湖北省黄冈中学2018-2019学年七年级(上)期中数学模拟试卷(含答案)

合集下载

2018--2019学年七年级数学上期中试 题含答案

2018--2019学年七年级数学上期中试  题含答案

2018-2019学年七年级(上)期中数学试卷说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(每小题3分,共18分,每小题只有一个正确选项.) 1.-12017的相反数的倒数是( )A .1B .-1C .2017D .-2017 2.下面计算正确的是( )A .2233x x -=B . 235325a a a +=C .33x x +=D . 10.2504ab ab -+=3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 4.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c5.已知整式252x x-的值为6,则整式2256x x -+的值为( )A .9B .12C .18D .246.某同学做了一道数学题:“已知两个多项式为A 和B ,B=3x ﹣2y ,求A ﹣B 的值.”他误将“A ﹣B ”看成了“A+B ”,结果求出的答案是x ﹣y ,那么原来的A ﹣B 的值应该是( ) A .﹣5x+3y B . 4x ﹣3y C .﹣2x+y D .2x ﹣y 二、填空题(每小题3分,共18分)7. 数轴上的A 点与表示数2的B 点距离是5个单位长度,则A 点表示的数为8.a 是一个三位数,b 是一个两位数,如果把b 放在a 的左边,那么构成的五位数可表示为9.已知单项式31n m axy++与单项式22112m n x y +-是同类项(a ≠0),那么mn=10.观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 11.已知22017(1)0x y -++=,则x y = 12.下列语句:①没有绝对值为﹣3的数;②﹣a 一定是一个负数;③倒数等于它本身的数是1;④单项式42610x ⨯的系数是6;⑤ 32x xy y -+是二次三项式其中正确的有三、(本大题共五个小题,每小题6分,共30分)13.计算.(1)()()36 1.55 3.2514.454⎛⎫---+++- ⎪⎝⎭ (2)48)245834132(⨯+--bac14.化简:222(32)4(21)x xy x xy ----15.已知│a │=2,│b │=5,且ab<0,求a +b 的值16.已知有理数a ,b ,c 在数轴上的对应点如图所示,化简:a b b c c a-+---.17.已知多项式22(26)(251)x ax y bx x y +-+--+- (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式22222()(2)a ab b a ab b -+-++,再求它的值.四、(本大题共三个小题,每小题8分,共24分)18.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-2,那么他告诉魔术师的结果应该是 ;(2)如果小聪想了一个数并告诉魔术师结果为96,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.19.先化简,再求值:)(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y20.已知 1232+-=a a A ,2352+-=a a B ,求B A 32-五、(本大题共两个小题,每小题9分,共18分)21.今年“十一”黄金周期间,宜春明月山风景区在7天假期中每天接待旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天天减少的人数) (单位:万人):(1)若9月30日游客为2万,则10月2日游客的人数为多少?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (3)求这一次黄金周期间该风景区接待游客总人数.(假设每天游客都不重复)22.已知含字母x ,y 的多项式是:()()()22223223241x y xy x y xy x ⎡⎤++--+---⎣⎦(1)化简此多项式;(2)小红取x ,y 互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y 的值等于多少?(3)聪明的小刚从化简的多项式中发现,只要字母y 取一个固定的数,无论字母x 取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y 的值 六、(本大题共一个小题,共12分)23.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与 1表示的点重合,则 3表示的点与______表示的点重合;操作二:(2)折叠纸面,使 2表示的点与6表示的点重合,请你回答以下问题:① -5表示的点与数_____表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少?③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值.七年级数学试题答案温馨提示:1.本试卷共有五个大题,23个小题; 2.全卷满分120分,考试时间120分钟。

【6套打包】黄冈市七年级上册数学期中考试检测试题(含答案)

【6套打包】黄冈市七年级上册数学期中考试检测试题(含答案)

人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版七年级(上)期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104 3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=05.下列不是三棱柱展开图的是()A.B.C.D.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.189.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条二、填空题(每小题3分,共30分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.﹣的系数是,次数是.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差米.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.若|m﹣2|+(n+1)2=0,则2m+n=.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).三、解答题(共40分)21.(16分)计算:(1)16﹣(﹣23)+(﹣49)(2)[﹣+(﹣1)﹣(﹣)]×24(3)26×(﹣3)2+175÷(﹣5)(4)﹣42﹣6×+2×(﹣1)3÷(﹣)22.(7分)(1)合并同类项:﹣3(2m2﹣mn)+4(m2+mn﹣1)(2)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.23.(4分)若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.24.(5分)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?25.(8分)已知数轴上两点A,B对应的数分别为﹣4,8.(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①A,B两点之间的距离为.②当P,Q两点相遇时,点P在数轴上对应的数是.③求点P出发多少秒后,与点Q之间相距4个单位长度?(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?参考答案一、选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.【分析】根据三视图的知识求解.解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.5.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为米,那么依此类推得到第六次后剩下的绳子的长度为米.解:∵1﹣=,∴第2次后剩下的绳子的长度为米;依此类推第六次后剩下的绳子的长度为米.故选:C.【点评】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④【分析】根据相反数和绝对值的概念进行判断.解:①正确;②若﹣a>a,则2a<0,即a是负数,故②正确;③数轴上原点两侧,且到原点距离相等的数互为相反数;故③错误;④两个负数相互比较,绝对值大的反而小;故④错误;所以正确的结论是①②.故选:A.【点评】理解相反数和绝对值的概念是解答此题的关键.相反数:符号不同,绝对值相等的两个数互为相反数;绝对值:数轴上,一个数到原点的距离叫做这个数的绝对值.8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.18【分析】把已知等式代入原式计算即可求出值.解:∵x﹣2y=﹣3,∴原式=27+15+6=48,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】根据数轴判断出a、b两个数之间的距离小于3,然后根据绝对值的性质解答即可.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.【点评】本题考查了实数与数轴,准确识图,判断出a、b两个数之间的距离小于3是解题的关键.10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条【分析】可考虑三个面切一个小角的情况.解:依题意,剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:因此顶点最多的个数是10,棱数最少的条数是12,故选:C.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.二、填空题(每小题3分,共30分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的系数是,次数是3.【分析】单项式的系数是指单项式中的数字因数,次数是指所有字母的指数和.解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.【点评】解答此题的关键是理解单项式的概念,比较简单.注意π属于数字因数.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差40米.【分析】地势最高的与地势最低的相差,即地势最高的海拔高度﹣地势最低的海拔高度.解:10﹣(﹣30)=10+30=40米.答:三地中地势最高的与地势最低的相差40米.【点评】注意A,B,C三地要通过比较,找到地势最高的B地与地势最低A.比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.16.若|m﹣2|+(n+1)2=0,则2m+n=3.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:根据题意得,m﹣2=0,n+1=0,解得m=2,n=﹣1,所以,2m+n=3.故答案为:3.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为0或﹣2.【分析】a,b互为倒数,即ab=1;c,d互为相反数即c+d=0,m的绝对值为1,m为1或﹣1两种情况,把这些数据整体代入求得结果.解:当m=1时,原式=1+0﹣1=0;当m=﹣1时,原式=﹣1+0﹣1=﹣2.故答案为:0或﹣2.【点评】此题重在考查倒数、相反数、绝对值的意义以及有理数的混合运算等知识点.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成10a+b.【分析】根据a表示两位数,b表示一位数,把a放在b的左边,相当于把a扩大10倍,从而列出代数式.解:∵a表示两位数,b表示一位数,∴把a放在b的左边组成一个三位数,那么这个三位数可表示为10a+b;故答案为:10a+b.【点评】本题考查了列代数式,正确理解把a放在b的左边组成一个三位数,其中a的变化情况是关键.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤(请填写编号).【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,。

