∠BAD=∠BAC−∠DAC=120°−30°=90°,∴△ABD是直角三角形.【解析】【解析】本题主要考查了三角形的内角和定理,三角形的性质的综合应用,等腰三角形的判定,等腰三角形的性质,直角三角形的判定及性质.解题关键是利用等腰三角形的性质及判定,利用三角形内角和定理,及已知条件解出∠BAD 的度数,从而判断三角形的形状.20.【答案】解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠CAE =∠C ,①∵∠BAE =90°,∴∠BAD =12[180°−(90°−2∠C)]=45°+∠C ,∴∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②由①,②得,∠DAC =∠DAE +∠CAE =45°;(2)设∠ABC =m°,则∠BAD =12(180°−m°)=90°−12m°,∠AEB =180°−n°−m°,∴∠DAE =n°−∠BAD =n°−90°+12m°, ∵EA =EC ,∴∠CAE =12∠AEB =90°−12n°−12m°,∴∠DAC =∠DAE +∠CAE =n°−90°+12m°+90°−12n°−12m°=12n°. 【解析】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.(1)根据等腰三角形的性质得到∠CAE =∠C ,①求得∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②;由①,②即可得到结论;(2)设∠ABC =m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.21.【答案】解:(1)设第一次每支铅笔的进价为x 元,则第二次每支铅笔的进价为54x 元. 根据题意列方程得600x −60054x =30, 解得x =4.经检验,x =4是原分式方程的解,即第一次每支铅笔的进价为4元;(2)设售价为y 元,根据题意列不等式为6004(y −4)+6004×54(y −4×54)≥420,解得y≥6,即每支售价至少是6元.【解析】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键,最后不要忘记检验.(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为54x元,根据题意可列出分式方程解答;(2)设售价为y元,求出利润表达式,然后列不等式解答.22.【答案】解:6x−1>2(x+m)−3,6x−2x>2m−3+1,4x>2m−2,x>m−1 2(1)x−52+1<x+3,解得:x>−9,∴m−12=−9,解得m=−17;(2)解不等式x−52+1<x+3得,x>−9,由题意可得,m−12≥−9,解得:m≥−17.【解析】(1)分别求出两个不等式的解,然后根据两个不等式的解集相同而得到方程,再解方程即可.(2)根据题意列出不等式,求解即可得出m的取值范围.本题考查了解一元一次不等式,分别求出两个不等式的解集,再列出关于m的不等式是解题的关键.23.【答案】解:{x−y=−3①x+y=1−3a②,①+②,得:2x=−2−3a,解得:x=−1−32a,②−①,得:2y=4−3a,解得:y =2−32a ,∴方程组的解为{x =−1−32a y =2−32a, ∵关于x ,y 的方程组{x −y =−3x +y =1−3a的解满足3x +y ≥2, ∴3(−1−32a)+2−32a ≥2, 去括号得:−3−92a +2−32a ≥2,移项得:−92a −32a ≥2+3−2,合并同类项得:−6a ≥3,系数化为1得:a ≤−12.【解析】本题考查了加减消元法解二元一次方程,解一元一次不等式,二元一次方程组的解.先利用加减消元法得到方程组的解,根据题意即可得到关于a 的一元一次不等式,解不等式即可.24.【答案】解:△AFC 是等腰三角形.理由:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE ,∴BA =BC ,∴∠BAC =∠BCA ,∴∠BAC −∠BAD =∠BCA −∠BCE ,即∠FAC =∠FCA ,∴△AFC 是等腰三角形.【解析】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD =BE ,∠BAD =∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB =AC ,于是∠BAC =∠BCA ,由此便可推导出∠FAC =∠FCA ,那么三角形AFC 应该是个等腰三角形.25.【答案】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵{∠D=∠AEC∠DBC=∠ECA=90∘BC=AC,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中{AE=CDAC=BC,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=12BC=12AC,且AC=12cm.∴BD=6cm.【解析】本题考查的是全等三角形的判定与性质有关知识.(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=12BC=12AC,且AC=12,即可求出BD的长.。

浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)

浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)

中浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,已知:AB=DE,∠1=∠2,下列条件中能使△ABC≌△DEF的是( )A. AF=CDB. ED=BCC. AB=EFD. ∠B=∠E2.下面说法正确的个数是( )(1)三角形中最小的内角不能大于60°;(2)三角形的一个外角等于这个三角形的两个内角的和;(3)三角形任意两个内角的和大于第三个内角;(4)直角三角形只有一条高;(5)在同圆中任意两条直径都相互平分;(6)三角形一边上的高小于这个三角形的其他两边.A. 5个B. 4个C. 3个D. 2个3.已知:如图所示,将△ABC的∠C沿DE折叠,点C落在点C′处,若设∠C=α,∠AEC′=β,∠BDC′=γ,则下列关系成立的是( )A. 2α=β+γB. α=β+γC. α+β+γ=180°D. α+β=2γ4. 若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有( )①∠A =∠B −∠C ;②∠A :∠B :∠C =3:4:5;③a 2=(b +c)(b −c);④a :b :c =5:12:13.A. 1个B. 2个C. 3个D. 4个5. 如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B 的面积是100,则半圆C 的面积是( )A. 4.5πB. 9πC. 36D. 18π6. 如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G.若AB =10,BC =8,则点G 到直线AB 的距离为( )A. 83B. 3C. 4D. 2457.如果关于x 的不等式组{x−m2>0x−43−x <−4的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x,y 均为整数),则符合条件的所有整数m 的和是( )A. −2B. 2C. 6D. 108. 不等式组1≤8−x 3−1<2的解集在数轴上表示正确的是( )A.B.C.D.9. 如果关于x 的不等式{x +8<4x −1x >m的解集是x >3,那么m 的取值范围是( )A. m ≥3B. m ≤3C. m =3D. m <310. 某种商品的进价为200元,商场的标价是300元,后来由于商品积压,商场准备打折销售,为了保证利润率不低于5%,则该商品最多打几折( )中A. 9折B. 8折C. 7折D. 6折11. 若数a 使关于x 的不等式组{x+13≥−1−x 25x −2>x +a有且仅有五个整数解,且使关于y 的方程y+ay−1+2a1−y =2的解为非负数,则符合条件的所有整数a 的和为( ) A. −3 B. −2 C. 1 D. −112. 如图,利用尺规作∠AOB 的平分线,作法如下:①以点O 为圆心,适当长为半径画弧,交OA 于点D ,交OB 于点E ;②分别以点D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部交于点C ; ③画射线OC ,射线OC 就是∠AOB 的平分线. 通过上述作法,可得△OEC≌△ODC ,其依据是( )A. SSSB. ASAC. AASD. SAS第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F.若∠E =30∘,∠EFC =130∘,则∠A = .14. 在△ABC 中,∠A −∠B =35°,∠C =55°,则∠B 等于______°.15. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =4,点P 为AB 上不与A ,B 重合的一个动点,连接CP ,将△ACP 沿CP 折叠得到△QCP ,点A 的对应点为点Q ,连接BQ ,则线段BQ 的取值范围为______.16. 已知方程组{2x +y =m4x +5y =2的解x 、y 满足x +y >1,则m 的取值范围是______.三、解答题(本大题共9小题,共72分。

新浙教版八年级上数学期中考试试题及答案

新浙教版八年级上数学期中考试试题及答案

B ′C ′D ′O ′A ′ODC BA(第4题)新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,D E ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( ) A .10° B .80° C .100° D .80°或100°E CDBAH EDC B A 一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC ≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,BAEDCE DABC1 2DA BC B´D´A´C´MND CBAFED CB A DC B A EDCBA你得到的一对全等三角形是∆ ∆≅ . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321FBEA BD FC25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).EACFBEAC FB图a 图bOPAMN EB CD FACEFBD图①图②图③参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°, ∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EG F ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB. 即∠ACF =∠BCE . ∴△AFC ≌△BEC . ∴AF =BE . (3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.图⑤(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。

【浙教版】初二数学上期中试卷带答案(1)

【浙教版】初二数学上期中试卷带答案(1)

