高三物理固体、液体和气体 气体三定律人教实验版知识精讲.doc

合集下载

高中物理 固体液体气体的实验定律知识点总结课件 新人教版选修3-3

高中物理 固体液体气体的实验定律知识点总结课件 新人教版选修3-3

• 2.饱和汽压:在一定温度下饱和汽的分子密度是 一定的,因而饱和汽的压强也是一定的而增大. • 3.相对湿度
在某一温度下,水蒸气的________与同温度下水的饱 和汽压的比,称为空气的相对湿度. 水蒸气的实际压强p 即相对湿度(B)= ×100%. 同温下水的饱和汽压ps
• 2.液体的毛细现象 • 浸润液体在细管里上升的现象和不浸润液体在细 管里下降的现象,称为毛细现象.
浸润 附着层 在毛细管 中 分子力表现为 斥力 液面上升而呈 凹形
不浸润 分子力表现为 引力 液面下降而呈 凸形
• 3.液晶的性质特点 • (1)液晶分子既保持排列有序而显示各向异性,又可以自由 移动位置,保持了液体的流动性; • (2)液晶分子的位置无序使它像液体,排列有序使它像晶体; • (3)液晶分子的排列从某个方向看比较整齐,从另外一个方 向看则是杂乱无章的; • (4)液晶的物理性质很容易在外界的影响下发生改变.
查理定 等容变 律 化
• 续表
定律 变化 过程 同一气体的 两条图线 图线特点
A.在V-t图中是通过t轴上- 273.15 ℃的直线.由于在同一 温度(如0 ℃)下同一气体的体积 盖· 吕萨克定 律 等压 变化 大时,压强小,所以p1>p2. B.在V-T图中是通过原点的 pV C 倾斜直线,由 T =C得V= p T可 见压强p大时斜率小,所以 p1>p2.
pV p1V1 p2V2 ③状态方程: T =恒量,或 = . T1 T2
• 答案: • 一、1.晶体 非晶体 有 没有 2.(2)有规则 不 同 空间排列 • 二、1.(1)相切 长度 种类 温度 • 三、1.(1)动态平衡 3.压强 • 四、1.温度 体积 压强 • 2.p1V1=p2V2 (4)实验定律 压强 大气压 温 度 室温 分子势能 温度 物质的量

高中物理第二章气体固体和液体3气体的等压变化和等容变化课件新人教版选择性必修第三册

高中物理第二章气体固体和液体3气体的等压变化和等容变化课件新人教版选择性必修第三册

D.9.3×104 Pa
解析:由查理定律得 p2=TT21p1=237090×1.0×105 Pa=9.3×104 Pa。
探究 情景导入
理想气体及其状态方程
如图所示,一定质量的某种理想气体从状态A到 B经历了一个等温过程,又从状态B到C经历了一个 等容过程,请推导状态A的三个参量pA、VA、TA和状 态C的三个参量pC、VC、TC之间的关系。
2.盖-吕萨克定律 一 定 质 量 的 某 种 理 想 气 体 , 温 度 升 高 时 , 分 子 的 ___平__均__动__能___ 增 大;只有气体的___体__积___同时增大,使分子的___数__密__度___减小,才能保 持压强不变。这就是盖-吕萨克定律的微观解释。
3.查理定律 一定质量的某种理想气体,体积保持不变时,分子的__数__密__度____保 持不变。在这种情况下,温度升高时,分子的__平__均__动__能____增大,气体 的___压__强___就增大。这就是查理定律的微观解释。
用分子动理论可以定性解释气体的实验定律。 1.玻意耳定律 一定质量的某种理想气体,温度保持不变时,分子的平均动能是 __一__定___的。在这种情况下,体积减小时,分子的__数__密__度___增大,单位 时间内,单位面积上碰撞器壁的分子数就多,气体的压强就__增__大___。 这就是玻意耳定律的微观解释。
探究 情景导入
气体的等容变化
炎热的夏天,给汽车轮胎充气时,一般都不充得 太足(如图所示);给自行车轮胎打气时,也不能打得 太足。这是什么原因呢?
提示:轮胎体积一定,由查理定律知,气体压强与热力学温度成正 比,当轮胎打足气后,温度升高车胎内压强增大,车胎易胀破。
要ቤተ መጻሕፍቲ ባይዱ提炼
1.查理定律的表达式 Tp11=Tp22=C 2.查理定律的适用条件 (1)气体质量一定,体积不变。 (2)(实际)气体的压强不太大(小于几个标准大气压),温度不太低(不 低于零下几十摄氏度)。

2019年人教版高考物理总复习知识讲解 固体液体和气体(提高)

2019年人教版高考物理总复习知识讲解 固体液体和气体(提高)

物理总复习:固体、液体和气体编稿:李传安审稿:张金虎【考纲要求】1、知道气体分子运动速率的统计分布规律;2、知道气体的三大实验定律、内容、熟悉其图像;3、知道理想气体的状态方程,能结合力学知识解相关气体状态变化的问题。

【知识网络】【考点梳理】考点一、气体分子动理论要点诠释:1、气体分子运动的特点:①气体分子间距大,一般不小于10r0,因此气体分子间相互作用的引力和斥力都很小,以致可以忽略(忽略掉分子间作用力的气体称为理想气体)。

②气体分子间碰撞频繁,每个分子与其他的分子的碰撞多达65亿次/秒之多,所以每个气体分子的速度大小和方向是瞬息万变的,因此讨论气体分子的速度是没有实际意义的,物理中常用平均速率来描述气体分子热运动的剧烈程度。

注意:温度相同的不同物质分子平均动能相同,如H2和O2,但是它们的平均速率不相同。

③气体分子的速率分布呈“中间多,两头少”分布规律。

④气体分子向各个方向运动的机会均等。

⑤温度升高,气体分子的平均动能增加,随着温度的增大,分子速率随随时间分布的峰值向分子速度增大的方向移动,因此T1小于T2。

2、气体压强的微观解释:气体的压强是大量气体分子频繁地碰撞器壁而产生的,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。