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。

黄冈市七年级上学期数学期中考试试卷

黄冈市七年级上学期数学期中考试试卷

黄冈市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、细心填一填 (共10题;共14分)1. (1分)若﹣a的相反数是3,那么的倒数是________.2. (1分)若x=89,|y|=122,y<0,则x+y=________.3. (1分)全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽,将数577 000 000 000 000用科学记数法表示为________.4. (2分)﹣的系数是________,次数是________.5. (1分)若3xny2与xy1-m是同类项,则m+n=________.6. (1分)(﹣3)+(﹣5)=________.7. (4分)如图所示的长方体,用符号表示下列棱的位置关系:A1B1________AB,AA1________BB1 ,A1D1________C1D1 , AD________BC.8. (1分)计算:2x3•(﹣3x)2的结果等于________9. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=3的解为________10. (1分) (2017七下·无棣期末) 定义新运算:对于任意实数a,b都有:a⊕b=a(a+b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式-3⊕x<13的解集为________二、精心选一选 (共10题;共20分)11. (2分)(2018·重庆) 下列命题是真命题的是()A . 如果一个数的相反数等于这个数本身,那么这个数一定是0B . 如果一个数的倒数等于这个数本身,那么这个数一定是1C . 如果一个数的平方等于这个数本身,那么这个数一定是0D . 如果一个数的算术平方根等于这个数本身,那么这个数一定是012. (2分)下列各数中,最大的是()A . -2B . 0C . -D . 213. (2分)计算(﹣10)+(﹣6)的结果为()A . -4B . 4C . -16D . -614. (2分)下列计算正确的是()A . a2+a2=2a4B . (﹣a2b)3=﹣a6b3C . a2•a3=a6D . a8÷a2=a415. (2分)如图,数轴上点A表示的数可能是()A .B . -2.3C . -D . -216. (2分) (2016七上·揭阳期末) 下列各对数中,数值相等的是()A . 23和32B . (-2)2和-22C . ()2和D . 2和︱-2︱17. (2分)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A . 分钟B . 分钟C . 分钟D . 分钟18. (2分)如果代数式4y2-2y+5的值为7,那么代数式-2y2+y-1的值为()A . -3B . 2C . -2D . 019. (2分)已知正方形的边长为xcm,若把这个正方形的每边长都减少3cm,则正方形减少的面积为()A . 3B . 6x – 9C . (x-3)2D . 6x20. (2分)如图,是一组按照某种规律摆放而成的图案,则图5中三角形的个数是().A . 8B . 9C . 16D . 17三、用心算一算 (共3题;共25分)21. (10分) (2018七上·衢州期中) “囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当时,求此时“囧”的面积.22. (10分) (2017七下·睢宁期中) 计算:(1)(﹣)﹣1+(﹣2)2×50﹣(﹣)﹣2;(2) 2a5﹣a2•a3+(2a4)2÷a3.23. (5分) (2019七上·绍兴期中) 先化简,再求值:,其中x=2,y=四、大胆试一试 (共4题;共37分)24. (10分) (2016七上·南昌期末) 列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25. (10分)根据所学知识填空:(1)比较下列各式的大小:|5|+|3|________|5+3|,|﹣5|+|﹣3|________|(﹣5)+(﹣3)|,|﹣5|+|3|________|(﹣5)+3|,|0|+|﹣5|________|0+(﹣5)|…(2)通过(1)的比较、观察,请你猜想归纳:当a、b为有理数时,|a|+|b|________|a+b|.(填入“≥”、“≤”、“>”或“<”)(3)根据(2)中你得出的结论,求当|x|+|﹣2|=|x﹣2|时,直接写出x的取值范围.26. (10分) (2017七上·三原竞赛) 下表是某一周某种股票每天的收盘价(收盘价:股票每天交易结束时的价格)时间星期一星期二星期三星期四星期五收盘价(元/股)13.413.4比前一天涨跌(元/股)/-0.02+0.06-0.25(1)填表,并回答哪天收盘价最高?哪天收盘价最低?(2)最高价与最低价相差多少?27. (7分) (2018七上·镇江月考) 生活与数学(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是________;(2)玛丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是________;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是________;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是________号;(5)若干个偶数按每行8个数排成下图:①图中方框内的9个数的和与中间的数的关系是________;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是________;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是________.参考答案一、细心填一填 (共10题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、精心选一选 (共10题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、用心算一算 (共3题;共25分) 21-1、21-2、22-1、22-2、23-1、四、大胆试一试 (共4题;共37分) 24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、27-4、27-5、。

2019年黄冈市七年级数学上期中试卷带答案

2019年黄冈市七年级数学上期中试卷带答案

2019年黄冈市七年级数学上期中试卷带答案一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯3.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .13244.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .20195.点M 、N 都在线段AB 上, 且M 分AB 为2:3两部分, N 分AB 为3:4两部分, 若MN=2cm, 则AB 的长为( )A .60cmB .70cmC .75cmD .80cm 6.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6D .4 7.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x-5=y+5 B .若a=b ,则ac=bcC .若23a b c c =,则2a=3bD .若x=y ,则x y a b= 8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯10.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④ 11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =33012.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人 二、填空题13.若计算(x ﹣2)(3x+m )的结果中不含关于字母x 的一次项,则m 的值为_____.14.我国明代数学读书《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么设竿子长为x 尺,依据题意,可列出方程得____________.15.当a =________时,关于x 的方程+23=136x x a +-的解是x =-1. 16.已知方程﹣2x 2﹣5m +4m=5是关于x 的一元一次方程,那么x=_____.17.如图,90AOB ∠=︒,OD 平分BOC ∠,45DOE ∠=︒,则AOE ∠________COE ∠.(填“>”“<”或“=”)18.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.19.下列哪个图形是正方体的展开图()A.B.C.D.20.如图,AB∥ED,AG平分∠BAC,∠ECF=80°,则∠F AG=_____.三、解答题21.一个角的余角比这个角的补角的13还小10°,求这个角.22.先化简,再求值 [(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1.23.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.24.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣12,b=13.25.将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A=60°,∠B=30,∠D=45°.(1)若∠BCD=45°,求∠ACE的度数.(2)若∠ACE=150°,求∠BCD的度数.(3)由(1)、(2)猜想∠ACE与∠BCD存在什么样的数量关系并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.3.B解析:B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数. 【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B.【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.4.B解析:B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.5.B解析:B【解析】【分析】由题意可知,M分AB为2:3两部分,则AM为25AB,N分AB为3:4两部分,则AN为37AB,MN=2cm,故MN=AN-AM,从而求得AB的值.【详解】如图所示,假设AB=a,则AM=25a,AN=37a,∵MN=37a-25a=2,∴a=70.故选B.【点睛】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.6.C解析:C【解析】【分析】分别解出两方程的解,两解相等,就得到关于a 的方程,从而可以求出a 的值.【详解】解第一个方程得:x=1223a -, 解第二个方程得:x=8, ∴1223a -=8, 解得:a=-6.故选C .【点睛】 考查了同解方程,利用同解方程得出关于a 的方程是解题关键.7.B解析:B【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、不符合等式的基本性质,故本选项错误;B 、不论c 为何值,等式成立,故本选项正确;C 、∵23a b c c= ,∴•623a b c c c = •6c ,即3a=2b ,故本选项错误; D 、当a≠b 时,等式不成立,故本选项错误.故选:B .【点睛】 此题考查等式的性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题的关键.8.B解析:B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【详解】A. 第一行数字从左到右依次为1,0,1,0,序号为32101202120210⨯+⨯+⨯+⨯=,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为3210021212026⨯+⨯+⨯+⨯=,表示该生为6班学生.C.第一行数字从左到右依次为1,0,0,1,序号为3210⨯+⨯+⨯+⨯=,表120202129示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为3210⨯+⨯+⨯+⨯=,表021212127示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.9.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A解析:A【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.11.D解析:D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=330.故选D.12.B解析:B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B .【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.二、填空题13.6【解析】试题解析:原式由结果不含x 的一次项得到解得:故答案为6 解析:6【解析】试题解析:原式()2362.x m x m =+-- 由结果不含x 的一次项,得到60m -=,解得: 6.m =故答案为6.14.【解析】【分析】设竿子为x 尺则绳索长为(x+5)根据对折索子来量竿却比竿子短一托即可得出关于x 的一元一次方程【详解】解:设竿子为x 尺则绳索长为(x+5)根据题意得:【点睛】本题考查了一元一次方程的应 解析:()1552x x -+= 【解析】【分析】设竿子为x 尺,则绳索长为(x+5),根据“对折索子来量竿,却比竿子短一托”,即可得出关于x 的一元一次方程.【详解】解:设竿子为x 尺,则绳索长为(x+5),根据题意得: ()1552x x -+= 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键. 15.-1【解析】由题意得:解得:a=-1故答案为-1解析:-1【解析】 由题意得:123136a -+-+-=, 解得:a=-1,故答案为-1. 16.-21【解析】【分析】根据一元一次方程的定义可得2﹣5m=1然后得到m 的值再代入方程可得﹣2x+45=5然后再解方程即可【详解】解:由题意得:2﹣5m=1解得:m=15方程可变为﹣2x+45=5解得解析:-2.1【解析】【分析】根据一元一次方程的定义可得2﹣5m=1,然后得到m 的值,再代入方程可得﹣2x+=5,然后再解方程即可.【详解】解:由题意得:2﹣5m=1,解得:m=,方程可变为﹣2x+=5,解得:x=﹣2.1,故答案为:﹣2.1.【点睛】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的未知数的指数为1.17.【解析】【分析】先根据角的和差得出再根据角平分线的定义得出由此即可得出答案【详解】又即OD 平分故答案为:【点睛】本题考查了角的和差角平分线的定义掌握角的和差运算是解题关键解析:=【解析】【分析】先根据角的和差得出45,45BOD C CO O E D A E O ∠+∠+∠==∠︒︒,再根据角平分线的定义得出BOD COD ∠=∠,由此即可得出答案.【详解】45DOE ∠=︒45COE DO COD E ∴∠+∠=∠=︒又90AOB ∠=︒90DOE BOD OE AOB A ∠=∠∴+∠+=∠︒,即4905AOE BOD ︒+∠=+∠︒ 45AOE BOD ∴+∠=∠︒BOD CO OE AOE C D ∠=∠+∠∴∠+OD 平分BOC ∠BOD COD ∴∠=∠AOE COE ∴∠=∠故答案为:=.【点睛】本题考查了角的和差、角平分线的定义,掌握角的和差运算是解题关键.18.无19.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.20.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG 即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC,求出∠BAF和∠BAG,即可得出答案.【详解】∵AB∥ED,∠ECF=80°,∴∠BAC=∠FCE=80°,∴∠BAF=180°﹣80°=100°,∵AG平分∠BAC,∴∠BAG=12∠BAC=40°,∴∠F AG=∠BAF+∠BAG=100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC是解此题的关键,注意:两直线平行,内错角相等.三、解答题21.60°【解析】【分析】设这个角是x度,根据题意列方程求解.【详解】解:设这个角为xº,列方程:90-x=13(180-x)-10,解得x=60,故这个角是60度.【点睛】本题考查余角补角性质;解一元一次方程,根据题目数量关系正确列方程计算是解题关键.22.xy,10.【解析】【分析】利用去括号、合并同类项和整式的除法运算法则进行化简,然后将x、y的值代入即可解答.【详解】解:[(xy+2)(xy-2)-2x2y2+4]÷xy,= [x2y2-4-2x2y2+4] ÷xy=- x2y2 ÷xy=- xy当x=10,y=-1时,- xy=-10×(-1)=10.【点睛】本题主要考查了整式的混合运算,正确掌握相关运算法则是解答本题的关键.23.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.(2)设小红购买x 跳绳根,那么小明购买(x -2)根跳绳,25x ×0.8=25(x -2)-5,解得: x =11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.24.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+ 22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭ 25.(1)∠ACE =135°;(2)∠BCD =30°;(3)∠ACE 与∠BCD 互补.理由见解析.【解析】【分析】(1)先求得∠ACD 的度数,即可得到∠ACE 的度数;(2)先求得∠ACD 的度数,即可得到∠BCD 的度数;(3)依据∠BCD =∠ACB ﹣∠ACD =90°﹣∠ACD ,∠ACE =∠DCE +∠ACD =90°+∠ACD ,即可得到∠ACE 与∠BCD 互补.【详解】解:(1)∵∠BCD =45°,∠ACB =90°,∴∠ACD =∠ACB ﹣∠DCB =45°,又∵∠DCE =90°,∴∠ACE =∠ACD +∠DCE =45°+90°=135°;(2)∵∠ACE =150°,∠DCE =90°,∴∠ACD =∠ACE ﹣∠DCE =150°﹣90°=60°,又∵∠ACB =90°,∴∠BCD =∠ACB ﹣∠ACD =90°﹣60°=30°;(3)由(1)、(2)猜想∠ACE 与∠BCD 互补.理由:∵∠BCD =∠ACB ﹣∠ACD =90°﹣∠ACD ,∠ACE =∠DCE +∠ACD =90°+∠ACD ,∴∠BCD +∠ACE =90°﹣∠ACD +90°+∠ACD =180°,∴∠ACE 与∠BCD 互补.【点睛】此题主要考查了角的计算,关键是理清图中角的和差关系.。