一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等 3.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .34.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 5.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 6.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等7.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 8.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个 9.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 10.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 11.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°12.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°二、填空题13.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形,且△AOP 的面积为16,则满足条件的P 点个数是______.14.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.15.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.16.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.17.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.18.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.19.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.20.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.三、解答题21.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.22.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .23.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.24.我们知道,“对称补缺”的思想是解决与轴对称图形有关的问题时的一种重要的添加辅助线的策略.请参考这种思想,解决本题:如图,在△ABC 中,AC =BC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且BD 是∠ABC 的角平分线.求证:AE =12BD . 25.ABC 中,AD 是BAC ∠的角平分线,AE 是ABC 的高.(1)如图1,若40B ︒∠=,60C ︒∠=,求DAE ∠的度数;(2)如图2()B C ∠<∠,试说明DAE ∠、B 、C ∠的数量关系.26.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a和b的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵()2-+-=,370a b∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.2.B解析:B【分析】根据全等三角形的定义去判断A,全等三角形性质去判断B,等边三角形和等腰三角形性质判断C、D,依次分析解答即可.【详解】解:A.由全等三角形的定义得到:能够完全重合的两个图形全等,此命题是真命题;B.两边和一角对应相等且该角是两边的夹角的两个三角形全等,此命题是假命题;C. 三个角都相等的三角形是等边三角形,此命题是真命题;D. 等腰三角形的两底角相等,此命题是真命题;故选B.【点睛】此题主要考查了命题的真假,关键是掌握相关定义和性质.注意SAS时,一角必须是两边的夹角.3.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD ≌△ACE ;命题1:若AB=AC ,AD=AE ,则BD=CE ,此命题为真命题;命题2:若AB=AC ,BD=CE ,则AD=AE ,此命题为真命题;命题3:若AD=AE ,BD=CE ,则AB=AC ,此命题为真命题.故选:D .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.4.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM∠=∠=,∴EFD△是等边三角形,2DE cm=,∴2EF FD ED cm===,∴4DM cm=,EBM△是等边三角形,∴60EMB∠=,∴30NDM∠=,∴2NM cm=,∴4BN BM NM cm=-=,∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.5.D解析:D【分析】根据垂直关系,可以判断△AEF与△CEB有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE.A.在Rt△AEF和Rt△CEB中AEF CEBEAF BCEEF EB∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF≌CEB△(AAS),故正确;B.在Rt△AEF和Rt△CEB中AEF CEBEA ECEAF BCE∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF≌CEB△(ASA),故正确;C.在Rt△AEF和Rt△CEB中AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.6.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.D解析:D【分析】根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键. 8.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.9.C解析:C【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,故选C.【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.10.D解析:D【分析】将一个多边形纸片剪去一个内角可以多三种情况比原多边形边数少1,不变,多1,利用内角和公式求出内角的和与外角关系即可求出.【详解】如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数和原多边形边数相同为n,()21804360n-⨯︒=⨯︒,n=10,如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数比原多边形边数少1为n-1,()n--⨯︒=⨯︒,121804360n=11,如图将一个多边形纸片剪去一个内角∠GCF后,多边形的边数比原多边形边数多1为n+1,()n-⨯︒=⨯︒,+121804360n=9,原多边形的边数为9,10,11.故选择:D.【点睛】本题考查多边形剪去一个角问题,掌握剪去一个角后对多边形的边数分类讨论是解题关键.11.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.12.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、填空题13.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA 当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x 轴的两侧作直线a 和直线b 都和x 轴平行,且到x 轴的距离都等于4,如图:①以A 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ②以O 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ③作AO 的垂直平分线分别交直线a 、b 于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B .