2017届高考数学理-必做36道压轴题
2017高考数学压轴题+黄冈压轴100题
2017高考压轴题精选黄冈中学高考数学压轴100题目录1.二次函数 ................................................................................................................................................................................ 2 2 复合函数 ............................................................................................................................................................................... 4 3.创新型函数............................................................................................................................................................................. 6 4.抽象函数 .............................................................................................................................................................................. 12 5.导函数——不等式 ............................................................................................................................................................... 13 6.函数在实际中的应用 ........................................................................................................................................................... 20 7. 函数与数列综合 ................................................................................................................................................................. 22 8.数列的概念与性质 ............................................................................................................................................................... 33 9. Sn 与an 的关系 ................................................................................................................................................................... 38 10.创新型数列......................................................................................................................................................................... 41 11.数列—不等式 ..................................................................................................................................................................... 43 12.数列与解析几何 .............................................................................................................................................................. 47 13.椭圆 ................................................................................................................................................................................. 49 14.双曲线 ................................................................................................................................................................................ 52 15.抛物线 ................................................................................................................................................................................ 56 16 解析几何中的参数范围问题 .......................................................................................................................................... 58 17 解析几何中的最值问题 .................................................................................................................................................. 64 18 解析几何中的定值问题 .................................................................................................................................................... 67 19 解析几何与向量 .......................................................................................................................................................... 70 20 探索问题............................................................................................................................................................................ 77 (1)2a b c π++..., ....................................................................................................................................................... 110 (2)2a b c π++< (110)1.二次函数1. 对于函数2()(1)2(0)f x ax b x b a =+++-≠,若存在实数0x ,使00()f x x =成立,则称0x 为()f x 的不动点.(1)当2,2a b ==-时,求()f x 的不动点;(2)若对于任何实数b ,函数()f x 恒有两 个相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是函数()f x 的不动点,且直线2121y kx a =++是线段AB 的垂直平分线,求实数b 的取值范围.分析 本题考查二次函数的性质、直线等 基础知识,及综合分析问题的能力函数与方程思想解:2()(1)2(0)f x ax b x b a =+++-≠, (1)当2,2a b ==-时,2()24f x x x =--.设x 为其不动点,即224x x x --=,则22240x x --=.所以121,2x x =-=,即()f x 的不动点是1,2-. (2)由()f x x =得220ax bx b ++-=.由已知,此方程有相异二实根,所以24(2)0a b a b ∆=-->,即2480b ab a -+>对任意b R ∈恒成立.20,16320b a a ∴∆<∴-<,02a ∴<<.(3)设1122(,),(,)A x yB x y ,直线2121y kx a =++是线段 AB 的垂直平分线,1k ∴=-.记AB 的中点00(,)M x x ,由(2)知02b x a =-.212()20,bf x x ax bx b x x a =⇔++-=∴+=-QM Q 在2121y kx a =++上,212221b b a a a ∴-=++化简得:211212=-=-≥=++a b a a a,当2a =时,等号成立.即44b b ⎡⎫≥-∴∈-+∞⎪⎢⎪⎣⎭例2 已知函数()242f x ax x =+-,若对任 意1x ,2x ∈R 且12x x ≠,都有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭.(Ⅰ)求实数a 的取值范围;(Ⅱ)对于给定的实数a ,有一个最小的负数()M a ,使得(),0x M a ∈⎡⎤⎣⎦时,()44f x -≤≤都成立,则当a 为何值时,()M a 最小,并求出()M a 的最小值.解:(Ⅰ)∵()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭22212121122222x x x x ax bx c ax bx c a b c +++++++⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭()21204a x x =--<,∵12x x ≠,∴0a >.∴实数a 的取值范围为()0,+∞.(Ⅱ)∵()2224422f x ax x a x a a ⎛⎫=+-=+-- ⎪⎝⎭,显然()02f =-,对称轴20x a =-<。
