杭州市朝晖中学2018-2019年七年级下期中考试数学试题含答案

合集下载

杭州地区2018-2019学年七年级下期中检测数学试卷含答案

杭州地区2018-2019学年七年级下期中检测数学试卷含答案

杭州地区2018-2019学年第二学期期中检测七年级数学试卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间为90分钟。

2.答题前,必须在答题卷的密封区内填写校名、班级、姓名、学号。

3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

一、仔细选一选(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.如图,直线AB∥CD,AF 交CD 于点E ,∠CE A =45º,则∠A 等于(▲) A .35ºB .45ºC .50ºD .135º2.下列各式是二元一次方程的是(▲) A .x y 21+B .023=-+y yx C .12+=yx D .02=+y x 3.下列各组数中,是二元一次方程25=-y x 的一个解的是(▲) A .31x y =⎧⎨=⎩ B .02x y =⎧⎨=⎩ C .20x y =⎧⎨=⎩ D .13x y =⎧⎨=⎩4.下列结论错误的是(▲)A .垂直于同一直线的两条直线互相平行B .两直线平行,同旁内角互补C .过直线外一点有且只有一条直线与这条直线平行D .同一平面内,不相交的两条直线叫做平行线 5.下列计算中,正确的是(▲) A .2a a ⋅=2a B .32)(x =5xC .23)2(x =36xD .2a +3a =5a6.将一副三角板如图放置,使点A 在DE 上,BC∥DE,则∠ACE 的度数为(▲) A .10ºB .20ºC .15ºD .30º7.若3=x a ,2=y a ,则y x a +2等于(▲)A .6B .7C .8D .18 8.若)(2q px x ++)2(-x 展开后不含x 的一次项,则p 与q 的关系是(▲)七年级数学试题卷(第1页,共4页)A .q p 2=B .p q 2=C .02=+q pD .02=+p q 9.已知关于x ,y 的方程组⎩⎨⎧-=-=-52253a y x ay x ,则下列结论中正确的是(▲)①当a =5时,方程组的解是⎩⎨⎧==2010y x ; ②当x ,y 的值互为相反数时,a =20;③当y x 22⋅=16时,a =18; ④不存在一个实数a 使得x =y . A .①②④B .①②③C .②③④D .②③10.已知x 1,x 2,……,x 2019均为正数,且满足M =(x 1+x 2+…+x 2019)(x 2+x 3+…+x 2019), N =(x 1+x 2+…+x 2019)(x 2+x 3+…+x 2019),则M ,N 的大小关系是(▲) A .M >NB .M <NC .M =ND .M ≥N二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.把二元一次方程13=-y x 变形成用x 的代数式表示y ,则y = ▲ . 12.如图,∠1=80º,∠2=100º,∠3=76º,则∠4的度数为 ▲ 度.13.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是 ▲ .图① 图② 第12题图 第13题图 14.已知∠A 的两边与∠B 的两边分别平行,若∠A=50º,则∠B= ▲ .15.小明用8个一样大的长方形(长a cm ,宽b cm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是2cm 的正方形小洞.则代数式(a -b )2+2a b 的值为 ▲ .16.如图a 是长方形纸带,∠DEF=26º,将纸带沿EF 折叠成图b ,则∠FGD 的度数是 ▲ 度,再沿BF 折叠成图c ,则图c 中的∠DHF 的度数是 ▲ .七年级数学试题卷(第2页,共4页)三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题8分)用适当方法解下列方程组:(1)2310y x x y =⎧⎨+=⎩(2)⎪⎩⎪⎨⎧=--=+20)1(23334y x y x▲18.(本题8分)计算: (1)3242)(2a a a +⋅(2)2(3)(2)(1)x x x -+-+▲19.(本题8分)如图,直线AB∥CD,直线EF 分别交AB 、CD 于点M 、N ,∠EMB=50º,MG 平分∠BMF,MG 交CD 于G ,求∠1的度数.▲20.(本题8分)已知2)(b a +=5,2)(b a -=3,求下列式子的值: (1)22b a +; (2)ab 6.▲21.(本题10分)如图,∠BAP+∠APD=180º,∠1=∠2.判定∠E 与∠F 是否相等,说明理由.▲22.(本题12分)阅读下列材料,解答下面的问题:我们知道方程1232=+y x 有无数个解,但在实际问题中往往只需求出其正整数解.例:由1232=+y x ,得:x x y 3243212-=-=(x 、y 为正整数).要使x y 324-=为正整数,则x 32为正整数,可知:x 为3的倍数,从而3=x ,代入2324=-=x y .所以1232=+y x 的正整数解为⎩⎨⎧==23y x .问题:(1)请你直接写出方程y x 23+=8的正整数解 ▲ . (2)若36-x 为自然数,则满足条件的正整数x 的值有(▲) A .3个 B .4个 C .5个D .6个(3)关于x ,y 的二元一次方程组⎩⎨⎧=+=+10292ky x y x 的解是正整数,求整数k 的值.▲23.(本题12分)在一次汽车展上,甲展位对A 型车和B 型车两种车型购买的客户进行优惠:A 、B 型车都购买3辆及以上时,A 型车每辆优惠0.5万元,B 型车每辆优惠1万元.一家公司准备买9辆车,按优惠后的价格计算结果如下表:(1) 计算两种型号的车原价分别是多少元?(2)乙展位对该公司同时购买9辆车很感兴趣,给出同时购买9辆车且每种车型分别购买3辆及以上时两种车型均实行6%的优惠措施,且该公司要求尽可能多地购买B 型车.请你通过计算说明该公司应该在哪个展位定车(两展位这两款车原价都相同).▲数 学 答 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 12. 13. 14. 15.16.三、全面答一答(本题有7个小题,共66分) 17.(本题8分)用适当方法解下列方程组: (1)2310y xx y =⎧⎨+=⎩(2)⎪⎩⎪⎨⎧=--=+20)1(23334y x y x18.(本题8分)计算: (1)3242)(2a a a +⋅(2)2(3)(2)(1)x x x -+-+19.(本题8分)20.(本题8分) 21. (本题10分)22. (本题12分)(1) (2)(3)23. (本题12分)参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分) 1—5 B B D A D 6—10 C D B C A二、认真填一填(本题有6个小题,每小题4分,共24分)11.3x -1 12.76 13.(a +b)(a -b)=a 2-b 214.50º或130º 15.136 16.52º,78º 三、全面答一答(本题有7个小题,共66分) 17.(1) ⎩⎨⎧==42y x …4分 (2)⎩⎨⎧==38y x …4分18.(1)63a …4分 (2)-3x -7 …4分19.65º20.(1)4 …5分 (2)3 …5分21.∠E =∠F…2分 说明:略 …8分22.(1) ⎩⎨⎧==12y x …3分(2) B…4分(3)⎩⎨⎧⋅⋅⋅=+⋅⋅⋅⋅⋅=+②①10292ky x y x ①*2-②:(4-k)y =8,k y -=48…2分因x ,y 是正整数,k 是整数,所以4-k =1,2,4,8. K =3,2,0,-4 …2分 但k =3时,x 不是正整数,故k =2,0,-4…1分23.(1)设A 型车优惠后的价格为每辆x 万元 ,B 型车优惠后的价格为每辆y 万元 …1分 则⎩⎨⎧=+=+1244512854y x y x …4分 解得⎩⎨⎧==1612y x …2分A 型车原价:12+0.5=12.5B 型车原价:16+1=17 答: 1分 (2)由题意该公司购A 型车3辆,购B 型车6辆甲展位:12×3+16×6=132万乙展位:(12.5×3+17×6)×94%=131.13万 所以该公司应该在乙展位定车. …4分。

2018-2019年七年级下期中考试数学试卷(含答案)

2018-2019年七年级下期中考试数学试卷(含答案)

第二学期期中考试 初一年级数学试卷一、选择题(每小题2分,共30分) 1、 计算327的结果是( )A. 33±B. 33C. ± 3D. 32、 如图,四个图形中的∠1和∠2,不是同位角的是( )A. B. C. D.3、 在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、 在下面各数中无理数的个数有( )﹣3.14,722,0.1010010001……,+1.99,3π-。

A. 1个B. 2个C. 3个D. 4个5、 如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( )A. 35°B. 40°C. 45°D. 50° 6、 下列说法正确的是( )A. ﹣5是25的平方根B. 25的平方根是﹣5C. ﹣5是 (﹣5)2的算术平方根D. ±5是(﹣5)2的算术平方根7、 若方程组⎩⎨⎧=-+=+6)1(1434y k kx y x 的解中x 与y 的值相等,则k 为( )A. 4B. 3C. 2D. 18、 线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点D (1,2)的对应点B 的坐标为( ) A. (2,9) B. (5,3) C. (﹣4,﹣1) D. (﹣9,﹣4) 9、 在实数范围内,下列判断正确的是( )A. 若n m = ,则m =nB. 若22b a >,则a >b C. 若22)(b a =,则a =bD. 若33b a =,则a =b10、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 311、如图所示,下列条件中,不能..判断l 1∥l 2的是( ) A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180° 12、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行。