【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 14.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.15.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A 是顶角;②∠A 是底角∠B =∠A 时③∠A 是底角∠B =∠A 时利用三角形的内角和进行求解【详解】①∠A 是顶角∠B =(180°−∠A )÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A 是顶角;②∠A 是底角,∠B =∠A 时,③∠A 是底角,∠B =∠A 时,利用三角形的内角和进行求解.【详解】①∠A 是顶角,∠B =(180°−∠A )÷2=65°;②∠A 是底角,∠B =∠A =50°.③∠A 是底角,∠A =∠C =50°,则∠B =180°−50°×2=80°,∴当∠B 的度数为50°或65°或80°时,△ABC 是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.16.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.17.25°【分析】利用三角形内角和定理得出∠BAC的度数进而得出∠ADC的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD平分∠BAC∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC的度数,进而得出∠ADC的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E 的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD 度数是解题关键.18.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.19.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=,∵AE 是ABC ∆的高,∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.20.110°【分析】连接AD 并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC 是∠3和∠4的和从而不难求得∠BDC 的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B ∠4=∠2+∠C ∴∠BDC=∠解析:110°【分析】连接AD ,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC 是∠3和∠4的和,从而不难求得∠BDC 的度数.【详解】解:连接AD ,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.AC BD ⊥,见解析【分析】根据垂直平分线的判定证明即可.【详解】解:AC BD ⊥;证明:∵AB AD =,∴点A 在BD 的垂直平分线上,∵CB CD =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ,即AC BD ⊥.【点睛】本题考查了线段的垂直平分线的性质,根据与一条线段两个端点距离相等的点,在这条线段的垂直平分线上和两点确定一条直线证明是解题关键.22.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ). ∴P 1的坐标是(﹣a ﹣4,b ).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,23.(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒. ∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.24.见解析【分析】如图,延长AE 、BC 交于点F ,构建三角形,证明△ACF ≌△BCD ,即可得出:AF=BD ,求证出AE=AF 即求证△ABE ≌△FBE ,即可求解.【详解】证明:如图,延长AE 、BC 交于点F∵AE ⊥BE ,∠ACB =90°∴∠BEF =∠BEA =90°,∠ACF =∠ACB =90°∴∠DBC +∠AFC =∠FAC +∠AFC =90°∴∠DBC =∠FAC在△ACF 和△BC D 中ACF BCD 90AC BCFAC DBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△ACF ≌△BCD (ASA)∴AF =BD .∵BD 是∠ABC 的角平分线∴∠ABE =∠FBE -在△ABE 和△FBE 中,BEA BEF BE BEABE FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△FBE (ASA)∴12AE EF AF ==∴12AE BD = 【点睛】本题主要考查的是三角形全等的性质及判定,熟练掌握三角形全等的判定定理,构建三角形是解答本题的关键.25.(1)11°;(2)∠DAE =12(∠C -∠B ) 【分析】(1)根据三角形的内角和定理,可求得∠BAC 的度数,由AD 是∠BAC 的平分线,可得∠DAC 的度数;在直角△AEC 中,可求出∠EAC 的度数,所以∠DAE =∠DAC -∠EAC ,即可得出;(2)根据三角形的内角和定理,可求得∠BAC 的度数,由AD 是∠BAC 的平分线,可得∠DAC 的度数;在直角△AEC 中,可求出∠EAC 的度数,所以∠DAE =∠DAC -∠EAC ,即可得出;【详解】解:(1)∵∠B =40°,∠C =62°,∴∠BAC =180°-∠B -∠C =180°﹣40°﹣62°=78°,∵AD 是∠BAC 的平分线,∴∠DAC =12∠BAC =39°, ∵AE 是BC 边上的高,在直角△AEC 中,∵∠EAC =90°-∠C =90°﹣62°=28°,∴∠DAE =∠DAC -∠EAC =39°﹣28°=11°;(2)∵∠BAC =180°-∠B -∠C ,∵AD 是∠BAC 的平分线,∴∠DAC =12∠BAC =90°-12(∠B +∠C ), ∵AE 是BC 边上的高,在直角△AEC 中,∵∠EAC =90°-∠C ,∴∠DAE =∠DAC -∠EAC =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B ); 【点睛】本题考查的是三角形的内角和定理,三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.26.能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【分析】根据三角形的三边关系定理逐一摆放出来即可.【详解】由题意,根据选取牙签的根数,分以下五种情况:(1)当选取3根牙签时,三边长只能是1,1,1,满足三角形的三边关系定理,能摆出三角形;(2)当选取4根牙签时,三边长只能是1,1,2,不满足三角形的三边关系定理,不能摆出三角形;(3)当选取5根牙签时,三边长可以是1,1,3或1,2,2,其中,1,1,3不满足三角形的三边关系定理,不能摆出三角形,1,2,2满足三角形的三边关系定理,能摆出三角形;(4)当选取6根牙签时,三边长可以是1,1,4或1,2,3或2,2,2,其中,1,1,4和1,2,3均不满足三角形的三边关系定理,均不能摆出三角形,2,2,2满足三角形的三边关系定理,能摆出三角形;(5)当选取7根牙签时,三边长可以是1,1,5或1,2,4或1,3,3或2,2,3,其中,1,1,5和1,2,4均不满足三角形的三边关系定理,均不能摆出三角形,1,3,3和2,2,3均满足三角形的三边关系定理,均能摆出三角形;综上,能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【点睛】本题考查了三角形的三边关系定理的应用,依据题意,正确分情况讨论是解题关键.。