气体分子的平均动能越大,分子越密,对单位面积器壁产生的压力就越大,气体的压强就越大。

考点二、气体的状态参量要点诠释:对于气体的某种性质均需用一个物理量来描述,如气体的热学性质可用温度来描述,其力学性质可用压强来描述。

描述气体性质的物理量叫状态参量。

1、温度:温度越高,物体分子的热运动加剧,分子热运动的平均动能也增加,温度越高,分子热运动的平均动能越大,温度越低,分子热运动的平均动能越小。

微观含义:温度是分子热运动的平均动能的标志。

温标:温度的数量表示法。

(1)摄氏温标:标准状况下冰水混合的温度为0度,水沸腾时的温度为100度,把0到100之间100等份,每一等份为1摄氏度(1℃)。

人教版高中物理 选择性 必修第三册:(第二章 气体、固体和液体)本章整合【精品课件】

人教版高中物理 选择性 必修第三册:(第二章 气体、固体和液体)本章整合【精品课件】

等压 在连通器中,同一种液体(中间不间断)同一深度处压强相等。液
面法 体内深h处的总压强p=p0+ρgh,p0为液面上方的大气压强
2.加速运动系统中封闭气体压强的求法
选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二
定律列方程求解。
例1 (2020山东滨州三模)如图所示,一导热良好的足够长汽缸水平放置在
销钉固定的导热活塞将汽缸分隔成A、B两部分,每部分都密闭有一定质量
的理想气体,此时A、B两部分气体体积相等,压强之比为2∶3,拔去销钉,稳
定后A、B两部分气体体积之比为2∶1,如图乙所示。已知活塞的质量为M,
横截面积为S,重力加速度大小为g,外界温度保持不变,不计活塞和汽缸间
的摩擦,整个过程不漏气,求稳定后B部分气体的压强。
题。解决这类问题时,可以把大容器中的气体和多个小容器中的气体一起
来作为研究对象,可将变质量问题转化为定质量问题。
(4)漏气问题
容器漏气过程中气体的质量不断发生变化,属于变质量问题。如果选容器
内剩余气体和漏出的气体为研究对象,便可使问题变成一定质量的气体状
态变化的问题,可用气体实验定律列方程求解。
例2 (2020山东泰安模拟)现有一个容积为400 L的医用氧气罐,内部气体可
第二章 本章整合




01
知识网络体系构建
02
重点题型归纳整合
知识网络体系构建
答案 温度 273.15 m、T 一定 pV=C 过原点的倾斜直线 m、p 一定

=C


=C

过原点的倾斜直线 m、V 一定
1 1 2 2
=
1

新教材 人教版高中物理选择性必修第三册 第二章 气体、固体和液体(知识点详解及配套习题)

新教材 人教版高中物理选择性必修第三册 第二章 气体、固体和液体(知识点详解及配套习题)

第二章气体、固体和液体1. 温度和温标 ...................................................................................................................... - 1 -2. 气体的等温变化............................................................................................................. - 11 -3. 气体的等压变化和等容变化......................................................................................... - 20 -4. 固体 ................................................................................................................................ - 37 -5. 液体 ................................................................................................................................ - 45 -章末复习提高...................................................................................................................... - 54 -1. 温度和温标一、状态参量与平衡态1.热力学系统:由大量分子组成的系统。

高中物理人教版选择性必修第三册教学课件《气体、固体和液体 复习小结 》

高中物理人教版选择性必修第三册教学课件《气体、固体和液体 复习小结 》

例1 (2023年洛阳检测)在洛阳古城墙上放置
一种测温装置,玻璃管的上端与导热良好的玻璃泡
连通,下端插入水中,玻璃泡中封闭有一定量的空
气.若玻璃管中水柱上升,则外界大气的变化不可
能是
()
A.温度降低,压强增大
B.温度降低,压强不变
C.温度升高,压强减小
D.温度不变,压强增大
解析:外界大气温度降低,压强增大,则玻璃泡内部气体温度降 低,气体压强减小,玻璃管中水柱上升,A可能;外界大气温度降低, 压强不变,则玻璃泡内部气体温度降低,气体压强减小,玻璃管中水柱 上升,B可能;外界大气温度升高,压强减小,则玻璃泡内部气体温度 升高,气体压强增大,玻璃管中水柱下降,C不可能;外界大气温度不 变,压强增大,则玻璃泡内部气体温度不变,气体压强不变,玻璃管中 水柱上升,D可能.
名称
图像
特点
其他图像
等 压 V-T 线
V=CpT,斜率 k=Cp,即 斜率越大,对应的压强 越小
例2 (多选)一定质量的理想气体的状态变化过程 的p-V图像如图所示,其中A是初状态,B、C是中间 状态,A→B是等温变化,如将上述变化过程改用p-T 图像和V-T图像表示,则下列各图像中正确的是( )
答案 BD
专题3 气体变质量问题的处理方法 分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问 题转化为定质量的气体问题,用理想气体状态方程求解. 1.打气问题 向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球内 原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体 质量变化的问题转化为定质量气体的状态变化问题.
答案 C
例4 关于晶体和非晶体,下列说法中正确的是
()
A.可以根据各向异性或各向同性来鉴别晶体和非晶体