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。

2018-2019学年七年级下册期中数学试卷(有答案及解析)

2018-2019学年七年级下册期中数学试卷(有答案及解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣1 23.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.【分析】根据同位角的定义即可求出答案.【解答】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:B.【点评】本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.2.【分析】∠1与∠2是直线AB、直线CD被直线BD所截形成的内错角,即∠1=∠2,所以AB ∥CD.【解答】解:∵∠1=∠2,∴AB∥CD,故选:B.【点评】此题考查平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.【分析】根据平行线的性质解答即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=∠2,解得:∠2=120°,故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.4.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】若80°是顶角,则可直接得出答案;若80°是底角,则设顶角是y,根据三角形内角和为180°即可求解;【解答】解:若80°是顶角,则顶角为80°;若80°是底角,则设顶角是y,∴2×80°+y=180°,解得:y=20°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.6.【分析】将x m=3代入x2m=(x m)2,计算可得.【解答】解:当x m=3时,x2m=(x m)2=32=9,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00091=9.1×10﹣4.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、﹣x2与1符号相反,能运用平方差公式,故本选项正确;B、﹣x2与﹣1符号相同,不能运用平方差公式,故本选项错误;C、49﹣x3,不能运用平方差公式,故本选项错误;D、49+x,不能运用平方差公式,故本选项错误.故选:A.【点评】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.9.【分析】将方程变形为x=10﹣3y,再分别求出y=1、2、3时x的值即可得.【解答】解:∵x+3y=10,∴x=10﹣3y,当y=1时,x=7;当y=2时,y=4;当y=3时,x=1;∴该方程的正整数解有3组,故选:C.【点评】本题主要考查二元一次方程的解,解题的关键是熟练将方程变形为用含一个未知数的代数式表示另一个未知数及方程的解的定义.10.【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故选:C.【点评】此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD =∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。

2018-2019学七年级下学期数学期中考试试题含参考答案

2018-2019学七年级下学期数学期中考试试题含参考答案

2018-2019学七年级下学期数学期中考试试题2019年4月28日一.选择题(每题3分,共30分)1.若(2x +1)0=l 则 ( )A .x ≥-12B .x ≠-12C .x ≤-12D .x ≠122.下列四个运算:①2100.001-=,②2121(1)1x x -+=+,③11133-÷=,④100(1)1--=. 其中正确的有( )A .1个B . 2个C .3个D .4个 3.201020112()1.53-⨯等于( )A .1B .23-C .32-D .324.如下图,ABC ∆中,,,AD BC GC BC CF AB ⊥⊥⊥,,,D C F 是垂足,则下列说法错误的是(A)ABC ∆中,AD 是BC 边上的高 (B)ABC ∆中,GC 是BC 边上的高(C)GBC ∆中,GC 是BC 边上的高 (D)GBC ∆中,CF 是BG 边上的高 (第4题) (第5题) (第9题)5.如图,直线l 1∥l 2,l 3⊥l 4.有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是 ( )A .只有①正确B .只有②正确C .①和③正确D .①②③都正确 6.下列各式中,可以运用平方差公式计算的是( )A .(4)(4)a b a b -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D .11()()22x y x y --+ 7.若()2221243by xy x y ax +-=+,则a ,b 的值分别为 ( )A .2, 9B .2, -9C .-2 ,9D .-4, 98.把一个三角形分成面积相等的两个三角形的线段为 A .三角形的中线 B .三角形的角平分线C .三角形的高 D .以上都可以 9.如图,已知ABC ∆中90=∠C ,若沿图中虚线剪去C ∠,则12∠+∠ 等于( ) A .90︒ B .135︒ C .270︒ D .315︒ 10.等腰三角形的周长为24,那么腰长x 的取值范围为( ) A .0<x ≤8 B .0<x < 6 C .0<x <12 D .6<x <12F GC D BA21EDCBAD CBA二.填空题(每空2分,共22分)11.已知:a +b =9,a b =7,则 a 2+b 2= ; (a -b ) 2= . 12.0.0000034可用科学记数法表示为 .13.已知2m +3n =3,则4m ·8n 的值为 . 14.如图,12,3100∠=∠∠=︒,则4∠= .15.从n 边形一个顶点出发共可作4条对角线,则这个n 边形的内角和为________. 16.若2249a kab b ++是完全平方式,则常数k = .17.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =6,BD =4,则点D 到AB 的距离是 .(第14题) (第17题) (第19题) 18.等腰三角形的一个底角为700,则一腰上的高与另一腰的夹角的度数是 .19.如图,直线AB CD ∥,直线EF 交AB 于G ,交CD 于F ,直线EH 交AB 于H .若145=∠,260=∠,则E ∠的度数为 度.20.若210a a ++=,则3a 值为 .三.解答题:(21每小题4分,22每小题5分 ,23题5分.)21.计算(1)120211()(2)5()42---+-⨯-; (2)2332(2)()x x --;22.计算:(1) )5)(32()12(52-+-++x x x x x ; (2)2(23)(23)(2)x y x y x y -++---+23.先化简,再求值:()()()()3342213222-+-+-++-m m m m m m m ,其中321=mA HBDCGE12F432124.(本题6分) 如图,////AB CD PN ,若50,150ABC CPN ∠=︒∠=︒,求BCP ∠的度数.25.(本题6分) 如图,在△ABC 中,BD ⊥AC ,E F ⊥AC ,垂足分别为D .F . (1)若∠1=∠2,试说明DE ∥BC ; (2)若DE ∥BC ,你能得到∠l=∠2吗?26.(本题7分)如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β; (1)如图①,αβ+>180°,试用α,β表示∠F ;N P D C B A(2)如图②,αβ+<180°,请在图中画出∠F ,并试用α,β表示∠F ;(3)一定存在∠F 吗?如有,求出∠F 的值,如不一定,指出α,β满足什么条件时,不存在∠F .27.(本题6分)(1)欲求231333++++ (20)3+的值,可令231333S =++++ (20)3+…①,将①式两边同乘以3,得 ……②,由②式减去①式,得S = . (2)仿照(1)的方法,当1k ≠时,试求23a ak ak ak ++++…nak +的值(用含,,a n k 的代数式表示)参考答案一.选择题.( 本题共10小题,每题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10EDC B AFEDC BA图①图②二.填空题.(本题共10小题,每空2分,共22分)11.22a b +=__67 _,2()a b -=___53 ;12.63.410-⨯ ;13. 8 ;14.∠4= 80 °; 15.__900° ;16. k=_ ±12 ;17. 2 __ ;18. 50°_; 19.__15°_ ;20. 1 .三、计算题(21每小题4分,22每小题5分 ,23题5分.)21.(1)-4;(2)69x -;22.(1)3258215x x x +++;(2)281249y y xy -++-23. 原式=311m -+=624.∠BCD=50° (2分) ∠PCD=30° (2分) ∠BCD=20° (2分) 25.(1) 3分(2) 3分 26.(1)∠F=0902αβ+- (2分)(2)画图 (1分)∠F=0902αβ+-(2分)(3)0180αβ+= (2分)27.(1)233333S =+++ (21)3+ (1分)21312S -= (2分)(2)1(1)1n a k k +-- (3分)答案 B B D B A C CA CD。

2018-2019学年浙教版七年级数学下册期中试卷(有答案)

2018-2019学年浙教版七年级数学下册期中试卷(有答案)