湖北省武汉市黄陂区2018-2019学年七年级上学期数学期中试卷 含答案解析

湖北省武汉市黄陂区2018-2019学年七年级上学期数学期中试卷  含答案解析

2018-2019学年七年级上学期数学期中试卷一、选择题(共10小题,每小题3分,共30分)1.在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.﹣2018的相反数是()A.﹣2018B.2018C.﹣D.3.在数轴上,点A表示﹣2,从点A出发,沿数轴向左移动3个单位长度到达点B,则点B 表示的数为()A.1B.1或﹣5C.﹣5D.以上都不对4.0.005678精确到千分位是()A.0.005B.0.0056C.0.0057D.0.0065.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的天数是()A.4天B.5天C.6天D.7天6.与a﹣(a﹣b+c)相等的式子是()A.a﹣b+c B.a+b﹣c C.b﹣c D.c﹣b7.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1D.x2y﹣2x2y=﹣x2y8.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9B.﹣9C.18D.﹣189.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x10.下列结论:①若|x|=2,那么x一定是2;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③|a+b|=a﹣b,则a≥0、b=0或a=0、b≤0;④若a、b互为相反数,则=﹣1,正确的说法的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.|3﹣π|的计算结果是.12.在网络上用“Baidu“搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为10300000,这个数用科学记数法表示为.13.若a2b m+2与﹣0.5a n﹣1b4的和是单项式,则m﹣n=.14.张大伯从报社以每份0.7元的价格购进了a份报纸,以每份1.5元的价格售出了b份报纸,剩余的以每份0.4元的价格退回报社,则张大伯卖报盈利元.15.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是.16.对于任意实数a、b,都有a☆b=|a+b|+5b,比如3☆4=|3+4|+5×4=27;若a☆a=12,则a=.三、解答题(共8题,共72分)17.在数轴上表示下列各数,并把下列各数用“<”号连接起来﹣,﹣3,4,18.计算:(1)﹣32×(﹣)2+(++)×(﹣24)(2)﹣24﹣[(﹣3)2﹣(1﹣23×)÷(﹣2)]19.化简(1)3a2﹣2(a2﹣2a)﹣(a2﹣3a)(2)3x2﹣[7x﹣2(4x﹣3)+(2x2﹣x)]20.化简求值:4a2﹣4ab+2b2﹣2(a2﹣ab+3b2),其中a2+ab=5,b2+ab=3.21.已知ac>0,a+b<0,且|c|>|b|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=a时,请在数轴上标出点A、B、C的大致位置;(2)在(1)的条件下,化简:|a+b|+|b+c|﹣|c﹣a|.22.做大、小两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?23.某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周(每周按五个工作日计算)每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的代数式表示本周前三天生产自行车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=200时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,则这一周工人的工资与按日计件的工资哪一个更多?24.已知多项式(a2﹣16)x2+(a+4)x+4a是关于x的一次多项式,且常数项为b,a、b 分别对应着数轴上的A、B两点.(1)a=,b=;(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.参考答案与试题解析一.选择题(共10小题)1.在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选:A.2.﹣2018的相反数是()A.﹣2018B.2018C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.3.在数轴上,点A表示﹣2,从点A出发,沿数轴向左移动3个单位长度到达点B,则点B 表示的数为()A.1B.1或﹣5C.﹣5D.以上都不对【分析】由点A表示的数结合点A运动的方向及位移,即可得出点B表示的数,此题得解.【解答】解:根据题意得:点B表示的数为﹣2﹣3=﹣5.故选:C.4.0.005678精确到千分位是()A.0.005B.0.0056C.0.0057D.0.006【分析】根据四舍五入法可以将题目中的数据精确到千分位,本题得以解决.【解答】解:0.005678≈0.006(精确到千分位),故选:D.5.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的天数是()A.4天B.5天C.6天D.7天【分析】根据题意确定出每天的位置,即可求出蜗牛爬出井口需要的天数.【解答】解:从井里距井口18处,第一天,向上爬行6米,晚上下滑3米,最后距井口15米;第二天,向上爬行6米,晚上下滑3米,最后距井口12米;第三天,向上爬行6米,晚上下滑3米,最后距井口9米;第四天,向上爬行6米,晚上下滑3米,最后距井口6米;第五天,向上爬行6米,到井口,则蜗牛爬出井口需要的天数是5天,故选:B.6.与a﹣(a﹣b+c)相等的式子是()A.a﹣b+c B.a+b﹣c C.b﹣c D.c﹣b【分析】先去括号,再合并同类项即可.【解答】解:原式=a﹣a+b﹣c=b﹣c.故选:C.7.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1D.x2y﹣2x2y=﹣x2y【分析】原式各项合并同类项得到结果,即可作出判断.【解答】解:A、原式=2x2,错误;B、原式不能合并,错误;C、原式=x,错误;D、原式=﹣x2y,正确,故选:D.8.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9B.﹣9C.18D.﹣18【分析】根据代数式y2+2y+7的值是6,可得y2+2y的值,然后整体代入所求代数式求值即可.【解答】解:∵代数式y2+2y+7的值是6;∴y2+2y+7=6;∴y2+2y=﹣1;∴4y2+8y﹣5=4(y2+2y)﹣5=4×(﹣1)﹣5=﹣9.故选:B.9.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x【分析】根据题意可把阴影部分分成两个长方形或一个长方形和一个正方形来计算面积,也可以用大长方形的面积减去空白处小长方形的面积来计算.【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为两个长为x+3,宽为x和长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选:D.10.下列结论:①若|x|=2,那么x一定是2;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③|a+b|=a﹣b,则a≥0、b=0或a=0、b≤0;④若a、b互为相反数,则=﹣1,正确的说法的个数是()A.1个B.2个C.3个D.4个【分析】根据负整数的定义,有理数的乘法法则,有理数的加法法则,绝对值的定义解答即可.【解答】解:①若|x|=2,那么x=±2,故说法错误;②若干个有理数相乘,如果含有0因数,则乘积是0,故说法错误;③|a+b|=a﹣b,则a≥0、b=0或a=0、b≤0,故正确;④若a、b(a,b不为0)互为相反数,则=﹣1,故说法错误.所以正确的个数有1个.故选:A.二.填空题(共6小题)11.|3﹣π|的计算结果是π﹣3.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:|3﹣π|的计算结果是π﹣3,故答案为:π﹣3.12.在网络上用“Baidu“搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为10300000,这个数用科学记数法表示为 1.03×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点向左移动了多少位,n就是几.【解答】解:10300000=1.03×107,故答案为:1.03×107.13.若a2b m+2与﹣0.5a n﹣1b4的和是单项式,则m﹣n=﹣1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:m+2=4,n﹣1=2,∴m=2,n=3,∴m﹣n=﹣1.故答案为:﹣1.14.张大伯从报社以每份0.7元的价格购进了a份报纸,以每份1.5元的价格售出了b份报纸,剩余的以每份0.4元的价格退回报社,则张大伯卖报盈利 1.1b﹣0.3a元.【分析】注意利用:卖报收入=总收入﹣总成本.【解答】解:依题意得,张大伯卖报收入为:1.5b+0.4(a﹣b)﹣0.7a=1.1b﹣0.3a.故答案是:1.1b﹣0.3a.15.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是74.【分析】观察四个正方形,可得到规律,每个正方形中左下角的数比左上角的数大2、右上角的数比左上角的数大4.【解答】解:0+2=2 2+2=4 4+2=6,所以第四个正方形左下角的数为,6+2=8 0+4=4 2+4=6 4+4=8,所以第四个正方形右上角的数为,6+4=10.8=2×4﹣0 22=4×6﹣2 44=6×8﹣4 所以m=8×10﹣6=74.故答案为:74.16.对于任意实数a、b,都有a☆b=|a+b|+5b,比如3☆4=|3+4|+5×4=27;若a☆a=12,则a=.【分析】已知等式利用已知的新定义化简,计算即可求出值a的值.【解答】解:根据题中的新定义化简得:|2a|+5a=12,当a≥0时,方程化简为7a=12,解得:a=;当a<0时,方程化简为3a=12,解得:a=4(不符合题意,舍去),则a=,故答案为:.三.解答题(共8小题)17.在数轴上表示下列各数,并把下列各数用“<”号连接起来﹣,﹣3,4,【分析】将各数表示在数轴上,按照从小到大顺序排列即可.【解答】解:如图所示:则﹣3<﹣<<4.18.计算:(1)﹣32×(﹣)2+(++)×(﹣24)(2)﹣24﹣[(﹣3)2﹣(1﹣23×)÷(﹣2)]【分析】(1)根据有理数的混合运算顺序和运算法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣9×+×(﹣24)+×(﹣24)+×(﹣24)=﹣1﹣6﹣4﹣9=﹣20;(2)原式=﹣16﹣[9﹣(1﹣8×)÷(﹣2)]=﹣16﹣[9﹣(1﹣6)×(﹣)]=﹣16﹣(9﹣)=﹣16﹣9+=﹣22.19.化简(1)3a2﹣2(a2﹣2a)﹣(a2﹣3a)(2)3x2﹣[7x﹣2(4x﹣3)+(2x2﹣x)]【分析】(1)直接去括号进而合并同类项即可得出答案;(2)直接去括号进而合并同类项即可得出答案.【解答】解:(1)3a2﹣2(a2﹣2a)﹣(a2﹣3a)=3a2﹣2a2+4a﹣a2+3a=7a;(2)3x2﹣[7x﹣2(4x﹣3)+(2x2﹣x)]=3x2﹣7x+2(4x﹣3)﹣(2x2﹣x)=3x2﹣7x+8x﹣6﹣2x2+x=x2+2x﹣6.20.化简求值:4a2﹣4ab+2b2﹣2(a2﹣ab+3b2),其中a2+ab=5,b2+ab=3.【分析】直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:4a2﹣4ab+2b2﹣2(a2﹣ab+3b2)=4a2﹣4ab+2b2﹣2a2+2ab﹣6b2,=2a2﹣2ab﹣4b2,∵a2+ab=5,b2+ab=3,∴原式=2(a2+ab)﹣4(b2+ab)=2×5﹣4×3=﹣2.21.已知ac>0,a+b<0,且|c|>|b|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=a时,请在数轴上标出点A、B、C的大致位置;(2)在(1)的条件下,化简:|a+b|+|b+c|﹣|c﹣a|.【分析】(1)根据条件可判断出a、b、c的正负和大小,即可画出点A、B、C在数轴上的大致位置;(2)根据(1)的条件,分别判断绝对值内每个式子的正负,然后去掉绝对值化简即可.【解答】解:(1)∵ac>0,|a|=a,∴a>0,c>0,∵a+b<0,∴b<﹣a<0,|b|>|a|,∵|c|>|b|,∴|c|>|b|>|a|,∴OC>OB>OA,∴在数轴上表示对应点A、B、C如下图所示,(2)根据数轴上a、b、c的正负及大小关系,|a+b|+|b+c|﹣|c﹣a|=﹣a﹣b+b+c﹣(c﹣a)=0.22.做大、小两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?【分析】(1)先求大纸盒的用料2 (1.5a×2b+2b×2c+1.5a×2c),再求出小纸盒的用料2(ab+bc+ac),再相加即可;(2)用大纸盒的用料 2 (1.5a×2b+2b×2c+1.5a×2c)减去做小纸盒的用料2(ab+bc+ac)即可.【解答】解:(1)2 (1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac),(1分)=2ab+2bc+2ac+6ab+8bc+6ac(2分)=8ab+10bc+8ac(平方厘米)(3分)答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米(4分)(2)2 (1.5a×2b+2b×2c+1.5a×2c)﹣2(ab+bc+ac)(5分)=6ab+8bc+6ac﹣2ab+2bc+2ac(6分)=4ab+6bc+4ac(平方厘米)(7分)答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米(8分)23.某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周(每周按五个工作日计算)每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的代数式表示本周前三天生产自行车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=200时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,则这一周工人的工资与按日计件的工资哪一个更多?【分析】(1)星期一的产量是:(n+10)辆,星期二的产量是:(n﹣9)辆,星期三的产量是:(n+8)辆,据此即可求得;(2)首先利用含n的代数式表示出这一周的工资总额,然后把n=200代入即可求解;(3)若按周计件则计划一周生产1000辆,根据条件即可算出工资额,再根据(2)计算得到的数值,进行比较即可判断.【解答】解:(1)n+10+n﹣9+n+8=3n+9(辆);(2)按日计件的工资为:(n+10+n﹣9+n+8+n+12+n﹣11)×60+30×15﹣20×20=300n+650=300×200+650=60650(元);(3)按周计工资更多.∵按周计件的工资为:(n+10+n﹣9+n+8+n+12+n﹣11)×60+(10﹣9+8+12﹣11)×15=300n+750=300×200+750=60750>60650,∴按周计工资更多.24.已知多项式(a2﹣16)x2+(a+4)x+4a是关于x的一次多项式,且常数项为b,a、b 分别对应着数轴上的A、B两点.(1)a=4,b=16;(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.【分析】(1)由题意,令多项式的二次项系数为0且一次项系数不为0,即可求得a,进而求出b值;(2)根据点的运动,找到符合题意的位置,根据题意列方程分情况列方程即可求得;(3)方法与上问相同,但要仔细分析符合题意的位置,列方程可求得.【解答】解:(1)∵(a2﹣16)x2+(a+4)x+4a是关于x的一次多项式,∴a2﹣16=0且a+4≠0,解得a=4或﹣4(舍),常数项为b,则b=4a=16.故答案为:4;16.(2)设P运动t秒后所表示的数为4+3t,点P在运动过程中存在如下符合题意的两种情况:①当点P在点B左侧时,则有:4+3t﹣4=3(16﹣4﹣3t),解得t=3;②当点P在点B右侧时,则有:4+3t﹣4=3(4+3t﹣16),解得t=6.故当时间为3秒或6秒时,点P到点A的距离是点P到点B的距离的3倍.(3)点P在运动开始到结束过程中存在如下符合题意的四种情况:当点P在A、B之间时,有4+4t+6=16+2t,解得t=3;当点P在B、C之间时,有4+4t﹣6=16+2t,解得t=9;当P到达点C处后返回且Q在P的右侧时,有12+2t+4t﹣(40﹣4)﹣6=36,解得t=11;当P到达终点A,Q继续运动到点C处后返回,并与P相距6时,有2t+6=24+36,解得t=27.故当运动3秒、9秒、11秒或27秒时,P、Q两点之间的距离为6.。