高中物理第二章《固体、液体和气体》知识梳理

高中物理第二章《固体、液体和气体》知识梳理

高中物理第二章《固体、液体和气体》知识梳理一、液体的微观结构1.特点液体中的分子跟固体一样是密集在一起的,液体分子的热运动主要表现为在平衡位置附近做微小的振动,但液体分子只在很小的区域内做有规则的排列,这种区域是暂时形成的,边界和大小随时改变,有时瓦解,有时又重新形成,液体由大量这种暂时形成的小区域构成,这种小区域杂乱无章地分布着.联想:非晶体的微观结构跟液体非常相似,可以看作是粘滞性极大的流体,所以严格说来,只有晶体才能叫做真正的固体.2.应用液体的微观结构可解释的现象(1液体表现出各向同性:液体由大量暂时形成的杂乱无章地分布着的小区域构成,所以液体表现出各向同性.(2液体具有一定的体积:液体分子的排列更接近于固体,液体中的分子密集在一起,相互作用力大,主要表现为在平衡位置附近做微小振动,所以液体具有一定的体积.(3液体具有流动性:液体分子能在平衡位置附近做微小的振动,但没有长期固定的平衡位置,液体分子可以在液体中移动,这是液体具有流动性的原因.(4液体的扩散比固体的扩散要快:流体中的扩散现象是由液体分子运动产生的,分子在液体里的移动比在固体中容易得多,所以液体的扩散要比固体的扩散快.二、液体的表面张力1.液体的表面具有收缩趋势缝衣针硬币浮在水面上,用热针刺破铁环上棉线一侧的肥皂膜,另一侧的肥皂膜收缩将棉线拉成弧形.联想:液体表面就像张紧的橡皮膜.2.表面层(1液体跟气体接触的表面存在一个薄层,叫做表面层.(2表面层里的分子要比液体内部稀疏些,分子间距要比液体内部大.在表面层内,分子间的距离大,分子间的相互作用力表现为引力.联想:在液体内部,分子间既存在引力,又存在斥力,引力和斥力的数量级相等,在通常情况下可认为它们是相等的.3.表面张力(1含义:液面各部分间相互吸引的力叫做表面张力.(2产生原因:表面张力是表面层内分子力作用的结果.表面层里分子间的平均距离比液体内部分子间的距离大,于是分子间的引力和斥力比液体内部的分子力和斥力都有所减少,但斥力比引力减小得快,所以在表面层上划一条分界线MN时(图1,两侧的分子在分界线上相互吸引的力将大于相互排斥的力.宏观上表现为分界线两侧的表面层相互拉引,即产生了表面张力.图1(3作用效果:液体的表面张力使液面具有收缩的趋势.如吹出的肥皂泡呈球形,滴在洁净玻璃板上的水银滴呈球形.草叶上的露球、小水银滴要收缩成球形.深化:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小.在体积相等的各种形状的物体中球形体积最小.三、浸润和不浸润1.定义浸润:一种液体会润湿某种固体并附在固体的表面上,这种现象叫做浸润.不浸润:一种液体不会润湿某种固体,也就不会附在这种固体的表面,这种现象叫做不浸润.2.决定液体浸润的因素液体能否浸润固体,取决于两者的性质,而不单纯由液体或固体单方面性质决定,同一种液体,对一些固体是浸润的,对另一些固体是不浸润的,水能浸润玻璃,但不能浸润石蜡,水银不能浸润玻璃,但能浸润锌.误区:不能以偏概全地说“水是浸润液体”,“水银是不浸润液体”.3.浸润和不浸润的微观解释(1附着层:跟固体接触的液体薄层,其特点是:附着层中的分子同时受到固体分子和液体内部分子的吸引.(2解释:当水银与玻璃接触时,附着层中的水银分子受玻璃分子的吸引比内部水银分子弱,结果附着层中的水银分子比水银内部稀硫,这时在附着层中就出现跟表面张力相似的收缩力,使跟玻璃接触的水银表面有缩小的趋势,因而形成不浸润现象.相反,如果受到固体分子的吸引相对较强,附着层里的分子就比液体内部更密,在附着层里就出现液体分子互相排斥的力,这时跟固体接触的表面有扩展的趋势,从而形成浸润现象.总之,浸润和不浸润现象是分子力作用的表现.深化:浸润不浸润取决于固体分子对附着层分子的力和液体分子间力的关系.4.弯月面液体浸润器壁时,附着层里分子的推斥力使附着层有沿器壁延展的趋势,在器壁附近形成凹形面.液体不浸润器壁时,附着层里分子的引力使附着层有收缩的趋势,在器壁附近形成凸形面.如图2所示.图2深化:“浸润凹,不浸凸”.四、毛细现象1.含义浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为毛细现象.2.特点(1浸润液体在毛细管里上升后,形成凹月面,不浸润液体在毛细管里下降后形成凸月面.(2毛细管内外液面的高度差与毛细管的内径有关,毛细管内径越小,高度差越大.误区:在这里很多同学误认为只有浸润液体才会发生浸润现象.3.毛细现象的解释当毛细管插入浸润液体中时,附着层里的推斥力使附着层沿管壁上升,这部分液体上升引起液面弯曲,呈凹形弯月面使液体表面变大,与此同时由于表面层的表面张力的收缩作用,管内液体也随之上升,直到表面张力向上的拉伸作用与管内升高的液体的重力相等时,达到平衡,液体停止上升,稳定在一定的高度.联想:利用类似的分析,也可以解释不浸润液体的毛细管里下降的现象.五、液晶1.定义有些化合物像液体一样具有流动性,而其光学性质与某些晶体相似,具有各向异性,人们把处于这种状态的物质叫液晶.深化:液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.2.液晶的特点(1分子排列:液晶分子的位置无序使它像液体,排列有序使它像晶体.从某个方向上看液晶的分子排列比较整齐;但是从另一个方向看,液晶分子的排列是杂乱无章的.辨析:组成晶体的物质微粒(分子、原子或离子依照一定的规律在空间有序排列,构成空间点阵,所以表现为各向异性;液体却表现为分子排列无序性和流动性;液晶呢?分子既保持排列有序性,保持各向异性,又可以自由移动,位置无序,因此也保持了流动性.(2液晶物质都具有较大的分子,分子形状通常是棒状分子、碟状分子、平板状分子.3.液晶的物理性质(1液晶具有液体的流动性;(2液晶具有晶体的光学各向异性.液晶的光学性质对外界条件的变化反应敏捷.液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质.如计算器的显示屏,外加电压使液晶由透明状态变为浑浊状态.4.液晶的用途液晶可以用作显示元件,液晶在生物医学、电子工业,航空工业中都有重要应用.联想:液晶可用显示元件:有一种液晶,受外加电压的影响,会由透明状态变成浑浊状态而不再透明,去掉电压,又恢复透明,当输入电信号,加上适当电压,透明的液晶变得浑浊,从而显示出设定的文字或数码.。