A.(2a+b)(2b-a)B.(1期中测试一、选择题(每小题3分,共30分)1.已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是()A.3.5×104米B.3.5×10-4米C.3.5×10-5米D.3.5×10-6米2.下列计算正确的是()A.2a×3a=6a B.(-2a)3=-6a3C.6a÷(2a)=3aD.(-a3)2=a63.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC4.下列各组数中,是二元一次方程5x-y=2的一个解的是()5.如图,将三角形ABC沿AB方向平移后,到达三角形BDE的位置.若∠CAB=50°,∠ABC=100°,则∠1的度数为()A.30°B.40°C.50°D.60°6.下列算式能用平方差公式计算的是()1x+1)(-x-1)22C.(3x-y)(-3x+y)D.(-m-n)(-m+n)7.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()8.如图,直线a∥b,等腰直角三角形的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°A.49.3x=4,9y=7,则3x-2y的值为()72B.C.-3D.74710.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(每题3分,共24分)11.写出一个二元一次方程,使它有一个解为.12.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为.13.A表示一个多项式,若A÷(a-b)=2a+3b,则A=.14.已知,且a+b-2c=6,则a的值为.15.计算:(-0.25)2019×42018=.16.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.18.已知方程组的解是则关于x,y的方程组的解是.三、解答题(共46分)19.(6分)计算:(1)(-xy2)2·x2y÷(x3y4);(2)(-2)11÷(-2)9+(-)-3-(3.14-π)0.20.(6分)用适当方法解下列方程组:(1)(2)21.(6分)先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.22.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.23.(8分)按要求完成下列各题:(1)已知实数a,b满足(a+b)2=1,(a-b)2=9,求a2+b2-ab的值;(2)已知(2018-a)(2019-a)=2047,试求(2018-a)2+(2019-a)2的值.24.(12分)为了打造区域中心城市,实现跨越式发展,我市新区建设正按投资计划有序推进.新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台·时)挖掘土石方量(单位:甲型挖掘机乙型挖掘机100120m3/台·时)6080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?参考答案一、选择题1—5.BDCDA6—10.DACAB二、填空题11.答案不唯一,如2x+y=512.60°13.2a2+ab-3b214.1215.-16.75°17.183818.三、解答题19.(1)原式=xy(2)原式=(-2)11-9+-1=4-8-1=-520.21.原式=4x2-9-(x2-4x+4)-3x2+3x=7x-13,当x=2时,原式=1.22.∵EF∥AD,∴∠2=∠3.∵∠1=∠2,∴∠1=∠3,∴DG∥AB,∴∠BAG+∠AGD=180°.∵∠BAG=70°,∴∠AGD=110°.23.(1)∵(a+b)2=1,(a-b)2=9,∴a2+b2+2ab=1,a2+b2-2ab=9.4ab=-8,ab=-2,∴a2+b2-ab=(a-b)2+ab=9+(-2)=7;(2)(2018-a)2+(2019-a)2=[(2018-a)-(2019-a)]2+2(2018-a)(2019-a)=1+2×2047=4095.24.(1)设甲x台,乙y台,由题意得,解得答:甲5台,乙3台.(2)设甲a台,乙b台,60a+80b=540,a=9-b,方程的非负整数解为又∵100a+120b≤850,∴只能取答:有一种方案,甲1台,乙6台.。

七年级下期中考试数学试卷及

七年级下期中考试数学试卷及

杭州市滨江区 2018-2019 学年第二学期期中考试七年级数学试卷考生 知:1.本 卷分 卷和答 卷两部分。

分150 分,考90 分 .2.所有答案都必 做在答 卷 定的地址上, 必注意 序号和答 序号相 .一、仔 一 ( 10 小 ,每3 分,共 30 分)1、以下方程中,是二元一次方程的是()A . x - 5y=6B.2+1=1 C . 3x-y 2=0D.4xy=33 2x y2、以下运算正确的选项是⋯()A .(- 2 )·(- 3 )3=- 544 4B . 52·( 33) 2= 1512ababa bx xxC .(-)·(- 10b 2) 3=- b7D .( 2×10 n)( 1×10n )= 102n23、以下各 数中,互 相反数的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .(- 2) -3 与 23B .(- 2) -2 与 2-2C .- 33 与(- 1 )3D.(- 3)-3与( 1)3334、如 ,与∠α构成同旁内角的角有( )A .1 个B .2 个C .5个D .4个第 4第 5第 65、如 ,有 a 、b 、 c 三 家用 路接入 表,相 路的 等距排列, 三 所用()A . a 最B . b 最C . c 最D .三 一 6.如 所示 , ∠ 1=72° , ∠ 2=72° , ∠ 3=70° , 求∠ 4 的度数 ()A . 72°B . 70°C. 108°D. 110°7、因 H7N9禽流感致病性 ,某 房打算 利于民,板 根一箱原价 100 元, 有以下四种 价方案,其中0< n < m <100, 价后板 根价格最低的方案是( )A .先 价 m%,再降价 n%B .先 价 n%,再降价 m%C .先 价m n % ,再降价mn % D .无法确定228、以下 句:①同一平面上,三条直 只有两个交点, 三条直 中必有两条直 互相平 行;②若是两条平行 被第三条截,同旁内角相等, 那么 两条平行 都与第三条直 垂直;③ 一点有且只有一条直 与已知直 平行,其中()A .①、②是正确的命B .②、③是正确命C .①、③是正确命D .以上 皆9、一个正方形 增加A 、8 cm3cm ,它的面 就增加B 、 5 cm39cm 2, 个正方形 是(C 、 6cmD、 10 cm)10、已知2n2161是一个有理数的平方,n 不能够取以下各数中的哪一个()A 、30 B、32 C 、-18 D 、 9二、耐心填一填( 6 小题,每题 4 分,共 24 分)11、二元一次方程 3x + 2y = 15 的正整数解为 ____________12、 8 20122013 =1 120 3=2213、若 x 2 mx 9 是一个完好平方式,则常数m 的值是第 14题图14、如图,面积为 12cm 2 的△ ABC 沿 BC 方向平移至△ DEF 地址,平移的距离是边 BC 长的两倍,则图中的四边形 ACED 的面积是 cm 2. 15、两个角的两边分别平行,其中一个角比另一个角的4 倍少 30°,这两个角是16、某班同学去 18 千米的北山郊游。