【浙教版】初二数学上期中试卷(带答案)(1)

【浙教版】初二数学上期中试卷(带答案)(1)

一、选择题1.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118 3.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.54.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒ 5.下列命题的逆命题是真命题的是( ). A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等6.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 7.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°8.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .129.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条10.如图,线段BE 是ABC 的高的是( ) A . B .C .D .11.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变 B .减少 C .增加 D .不能确定 12.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .7二、填空题13.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .14.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.15.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).16.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.19.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为___________.20.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.三、解答题21.如图,网格中小正方形的边长为1,(1)画出△ABC关于x轴对称的△A1B1C1(其中A1、B1、C1分别为A、B、C的对应点);(2)△ABC的面积为;点B到边AC的距离为;(3)在x轴上是否存在一点M,使得MA+MB最小,若存在,请直接写出MA+MB的最小值;若不存在,请说明原因22.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______)(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC 的面积.23.如图,在△ABD 中,∠ABD =90°,AB=BD ,点E 在线段BD 上,延长AB 使BC=BE ,连接AE 、CE 、CD ,点M 在线段AE 上,点N 在线段CD 上,BM ⊥BN ,易证△ABE ≌△DBC ;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.24.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.25.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .26.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.B解析:B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 3.C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD 平分∠ACB ,∴∠BCD=∠ECD ,∴∠EBC=∠BEC ,∴△BEC 为等腰三角形,∴BC=CE ,∵BE ⊥CD ,∴2BD=BE ,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C .【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.4.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A.【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.5.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A33的逆命题是:33的平方根,是假命题;B55C、1的立方根是1的逆命题是:1是1的立方根,是真命题;D、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C.【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.6.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 7.D解析:D【分析】依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.8.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.9.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.10.D解析:D【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】A选项中,BE⊥BC,BE与AC不垂直,此选项错误;B选项中,BE⊥AB,BE与AC不垂直,此选项错误;C选项中,BE⊥AB,BE与AC不垂直,此选项错误;D选项中,BE⊥AC,∴线段BE是△ABC的高,此选项正确.故选:D.【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.11.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A.【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°.12.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.二、填空题13.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.14.【分析】根据等腰三角形两底角相等用α表示出∠A2B2O 依此类推即可得到结论【详解】解:∵B1A2=B1B2∠A1B1O =α∴∠A2B2Oα同理∠A3B3O ∠A2B2Oα∠A4B4Oα∴∠AnBnOα 解析:512α. 【分析】 根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论.【详解】解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==.故答案为:512α. 【点睛】 本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.15.AB=DC (答案不唯一)【分析】因为和公共边BC 根据全等证明方法即可求得【详解】当AB=DC 时根据全等证明方法SAS 可证故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC (答案不唯一)【分析】因为ABC DCB ∠=∠和公共边BC ,根据全等证明方法即可求得.【详解】当AB=DC 时根据全等证明方法SAS 可证ACB DBC ≌故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.16.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.17.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm.【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;19.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D ..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.20.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.三、解答题21.(1)见解析;(2)112,113434;(317 【分析】(1)根据对称点的坐标规律,关于x 轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC 所在矩形面积减去周围三角形面积,计算后即可得出答案,点B 到边AC 的距离即为△ABC 的AC 边上的高,利用勾股定理求得AC 的长,再根据已求得的△ABC 的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于点M ,此时MA +MB 最小,且最小值为线段A 'B 的长度,利用勾股定理计算即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =11111451235342222⨯-⨯⨯-⨯⨯-⨯⨯=. 设点B 到边AC 的距离为h ,∵网格中小正方形的边长为1, ∴AC =223534+=,∵11122ABC Sh AC ==, 即1113422h =, 解得1134h =. 故答案为:112,1134. (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA=MA',∴22'4117MA MB A B+==+=.【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.22.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A(3,3),B(1,1),C(4,−1).∴点A关于x轴的对称点A1(3,−3),B关于x轴的对称点B1(1,−1),C关于x轴的对称点C1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC的面积为:3×4−12×2×2−12×2×3−12×1×4=5.【点睛】本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.23.△ABM≌△DBN,△BME≌△BNC,理由见解析.【分析】观察图形,可找出△ABM≌△DBN,△BME≌△BNC.①由△ABE≌△DBC可得到∠BAE=∠BDC,根据BM⊥BN可得到∠AMB+∠MBE =∠DBN+∠MBE,继而得到∠AMB=∠DBN,AB=BD,可得△ABM≌△DBN;②由△ABM≌△DBN可得BM=BN,根据∠NBE+∠MBE =∠NBE+∠NBC ,可得∠MBE =∠NBC ,继而可证得△BME ≌△BNC .【详解】解:全等三角形:△ABM ≌△DBN ,△BME ≌△BNC ,理由如下:由题意知△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵BM ⊥BN ,∴∠MNB=90︒,∴∠ABM+∠MBE =∠DBN+∠MBE ,∴∠ABM=∠DBN ,AB=BD ,∴△ABM ≌△DBN ,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC ,∴∠MBE =∠NBC ,∵BE=BC ,∴△BME ≌△BNC .【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键. 24.(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.26.(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市东恩中学初二数学 2011学年第一学期期中试卷一、选择题:(本题共30分,每小题3分) 1、不等式6x <4x -1的解集是( )A .x >12B .x >-12 ;C . x <- 12 ;D .x <122、与左图所示的三视图相对应的几何体是( )3、等腰三角形的两边分别为1和2,则其周长为( )A.4B.5C.4或5 D 、无法确定 4、已知,如图,下列条件中不能判断直线l 1∥l 2的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°5、如图,已知△ABC 中,AB ∥EF ,DE ∥BC ,则图中相等的同位角有( ) A 、2组 B 、三组 C 、四组 D 、五组6、如果梯子的底端离建筑物5m ,那么13m 长的梯子可以达到建筑物的高度是( ) A 、10m B 、11m C 、12m D 、13m7、如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=( ) A 、30° B 、25° C 、20° D 、15°8、一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品( )A 至少打0.9折B 至多打0.9折C 至少打9折D 至多打9折9、如图,在△ABC 中,AB=AC ,BD=BC ,AD=DE=EB , 则∠A 等于( ) A 、 45 °B 、36°C 、30°D 、54°班级 姓名 学号10、如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是()A.和B.谐C.社D.会二、填空题:(本题共24分,每小题3分)11、请写出一个三视图相同的一个几何体_______________________.12、在△ABC中,AB=AC,∠A=∠C,则∠B= 。