选修33第2讲气体、固体与液体—(人教版)高考大一轮复习课件

选修33第2讲气体、固体与液体—(人教版)高考大一轮复习课件
答案: ADE
选修33第2讲气体、固体与液体—(人与液体—(人 教版) 高考大 一轮复 习课件
考点二 气体压强的产生与计算
1.产生的原因 由于大量气体分子无规则地运动而碰撞 器壁,形成对器壁各处均匀、持续的压力, 作用在器壁单位面积上的压力叫作气体 的压强。 2.决定因素
(1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分 子的密集程度。 3.气体压强求解的“两类模型” (1)活塞模型 如图所示是最常见的封闭气体的两种方式。 对“活塞模型”类求压强的问题,其基 本的方法就是先对活塞进行受力分析,
然后根据平衡条 件或牛顿第二定 律列方程。 图甲中活塞的质 量为 m,活塞横截 面积为 S,外界大气压强为 p0。由于活 塞处于平衡状态,所以 p0S+mg=pS。
选修3-3 热 学
第2讲 气体、固体与液体
考点一 固体和液体的性质 考点二 气体压强的产生与计算 考点三 气体实验定律的应用 考点四 气体状态变化的图象
1.晶体和非晶体 (1)单晶体具有各向异性,但不是在各种 物理性质上都表现出各向异性。 (2)只要是具有各向异性的物体必定是 晶体,且是单晶体。 (3)只要是具有确定熔点的物体必定是 晶体,反之,必是非晶体。
则气体的压强为 p=p0+mSg。 图乙中的液柱也可以看成一“活塞”, 由于液柱处于平衡状态,所以 pS+mg=p0S。
则气体压强为 p=p0-mSg=p0-ρ 液 gh。
选修33第2讲气体、固体与液体—(人 教版) 高考大 一轮复 习课件
返回
选修33第2讲气体、固体与液体—(人 教版) 高考大 一轮复 习课件
答案: ADE
返回
考点一 固体和液体的性质
3.(多选)下列对饱和汽、未饱和汽、饱和汽压以及湿度的认识,正确的是( ) A.液体的饱和汽压只与液体的性质和温度有关,而与体积无关 B.增大压强一定可以使未饱和汽变成饱和汽 C.降低温度一定可以使未饱和汽变成饱和汽 D.空气中所含水蒸气的压强越大,空气的绝对湿度越大 E.干湿泡湿度计的干、湿两支温度计的示数差越小,空气的相对湿度越大

人教版高中物理选择性必修3 第二章 气体、固体和液体 3 气体的等压变化和等容变化(可编辑PPT)

人教版高中物理选择性必修3 第二章 气体、固体和液体 3 气体的等压变化和等容变化(可编辑PPT)

适用条件:温度不太低(与常温比较)、压强不太大(与标准大气压比较)。
(2)分态式理想气体状态方程: p0V0 = p1V1 + p2V2 +…+ pnVn ,此方程等号两边所取气体
2.理想气体的状态方程 (1)内容:一定质量的某种理想气体,在从某一状态变化到另一状态时,尽管其压 强p、体积V和温度T都可能改变,但是 压强p 跟 体积V 的乘积与 热力学温度T 的比值却保持不变。
(2)表达式:
pV
T =C,式中C是与压强p、体积V、温度T无关的常量,它与气体
的质量、种类有关;或者 p1V1 = p2V2 。
问题 1.热气球的内部与外部是相通的,那么,热气球的内部气体压强与外部大气压强有 什么关系? 提示:相等。 2.在热气球的内部加热空气,内部气体的体积、密度如何变化? 提示:体积增大,密度减小。 3.热气球能够升空的力学原理是什么? 提示:热气球内部的空气被加热而等压膨胀,部分气体从内部溢出,相对于外部冷空 气具有更低的密度,外部空气的浮力使之升空。
T1
T2
4 | 气体实验定律的微观解释 1.玻意耳定律的微观解释
一定质量的某种理想气体,温度保持不变时,分子的 平均动能 是一定的。在 这种情况下,体积减小时,分子的 数密度 增大,单位时间内、单位面积上碰撞 器壁的分子数就多,气体的 压强 就增大。
2.盖-吕萨克定律的微观解释
一定质量的某种理想气体,温度升高时,分子的 平均动能 增大;只有气体的体 积同时增大,使分子的 数密度 减小,才能保持压强不变。
体在不同状态下的压强和热力学温度。
(3)推论式:一定质量的气体,从初状态(p、T)开始发生等容变化,其压强的变化量Δp
与热力学温度的变化量ΔT之间的关系为 p =

高三物理一轮复习 第十一章 第2讲 固体、液体和气体3

高三物理一轮复习 第十一章 第2讲 固体、液体和气体3

第十一章 第2讲 固体、液体和气体31. 晶体与非晶体2.液体(1)液体的微观结构特点:①分子间的距离很小;在液体内部分子间的距离在10-10m 左右。

②液体分子间的相互作用力很大,但比固体分子间的作用力要小。

③分子的热运动特点表现为振动与移动相结合。

(2)液体的表面张力:①作用:液体的表面张力使液面具有收缩的趋势。

②方向:表面张力跟液面相切,跟这部分液面的分界线垂直。

③大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。

(3)液晶:①液晶的产生:晶体――→加热 液晶――→加热液体②物理性质⎩⎪⎨⎪⎧具有液体的流动性,具有晶体的光学的各向异性在某个方向上看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的(4)饱和汽与饱和汽压:与液体处于动态平衡的蒸汽叫做饱和汽;没有达到饱和状态的蒸汽叫未饱和汽。

在一定温度下,饱和汽的分子数密度是一定的,因而饱和汽的压强也是一定,这个压强叫做这种液体的饱和汽压。

饱和汽压随温度升高而增大。

(5)相对湿度:空气中水蒸气的压强与同一温度时水的饱和汽压之比叫做空气的相对湿度。

即:相对湿度=水蒸气的实际压强同温下水的饱和汽压(B =p p s×100%)。

1.晶体与非晶体熔化过程的区别(1)晶体熔化过程,当温度达到熔点时,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点。