浙教版2018-2019学年第二学期七年级数学期中试卷含答案

浙教版2018-2019学年第二学期七年级数学期中试卷含答案

浙教版2018-2019学年第二学期七年级数学期中试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.计算a2•a6的结果是()A.a4B.2a6C.a8D.a123.用加减法解方程组,由②﹣①消去未知数y,所得到的一元一次方程是()A.2x=9 B.2x=3 C.﹣2x=﹣9 D.4x=34.如图,点E在AD延长线上,下列条件能判断AB∥CD的是()A.∠3=∠4 B.∠C+∠ADC=180°C.∠C=∠CDE D.∠1=∠25.下列整式乘法的运算中,结果正确的是()A.(a+3)(a﹣2)=a2﹣6 B.(a﹣2)2=a2﹣4a+4C.(a+2)2=a2+4 D.2a(a﹣2)=2a2﹣26.下列运算结果最大的是()A.()﹣1B.20C.2﹣1D.(﹣2)17.下列各式可以运用平方差公式计算的是()A.(3x﹣y)(3x﹣y)B.(3x﹣y)(y﹣3x)C.(3x﹣y)(3x+y)D.(3x+y)(x﹣3y)8.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE =32°,则∠GHC等于()A.112°B.110°C.108°D.106°9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.10.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)()A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°二、填空题(共8小题,每小题3分,满分24分)11.计算:a4÷a2=.12.如图直线a,b被直线c所截,若a∥b,则∠1+∠2=180°的理由是.13.龙港,地处浙江省南部,位于浙江八大水系之一鳌江入海口南岸,东濒东海,西接104国道、沈海高速公路和温福铁路,南依江南平原,北为鳌江,版图面积约172000000米,172 000 000米用科学记数法表示为平方米.14.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=.15.已知长方形的面积为3a2﹣6ab,一边长为3a,则另一边长为.16.如图,直线a∥b,C为直线a、b之间一个点,∠1=45°,∠2=30°,则∠C=.17.若关于m,n的二元一次方程组的解为,则关于x,y的二元一次方程的解是.18.关于x,y的方程组,若方程组的解中x恰为整数,m也为整数,则m的值为.三、解答题(本题有6小题,共46分,解答需写出必要的文字说明、演算步骤或证明过程)19.如图,在正方形网格中有一个△ABC,按要求进行下列作图(只借助网格,需要写出结论).(1)过点B画出AC的平行线;(2)画出三角形ABC向右平移5格,在向上平移2格后的△DEF;(3)若每一个网格的单位长度为a,求三角形ABC的面积.20.化简:(1)(﹣2x+6)•(﹣x)(2)m(m﹣2)﹣(m﹣1)221.解方程组:(1)(2)22.如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若∠ABC=120°,求∠BEC的度数.23.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.24.工厂接到订单,需要边长为(a+3)和3的两种正方形卡纸.(1)仓库只有边长为(a+3)的正方形卡纸,现决定将部分边长为(a+3)的正方形纸片,按图甲所示裁剪得边长为3的正方形.①如图乙,求裁剪正方形后剩余部分的面积(用含a代数式来表示);②剩余部分沿虚线又剪拼成一个如图丙所示长方形(不重叠无缝隙),则拼成的长方形的边长多少?(用含a代数式来表示);(2)若将裁得正方形与原有正方形卡纸放入长方体盒子底部,按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),盒子底部中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2测得盒子底部长方形长比宽多3,则S2﹣S1的值为.参考答案与试题解析一.选择题(共10小题)1.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.2.计算a2•a6的结果是()A.a4B.2a6C.a8D.a12【分析】根据同底数幂的乘法法则计算即可.【解答】解:a2•a6=a2+6=a8.故选:C.3.用加减法解方程组,由②﹣①消去未知数y,所得到的一元一次方程是()A.2x=9 B.2x=3 C.﹣2x=﹣9 D.4x=3【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【解答】解:解方程组,由②﹣①消去未知数y,所得到的一元一次方程是2x=9,故选:A.4.如图,点E在AD延长线上,下列条件能判断AB∥CD的是()A.∠3=∠4 B.∠C+∠ADC=180°C.∠C=∠CDE D.∠1=∠2【分析】根据平行线的判定定理即可直接作出判断.【解答】解:A、根据内错角相等,两直线平行即可证得BC∥AD,不能证AB∥CD,故选项错误;B、根据同旁内角互补,两直线平行,可证得BC∥AD,不能证AB∥CD,故选项错误;C、根据内错角相等,两直线平行即可证得BC∥AD,不能证AB∥CD,故选项错误;D、根据内错角相等,两直线平行即可证得AB∥DC,故选项正确.故选:D.5.下列整式乘法的运算中,结果正确的是()A.(a+3)(a﹣2)=a2﹣6 B.(a﹣2)2=a2﹣4a+4C.(a+2)2=a2+4 D.2a(a﹣2)=2a2﹣2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(a+3)(a﹣2)=a2+a﹣6,故选项A错误;∵(a﹣2)2=a2﹣4a+4,故选项B正确;∵(a+2)2=a2+4a+4,故选项C错误;∵2a(a﹣2)=2a2﹣4a,故选项D错误;故选:B.6.下列运算结果最大的是()A.()﹣1B.20C.2﹣1D.(﹣2)1【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:∵()﹣1=2,20=1,2﹣1=,(﹣2)1=﹣2,∴2>1>>﹣2,∴运算结果最大的是:()﹣1.故选:A.7.下列各式可以运用平方差公式计算的是()A.(3x﹣y)(3x﹣y)B.(3x﹣y)(y﹣3x)C.(3x﹣y)(3x+y)D.(3x+y)(x﹣3y)【分析】利用平方差公式结构特征判断即可.【解答】解:可以运用平方差公式计算的是(3x+y)(3x﹣y),故选:C.8.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE =32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得,∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y钱,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y钱,根据题意,可列方程组为:.故选:A.10.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)()A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°【分析】由旋转的性质和平行线的判定依次判断,可求解.【解答】解:当∠EAB=30°时,∵∠CAB=90°∴∠CAE=60°=∠E,∴AC∥DE,故A不合题意;当∠EAB=45°,∴∠BAD=45°=∠B,∴BC∥AD故B不合题意;当∠EAB=60°时,三角尺不存在一组边平行.当∠EAB=75°时,如图,延长AB交DE于点M,∴∠BAD=15°,∴∠EMA=∠D+∠MAB=45°=∠ABC∴BC∥DE故选:C.二.填空题(共8小题)11.计算:a4÷a2=a2.【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答】解:原式=a4﹣2=a2.故答案为:a2.12.如图直线a,b被直线c所截,若a∥b,则∠1+∠2=180°的理由是两直线平行,同旁内角互补.【分析】由图形可知,∠1和∠2是直线a,b被直线c所截而成的同旁内角,因为两直线a,b平行,所以∠1+∠2=180°.【解答】解:∵a∥b(已知),∴∠1+∠2=180°(两直线平行,同旁内角互补).故答案为:两直线平行,同旁内角互补.13.龙港,地处浙江省南部,位于浙江八大水系之一鳌江入海口南岸,东濒东海,西接104国道、沈海高速公路和温福铁路,南依江南平原,北为鳌江,版图面积约172000000米,172 000 000米用科学记数法表示为 1.72×108平方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:172 000 000米用科学记数法表示为1.72×108.故答案为:1.72×10814.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= 4 .【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.15.已知长方形的面积为3a2﹣6ab,一边长为3a,则另一边长为a﹣2b.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:∵长方形的面积为3a2﹣6ab,一边长为3a,∴另一边长为:(3a2﹣6ab)÷3a=a﹣2b.故答案为:a﹣2b.16.如图,直线a∥b,C为直线a、b之间一个点,∠1=45°,∠2=30°,则∠C=75°.【分析】过C作CM∥直线a,求出直线a∥b∥CM,根据平行线的性质得出∠ACM=∠2=30°,∠BCM=∠1=45°,即可求出答案.【解答】解:过C作CM∥直线a,∵直线a∥b,∴直线a∥b∥CM,∵∠1=45°,∠2=30°,∴∠ACM=∠2=30°,∠BCM=∠1=45°,∴∠ACB=∠ACM+∠BCM=30°+45°=75°.故答案为:75°.17.若关于m,n的二元一次方程组的解为,则关于x,y的二元一次方程的解是.【分析】把关于x,y的二元一次方程看作关于(x+1)和(y﹣1)的二元一次方程组,利用关于m,n的二元一次方程组的解为得到x+1=5,y﹣1=1,从而求出x、y即可.【解答】解:∵关于m,n的二元一次方程组的解为,把关于x,y的二元一次方程看作关于(x+1)和(y﹣1)的二元一次方程组,∴,∴关于x,y的二元一次方程的解为.故答案为.18.关于x,y的方程组,若方程组的解中x恰为整数,m也为整数,则m的值为﹣1或﹣2 .【分析】利用加减法解关于x、y的方程组得到x=,利用有理数的整除性得到2m+3=±1,±2,从而得到满足条件的m的值.【解答】解:,①+2×②得(2m+3)x=2,解得x=,∵x为整数,m为整数,∴2m+3=±1,±2,∴m的值为﹣1,﹣2.故答案为﹣1或﹣2.二.解答题(共6小题)19.如图,在正方形网格中有一个△ABC,按要求进行下列作图(只借助网格,需要写出结论).(1)过点B画出AC的平行线;(2)画出三角形ABC向右平移5格,在向上平移2格后的△DEF;(3)若每一个网格的单位长度为a,求三角形ABC的面积.【分析】(1)B点看作A点先右平移2格得到,则把C点向右平移2格得到P点,则BP 满足条件;(2)利用网格特点和平移的性质画出A、B、C的对应点D、E、F即可;(3)根据三角形面积公式计算.【解答】解:(1)如图,直线BP为所作;(2)如图,△DEF为所作;(3)三角形ABC的面积=×3a×2a=3a2.20.化简:(1)(﹣2x+6)•(﹣x)(2)m(m﹣2)﹣(m﹣1)2【分析】(1)利用单项式乘多项式的法则计算即可得;(2)先利用单项式乘多项式法则和完全平方公式计算,再去括号、合并同类项即可得.【解答】解:(1)原式=x2﹣3x;(2)原式=m2﹣2m﹣(m2﹣2m+1)=m2﹣2m﹣m2+2m﹣1=﹣1.21.解方程组:(1)(2)【分析】(1)根据二元一次方程组的解法即可求出答案.(2)根据二元一次方程组的解法即可求出答案.【解答】解:(1)把①代入②得,3(1﹣2y)=11,解得:y=﹣1,把y=﹣1代入①得,x=3,∴;(2)解:②×6得,3x﹣2y=6③,③﹣①,得3y=3,y=1,把y=1①,得x=,∴.22.如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由.(2)若∠ABC=120°,求∠BEC的度数.【分析】(1)先根据AD⊥BE,BC⊥BE得出AD∥BC,故可得出∠ADE=∠C,再由∠A=∠C 得出∠ADE=∠A,故可得出结论;(2)由AB∥CD得出∠C的度数,再由直角三角形的性质可得出结论.【解答】解:(1)AB∥CD.理由:∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠ADE=∠C.∵∠A=∠C,∴∠ADE=∠A,∴AB∥CD;(2)∵AB∥CD,∠ABC=120°,∴∠C=180°﹣120°=60°,∴∠BEC=90°﹣60°=30°.23.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.24.工厂接到订单,需要边长为(a+3)和3的两种正方形卡纸.(1)仓库只有边长为(a+3)的正方形卡纸,现决定将部分边长为(a+3)的正方形纸片,按图甲所示裁剪得边长为3的正方形.①如图乙,求裁剪正方形后剩余部分的面积(用含a代数式来表示);②剩余部分沿虚线又剪拼成一个如图丙所示长方形(不重叠无缝隙),则拼成的长方形的边长多少?(用含a代数式来表示);(2)若将裁得正方形与原有正方形卡纸放入长方体盒子底部,按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),盒子底部中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2测得盒子底部长方形长比宽多3,则S2﹣S1的值为9 .【分析】(1)①根据面积差可得结论;②根据图形可以直接得结论;(2)分别计算S2和S1的值,相减可得结论.【解答】解:(1)①裁剪正方形后剩余部分的面积=(a+3)2﹣32=(a+3﹣3)(a+3+3)=a(a+6)=a2+6a;②拼成的长方形的宽是:a+3﹣3=a,∴长为a+6,则拼成的长方形的边长分别为a和a+6;(2)设AB=x,则BC=x+3,∴图1中阴影部分的面积为S1=x(x+3)﹣(a+3)2﹣32+3(a+6﹣x﹣3),图2中阴影部分的面积为S2=x(x+3)﹣(a+3)2﹣32+3(a+6﹣x),∴S2﹣S1的值=3(a+6﹣x)﹣3(a+6﹣x﹣3)=3×3=9,故答案为:9.。