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.254.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣16.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.18.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是.12.若单项式5x4y和25x n y m是同类项,则m+n的值为.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为.14.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是.15.化简|π﹣4|+|3﹣π|=.16.计算:﹣5÷×5=(﹣1)2000﹣02011+(﹣1)2012=.17.单项式的系数是,次数是.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【考点】有理数的混合运算.【分析】A、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;B、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算;C、根据有理数的乘方法则计算即可求解;D、从左往右依次计算即可求解.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C,3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.25【考点】绝对值.【分析】根据绝对值的定义解答.【解答】解:绝对值是5的数,原点左边是﹣5,原点右边是5,∴这个数是±5.故选A.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.5.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣1【考点】数轴;有理数大小比较.【分析】根据数轴上的点表示数的方法得到数轴上表示﹣2的点与表示+2的点的距离是4;数轴上原点表示的数是0;所有的有理数都可以在数轴上表示出来;﹣1是最大的负整数.【解答】解:A、数轴上表示﹣2的点与表示+2的点的距离是4,所以A选项错误,符合题意;B、数轴上原点表示的数是0,所以B选项正确,不符合题意;C、所有的有理数都可以在数轴上表示出来,所以C选项正确,不符合题意;D、﹣1是最大的负整数,所以D选项正确,不符合题意.故选A.6.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.1【考点】整式的混合运算;绝对值.【分析】由于a≠0,那么应该分两种情况讨论:①a>0;②a<0,然后分别计算即可.【解答】解:∵a≠0,①当a>0时,(a﹣|a|)÷2a=(a﹣a)÷2a=0;②当a<0时,(a﹣|a|)÷2a=(a+a)÷2a=1.故选A.8.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元【考点】列代数式.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.【考点】数轴;有理数的加法;有理数的减法;有理数的乘法;有理数的除法.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后根据有理数的加、减、乘、除运算进行符号判断即可.【解答】解:根据题意,a<0且|a|<1,b>且|b|>1,∴A、a+b是正数,故本选项正确;B、a﹣b=a+(﹣b),是负数,故本选项错误;C、ab是负数,故本选项错误;D、是负数,故本选项错误.故选A.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.【考点】规律型:数字的变化类.【分析】分别求出a2,a3,a4,a5的值,不难发现每3个数为一组依次进行循环,用2011除以3,余数是几,则与第几个数相同.【解答】解:∵a1=2,∴a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,a5=1﹣=,…依此类推,每3个数为一组进行循环,2011÷3=670…1,∴a2011=a1=2.故答案为:2.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是﹣3p.【考点】列代数式.【分析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:p的3倍的相反数是﹣3p,故答案为:﹣3p.12.若单项式5x4y和25x n y m是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.【解答】解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为﹣7或1.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:当点A在﹣3的左侧时,则﹣3﹣4=﹣7;当点A在﹣3的右侧时,则﹣3+4=1.则A点表示的数为﹣7或1.故答案为:﹣7或114.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是13.【考点】代数式求值.【分析】把代数式1+3a2﹣6a变形为3(a2﹣2a)+1,然后把a2﹣2a=4整体代入计算即可.【解答】解:∵1+3a2﹣6a=3(a2﹣2a)+1,而a2﹣2a=4,∴1+3a2﹣6a=3×4+1=13.故答案为13.15.化简|π﹣4|+|3﹣π|=1.【考点】绝对值.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.16.计算:﹣5÷×5=﹣125(﹣1)2000﹣02011+(﹣1)2012=2.【考点】有理数的混合运算.【分析】(1)乘除运算时,从左往右进行计算;(2)先计算乘方运算,再算加减运算即可得到结果.【解答】解:(1)﹣5÷×5,=﹣5×5×5,=﹣125;(2)(﹣1)2000﹣02011+(﹣1)2012,=1﹣0+1,=2.17.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是8℃.【考点】正数和负数.【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3)=5+3=8℃.故答案为:8℃.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f=n﹣1,f()=n(n为整数),再计算即可.【解答】解:由规律得:f(n)=n﹣1,f(1n)=n(n为整数),∴f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.【考点】有理数的混合运算.【分析】(1)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(2)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(3)先把除法化为乘法,再根据乘法分配律进行计算;(4)先计算乘方,再计算加减,注意﹣32=﹣9.【解答】解:(1)﹣14﹣×[2﹣(﹣3)2],=﹣1﹣×[2﹣9],=﹣1﹣×(﹣7),=;(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2,=﹣64+3×4﹣6,=﹣64+12﹣54,=﹣52﹣54,=﹣106;(3)(﹣+﹣+)÷,=﹣+×60﹣×60+×60,=﹣45+50﹣35+12,=﹣80+62,=﹣18;(4)﹣32﹣(﹣2)2+1,=﹣9﹣4+1,=﹣13+1,=﹣12.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)先去括号,再合并即可;(2)先去括号,再合并.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y﹣3xy2﹣2xy2﹣4x2y=﹣2x2y﹣5xy2,当x=,y=﹣2时,原式=1﹣10=﹣9.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】先根据互为相反数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴|a+2|=0,(b﹣3)2=0,a+2=0,b﹣3=0,解得a=﹣2,b=3,∴a b+3(a﹣b),=(﹣2)3+3(﹣2﹣3),=﹣8﹣15,=﹣23.故答案为:﹣23.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产599辆;(2)产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数.【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【解答】解:(1)前三天生产的辆数是20×3+(5﹣2﹣4)=599(辆).答案是:599;(2)16﹣(﹣10)=16+10=26(辆),故答案是26;(3)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×7+9×15=9800+135=9935(元).答:该厂工人这一周的工资是9935元.27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=﹣(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据连续整数的乘积的倒数等于倒数差可得;(2)利用(1)中所得规律裂项求解可得;(3)根据=(﹣)裂项求和可得.【解答】解:(1)=﹣,故答案为:﹣;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;;(3)原式=(﹣+﹣+﹣+…+﹣)=×(﹣)=×=,故答案为:.2017年5月4日。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