非晶体没有空间点阵,熔化时不需要去破坏空间点阵,吸收的热量主要转化为分子的平均动能,不断吸热,温度就不断上升。

(2)由于在不同温度下物质由固态变成液态时吸收的热量不同,而晶体有固定的熔点,因此有固定的熔化热,非晶体没有固定的熔点,也就没有固定的熔化热。

2.对液体性质三点说明(1)液体表面层、附着层的分子结构特点是导致表面张力、浸润和不浸润现象、毛细现象等现象的根本原因。

(2)同一种液体,对一些固体是浸润的,对另一些固体可能不浸润。

高中物理第二章《固体、液体和气体》知识梳理

高中物理第二章《固体、液体和气体》知识梳理

⾼中物理第⼆章《固体、液体和⽓体》知识梳理⾼中物理第⼆章《固体、液体和⽓体》知识梳理⼀、液体的微观结构1.特点液体中的分⼦跟固体⼀样是密集在⼀起的,液体分⼦的热运动主要表现为在平衡位置附近做微⼩的振动,但液体分⼦只在很⼩的区域内做有规则的排列,这种区域是暂时形成的,边界和⼤⼩随时改变,有时⽡解,有时⼜重新形成,液体由⼤量这种暂时形成的⼩区域构成,这种⼩区域杂乱⽆章地分布着.联想:⾮晶体的微观结构跟液体⾮常相似,可以看作是粘滞性极⼤的流体,所以严格说来,只有晶体才能叫做真正的固体.2.应⽤液体的微观结构可解释的现象(1液体表现出各向同性:液体由⼤量暂时形成的杂乱⽆章地分布着的⼩区域构成,所以液体表现出各向同性.(2液体具有⼀定的体积:液体分⼦的排列更接近于固体,液体中的分⼦密集在⼀起,相互作⽤⼒⼤,主要表现为在平衡位置附近做微⼩振动,所以液体具有⼀定的体积.(3液体具有流动性:液体分⼦能在平衡位置附近做微⼩的振动,但没有长期固定的平衡位置,液体分⼦可以在液体中移动,这是液体具有流动性的原因.(4液体的扩散⽐固体的扩散要快:流体中的扩散现象是由液体分⼦运动产⽣的,分⼦在液体⾥的移动⽐在固体中容易得多,所以液体的扩散要⽐固体的扩散快.⼆、液体的表⾯张⼒1.液体的表⾯具有收缩趋势缝⾐针硬币浮在⽔⾯上,⽤热针刺破铁环上棉线⼀侧的肥皂膜,另⼀侧的肥皂膜收缩将棉线拉成弧形.联想:液体表⾯就像张紧的橡⽪膜.2.表⾯层(1液体跟⽓体接触的表⾯存在⼀个薄层,叫做表⾯层.(2表⾯层⾥的分⼦要⽐液体内部稀疏些,分⼦间距要⽐液体内部⼤.在表⾯层内,分⼦间的距离⼤,分⼦间的相互作⽤⼒表现为引⼒.联想:在液体内部,分⼦间既存在引⼒,⼜存在斥⼒,引⼒和斥⼒的数量级相等,在通常情况下可认为它们是相等的.3.表⾯张⼒(1含义:液⾯各部分间相互吸引的⼒叫做表⾯张⼒.(2产⽣原因:表⾯张⼒是表⾯层内分⼦⼒作⽤的结果.表⾯层⾥分⼦间的平均距离⽐液体内部分⼦间的距离⼤,于是分⼦间的引⼒和斥⼒⽐液体内部的分⼦⼒和斥⼒都有所减少,但斥⼒⽐引⼒减⼩得快,所以在表⾯层上划⼀条分界线MN时(图1,两侧的分⼦在分界线上相互吸引的⼒将⼤于相互排斥的⼒.宏观上表现为分界线两侧的表⾯层相互拉引,即产⽣了表⾯张⼒.图1(3作⽤效果:液体的表⾯张⼒使液⾯具有收缩的趋势.如吹出的肥皂泡呈球形,滴在洁净玻璃板上的⽔银滴呈球形.草叶上的露球、⼩⽔银滴要收缩成球形.深化:表⾯张⼒使液体表⾯具有收缩趋势,使液体表⾯积趋于最⼩.在体积相等的各种形状的物体中球形体积最⼩.三、浸润和不浸润1.定义浸润:⼀种液体会润湿某种固体并附在固体的表⾯上,这种现象叫做浸润.不浸润:⼀种液体不会润湿某种固体,也就不会附在这种固体的表⾯,这种现象叫做不浸润.2.决定液体浸润的因素液体能否浸润固体,取决于两者的性质,⽽不单纯由液体或固体单⽅⾯性质决定,同⼀种液体,对⼀些固体是浸润的,对另⼀些固体是不浸润的,⽔能浸润玻璃,但不能浸润⽯蜡,⽔银不能浸润玻璃,但能浸润锌.误区:不能以偏概全地说“⽔是浸润液体”,“⽔银是不浸润液体”.3.浸润和不浸润的微观解释(1附着层:跟固体接触的液体薄层,其特点是:附着层中的分⼦同时受到固体分⼦和液体内部分⼦的吸引.(2解释:当⽔银与玻璃接触时,附着层中的⽔银分⼦受玻璃分⼦的吸引⽐内部⽔银分⼦弱,结果附着层中的⽔银分⼦⽐⽔银内部稀硫,这时在附着层中就出现跟表⾯张⼒相似的收缩⼒,使跟玻璃接触的⽔银表⾯有缩⼩的趋势,因⽽形成不浸润现象.相反,如果受到固体分⼦的吸引相对较强,附着层⾥的分⼦就⽐液体内部更密,在附着层⾥就出现液体分⼦互相排斥的⼒,这时跟固体接触的表⾯有扩展的趋势,从⽽形成浸润现象.总之,浸润和不浸润现象是分⼦⼒作⽤的表现.深化:浸润不浸润取决于固体分⼦对附着层分⼦的⼒和液体分⼦间⼒的关系.4.弯⽉⾯液体浸润器壁时,附着层⾥分⼦的推斥⼒使附着层有沿器壁延展的趋势,在器壁附近形成凹形⾯.液体不浸润器壁时,附着层⾥分⼦的引⼒使附着层有收缩的趋势,在器壁附近形成凸形⾯.如图2所⽰.图2深化:“浸润凹,不浸凸”.四、⽑细现象1.含义浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为⽑细现象.2.特点(1浸润液体在⽑细管⾥上升后,形成凹⽉⾯,不浸润液体在⽑细管⾥下降后形成凸⽉⾯.(2⽑细管内外液⾯的⾼度差与⽑细管的内径有关,⽑细管内径越⼩,⾼度差越⼤.误区:在这⾥很多同学误认为只有浸润液体才会发⽣浸润现象.3.⽑细现象的解释当⽑细管插⼊浸润液体中时,附着层⾥的推斥⼒使附着层沿管壁上升,这部分液体上升引起液⾯弯曲,呈凹形弯⽉⾯使液体表⾯变⼤,与此同时由于表⾯层的表⾯张⼒的收缩作⽤,管内液体也随之上升,直到表⾯张⼒向上的拉伸作⽤与管内升⾼的液体的重⼒相等时,达到平衡,液体停⽌上升,稳定在⼀定的⾼度.联想:利⽤类似的分析,也可以解释不浸润液体的⽑细管⾥下降的现象.五、液晶1.定义有些化合物像液体⼀样具有流动性,⽽其光学性质与某些晶体相似,具有各向异性,⼈们把处于这种状态的物质叫液晶.深化:液晶是⼀种特殊的物质状态,所处的状态介于固态和液态之间.2.液晶的特点(1分⼦排列:液晶分⼦的位置⽆序使它像液体,排列有序使它像晶体.从某个⽅向上看液晶的分⼦排列⽐较整齐;但是从另⼀个⽅向看,液晶分⼦的排列是杂乱⽆章的.辨析:组成晶体的物质微粒(分⼦、原⼦或离⼦依照⼀定的规律在空间有序排列,构成空间点阵,所以表现为各向异性;液体却表现为分⼦排列⽆序性和流动性;液晶呢?分⼦既保持排列有序性,保持各向异性,⼜可以⾃由移动,位置⽆序,因此也保持了流动性.(2液晶物质都具有较⼤的分⼦,分⼦形状通常是棒状分⼦、碟状分⼦、平板状分⼦.3.液晶的物理性质(1液晶具有液体的流动性;(2液晶具有晶体的光学各向异性.液晶的光学性质对外界条件的变化反应敏捷.液晶分⼦的排列是不稳定的,外界条件和微⼩变动都会引起液晶分⼦排列的变化,因⽽改变液晶的某些性质,例如温度、压⼒、摩擦、电磁作⽤、容器表⾯的差异等,都可以改变液晶的光学性质.如计算器的显⽰屏,外加电压使液晶由透明状态变为浑浊状态.4.液晶的⽤途液晶可以⽤作显⽰元件,液晶在⽣物医学、电⼦⼯业,航空⼯业中都有重要应⽤.联想:液晶可⽤显⽰元件:有⼀种液晶,受外加电压的影响,会由透明状态变成浑浊状态⽽不再透明,去掉电压,⼜恢复透明,当输⼊电信号,加上适当电压,透明的液晶变得浑浊,从⽽显⽰出设定的⽂字或数码.。