杭州市初一年级期中数学下册测试卷(含答案解析)

杭州市初一年级期中数学下册测试卷(含答案解析)

杭州市2019初一年级期中数学下册测试卷(含答案解析)杭州市2019初一年级期中数学下册测试卷(含答案解析)一、选择题(本题有10小题,每小题3分,共30分. 请选出一个符合题意的正确选项, 不选、多选、错选,均不给分)1、如图,射线AB、AC被直线DE所截,则∠1与∠2是()A.同旁内角B.内错角C.同位角 D对顶角2.据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 00007克,用科学记数法表示此数正确的是()A. B. C. D.3.下列代数式中,属于分式的是()A. B. C. D.4.下列因式分解不正确的是A. B.C. D.5.的结果中二次项系数是()(A)-3 (B)8 (C)5 (D)-56.观察下列球排列规律●○○ ●○○○○ ●○○●○○○○ ●○○●……从第一个到2019个球为止,共有●球()个A.501B.502C.503D.5047.在边长为a的正方形中挖去一个边长为b的小正方形(a >b)(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证()(A)a2-b2=(a+b)(a-b)(B)(a-b)2=a2-2ab+b2(C)(a+b)2=a2+2ab+b2(D)(a+2b)(a-b)=a2+ab-2b28.下列计算正确的有几个()A.0个B.1个C.2个D.3个9. 代数式的值为9,则的值为()A.8 B.7 C.6 D.510、如图,宽为50 cm的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A、400 cm2B、500 cm2C、600 cm2D、4000 cm2 第10题图二、填空题(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分式有意义,则的取值范围是__________12.对于公式,若已知和,求 =__________13.已知,那么分式的值等于14.分式的值是整数,求正整数的值为__________15.已知关于x的分式方程无解,则的值是16.如图,已知AB//EF, ∠C=45°,写出x,y,z的关系式第16题图三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤17. (本小题满分6分)计算18. (本小题满分8分)①化简(3分)②化简并求值(5分)然后从2,-2,3中任选一个你喜欢的a的值代入求值19.解下列方程和方程组(每小题4分,共8分)20.(本小题满分10分)甲、乙两人分别从相距72千米的A,B两地同时出发,相向而行。

2018-2019学年七年级(下)期中数学试卷(有答案与解析)

2018-2019学年七年级(下)期中数学试卷(有答案与解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.B.C.D.2.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.(ab)2=ab2D.a6÷a2=a33.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.4.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.4cm、7cm、3cm B.7cm、3cm、8cmC.5cm、6cm、7cm D.2cm、4cm、5cm6.若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1B.1C.﹣4D.47.若a x=6,a y=4,则a2x﹣y的值为()A.8B.9C.32D.408.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:=.10.某种生物细胞的直径约为0.00038米,用科学记数法表示为米.11.若(x+1)(x﹣3)=x2+mx﹣3,则m值是.12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.13.已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是.14.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.15.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.16.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=°.17.已知a2﹣a﹣3=0,那么a2(a﹣4)的值是.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边CD恰好与边AB平行.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)(2)(2a2)2•a4﹣(﹣5a4)220.分解因式:(1)5x2﹣10xy+5y2;(2)4(a﹣b)2﹣(a+b)221.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.一个长方体的高是8cm ,它的底面是边长为3cm 的正方形.如果底面正方形的边长增加acm ,那么它的体积增加多少?24.已知:DE ⊥AO 于E ,BO ⊥AO ,∠CFB =∠EDO ,试说明:CF ∥DO .25.如图,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E ,BD 是△ABC 的角平分线.求∠DEB 的度数.26.(1)①比较4m 与m 2+4的大小:(用“>”、“<”或“=”填充)当m =3时,m 2+4 4m ;当m =2时,m 2+4 4m ;当m =﹣3时,m 2+4 4m . ②观察并归纳①中的规律,无论m 取什么值,m 2+4 4m (用“>”、“<”、“≥”或“≤”),并说明理由.(2)利用上题的结论回答:试比较x 2+2与2x 2+4x +6的大小关系,并说明理由.27.阅读与思考:整式乘法与因式分解是方向相反的变形.由(x +p )(x +q )=x 2+(p +q )x +pq 得,x 2+(p +q )x +pq =(x +p )(x +q );利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值是.28.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.【分析】根据图形平移与翻折变换的性质解答即可.【解答】解:由图可知,ABC利用图形的翻折变换得到,D利用图形的平移得到.故选:D.【点评】本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.【分析】依据幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则计算即可.【解答】解:A、(a2)3=a6,故A正确;B、a2•a3=a5,故B错误;C、(ab)2=a2b2,故C错误;D、a6÷a2=a4,故D错误.故选:A.【点评】本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则的应用,熟练掌握相关法则是解题的关键.3.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AD∥BC,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.【点评】本题考查了平行线的判定,解题的关键是熟练掌握3线8角之间的位置关系.4.【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b.∵∠3=85°,故选:B.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.5.【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、4+3=7,不能组成三角形,故本选项正确;B、7+3>8,能组成三角形,故本选项错误;C、5+6>7,能组成三角形,故本选项错误;D、4+2>5,能组成三角形,故本选项错误.故选:A.【点评】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.【分析】(x+y)2=9减去(x﹣y)2=5,然后用平方差公式计算即可.【解答】解:(x+y)2﹣(x﹣y)2=4,∴[(x+y)+(x﹣y)][(x+y)﹣(x﹣y)]=4.∴2x•2y=4.∴4xy=4.∴xy=1.故选:B.【点评】本题主要考查的是完全平方公式或平方差公式的应用,熟练掌握公式是解题的关键.7.【分析】根据幂的乘方法则、同底数幂的除法法则计算即可.【解答】解:a2x﹣y=(a x)2÷a y=36÷4=9,故选:B.【点评】本题考查的是同底数幂的除法,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.8.【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④∵∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=∠ABC,∠DCB=∠ACB,∴∠DFB=∠EBC+∠DCB=(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=∠CGE,故④正确.故选:C.【点评】本题主要考查的是三角形内角和定理、平行线的性质,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:原式=n4.故答案为:n4.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00038=3.8×10﹣4.故答案为:3.8×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】先根据多项式乘以多项式展开,即可得出答案.【解答】解:(x+1)(x﹣3)=x2﹣2x﹣3,∵(x+1)(x﹣3)=x2+mx﹣3,∴m=﹣2,故答案为:﹣2.【点评】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键12.【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】解:当4为底时,其它两边都为9,4、9、9可以构成三角形;当4为腰时,其它两边为4和9,因为4+4=8<9,所以不能构成三角形.故答案为:9.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.15.【分析】根据三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A=2∠D,最后代入求出即可.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.【点评】此题考查三角形内角和定理以及角平分线性质的综合运用,解此题的关键是求出∠A=2∠D.16.【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【解答】解:由折叠可得∠3=180°﹣2∠2=180°﹣110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=110°,故答案为:110.【点评】此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.17.【分析】直接利用已知变形,进而代入原式求出答案.【解答】解:∵a2﹣a﹣3=0,∴a2=a+3,a2﹣a=3∴a2(a﹣4)=(a+3)(a﹣4)=a2﹣a﹣12=3﹣12=﹣9.故答案为:﹣9.【点评】此题主要考查了单项式乘以多项式,正确将原式变形是解题关键.18.【分析】讨论:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,了;一平行线的判定,当∠OEC′=∠B=40°时,C′D′∥AB,则根据三角形外角性质计算出∠C′OC=100°,从而可计算出此时△COD绕点O顺时针旋转100°得到△C′OD′所需时间;如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,利用平行线的判定得当∠OFC″=∠B=40°时,C″D″∥AB,根据三角形内角和计算出∠C″OC=80°,则△COD 绕点O顺时针旋280°得到△C″OD″,然后计算此时旋转的时间.【解答】解:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,则∠C′OD′=∠COD=90°,∠OC′D=∠C=60°,当∠OEC′=∠B=40°时,C′D′∥AB,∴∠C′OC=∠OEC′+∠OC′E=40°+60°=100°,∴△COD绕点O顺时针旋转100°得到△C′OD′所需时间为=5(秒);如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,则∠C″OD″=∠COD=90°,∠OC″D=∠C=60°,当∠OFC″=∠B=40°时,C″D″∥AB,∴∠C″OC=180°﹣∠OFC″+∠OC′F=180°﹣40°﹣60°=80°,而360°﹣80°=280°,∴△COD绕点O顺时针旋280°得到△C″OD″所需时间为=14(秒);综上所述,在旋转的过程中,在第5秒或14秒时,边CD恰好与边AB平行.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的判定.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质、积的乘方运算分别化简得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则计算得出答案.【解答】解:(1)原式=2﹣1+[2×(﹣)]2017×2=2﹣1﹣2=﹣1;(2)原式=4a4•a4﹣25a8=﹣21a8.【点评】此题主要考查了实数运算以及积的乘方运算,正确掌握运算法则是解题关键.20.【分析】(1)先提取公因式5,再利用完全平方公式分解可得;(2)利用平方差公式分解后整理可得.【解答】解:(1)原式=(x2﹣2xy+y2)=5(x﹣y)2;(2)原式=[2(a﹣b)+a+b][2(a﹣b)﹣(a﹣b)]=(3a﹣b)(a﹣3b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.【分析】根据整式的运算法则即可求出答案.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=36【点评】本题整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC =S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.23.【分析】长方体变化后的高为8cm,底面边长为(3+a)cm,根据长方体的体积公式进行计算即可.【解答】解:它的体积增加了:8(3+a)2﹣8×32=72+48a+8a2﹣72=8a2+48a.答:它的体积增加8a2+48a.【点评】本题考查了完全平方公式,分别用整式表示两个长方体的体积,再求差,即可得到体积增加的值.24.【分析】根据平行线的判定和性质解答即可.【解答】解:∵DE⊥AO于E,BO⊥AO,∴DE∥OB,∴∠EDO=∠DOF,∵∠CFB=∠EDO,∴∠CFB=∠DOF,∴CF∥DO.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.25.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DBE,再根据角平分线的定义求出∠ABC,然后根据两直线平行,同旁内角互补求解即可.【解答】解:∵∠A=50°,∠BDC=70°,∴∠DBE=∠BDC﹣∠A=70°﹣50°=20°,∵BD是△ABC的角平分线,∴∠ABC=2∠DBE=2×20°=40°,∵DE∥BC,∴∠DEB=180°﹣∠ABC=180°﹣40°=140°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.26.【分析】(1)①当m=3时,当m=2时,当m=﹣3时,分别代入计算,再进行比较即可;②根据(m2+4)﹣4m=(m﹣2)2≥0,即可得出答案;(2)根据(2x2+4x+6)﹣(x2+2)=(x+2)2≥0,即可得出答案.【解答】解:(1)①当m=3时,4m=12,m2+4=13,则4m<m2+4,当m=2时,4m=8,m2+4=8,则4m=m2+4,当m=﹣3时,4m=﹣12,m2+4=13,则4m<m2+4,故答案为;>;=;>;②∵(m2+4)﹣4m=(m﹣2)2≥0,∴无论取什么值,总有4m≤m2+4;故答案是:≥;(2)∵(2x2+4x+6)﹣(x2+2)=x2+4x+4=(x+2)2≥0∴x2+2≤2x2+4x+6.【点评】此题考查了不等式的性质,用到的知识点是不等式的性质、完全平方公式、非负数的性质,关键是根据两个式子的差比较出数的大小.27.【分析】(1)利用十字相乘法分解因式即可;(2)将x2﹣3看作整体,利用十字相乘法分解,再利用平方差公式分解可得.(3)找出所求满足题意p的值即可.【解答】解:(1)x2+7x+12=(x+3)(x+4),故答案为:(x+3)(x+4);(2)原式=(x2﹣3﹣1)(x2﹣3+2)=(x2﹣4)(x2﹣1)=(x+2)(x﹣2)(x+1)(x﹣1);(3)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为:±7,±2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.28.【分析】(1)根据AC∥BD,可得∠DAE=∠D,再根据∠C=∠D,即可得到∠DAE=∠C,进而判定AD∥BC;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD =180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.【点评】本题主要考查了平行线的判定与性质以及三角形内角和定理的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。