湖北省黄冈市 七年级(上)期中数学试卷

湖北省黄冈市 七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()星期二星期四星期六星期五2.若单项式-2a m b3与45a5b2-n是同类项,则m-n=()A. 2B. 4C. 6D. 83.下列各式中正确的是()A. +5−(−6)=11B. −7−|−7|=0C. −5+(+3)=2D. (−2)+(−5)=74.下列结论成立的是()A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.5.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A. 0B. −1C. −50D. 516.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9-32÷8=0÷8=0乙:24-(4×32)=24-4×6=0丙:(36-12)÷32=36×23-12×23=16丁:(-3)2÷13×3=9÷1=9A. 甲B. 乙C. 丙D. 丁7.已知一个多项式与3x2+9x的和等于5x2+4x-1,则这个多项式是()A. 8x2+13x−1B. −2x2+5x+1C. 8x2−5x+1D. 2x2−5x−18.已知a-b=3,c+d=2,则(a+c)-(b-d)的值为()A. 1B. −1C. 5D. −59.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. −3ba2+3a2b=0D. 5a2−4a2=110.如图,两个面积分别为17,10的图形叠放在一起,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A. 5B. 6C. 7D. 8二、填空题(本大题共8小题,共24.0分)11.计算:若规定新运算:a*b=2a-b,则(-2)*4=______.12.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为______.13.-235的倒数是______,绝对值是______,相反数是______.14.若2xy2n与3x3m y2是同类项,则(m-n)2值是______.15.某同学在做计算2A+B时,误将“2A+B”看成了“2A-B”,求得的结果是9x2-2x+7,已知B=x2+3x+2,则2A+B的正确答案为______.16.多项式12xm−1-3x+7是关于x的四次三项式,则m的值是______.17.整式(a+1)x2-3x-(a-1)是关于x的一次式,那么a=______.18.计算:-99956÷16=______.三、计算题(本大题共5小题,共47.0分)19.计算题(1)25.7+(-7.3)+(-13.7)+7.3(2)(-12−59+712)÷(-136)(3)-14-(1-0.5)×13×[1-(-2)2](4)-22÷49×(-23)3+1−0.8-5×(1−22)20.先化简,再求值:(1)3(x2-2xy)-[3x2-2y+2(xy+y)],其中x=14,y=-3(2)12x-2(x-13y2)+(-32x+13y2),其中x=-1,y=2321.水果店以每箱60元新进一批苹果共400箱,为计算总重量,从中任选30箱苹果称重,发现每箱苹果重量都在10千克左右,现以10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,将称重记录如下:(1)求30箱苹果的总重量(2)若每千克苹果的售价为10元,则卖完这批苹果共获利多少元22.如图所示,a、b是有理数,请化简式子|a|-|b|+|a+b|+|b-a|.23.(1)已知A=x2-2x,B=-x+1,C=x2-x+1,求A+B-2C的值.(2)已知x2+xy=-2,xy+y2=5,分别求出x2-y2和2x2+3xy+y2的值.四、解答题(本大题共3小题,共19.0分)24.化简:(1)(2a-b)-(2b-3a)-2(a-2b)(2)2x2-[7x-(4x-3)-x2]25.2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行次记录如下(单位:千米):18,-8,15,-7,11,-6,10,-5问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?26.已知|m|=3,|n|=2,求m2+mn+n2的值.答案和解析1.【答案】C【解析】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故选:C.用正数记水位比前一日上升数,用负数记下降数.由图表可知从周二开始水位下降,一直降到周六,所以星期六水位最低.此题主要考查正负数在实际生活中的应用,所以学生在学这一部分内容时一定要联系实际,不能死学.2.【答案】C【解析】解:由单项式-2a m b3与a5b2-n是同类项,得m=5,2-n=3,所以n=-1.所以m-n=5-(-1)=6.故选:C.根据同类项是字母相同且相同字母的指数也相同,可得答案.本题考查了同类项,利用相同且相同字母的指数也相同得出方程是解题关键.3.【答案】A【解析】解:A、+5-(-6)=+5+6=11,正确;B、-7-|-7|=-7-7=-14,错误;C、-5+(+3)=-2,错误;D、(-2)+(-5)=-7,错误;故选:A.根据有理数的加减运算法则计算可得.本题主要考查有理数的加减运算,解题的关键是掌握有理数的加减运算法则和绝对值的定义.4.【答案】B【解析】解:A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为正数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立;故选:B.若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a 为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则根据a,b的大小,其结果也不同.本题考查的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.5.【答案】D【解析】解:原式=[1+(-2)]+[(+3)+(-4)]+…+[(+99)+(-100)]+(+101)=-50+(101)=51.故选:D.依据加法的结合律进行计算即可.本题主要考查的是有理数的加法,应用加法的运算律进行简便计算是解题的关键.6.【答案】C【解析】解:甲:9-32÷8=9-9÷8=7,原来没有做对;乙:24-(4×32)=24-4×9=-12,原来没有做对;丙:(36-12)÷=36×-12×=16,做对了;丁:(-3)2÷×3=9÷×3=81,原来没有做对.故选:C.先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.【答案】D【解析】解:根据题意得:(5x2+4x-1)-(3x2+9x)=5x2+4x-1-3x2-9x=2x2-5x-1.故选:D.根据和减去一个加数等于另一个加数,计算即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.【答案】C【解析】解:∵a-b=3,c+d=2,∴原式=a+c-b+d=(a-b)+(c+d)=3+2=5.故选:C.原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】解:A、3a和2b不是同类项,不能合并,故此选项计算错误;B、2a3和3a2不是同类项,不能合并,故此选项计算错误;C、-3ba2+3a2b=0计算正确,故此选项正确;D、5a2-4a2=a2,故原题计算错误;故选:C.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了合并同类项,关键是掌握合并同类项法则.10.【答案】C【解析】解:设重叠部分面积为c,b-a=(b+c)-(a+c)=17-10=7.故选:C.设重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.【答案】-8【解析】解:根据题中的新定义得:原式=-4-4=-8,故答案为:-8原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【答案】3.05×105【解析】解:305000=3.05×105,故答案为:3.05×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】-513235235【解析】解:-2=-的倒数是:-,绝对值是:2,相反数是2.故答案为:-;2;2.直接利用倒数以及相反数和绝对值的定义分别分析得出答案.此题主要考查了倒数以及相反数和绝对值的定义,正确把握相关定义是解题关键.14.【答案】49【解析】解:∵2xy2n与3x3m y2是同类项,∴3m=1,2n=2,∴m=,n=1,∴(m-n)2=(-1)2=,故答案为.根据同类项的定义即可得出m,n的值,再代入计算即可.本题考查了同类项,掌握同类项的定义是解题的关键.15.【答案】11x2+4x+11【解析】解:根据题意得:2A+B=9x2-2x+7+2(x2+3x+2)=9x2-2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.【答案】5【解析】解:∵多项式-3x+7是关于x的四次三项式,∴m-1=4,解得m=5,故答案为:5.根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.此题主要考查了多项式,关键是掌握多项式的次数的计算方法.17.【答案】-1【解析】解:∵整式(a+1)x2-3x-(a-1)是关于x的一次式,∴a+1=0,解得:a=-1.故答案为:-1.直接利用多项式的定义得出a+1的值.此题主要考查了多项式,正确得出a+1的值是解题关键.18.【答案】-5999【解析】解:-999=(-1000)÷=(-1000)×6=×6-1000×6=1-6000=-5999,故答案为:-5999.将原式变形为(-1000)÷,把除法转化为乘法,再利用乘法分配律计算可得.本题主要考查有理数的除法,解题的关键是根据算式特点选择合适的方法简便计算及有理数的乘除运算法则.19.【答案】解:(1)25.7+(-7.3)+(-13.7)+7.3=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12;(2)(-12−59+712)÷(-136)=(-12−59+712)×(-36)=18+20+(-21)=17;(3)-14-(1-0.5)×13×[1-(-2)2]=-1-12×13×[1−4]=-1-16×(−3)=-1+12=−12;(4)-22÷49×(-23)3+1−0.8-5×(1−22)=-4×94×(−827)−54−5×(−14)=83−54+54=83.【解析】(1)根据有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:(1)原式=3x2-6xy-(3x2-2y+2xy+2y)=3x2-6xy-3x2+2y-2xy-2y=-8xy,当x=14,y=-3时,原式=-8×14×(-3)=6;(2)原式=12x-2x+23y2-32x+13y2=-3x+y2,当x=-1,y=23时,原式=-3×(-1)+49=319.【解析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)根据题意可知:5×(-0.2)+8×(-0.1)+2×0+6×0.1+8×0.2+1×0.5=0.9 ∴30箱苹果的总重量为:30×10+0.9=300.9千克(2)由(1)可知:每一箱的重量为:300.930=10.03千克,∴400箱的苹果总重量为:10.03×400=4012千克,∴卖完这批苹果共获利4012×10-60×400=16120元【解析】(1)根据有理数的加法运算以及正负数的意义即可求出答案.