新教材 人教版高中物理选择性必修第三册 第二章 气体、固体和液体(知识点详解及配套习题)

新教材 人教版高中物理选择性必修第三册 第二章 气体、固体和液体(知识点详解及配套习题)

第二章气体、固体和液体1. 温度和温标 ...................................................................................................................... - 1 -2. 气体的等温变化............................................................................................................. - 11 -3. 气体的等压变化和等容变化......................................................................................... - 20 -4. 固体 ................................................................................................................................ - 37 -5. 液体 ................................................................................................................................ - 45 -章末复习提高...................................................................................................................... - 54 -1. 温度和温标一、状态参量与平衡态1.热力学系统:由大量分子组成的系统。

人教版高中物理讲义193高考复习:知识讲解 固体液体和气体(提高)

人教版高中物理讲义193高考复习:知识讲解 固体液体和气体(提高)

物理总复习:固体、液体和气体编稿:审稿:【考纲要求】1、知道气体分子运动速率的统计分布规律;2、知道气体的三大实验定律、内容、熟悉其图像;3、知道理想气体的状态方程,能结合力学知识解相关气体状态变化的问题。

【知识网络】【考点梳理】考点一、气体分子动理论要点诠释:1、气体分子运动的特点:①气体分子间距大,一般不小于10r0,因此气体分子间相互作用的引力和斥力都很小,以致可以忽略(忽略掉分子间作用力的气体称为理想气体)。

②气体分子间碰撞频繁,每个分子与其他的分子的碰撞多达65亿次/秒之多,所以每个气体分子的速度大小和方向是瞬息万变的,因此讨论气体分子的速度是没有实际意义的,物理中常用平均速率来描述气体分子热运动的剧烈程度。

注意:温度相同的不同物质分子平均动能相同,如H2和O2,但是它们的平均速率不相同。

③气体分子的速率分布呈“中间多,两头少”分布规律。

④气体分子向各个方向运动的机会均等。

⑤温度升高,气体分子的平均动能增加,随着温度的增大,分子速率随随时间分布的峰值向分子速度增大的方向移动,因此T1小于T2。

2、气体压强的微观解释:气体的压强是大量气体分子频繁地碰撞器壁而产生的,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。

气体分子的平均动能越大,分子越密,对单位面积器壁产生的压力就越大,气体的压强就越大。

考点二、气体的状态参量要点诠释:对于气体的某种性质均需用一个物理量来描述,如气体的热学性质可用温度来描述,其力学性质可用压强来描述。

描述气体性质的物理量叫状态参量。

1、温度:温度越高,物体分子的热运动加剧,分子热运动的平均动能也增加,温度越高,分子热运动的平均动能越大,温度越低,分子热运动的平均动能越小。

微观含义:温度是分子热运动的平均动能的标志。

温标:温度的数量表示法。

(1)摄氏温标:标准状况下冰水混合的温度为0度,水沸腾时的温度为100度,把0到100之间100等份,每一等份为1摄氏度(1℃)。

高三物理固体、液体和气体 气体三定律人教实验版知识精讲.doc

高三物理固体、液体和气体  气体三定律人教实验版知识精讲.doc

高三物理固体、液体和气体 气体三定律人教实验版【本讲教育信息】一. 教学内容:固体、液体和气体 气体三定律重点、难点解析: 一、固体和液体1. 固体:具有一定的形状和体积,不易压缩。