2018-2019学年七年级下学期期中考试数学试卷含答案

2018-2019学年七年级下学期期中考试数学试卷含答案

2018-2019学年七年级下学期期中考试数学试卷1.下列计算正确的是( )A.a3·a2=a6B. A5·a5=a10C. (-3a3)2=6a6D.(a3)·a2=a82.如图所示,边长为m+3的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠缝隙),若拼成的长方形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+63.如图所示,∠1=20°,∠AOB=90°,点C、O、D在同一直线上,则∠2的度数为()A. 70°B. 110°C. 160°D. 80°4.如图,能判定EB∥AC的条件是A. ∠A=∠ABEB. ∠A=∠EBDC. ∠A=∠ABCD. ∠A=∠ABE5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A. 1B. 2C. 3D. 46.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短面变化,这个问题中因变量是()A.太阳光强弱B. 水的温度C. 所晒时间D.热水器7.弹簧挂上物体后会伸长,测得一弹簧的长度为y (cm )与所挂的物体的质量x (kg )间有下面的关系:x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是:( ) A. 弹簧不挂中午时的长度为0cm B. 所挂物体质量为4kg 时,弹簧长度为12cm C. X 与y 都是变量,且x 是自变量,y 是因变量 D. 物体质量每增加1kg ,弹簧长度y 增加0.5m 8.下列各式中,能用平方差公式进行计算的是A.(-x-y )(x+y )B. (2x-y )(y-2x )C. (1-21x )(-1-21x ) D.(3x+y )(x-3y ) 9.如图所示,图像(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A. 第3分时汽车的速度是40千米/时B. 所挂物体质量为4kg 时,弹簧长度为12cmC. X 与y 都是变量,且x 是自变量,y 是因变量D. 物体质量每增加1kg ,弹簧长度y 增加0.5m 10.若(x-3)(x+5)=x 2+ax+b ,则a+b 的值是( ) A. -13 B.13 C. 2 D.-15 二、填空题(每小题3分,共12分) 11.化简:6a6÷3a3= .12.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是 . 13.如果一个角的补角是140°,那么这个角的余角是 °。

浙江省杭州市萧山区朝晖初级中学七年级下学期期中考试(4月)数学考试卷(初一)期中考试.doc

浙江省杭州市萧山区朝晖初级中学七年级下学期期中考试(4月)数学考试卷(初一)期中考试.doc

浙江省杭州市萧山区朝晖初级中学七年级下学期期中考试(4月)数学考试卷(初一)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,直线b、c被直线a所截,则∠1与∠2是()A. 同位角B. 内错角C. 同旁内角D. 对顶角【答案】A【解析】直线b,c被直线a所截,∠1与∠2在直线a的同侧,则∠1与∠2是同位角。

故选:A.【题文】下列各式是二元一次方程的是()A. B. C. D.【答案】B【解析】A. 3y+x是代数式而不是方程,不是二元一次方程,故此选项错误;B. 方程−2y=0符合二元一次方程的定义,故此选项正确;C. 方程y=+1的左边不是整式,不符合二元一次方程的定义,故此选项错误;D. 方程+y=0中未知数的项的最高次数是2,不符合二元一次方程的定义,故此选项错误;故选:B.【题文】下列计算正确的是()评卷人得分A. B. C. D.【答案】D【解析】A.&#xal【题文】二元一次方程的正整数解有()A. 4组B. 3组C. 2组D. 1组【答案】B【解析】∵2x+y=7,∴y=7−2x,∵x、y都是正整数,∴x=1时,y=5;x=2时,y=3;x=3时,y=1.∴二元一次方程2x+y=7的正整数解共有3对。

故选B.【题文】如图,将一条两边沿互相平行的纸带按图折叠,则∠α的度数等于()A. 50oB. 60 oC. 75 oD. 85 o【答案】C【解析】∵AD∥BC,∴∠CBF=∠DEF=30°.∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故选C.【题文】若关于的二元一次方程组的解也是二元一次方程的解,则的值为( )A. B. C. D.【答案】A【解析】试题分析:由题意分析可知,将两式带入分析可得,x=7k,y=-2k;所以带入可得,所以14k-6k=6,所以k=,故选A考点:二元一次方程点评:本题属于对二元一次方程的基本知识的理解和运用【题文】已知,则()A. 17B. 72C. 24D. 36【答案】B【解析】,,=× =8×9=72,故选:B.【题文】两个角的两边分别平行,其中一个角是60°,则另一个角是()A.60°B.120°C.60°或120°D.无法确定【答案】C【解析】试题分析:如图所示:如图1,则两角相等;如图2,则两角互补.考点:平行线的性质【题文】如图,BD∥GE,AQ平分∠FAC,交BD于Q,∠GFA=50°,∠Q=25°,则∠ACB的度数( )A. B. C. D.【答案】C【解析】过点A作AH∥BD,∵BD∥GE,∴BD∥GE∥AH,∵∠GFA=50°,∠Q=25°,∴∠FAH=50°,∠HAQ=∠Q=25°,∴∠FAQ=∠FAH+∠HAQ=50°+25°=75°.∵AQ平分∠FAC,∴∠FAQ=∠CAQ=75°,∵∠ACB是△ACQ的外角,∴∠ACB=∠CAQ+∠Q=75°+25°=100°.故选C.点睛:本题考查的是平行线的性质,根据题意作出平行线,利用平行线的性质求解是解答此题的关键. 【题文】将方程变形成用的代数式表示,则=______________.【答案】【解析】4x=6-3yx= ;故答案是。