、(2)计算出每一箱的平均重量,然后求出总收入和总支出即可.本题考查正数与负数,解题的关键是正确理解正数与负数的意义以及熟练运用有理数的加法,本题属于基础题型.22.【答案】解:∵由数轴上a、b两点的位置可知,-1<a<0,b>1,∴a+b>0,b-a>0,∴原式=-a-b+a+b+b-a=b-a.【解析】先根据a、b两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.本题考查的是绝对值的性质及数轴的特点,能根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.23.【答案】解:(1)∵A=x2-2x,B=-x+1,C=x2-x+1,∴A+B-2C=x2-2x-x+1-2(x2-x+1)=x2-2x-x+1-2x2+2x-2=-x2-x-1;(2)∵x2+xy=-2,xy+y2=5,∴x2-y2=(x2+xy)-(xy+y2)=-2-5=-7;2x2+3xy+y2=2(x2+xy)+(xy+y2)=2×(-2)+5=-4+5=1.【解析】(1)将A,B及C代入所求式子中计算即可求出值.(2)将x2-y2变形得到(x2+xy)-(xy+y2),再整体代入计算即可求解;将2x2+3xy+y2变形得到2(x2+xy)+(xy+y2),再整体代入计算即可求解.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.【答案】解:(1)原式=2a-b-2b+3a-2a+4b=3a+b(2)原式=2x2-[7x-4x+3-x2]=2x2-[3x+3-x2]=2x2-3x-3+x2=3x2-3x-3【解析】根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.25.【答案】解:(1)(+18)+(-8)+15+(-7)+11+(-6)+10+(-5)=28.答:B地在A地的东面,与A地相距28千米;(2)总路程=18+8+15+7+11+6+10+5=80(千米)80×0.5-30=10(升).答:途中至少需要补充10升油.【解析】(1)将题目中的数据相加,看最终的结果,即可得到B地在A地的那个方向,与A地的距离是多少;(2)将题目中的数据都取绝对值然后相加与0.5相乘再与30作差即可解答本题.本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际含义,找出所求问题需要的条件.26.【答案】解:∵|m|=3,|n|=2,∴m=±3,n=±2,当mn同号时,m2+mn+n2=9+6+4=19,当mn异号时,m2+mn+n2=9-6+4=7.【解析】根据|m|=3,|n|=2,可以求得m、n的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.3的相反数是()A.﹣3B.﹣C.3D.2.下列各数中,比﹣2大的数是()A.﹣3B.0C.﹣2D.﹣2.13.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数4.计算(﹣2)3所得结果是()A.﹣6B.6C.﹣8D.85.单项式﹣的系数与次数分别是()A.﹣2,2B.﹣2,3C.,3D.﹣,36.下列各式正确的是()A.﹣(﹣3)=﹣|﹣3|B.﹣(2)3=﹣2×3C.|﹣|>﹣100D.﹣24=(﹣2)4 7.计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.28.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元10.有理数a,b,c在数轴上对应的点如图所示,则下列式子①a>b;②|b+c|=b+c;③|a﹣c|=c ﹣a;④﹣b<c<﹣a.其中正确的是()A.①②③④B.①②④C.①③④D.②③④二、填空题(每小题3分,共15分)11.计算2×3+(﹣4)的结果为.12.“m与n的平方差”用式子表示为.13.把2x3﹣x+3x2﹣1按x的升幂排列为.14.比较大小:.15.若|x﹣2|+(y+3)2=0,则(x+y)2018=.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算:直接写出结果10﹣(﹣8)=;(﹣32)﹣(+5)=;﹣7﹣5=;(+12)﹣(+21)=;=;=;﹣12﹣(﹣3)2=;=.17.(9分)画一条数轴,并把﹣4,﹣(﹣3.5),,0,…各数在数轴上表示出来,再用“<”把它们连接起来.18.(9分)计算:﹣23÷8﹣×(﹣2)2.19.(9分)计算:(﹣+﹣)×(﹣48)20.(9分)计算:﹣34÷(﹣27)﹣[(﹣2)×(﹣)+(﹣2)3].21.(10分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?22.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.23.(11分)阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2.1<﹣2<0,所以各数中,比﹣2大的数是0.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.4.【分析】本题考查有理数的乘方运算,(﹣2)3表示3个(﹣2)的乘积.【解答】解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选:C.【点评】本题考查了乘方运算,负数的偶数次幂是正数,负数的奇数次幂仍为负数.5.【分析】根据单项式的概念即可求出答案.【解答】解:单项式的系数为﹣,次数为3;故选:D.【点评】本题考查单项式的概念,属于基础题型.6.【分析】先求出每个式子左、右两边的值,再判断即可.【解答】解:A、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;B、﹣(2)3=﹣8,﹣2×3=﹣6,故本选项错误;C、|﹣|=>﹣100,故本选项正确;D、﹣24=﹣16,(﹣2)4=16,故本选项错误;故选:C.【点评】本题考查了有理数的乘方,绝对值,相反数的应用,能正确求出各个式子的值是解此题的关键.7.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.8.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.9.【分析】根据题意列出代数式即可.【解答】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元,故选:C.【点评】此题考查了列代数式,弄清题意是解本题的关键.10.【分析】根据数轴可判断a<b<0<c,且|a|>|c|>|b|,于是可判断①是错误的,于是可排除答案A、B、C即可解决.【解答】解:由数轴可知a<b<0<c,∴①错误∴利用排除法即可排除答案A、B、C,∴只能选择答案D.实质上,∵b+c>0,∴|b+c|=b+c,故②正确;∵a﹣c<0,∴|a﹣c|=c﹣a,故③正确;∵根据数轴上互为相反数的对称关系,可判断﹣b<c<﹣a正确故选:D.【点评】本题考查的利用数轴进行数的大小比较,把握数轴上点的特征以及是解决本题的关键.二、填空题(每小题3分,共15分)11.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据题意利用两数平方后再相减得出即可.【解答】解:由题意可得:m2﹣n2.故答案为:m2﹣n2.【点评】此题主要考查了列代数式,正确把握关键术语是解题关键.13.【分析】根据多项式的次数的意义、x的指数的大小顺序排列即可.【解答】解:把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3,故答案为:﹣1﹣x+3x2+2x3【点评】本题主要考查对多项式的次数和排列顺序的理解,理解多项式的次数含义是解此题的关键.14.【分析】根据两个负数,绝对值大的其值反而小,进行比较即可.【解答】解:∵|﹣|>|﹣|,∴﹣<﹣.故答案为:<.【点评】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出x,y的值进而得出答案.【解答】解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3,∴(x+y)2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.【分析】根据有理数的混合运算顺序和运算法则逐一计算可得.【解答】解:10﹣(﹣8)=10+8=18;(﹣32)﹣(+5)=(﹣32)+(﹣5)=﹣37;﹣7﹣5=﹣7+(﹣5)=﹣12;(+12)﹣(+21)=(+12)+(﹣21)=﹣9;=;=﹣×=﹣;﹣12﹣(﹣3)2=﹣1﹣9=﹣10;=2﹣2×3×3=2﹣18=﹣16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.17.【分析】先画出数轴,将﹣4,﹣(﹣3.5),,0在数轴上表示出来,再利用数轴从左到右的顺序用“<”把它们连接起来即可.【解答】解:在数轴上表示以上各数为:用“<”把它们连接为:﹣4<﹣2<0<﹣(﹣3.5)【点评】本题考查的是数轴与有理数的对应及有理数的大小比较,准确找到每个数对应数轴上的每一个点是解决本题的关键.18.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8÷8﹣×4=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.【分析】先利用乘法分配律展开,再依次计算乘法和加减可得.【解答】解:原式=﹣×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=10﹣20=﹣10.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.20.【分析】首先计算乘方以及括号内的式子,然后进行加法计算即可.【解答】解:原式=﹣81÷(﹣27)﹣[﹣8],=3+,=.【点评】本题主要考查了有理数的混合运算,正确理解运算顺序是解决本题的关键.21.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格解答即可.【解答】解:(1)4﹣3﹣5+300=296.(2)21+8=29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.故答案为:296;29【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.22.【分析】(1)当x=850时,在甲商场没有优惠,在乙商场有优惠,故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+超过1000元的部分×90%;在乙商场的费用是:500+超过500元的部分×95%=0.95x+25;(3)把x=1700代入(2)中的代数式计算出结果进行比较即可.【解答】解:(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1640,∵1640>1630,∴选择甲商场合算.【点评】此题主要考查了根据实际问题列代数式,关键是正确理解题意,分清两个商场的收费方式.23.【分析】(1)根据已知算式得出法则:两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加;(2)依据所得法则计算可得;(3)先计算中括号内的加乘运算,再进一步计算可得.【解答】解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*(﹣12)=17.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及对新定义的理解与运用.。