(1)固体可分为晶体和非晶体,晶体又分为单晶体和多晶体。

(2)单晶体:有规则的几何形状,各向异性,有确定熔点。

多晶体:没有规则的几何形状,不显示各向异性,有确定的熔点。

(3)非晶体:没有规则的几何形状,各向同性,没有一定的熔点。

晶体和非晶体可以相互转化。

(4)固体的微观结构:组成晶体的物质粒子依照一定规律在空间整齐排列,粒子在其平衡位置附近做微振动。

(5)晶体的特性可以用固体的微观结构来解释。

(6)固体新材料如半导体材料、磁存储材料、纳米材料等。

2. 液体:有一定的体积,无一定的形状,不易压缩。

(1)液体的微观结构:液体分子排列是部分有序,整体无序。

(2)液体的微观结构可解释液体表现出的各向异性。

(3)液体的表面张力是表面层内分子力作用的结果,是液体表面具有收缩趋势的原因。

3. 液晶(1)液晶是一种介于固态和液态之间的中间态物质。

(2)液晶是现代应用广泛的新型材料。

二、气体的状态参量 1. 温度(T 或t )(1)意义:宏观上表示物体的冷热程度,微观上表示物体中分子平均动能的大小。

(2)数值表示法①摄氏温标t :单位℃,在1个标准大气压下,水的冰点为0℃,沸点为100℃。

②热力学温标T :单位K ,把-273℃作为0K 。

③就每一度表示的温标变化来说,两种温标是相同的,只是零值起点不同,所以二者关系:K 273t T +=,△T=△t 。

2. 体积V指气体分子所能达到的空间,即气体所充满容器的容积。

单位:3m 。

()()mL cm 10L dm 10m 136333==。

3. 压强(1)定义:器壁单位面积上受到的压力就是气体的压强。

(2)微观意义:它是大量气体分子对容器器壁的撞击产生的,它决定于单位体积内的分子数和分子的平均动能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理固体、液体和气体 气体三定律人教实验版【本讲教育信息】一. 教学内容:固体、液体和气体 气体三定律重点、难点解析: 一、固体和液体1. 固体:具有一定的形状和体积,不易压缩。

(1)固体可分为晶体和非晶体,晶体又分为单晶体和多晶体。

(2)单晶体:有规则的几何形状,各向异性,有确定熔点。

多晶体:没有规则的几何形状,不显示各向异性,有确定的熔点。

(3)非晶体:没有规则的几何形状,各向同性,没有一定的熔点。

晶体和非晶体可以相互转化。

(4)固体的微观结构:组成晶体的物质粒子依照一定规律在空间整齐排列,粒子在其平衡位置附近做微振动。

(5)晶体的特性可以用固体的微观结构来解释。

(6)固体新材料如半导体材料、磁存储材料、纳米材料等。

2. 液体:有一定的体积,无一定的形状,不易压缩。

(1)液体的微观结构:液体分子排列是部分有序,整体无序。

(2)液体的微观结构可解释液体表现出的各向异性。

(3)液体的表面张力是表面层内分子力作用的结果,是液体表面具有收缩趋势的原因。

3. 液晶(1)液晶是一种介于固态和液态之间的中间态物质。

(2)液晶是现代应用广泛的新型材料。

二、气体的状态参量 1. 温度(T 或t )(1)意义:宏观上表示物体的冷热程度,微观上表示物体中分子平均动能的大小。

(2)数值表示法①摄氏温标t :单位℃,在1个标准大气压下,水的冰点为0℃,沸点为100℃。

②热力学温标T :单位K ,把-273℃作为0K 。

③就每一度表示的温标变化来说,两种温标是相同的,只是零值起点不同,所以二者关系:K 273t T +=,△T=△t 。

2. 体积V指气体分子所能达到的空间,即气体所充满容器的容积。

单位:3m 。

()()mL cm 10L dm 10m 136333==。

3. 压强(1)定义:器壁单位面积上受到的压力就是气体的压强。

(2)微观意义:它是大量气体分子对容器器壁的撞击产生的,它决定于单位体积内的分子数和分子的平均动能。

(3)单位:帕斯卡(Pa )=atm 1cmHg 76Pa 10013.15=⨯。

4. 气体的状态一定质量的气体,如果温度、体积和压强这三个量都不变,就说气体处于一定的状态,气体状态变化时,只有一个参量改变是不可能的,至少两个或者三个参量同时改变。

三、气体实验定律 1. 玻意耳定律(1)内容:一定质量的气体,在温度保持不变时,它的压强和体积成反比;或者说,压强和体积的乘积保持不变,此即玻意耳定律。

(2)数学表达式:C pV =(常量)或2211V p V p =。

(3)适用条件:①气体质量不变、温度不变; ②气体温度不太低、压强不太大。

(4)等温线(或p-V 图象或V1p -图象如图)2. 查理定律(1)等容变化:气体在体积保持不变的情况下发生的状态变化,叫做等容变化。

(2)实验结论:实验表明:一定质量的气体,在体积保持不变的情况下,它的压强随着温度的升高而增大,随着温度的降低而减小。

(3)查理定律①内容:一定质量的某种气体,在体积不变的情况下,它的压强跟热力学温度成正比,这个规律叫做查理定律。

②数学表达式:C Tp= 对于一定质量的某种气体,在两个确定的状态I (1p 、0V 、1T )和II (2p 、0V 、2T )有:2211T p T p =或2121T Tp p =。

③成立条件:a. 温度不太低(与室温相比);b. 压强不太高(与大气压相比);c. 气体的质量保持不变;d. 气体的体积保持不变。

(4)等容变化图象①由函数式CT p =可知,在T p -坐标系中,等容线是一条通过坐标原点的倾斜的直线,如图所示。

②必须明确:质量一定的气体,不同等容线的直线斜率不同,斜率越小,体积越大,如图所示,12V V >。

3. 盖·吕萨克定律(1)等压变化:气体在压强不变的情况下发生的状态变化叫等压变化。

(2)盖·吕萨克定律①内容:一定质量的气体在压强不变的情况下,它的体积跟热力学温度成正比。

②数学表达式:C TV=或2211T V T V =。

(3)等压变化图象:由C TV=得CT V =,在T V -坐标系中,等压线是一条通过坐标原点的倾斜的直线,对于一定质量的气体,不同等压线的斜率不同,斜率越小,压强越大,如图所示,12p p >。

四、饱和蒸汽和空气的湿度 1. 饱和汽和未饱和汽当蒸汽的密度达到一定值以后,液体和蒸汽之间达到了动态平衡(单位时间内,出入液面的分子数相同),这种状态的气体叫做饱和蒸汽。