朝晖实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

朝晖实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

朝晖实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)关于x、y的方程组的解x、y的和为12,则k的值为()A.14B.10C.0D.﹣14【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:解方程得:根据题意得:(2k﹣6)+(4﹣k)=12解得:k=14.故答案为:A【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。

2、(2分)下列各数中:,无理数个数为()A. 2B. 3C. 4D. 5【答案】B【考点】无理数的认识【解析】【解答】解:是无理数,故答案为:B.【分析】无理数是指无限不循环小数。

所以无理数有0.101001 … ,− π ,共3个。

3、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中,属于无理数的有:两个.故答案为:B.【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。

4、(2分)如图,在平移三角尺画平行线的过程中,理由是()A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 同位角相等,两直线平行D. 内错角相等,两直线平行【答案】C【考点】平行线的判定【解析】【解答】解:如图∵∠DPF=∠BMF∴PD∥MB(同位角相等,两直线平行).故答案为:C.【分析】画平行线的过程,是为画了两个相等的角∠DPF=∠BMF,依据平行线的判定定理可知两直线平行.5、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】A选项,错误,所以不符合题意;B选项,∠2与∠4不是同位角,错误,所以不符合题意;C选项,∠3与∠4不是同位角,错误,所以不符合题意;D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;故答案为:D。

2018-2019学年七年级(下)期中数学试卷及答案解析

2018-2019学年七年级(下)期中数学试卷及答案解析

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。

2018-2019学年第二学期期中质量检测七年级数学试题及答案

2018-2019学年第二学期期中质量检测七年级数学试题及答案

2018-2019学年第二学期期中质量检测七年级数学试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只一个选项是正确的.1.下列代数运算正确的是( )A.66x x x ⋅=B.()3322x x =C.()2224x x +=+D.()326x x =2.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A.8410⨯B.8410-⨯C.80.410⨯D.8410-⨯3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m -=;④()3236xy x y =。

他做对的个数是( )A.1B.2C.3D.44.下列各式中,计算结果正确的是( )A.()()22x y x y x y +--=-B.()()232346x y x y x y -+=-C.()()22339x y x y x y ---+=--D.()()2242222x y x y x y -+=-5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A.23bB.26bC.29bD.236b6.如图,通过计算大正方形的面积,可以验证的公式是( )A.()222a b c a b c ++=++B.()2222a b c a b c ab bc ac ++=+++++C.()2222222a b c a b c ab bc ac ++=+++++D.()2222234a b c a b c ab bc ac ++=+++++7.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形。

(a>0)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙)则长方形的面积为( )A.()2225cm a a +B.()2315cm a +C.()269cm a +D.()2615cm a +8.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=20°,么∠2的度数是( )A.15°B.20°C.25°D.30°第8题图 第9题图9.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.∠B=∠CB.AD//BCC.∠2+∠B=180°D.AB//CD10.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.411.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂重物的质量x (kg )有下面的关系,那么弹簧总长y (cm )与所挂重物x (kg )之间的关系式为( )A.y=0.5x+12B.y=x+10.5C.y=0.5x+1D.y=x+1212.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动,则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A B C D二、填空题:本题共6小题,每小题填对得4分,共24分. 只要求在答题纸上填写最后结果.13.若长方形的面积是2323a ab a ++,长为3a ,则它的宽为________.14.已知()2893n =,则n=________.15.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则 ∠1=________度.16. 三角形ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,三角形ABC 的面积从________变化到________.17.如图所示,根据平行线的性质,完成下列问题:如果AB//CD ,那么∠1=________,∠2+________=180°; 如果AD//BC ,那么∠1=________,∠2+________=180°.18.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.三、解答题:本题共7小题,满分60分.在答题纸上写出必要的文字说明或演算步骤.19.(本小题满分13分)解下列各题:(1)计算:()()2201801133π-⎛⎫---+- ⎪⎝⎭.(4分)(2)计算:()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦.(4分)(3)用乘法公式计算:2199199201-⨯.(5分)20.(本小题满分7分)先化简,再求值:()()()()()222222m n m n m n m n m n +--+--+,其中12m =-,n=2.已知()25-=,求下列式子的值:a ba b+=,()23(1)22+;(2)6ab.a b22.(本小题满分7分)小安的一张地图上有A,B,C3三个城市,地图上的C城市被墨污染了(如图),但知道∠ABC=∠α,∠ABC=∠β,你能用尺规作图帮他在下图中确定C城市的具体位置吗?(不作法,保留作图痕迹)23.(本小题满分8分)如图,直线AB//CD,BC平分∠ABD,∠1=65°,求∠2的度数.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥1AB ,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.25.(本小题满分10分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s (km )与小明离家时间t (h )的关系图,请根据图回答下列问题:(1)图中自变量是____,因变量是______;(2)小明家到滨海公园的路程为____ km ,小明在中心书城逗留的时间为____ h ;(3)小明出发______小时后爸爸驾车出发;(4)图中A 点表示___________________________________;(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.第25题图2017—2018学年度第二学期期中质量检测七年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分.二、填空题:本题共6小题,每小题填对得4分,共24分. 13. 213a b ++ 14. 14 15. 30 16. 264cm ,220cm 17. ∠1,∠,4,∠2,∠BAD 18. 5cm三、解答题:本题共7小题,满分60分.19.解:(1)()()2201801133π-⎛⎫---+- ⎪⎝⎭=1-1+9 ………………………3分=9; ………………………4分(2)原式=()32223223x y x y x y x y x y --+÷ ……………………2分 ()3222223x y x y x y =-÷ …………………………………3分2233xy =- …………………………………………4分 (3)2199198201-⨯()()()2200120012001=---⨯+ …………………………………2分2220040012001=-+-+ (4)分=-400+2=-398 ………………………………………5分20.解:()()()()()222+n 222m n m n m m n m n +----+()()()222222442224m mn n m mn mn n m n =++-+---- …………………2分222222442228m mn n m mn mn n m n =++--++-+ (4)分 239mn n =+. …………………………5分 当12m =-,n=2时, 原式213292336332⎛⎫=⨯-⨯+⨯=-+= ⎪⎝⎭. ………………………7分 21.解:(1)因为()25a b +=,()23a b -=,所以2225a ab b ++=,2223a ab b -+=, ……………………2分 所以()2228a b +=,所以224a b +=; …………………………4分(2)因为224a b +=,所以425ab +=, …………………………6分 所以12ab =,所以63ab =. …………………………7分 22.解:画对一个角得2分,标出C 点得3分.点C 为所求的点.23.解:因为AB//CD ,根据“两直线平行,同位角相等”、“两直线平行,同旁内角互补”所以∠ABC=∠1=65°,∠ABD+∠BDC=180°. ……………………4分因为BC平分∠ABD,根据“角平分线定义”,所以∠ABD=2∠ABC=130°.所以∠BDC=180°-∠ABD=50°. …………………………6分根据“对顶角相等”,所以∠2=∠BDC=50°. …………………………8分24.解:(1)CD//EF. …………………………1分理由:因为CD⊥AB,EF⊥AB,所以∠CDF=∠EFB=90°,…………………………2分根据“同位角相等,两直线平行”所以CD//EF. …………………………4分(2)DG//BC,…………………………5分理由:因为CD//EF,根据“两直线平行,同位角相等”…………………………6分所以∠2=∠BCD,因为∠1=∠2,所以∠1=∠BCD,…………………………7分根据“内错角相等,两直线平行”所以DG//BC. …………………………8分25.解:(1)t,s;(2分)(2)30,1.7;(2分)(3)2.5;(1分)(4)2.5小时后小明继续坐公交车到滨海公园;(1分)(5)小明从中心书城到滨海公园的平均速度为301212km /h 4 2.5-=-, 小明爸爸驾车的平均速度为30=30km /h 3.5 2.5-; 爸爸驾车经过12h 3012-追上小明;(2分)(6)小明从家到中心书城时,他的速度为12=15km /h 0.8,∴他离家路程s 与坐车时间t 之间的关系式为s=15t (0≤t ≤0.8)(2分)第25题图。