13、如图,P在∠AOB的内部,PC⊥AO于C,PD⊥OB于D,PD=PC,当∠AOP=(2x-10)度,∠BOP=(x+5)度时, ∠AOB= 度.14、有一块田地的形状和尺寸如图所示,则它的面积为。

15、如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.则当收绳8秒后船向岸边移动了________米(结果保留根号)。

16、图2(1)、(2)、(3)依次表示四面体、八面体、正方体.它们各自的面数F、棱数E 与顶点数V如左表:观察这些数据,可以发现F、E、V之间的关系满足等式:.17、某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)根据上述促销方法,顾客在该商场购物可获得双重优惠,如果胡老师在该商场购标价450元的商品,他获得的优惠额为元.18、动手操作题:在长方形纸片ABCD中,AB=12., AD=5,折叠纸片,折痕为PQ,折痕的端点P、Q分别可以在AD、AB边上随意移动,当点A 落在DC边上的A'处时,如图1所示,设m为DA’的长(点A’在DC边上移动时,D、A'两点的距离),当点A落在五边形PQBCD 的内部A '' 处时,如图2所示,设n 为D A ''的长(点A '' 在五边形PQBCD 的内部运动时,D 、A ''两点的距离),则m -n 的最大值为 。

三、解答题:(本题共46分)19、(本题3分)求不等式7-3x >0的解,并将其解表示在数轴上.20、(本题4分)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥ 并写出该不等式组的整数..解。

21、(本题4分)作图题,请你在下图中作出一个以线段AB 为一边的一个..等边ABC △. (要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)已知: 求作:AB21题图22、(本题4分)如图,在ΔABC 中, BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC , (1)试叙述等式: ∠1=∠2成立之理由; (2)当BC=5 cm 时,试求ΔPDE 的周长C ΔPDE .23、(本题5分)如图1,一扇窗户打开后用窗钩AB 可将其固定. (1)这里所运用的几何原理是( ) (A )三角形的稳定性 (B )两点之间线段最短 (C )两点确定一条直线(D )垂线段最短(2)图2是图1中窗子开到一定位置时的相关平面图,若∠OAB =45°,∠OBA =30°,点O 到AB 边的距离为2cm ,求窗钩AB 1.7,结果精确到整数)姓 学号24、(得分值2-5分,随选题难度有区别)一个长方体材料的长、宽、高分别为9cm, 6cm, 5cm 如图1,先从这个长方体左前部切下一个棱长为5的正方体得图2,再从剩余部分的右上角的前部切下一个棱长为4的正方体得图3,最后从第二次剩余部分的右上角的后部切下一个棱长为2正方体得图4的工件,现在请你在图1、图2、图3或图4中任意选择一个几何体(只能选一个,多算得零分...........),在答题框中列式并计算它的表面积。