2018-2019学年新人教版七年级数学(上册)期中测试卷及答案

2018-2019学年新人教版七年级数学(上册)期中测试卷及答案

2018-2019学年七年级(上)期中数学试卷一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x33.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.34.如图,图中共有()条线段.A.5 B.6 C.7 D.85.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z28.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣39.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.14410.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50二、填空题11.代数式﹣的系数是,次数是.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是.三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x3【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:A、所含相同字母的指数不相同不是同类项.B、所含字母不相同不是同类项.C、所含相同字母的指数不相同不是同类项.D、所含字母相同,相同字母的指数也相同,是同类项.故选D.3.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.3【考点】直线、射线、线段.【分析】根据直线、射线及线段的定义及特点结合图形即可解答.【解答】解:①直线AB和直线BA是同一条直线,正确;②射线AB与射线BA是同一条射线的顶点不同,故错误;③线段AB和线段BA是同一条线段,正确;④每一个点对应两个射线,图中有4条射线,故错误.综上可得①③正确.故选C.4.如图,图中共有()条线段.A.5 B.6 C.7 D.8【考点】直线、射线、线段.【分析】根据图形结合线段定义得出线段有AB、AD、AC、BD、DC、BC,即可得出答案.【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.5.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定【考点】两点间的距离.【分析】分两种情况:C在AB之间,有AC=AB﹣BC;C不在AB之间,有AC=AB+BC,分别得出A,C两点间的距离.【解答】解:C在AB之间,有AC=AB﹣BC=6﹣3=3cm;C不在AB之间,有AC=AB+BC=6+3=9cm.故A,C两点间的距离是大于等于3cm且小于等于9cm,故选D.6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.所以1 370 000的n=6.【解答】解:1 370 000=1.37×106.故选D.7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z2【考点】整式的加减.【分析】由于A+B+C=0,则C=﹣A﹣B,代入A和B的多项式即可求得C.【解答】解:由于多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C=﹣A﹣B=﹣(x2+2y2﹣z2)﹣(﹣4x2+3y2+2z2)=﹣x2﹣2y2+z2+4x2﹣3y2﹣2z2=3x2﹣5y2﹣z2.故选B.8.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣3【考点】合并同类项;有理数的混合运算.【分析】根据有理数运算法则以及合并同类项法则即可判断.【解答】解:(A)3a﹣a=2a,故A错误;(C)3a与b不是同类项,故C错误;(D)﹣5﹣2=﹣7,故D错误;故选(B)9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.10.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50【考点】规律型:图形的变化类.【分析】根据题意得出第n个图形中小黑点个数为1+4n个,据此可得.【解答】解:∵第1个图形中小黑点个数为1+4×1=5个,第2个图形中小黑点个数为1+4×2=9个,第3个图形中小黑点个数为1+4×3=13个,…∴第10个图形中小黑点个数为1+4×10=41个,故选:A.二、填空题11.代数式﹣的系数是﹣π,次数是4.【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:代数式﹣的系数是﹣π,次数是4.故答案为:﹣π,4.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是﹣1.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,由同类项的定义可先求得m=1和n+m﹣1=2的值,从而求出m2﹣n的值.【解答】解:由同类项的定义可知,m=1,n+m﹣1=2,解,得n=2,m=1,所以m2﹣n=12﹣2=﹣1.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=32010.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣2=0,解得a=﹣5,b=2,所以,(a+b)2010=(﹣5+2)2010=32010.故答案为:32010.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【考点】由三视图判断几何体.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解答】解:由三视图可得,此几何体为圆柱,所以圆柱的体积为,故答案为:3π15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.(用n表示,n是正整数)【考点】规律型:图形的变化类.【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.故答案为:n2+4n.16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是9.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知代数式的值代入计算即可求出值.【解答】解:∵x﹣2y=3,∴原式=15﹣2(x﹣2y)=15﹣6=9,故答案为:9三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.【考点】两点间的距离.【分析】根据线段中点的概念分别求出MC、BN,结合图形计算即可.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴MC=AM=5cm,BN=CN=3cm,∴AB=AM+MC+CN+NB=16cm.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.【考点】整式的加减;有理数的混合运算.【分析】(1)(2)去括号、合并同类项即可;(3)利用分配律计算即可;(4)先做括号的运算,再算乘方,然后算乘除,最后算加减.【解答】解:(1)3x2﹣3(x2﹣2x+1)+4=3x2﹣x2+6x﹣3+4=2x2+6x+1;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1)=3a2+4a2﹣8a﹣4﹣6a2+2a﹣2=a2﹣6a﹣6;(3)(+﹣)×(﹣24)=﹣12﹣20+14=﹣18;(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣× [10﹣4]﹣(﹣1)=﹣1﹣1+1=﹣1.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.【考点】比较线段的长短.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【考点】合并同类项.【分析】根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】解:由3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,得﹣2+k=0,5+m=0.解得k=2,m=﹣5.m k=(﹣5)2=25.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.【考点】整式的加减—化简求值.【分析】(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=2a+3a2﹣3b﹣4a2﹣2a+b=﹣a2﹣2b,当a=,b=﹣2时,原式=﹣()2﹣2×(﹣2)=;(2)原式=m﹣5n+4mn﹣4m+8n﹣12mn=﹣3(m﹣n)﹣8mn,当m﹣n=4,mn=﹣3时,原式=﹣3×4﹣8×(﹣3)=12.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.【考点】整式的加减—化简求值;数轴;绝对值.【分析】根据点的位置,可得a,b,c的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<0<b<c,|a|>|b|.|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|=﹣(a+b)﹣3(b+c)+2(b﹣a)﹣(c﹣b)=﹣a﹣b﹣3b﹣3c+2b﹣2a﹣c+b=﹣3a﹣b﹣4c.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【考点】代数式求值;列代数式.【分析】(1)方案①需付费为:西装总价钱+20条以外的领带的价钱,方案②需付费为:西装和领带的总价钱×90%;(2)把x=30代入(1)中的两个式子算出结果,比较即可.【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:×0.9=元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)【考点】规律型:图形的变化类.【分析】根据图形中每个图案中棋子的个数,8﹣5=3、11﹣8=3、14﹣11=3可得出规律:每一个图形中棋子的个数比上一个图形中棋子的个数多3,所以第n个图案中,棋子的个数为5+3(n﹣1).【解答】解:由题意可得:摆成第1个“T”字需要5个棋子;摆成第2个“T”字需要8个棋子,8﹣5=3;摆成第3个“T”字需要11个棋子,11﹣8=3;摆成第4个“T”字需要14个棋子,14﹣11=3;…摆成第10个“T”字需要32个棋子;…由此可得出规律:摆成第n个“T”字需要5+3(n﹣1)=3n+2个棋子.(1)填写表:(2)第n个“T”字形图案中棋子的个数为:5+3(n﹣1)=3n+2个棋子;(3)第19个“T”字需要59个棋子,第20个T子需要62个棋子,故第1个图案与第20个图案共有5+62=67个棋子;第2个图案与第19个图案共有8+59=67个棋子;第3个图案第18个图案共有11+56=67个棋子,故前20个“T“字形图形案中棋子的总个数为9×67+32=635个棋子.2017年5月4日。