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。

杭州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

杭州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

杭州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)4的平方的倒数的算术平方根是()A.4B.C.-D.【答案】D【考点】算术平方根【解析】【解答】解:∵42=16,16的倒数=,。

故答案为:D.【分析】根据平方、倒数、算术平方根的意义即可解答。

2、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①∥;②;③;④;⑤平分.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定【解析】【解答】解:延长BA,在BA的延长线上取点F.①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确;故①符合题意,②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180∘=90∘,∴EB⊥DB,故②正确,故②符合题意,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=②∠BAC,∵∠BAC+2∠ACB=180∘,∴∠BAC+∠ACB=90∘,∴∠BDC+∠ACB=90∘,故③正确,故③符合题意,④∵∠BEC=180∘−(∠MBC+∠NCB)=180∘−(∠BAC+∠ACB+∠BAC+∠ABC)=180∘−(180∘+∠BAC)∴∠BEC=90∘−∠BAC,∴∠BAC+2∠BEC=180∘,故④正确,故④符合题意,⑤不妨设BD平分∠ADC,则易证四边形ABCD是菱形,推出△ABC是等边三角形,这显然不可能,故⑤错误。

2018—2019学年度第二学期期中测试卷

2018—2019学年度第二学期期中测试卷

1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年第二学期七年级4月份质量检测数学 试题卷一、选择题(共10个小题,每小题3分,共30分) 1.如图,直线b 、c 被直线a 所截,则∠1与∠2是( ▲ ) A.同位角 B. 内错角 C. 同旁内角 D. 对顶角 2.下列各式是二元一次方程的是( ▲ ) A .x y 213+B . 023=-+y yx C .12+=x y D .02=+y x3.下列计算正确的是( ▲ )A .743a a a =+ B .()437a a =C .()96332b a b a =- D .954632a a a =⋅4.方程■25x y x -=+是二元一次方程,■是被弄污的x 的系数,请你推断 ■的值属于下列情况中的( ▲ )A .不可能是-1B .不可能是-2C .不可能是1D .不可能是2 5.二元一次方程72=+y x 的正整数解有( ▲ ) A. 4组 B. 3组 C. 2组 D. 1组6.如图,将一条两边沿互相平行的纸带按图折叠,则∠α的度数等于( ▲ )A .50 oB .60 oC .75 oD .85 o7.若关于,x y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ▲ ) (第6题)A .34 B .43 C .34- D .43- 8.已知2=ax ,3=bx 则ba x23+( ▲ )(A )17 (B )72 (C )24 (D )36 9.两个角的两边分别平行,其中一个角是60°,则另一个角是( ▲ ) A. 60° B. 120° C. 60°或120° D. 无法确定 10.如图,BD ∥GE ,AQ 平分∠F AC ,交BD 于Q , ∠GF A=50°,∠Q =25°,则∠ACB 的度数( ) A.︒90 B.︒95 C.︒100 D.︒105(第10题)=++++=+++=++=+4322332221)(33)(2)()(b a b ab b a a b a b ab a b a b a b a二、填空题(本大题6个小题,每小题4分,共24分)11.将方程634=+y x 变形成用y 的代数式表示x ,则x =__ _ __. 12.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c .其中正确的是 .(填写序号)13.已知2=+n m ,2-=mn ,则=--)1)(1(n m ___ ___.14.如图,在△ABC 中,∠ABO =20°,∠ACO =25°,∠A =65°,则∠BOC 的度数_____________.15.如右图是一块长方形ABCD 的场地,长AB=a 米,宽AD=b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为 2m .16.我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载 的“杨辉三角”.此图揭示了nb a )(+(n 为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a +b )4的展开式中所缺的系数.(a +b )4=a 4+4a 3b + a 2b 2+ ab 2+b 4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过148天是星期 。

三、解答题(本大题7个小题,共66分)17.计算(每小题3分,本题6分)(1))2()3(ab a ⋅- (2)33324)2(x x x ⋅+-18.解下列方程组(每小题4分,共8分)(1)⎩⎨⎧=-=8232y x y x (2)1941175x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩19.(本题满分8分)先化简,再求值:2)())((2)2(b a b a b a b a a +--+++,其中1,12a b =-=.20.(本题满分10分)如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.(1)试说明:AB ∥CD ; (2)若∠2 =25°,求∠3的度数.21.(本题满分10分)阅读材料:若m 2-2mn +2n 2-8n +16=0,求m 、n 的值.解:∵m 2-2mn +2n 2-8n +16=0,∴(m 2-2mn +n 2)+(n 2-8n +16)=0 ∴(m -n )2+(n -4)2=0,∴(m -n )2=0,(n -4)2=0,∴n =4,m =4. 根据你的观察,探究下面的问题:(1) 已知x 2+2xy +2y 2+2y +1=0,求2x +y 的值;(2)已知a -b =4,ab +c 2-6c +13=0,求a +b +c 的值.22.(本题满分12分)为了打造区域中心城市,实现跨越式发展,我市新区建设正按投资计划有序推进.新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(单位:型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?23.(本题满分12分)如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠P AC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠P AC,∠APB,∠PBD之间的关系又是如何?学校2019学年第二学期期中考试 七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11.436y-. 12. ①②④ .(对1个给2分,对2个给3分,错选不得分) 13. -3 . 14. 110° . 15.)2)(1(--a b . 16. 6, 4,(各一分),四(2分)三、解答题(本大题7个小题,共66分) 17.计算(每小题3分,共6分)(1)(1) (2) ……3分 ……2分 ……1分18.解下列方程组(每小题4分,共8分) 答案:(1)⎩⎨⎧==64y x ; (2)⎩⎨⎧==165y x19.(本题满分8分)解:化简得2232b a -, ……5分 当1,12a b =-=时,253222-=-b a . ……3分 20.(本题满分10分)如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.(1)试说明:AB ∥CD ; (2)若∠2 =25°,求∠3的度数.()CD AB ABF ABF ABD BF EDF BDC DE DEF DEB //3,1,13,2,90,9021100∴∠=∠∴∠=∠∴∠∠=∠∴∠=∠∴∠=∠=∠∴=∠+∠平分平分证明 ······5分b a ab a 26)2()3(-=⋅-66633324484)2(xxx x x x -=+-=⋅+- C12 3AB DF E(2)∠3=65° ······5分 21.(本题满分10分)(2) (x 2+2xy +y 2 )+(y 2+2y +1)=0,( x+y )2+(y+1)2=0 ∴ x=1,y=-1 ……4分 ∴ 2x +y=2x1-1=1 ……1分;(2)已知a -b =4,ab +c 2-6c +13=0,求a +b +c 的值. ∵a-b=4 ∴a=b+4,代入ab +c 2-6c +13=0得, (b+2)2 +(c-3)2=0 ∴b+2=0 c-3=0∴b=-2 c=3 ∴a=b+4=2 …………4分 ∴a+b+c=2+(-2)+3=3 …………1分22.(本题满分12分)解:(1)设甲、乙两种型号的挖掘机各需x 台、y 台.依题意得:,…………3分解得.答:甲、乙两种型号的挖掘机各需5台、3台;………………3分(2)设租用m 台甲型挖掘机,n 台乙型挖掘机.依题意得:5408060=+n m (m ,n 均为自然数),∴n m 349-= ………………2分 ∴方程的解为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==61,35,09n m n m n m . 当m=9,n=0时,支付租金:100×9+120×0=900元>850元,超出限额;当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额; 当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求. …………3分 答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.…………1分23.(本题满分12分)解:(1)若P 点在C 、D 之间运动时,则有∠APB =∠P AC +∠PBD . 理由是:过点P 作PE ∥l 1,则∠APE =∠P AC , 又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD ,l 1l C BDPl 2A所以∠APE +∠BPE =∠P AC +∠PBD ,即∠APB =∠P AC +∠PBD . …… ……4分(2)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),则有两种情形: ①如图1,有结论:∠APB =∠PBD -∠P AC . 理由是:过点P 作PE ∥l 1,则∠APE =∠P AC , 又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD ,所以∠APB =∠BAE +∠APE ,即∠APB =∠PBD -∠P AC . …………4分 ②如图2,有结论:∠APB =∠P AC -∠PBD . 理由是:过点P 作PE ∥l 2,则∠BPE =∠PBD , 又因为l 1∥l 2,所以PE ∥l 1,所以∠APE =∠P AC ,所以∠APB =∠APE +∠BPE ,即∠APB =∠P AC +∠PBD . …………4分E 图1C D l 2 Pl 3l 1 AB E图2CD l 2 P l 3l 1 AB。

相关文档
最新文档