得最大利润,请你解答下列问题:(1)设这批货的成本为x元,在月初售出, 并将本利和再去投资共可获利y元,试用x的代数式表示y;(2) 请你根据x值或范围分析这批货在月初售出好还是月末好?(本题4分)如图,已知AO=6,P是射线ON上一动点(即P点可在射线ON上运动),∠AON=60º, 26、设OP=x,那么(1)当x为时,△AOP为等边三角形;(2)当x为时,△AOP为直角三角形;(3)当x满足条件时,△AOP为锐角三角形;(4)当x满足条件时,△AOP为钝角三角形。

27、(本题6分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?∠为直角,点C为线段BA的中点,点D是射线BM上的一28、(本题6分)如图,ABM⊥,垂足为E,连结CE,过点E作个动点(不与点B重合),连结AD,作BE AD⊥,交BD于F.EF CE(1)求证:BF=EF;∠取什么值或范围时,有AC//EF,并说明理由。

(2)当A附加题1、(本题3分)如图,在等边ABC △中,9AC =,点O 在AC 上, 且3AO =,点P 是 AB 上一动点,连结OP ,将线段OP 绕点O 逆时 针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是 。

2、(本题3分)若三角形的三个内角∠A 、∠B 、∠C 的关系满足∠A >3∠B, ∠C <2∠B, 则这个三角形是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形 3、(本题6分)尺规作图. 如图,已知BAC ∠, 求作:线段MN, 使其同时满足 下列3个条件(要求:用尺规作图,保留作图痕迹,不写作法和结论): (1) 点M 在AC 上,N 在AB 上; (2) MN ⊥AC (3) AN+MN=AB 。

4、(本题8分)某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?⑵在下面填写一种票价方案,使其与上述购票情况相符:参考答案以及评分意见19、解2分+数轴表示1分=3分20、每个解各1分+整个组解1分+整数解1分=4分 21、已知1分+求作1分+作图2分=4分 22、(1)2分+(2)2分=4分 23、(1)2分+(2)3分=5分24、随选题难度有区别,得分值2分到5分25、(本题6分)有一批货,如月初售出,可获利20000元,并可将本利和再去投资,到月末还可获利1.5%;如月末售出这批货,可获利24000元,但要付1000元管理费,为了获得最大利润,请你解答下列问题:(1) y=20000+1.5%(x+20000)化简得:y=0.015x+20300………………………2分 (2) y -(24000-1000)=0.015x+20300-23000=0.015(x -180000)………………3分∴当18000≥x 时,y ≥(24000-1000)即当这批货的成本不低于18万元时,月初售出好………………………………………………………………………………4分 反之,当这批货的成本低于18万元时,月末好………………………………5分。

、26、6;3或12;3<x<12;0<x<3或x>12。

1分1格。

27、设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台15-2x ≤12x , ……………………………1分 依题意得:2000x +2400x +1600(15-2x )≤32400 ………………………2分解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7 方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台 …………………4分 (2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元); 方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元. …………………6分 28、(1)3分+(2)3分=6分 (2)A ∠=45° 附加题 1、62、 A 简析:由C B B ∠+∠+∠3< C B A ∠+∠+∠< B B A ∠+∠+∠2得,C B ∠+∠< A ∠,∴A ∠〉90°3、作法:(1)、作BD ⊥AC 于D(2)、作AB △ABD的角平分线BM ; (3)作MN ⊥AC 设交AB 于N 得线段MN 即为所作。

4、(1)360+384+480-72=1152(元)1152÷72=16(元/人),即团体票是每人16元,因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数,则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为1551 ×72、1651 ×72、2051 ×72,这都不是整数(只要指出其中某一个不是整数即可),不可能,所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.对于①,C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为423115⨯,5、(本题5分)如图,△ABC 中,AB =CD ,点P 、Q 分别在AC 、AB 上,且AP =PQ =QB =BC ,求∠A 的大小。

相关文档
最新文档