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题考试时间:100分钟 满分:120注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题3分,共42分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A . +4B . ﹣9C . ﹣4D . +9 2.的倒数是( )A . 2B . -2C .D .3.下列各式中运算正确的是( )A . 3a ﹣2a=1B . x 2+x 2=x 4C . 2a 2b ﹣3ab 2=﹣abD . 2x 3+3x 3=5x 34.如果a 与1互为相反数,则a+2等于( ) A . 2 B . -2 C . 1 D . -15.从阳江海陵岛试验区旅游外侨局获悉,去年7,8两月暑假期间海陵岛共接待游客3520000人次,旅游收人约24亿元,分别同比增长8.9%,8.8%,外省游客和团队游数量明显增加.其中3520000用科学记数法表示为( )A . 0.352×105B . 3.52×106C . 3.52×107D . 35.2×106 6.下列算式中,运算结果为负数的是( )A . ﹣(﹣2)B . |﹣2|C . ﹣22D . (﹣2)2 7.下列比较大小结果正确的是( )A . 43-->B . 22->C . 1123--> D .1165-->8.在代数式① ,② ,③ ,④,⑤2+57x y 中 单项式有( )A . 1个B . 2个C . 3个D . 4个 9.大于-3的负整数的个数是( ). A . 2 B . 3 C . 4 D . 无数个10.有理数 , 在数轴上的位置如图所示,下面结论正确的是( )A .B .C .D . 11.下列说法正确的是( )A . 一个数前面加上“-”号,这个数就是负数B . 零是最小的整数C . 若a 是正数,则-a 不一定是负数D . 零既不是正数也不是负数12. 的值与 的取值无关,则 的值为( )A .B .C .D . 13.下列各题去括号正确的是( ).A . (a -b)-(c +d)=a -b -c +dB . a -2(b -c)=a -2b -cC . (a -b)-(c +d)=a -b -c -dD . a -2(b -c)=a -2b -2c 14.若a 、b 、c 是三个非零有理数,则的值是( )A . 3B . ±3C . 3或1D . ±1或±3第II 卷(非选择题)二、填空题(每题4分,共16分)15.若a 是绝对值最小的数,b 是最大的负整数,则a ﹣b =_____. 16.若 -2mxy 和 3n x y 是同类项,则 m + n 的值是_______. 17.a 、b 互为相反数,c 、d 互为倒数,数轴上表示m 的点到原点的距离为6,则的值为____________________.18.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点表示的数__________.三、解答题(共62分)19.计算:(每题5分,本题10分)(1)()23()|2 (3)5(5)5|-⨯÷----(2)3571 ()491236 --+÷20.(本题8分)先化简,再求值:3a2-7a+[3a-2(a2-2a-1)],其中a= -2. 21.(本题10分)“十一”黄金周期间,呀诺达风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人)9月30日游客为2万.(1)10月2日游客的人数为多少万人?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?22.(本题10分)同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求 = . (2)若25x -=,则 =(3)同理12x x ++-表示数轴上有理数x 所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得123x x ++-=,这样的整数是 (直接写答案).23.(本题12分)若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各 式的符号:a+b 0;c ﹣b 0 c ﹣a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a |24.(本题12分)已知:A=3a 2-4ab ,B=a 2+2ab . (1)求A -2B ;(2)若|2a +1|+(2-b )2=0,求A -2B 的值.答案 一选择1-5 B B D C B 6-10 C D B A A 11-14 D A C D 二填空15. 1 16. 417. 7或-5 18. -50 三解答19.(1) (2)523253551015⎛⎫=⨯-⨯- ⎪⎝⎭=+= 357364912357363636491227202126⎛⎫--+⨯ ⎪⎝⎭-⨯-⨯+⨯=--+=-== 20.解:原式=3a 2−7a+3a−2(a 2−2a−1)=3a 2−7a+3a−2a 2+4a+2=a 2+2,当a=−2时, 原式=(−2)2+2=621.(1)4.4万人;(2)10月3日人数最多;10月7日人数最少; 它们相差2.2万人;22.(1) 7 (2) -3或7 (3) -1,0,1,2 23. (1) , , .(2) =-(a+b)+(c-b)-(c-a)= -a-b+c-b-c+a=-2b24. 解:, ., ()2210,20a b +≥-≥ 解得:当时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈中学2018-2019学年七年级(上)期中数学模拟试卷
一.选择题(共7小题,满分21分)
1.下列各数中,其相反数等于本身的是()
A.﹣1B.0C.1D.2018
2.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()
A.56℃B.﹣56℃C.310℃D.﹣310℃
3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元()
A.8×1014元B.0.8×1014元C.80×1012元D.8×1013元4.下列说法正确的是()
A.整式就是多项式B.π是单项式
C.x4+2x3是七次二项次D.是单项式
5.若一个数的绝对值是5,则这个数是()
A.5B.﹣5C.±5D.0或5
6.若关于x,y的多项式化简后不含二次项,则m=()
A.B.C.D.0
7.如果a>0,b<0,且|a|<|b|,则下列正确的是()
A.a+b<0B.a+b>0C.a+b=0D.ab=0
二.填空题(共10小题,满分40分)
8.已知|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为.
9.某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为℃.
10.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是.
11.若2m+n=4,则代数式6﹣2m﹣n的值为.
12.比较大小:;(填“>”或“<”).
13.对单项式“0.5a”可以解释为:一件商品原价为a元,若按原价的5折出售,这件商品现在的售价是0.5a元,请你对“0.5a”再赋予一个含义:.14.在数轴上,与原点的距离等于2的点表示的数为.
15.近似数3.20×106精确到位.
16.若|2a+3|+(3b﹣1)2=0,则ab=.
17.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为.
三.解答题(共6小题)
18.计算:
(1)(﹣1)3﹣×[2﹣(﹣3)2]
(2)﹣22+|5﹣8|+24÷(﹣3)×.
19.在数轴上标出下列各数:﹣1.5,2,+(﹣1),0,|﹣3|,并用“<”连接起来.
20.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:
(1)|4﹣(﹣2)|的值.
(2)若|x﹣2|=5,求x的值是多少?
(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的
两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.
21.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):
(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?
(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?
22.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A 点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
23.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:
(1)用含m,n的代数式表示地面的总面积S;
(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?
参考答案
一.选择题1.B.2.C.3.D.4.B.5.C.6.B.7.A.
二.填空题
8.﹣2或﹣12.
9.10
10.﹣1﹣ab2+3a2b﹣a3.
11.2.
12.>.
13.练习本每本0.5元,小明买了a本,共付款0.5a元.
14.±2.
15.万.
16.﹣.
17.6n﹣1.
三.解答题
18.解:(1)原式=﹣1﹣×(﹣7)=﹣1+=;
(2)原式=﹣4+3﹣=﹣.
19.解:如图所示,

故﹣1.5<+(﹣1)<0<2<|﹣3|.
20.解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴|4﹣(﹣2)|=6.
(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,
∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,
∴若|x﹣2|=5,则x=﹣3或7.
(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.
21.解:(1)5+2+(﹣4)+(﹣3)+10=10(km)
答:接送完第五批客人后,该驾驶员在公司的南边10千米处.
(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)
答:在这个过程中共耗油4.8升.
(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)
答:在这个过程中该驾驶员共收到车费68元.
22.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得
3t+3×4t=15,
解得:t=1,
∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:
(2)设x秒时原点恰好在A、B的中间,由题意,得
3+x=12﹣4x,
解得:x=1.8.
∴A、B运动1.8秒时,原点就在点A、点B的中间;
(3)由题意,得
B追上A的时间为:15÷(4﹣1)=5,
∴C行驶的路程为:5×20=100单位长度.
23.解:(1)S=2n+6m+3×4+2×3=6m+2n+18.
(2)n=1.5时2n=3
根据题意,得6m=8×3=24,
∵铺1平方米地砖的平均费用为100元,
∴铺地砖的总费用为:
100(6m+2n+18)=100×(24+3+18)=450.
答:铺地砖的总费用4500元.。

相关文档
最新文档