尚未达到平衡状态的气体称为未饱和蒸汽,在一定温度下,饱和蒸汽的密度是一定的,未饱和蒸汽的密度小于饱和蒸汽的密度。

2. 饱和汽压饱和汽所具有的压强,叫做这种液体的饱和汽压,实验得出以下结论:(1)在相同的温度下,不同液体的饱和汽压一般是不同的,挥发性大的液体,饱和汽压大。

(2)饱和汽压随温度的升高而升高。

(3)饱和汽压与其体积大小无关。

3. 空气湿度空气中所含水蒸气的压强表征空气的绝对湿度,某一温度下,空气中水蒸气的实际压强与该温度下水的饱和汽压的百分比叫做这时空气的相对湿度,一般说来,相对湿度为40%~60%时,是我国大多数人民感觉理想舒适的气候环境。

相对湿度的计算式:%100P PB s⨯= 其中P 表示空气的绝对湿度,S P 表示同一温度下水的饱和汽压,B 表示相对湿度。

【典型例题】一、几种常见情况的压强计算1. 在气体流通的区域,各处压强相等,如容器与外界相通,容器内外压强相等;用细管相连的容器,平衡时两边气体压强相等。

2. 液体内深为h 处的总压强为gh p p 0ρ+=,式中0p 为液面上方的大气压强。

在水银内,用cmHg 作单位时可表示为h H p +=。

3. 连通器内静止的液体,同种液体同一水平面上各处压强相等。

4. 参考液片法的一般思路(1)选取假想的一个液体薄片(其自重不计)为研究对象。

(2)分析液片两侧受力情况,建立力的方程,消去横截面积,得到液片两侧的压强平衡方程。

(3)解方程,求得气体压强。

5. 平衡条件法欲求用固体(如活塞等)封闭在静止容器内的气体压强,应对固体进行受力分析,然后根据平衡条件求解。

6. 当封闭气体所在的系统处于力学非平衡的状态时,欲求封闭气体的压强,首先选择恰当的对象(如与气体相关联的液柱、活塞等),并对其进行正确的受力分析(特别注意内、外气体的压力),然后根据牛顿第二定律列方程求解。

例1. 一圆形气缸静置于地面上,如图(1)所示,气缸筒的质量为M ,活塞的质量为m ,活塞面积为S ,大气压强为0p ,现将活塞缓慢上提,求气缸离地面时气缸内气体的压强。

(忽略摩擦)解析:此题中的活塞和气缸处于平衡状态,以活塞为对象,受力分析如图(2),由平衡条件得,S p mg pS F 0+=+①再以活塞和气缸整体为对象,则有()g m M F +=② 由①②式解得SMgp p 0-=。

答案:SMgp p 0-= 方法点拨:求固体(活塞或气缸)封闭的气体的压强,由于该固体必定受到气体的压力,所以可通过对该固体进行受力分析,由平衡条件建立方程,来找出气体的压强。

这里要特别注意大气压力,何时必须考虑,何时可不考虑,本题也可以取气缸为对象有S p Mg pS 0=+,得SMgp p 0-=。

例 2. 如图所示的试管内由水银封有一定质量的气体,静止时气柱长为0L ,大气压强为0p ,当试管绕竖直轴以角速度ω在水平面内匀速转动时气柱长变为L ,其他尺寸如图所示,求转动时的气体压强(设温度不变,管截面积为S ,水银密度为ρ)。

解析:选取水银柱为研究对象,转动所需向心力由液柱两侧气体压力差提供。

()R m S p p 20ω=-而S L m 1ρ=,2L L R 12+= 所以⎪⎭⎫ ⎝⎛++=2L L L p p 12210ωρ。

答案:⎪⎭⎫ ⎝⎛++=2L L L p p 12210ωρ二、气体实验定律的应用理想气体的状态方程为=TpV恒量,由此可以看出,当其中一个参量发生变化时,另两个参量至少有一个会发生变化。

例3. 一活塞将一定质量的理想气体封闭在气缸内,初始时气体体积为33m 100.3-⨯,用DIS 实验系统测得此时气体的温度和压强分别为K 300和Pa 100.15⨯,推动活塞压缩气体测得气体的温度和压强分别为K 320和Pa 100.15⨯。

(1)求此时气体的体积;(2)保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为Pa 100.84⨯,求此时气体的体积。

解析:(1)以气缸内封闭气体为研究对象,初始状态:331m 100.3V -⨯=,K 300T 1=,Pa 100.1p 51⨯=末状态:K 320T 2=Pa 100.1p 52⨯=由理想气体状态方程222111T Vp T V p =得:33122112m 102.3T p V V p V -⨯==。

(2)由查理定律3322V p V p =得:333223m 100.4p Vp V -⨯==。

答案:(1)33m 102.3-⨯(2)33m 100.4-⨯例4. 内壁光滑的导热气缸竖直浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为Pa 100.15⨯,体积为33m 100.2-⨯的理想气体,现在活塞上方缓缓倒上沙子,使封闭气体的体积变为原来的一半,然后将气缸移出水槽缓慢加热,使气体温度变为127℃。

(1)求气缸内气体的最终体积;(2)在图上画出整个过程中气缸内气体状态变化的V p -图象。

(大气压强为Pa 100.15⨯)解析:在活塞上方倒沙的过程中温度保持不变,在缓慢加热到127℃的过程中压强保持不变。

(1)在活塞上方倒沙的过程中温度保持不变,即1100V p V p =①由①式解得Pa 100.2Pa 100.1100.1100.2p V V p 55330101⨯=⨯⨯⨯⨯==-- 在缓慢加热到127℃的过程中压强保持不变,则2201T VT V =所以33331022m 1047.1m 100.1273127273V T T V --⨯=⨯⨯+==。

(2)如图所示答案:(1)33m 1047.1-⨯ (2)见解析图三、实验定律图象的应用对于气体实验定律的图象,一定分清是什么图象即图象的性质。

等温线是双曲线,双曲线与两轴间的面积愈大,温度愈高。

等容线是一条过原点的直线,直线的斜率表示等容的容积,斜率小的体积大。

等压线是一条过原点的直线,其斜率表示压强,斜率越小,压强愈大。

例5. 气缸中有一定质量的理想气体,开始时处于状态A ,在保持体积不变的条件下,逐渐增加气体的压强,到达状态B ;再保持温度不变,体积逐渐膨胀到达状态C ;最后保持压强不变,体积减小,回到状态A 。

相关文档
最新文档