(完整word版)2017年高考数学真题压轴题汇总,推荐文档
2017北京(19)(本小题13分)已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程;(Ⅱ)求函数f (x )在区间[0,2π]上的最大值和最小值.2017江苏20.(本小题满分16分)已知函数()321(0,)fx =x ax bx a b +++>∈R 有极值,且导函数()f x ,的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1) 求b 关于a 的函数关系式,并写出定义域;(2) 证明:b ²>3a ;(3) 若()f x ,()fx , 这两个函数的所有极值之和不小于7-2,求a 的取值范围.2017全国Ⅰ卷(理)21.(12分)已知函数()f x =a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2017全国Ⅱ卷(理)21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230e()2f x --<<.2017全国Ⅲ卷(理)21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值.2017山东理科(20)(本小题满分13分) 已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =L 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.2017天津(20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],p x x q∈U 满足041||p x q Aq -≥.2017浙江理科20.(本题满分15分)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f(x)在区间1[+)2,上的取值范围.。
2017年高考数学全国乙卷理科考前抢分必做:压轴大题突
压轴大题突破练(三) 函数与导数(1)1.已知函数f (x )=(x 2-2ax +2)e x .(1)函数f (x )在x =0处的切线方程为2x +y +b =0,求a ,b 的值;(2)当a >0时,若曲线y =f (x )上存在三条斜率为k 的切线,求实数k 的取值范围. 解 (1)f (x )=(x 2-2ax +2)e x , f (0)=2e 0=2,2+b =0,得b =-2. f ′(x )=(x 2-2ax +2+2x -2a )e x =[x 2+(2-2a )x +2-2a ]e x , f ′(0)=2-2a =-2,得a =2, ∴a =2,b =-2.(2)f ′(x )=[x 2+(2-2a )x +2-2a ]e x ,令h (x )=f ′(x ),依题意知存在k 使h (x )=k 有三个不同的实数根, h ′(x )=(x 2-2ax +2+2x -2a +2x -2a +2)e x =[x 2+(4-2a )x +4-4a ]e x ,令h ′(x )=[x 2+(4-2a )x +4-4a ]e x =0, 得x 1=-2,x 2=2a -2.由a >0知x 1<x 2,则f ′(x )在(-∞,-2),(2a -2,+∞)上单调递增,在(-2,2a -2)上单调递减.当x →-∞时,f ′(x )→0,当x →+∞时,f ′(x )→+∞, ∴f ′(x )的极大值为f ′(-2)=e -2(2a +2),f ′(x )的极小值为f ′(2a -2)=e 2a -2(2-2a ),∴此时e 2a -2(2-2a )<k <e -2(2a +2).2.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎡⎭⎫12,+∞. 3.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调递减区间;(3)设函数g (x )=f (x )-x 2+ax ,a >0,若x ∈(0,e]时,g (x )的最小值是3,求实数a 的值(e 为自然对数的底数). 解 (1)∵f (x )=x 2-ln x , ∴f ′(x )=2x -1x .∴f ′(1)=1.又∵f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y -1=x -1,即x -y =0. (2)∵函数f (x )=x 2-ln x 的定义域为(0,+∞), 由f ′(x )=2x -1x <0,得0<x <22.∴函数f (x )=x 2-ln x 的单调递减区间是(0,22). (3)∵g (x )=ax -ln x ,∴g ′(x )=ax -1x ,令g ′(x )=0,得x =1a .①当1a ≥e ,即0<a ≤1e时,g ′(x )=ax -1x ≤0在(0,e]上恒成立,则g (x )在(0,e]上单调递减,g (x )min =g (e)=a e -1=3,a =4e (舍去);②当0<1a <e ,即a >1e时,列表如下:由表知,g (x )min =g (1a )=1+ln a =3,a =e 2,满足条件.综上,所求实数a =e 2,使得当x ∈(0,e]时g (x )有最小值3. 4.已知函数f (x )=2x+a ln x -2(a >0).(1)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间; (2)若对∀x ∈(0,+∞)都有f (x )>2(a -1)成立,试求实数a 的取值范围;(3)记g (x )=f (x )+x -b (b ∈R ),当a =1时,函数g (x )在区间[e -1,e]上有两个零点,求实数b 的取值范围.解 (1)直线y =x +2的斜率为1,函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+ax ,∴f ′(1)=-212+a1=-1,解得a =1,∴f (x )=2x +ln x -2,f ′(x )=x -2x 2,由f ′(x )>0得x >2,由f ′(x )<0得0<x <2, ∴f (x )的单调递增区间为(2,+∞), 单调递减区间为(0,2).(2)f ′(x )=-2x 2+a x =ax -2x 2(a >0),由f ′(x )>0得x >2a ,由f ′(x )<0得0<x <2a ,∴f (x )的单调递增区间为(2a,+∞),单调递减区间为(0,2a ),当x =2a 时,f (x )取极小值,也就是最小值f (x )min =f (2a).∵对∀x ∈(0,+∞)都有f (x )>2(a -1)成立, ∴f (2a )>2(a -1),即22a +a ln 2a-2>2(a -1),∴a ln 2a >a ,ln 2a >1,0<a <2e ,∴实数a 的取值范围为(0,2e).(3)当a =1时,g (x )=2x +ln x +x -2-b (x >0),g ′(x )=x 2+x -2x 2,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1.∴g (x )的单调递增区间是(1,+∞), 单调递减区间为(0,1), 当x =1时,g (x )取得极小值g (1). ∵函数g (x )在区间[e -1,e]上有两个零点, ∴⎩⎪⎨⎪⎧g (e -1)≥0,g (e )≥0,g (1)<0,解得1<b ≤2e+e -1.∴b 的取值范围是(1,2e+e -1].2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x },若M ∪N={0,1,2,3},则x 的值为( )A .3B .2C .1D .02.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。
2017山东省高考压轴卷数学(理)附答案解析
2017山东省高考压轴卷理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知全集U=R,A={x|x2﹣4x+3≤0},B={x|log3x≥1},则A∩B=()A.{3} B.{x|<x≤1} C.{x|x<1} D.{x|0<x<1}2. 已知函数,若存在k使得函数f(x)的值域为[0,2],则实数a 的取值范围是()A.B.(0,1] C.[0,1] D.3. 若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C. D.4. 如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.5. 二项式(x﹣a)7的展开式中,含x4项的系数为﹣280,则dx=()A.ln2 B.ln2+1 C.1 D.6. 如图,F1、F2是双曲线=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A .4B .C .D .7设△A n B n C n 的三边长分别是a n ,b n ,c n ,△A n B n C n 的面积为S n ,n ∈N *,若b 1>c 1,b 1+c 1=2a 1,b n+1=,则( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n ﹣1}为递增数列,{S 2n }为递减数列D .{S 2n ﹣1}为递减数列,{S 2n }为递增数列8. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道 3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .109359. 已知偶函数f (x )的定义域为(﹣1,0)∪(0,1),且.当0<x <1时,(1﹣x 2)ln (1﹣x 2)f'(x )>2xf (x ),则满足f (x )<0的x 的取值范围是( )A .B .C .D .10. 如图1,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A.37B.47C.114D.1314二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11. 已知i为虚数单位,复数z满足=i,则|z|= .12. 执行如图所示的程序框图,则输出的结果是.13. 给定区域D:.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.14. 已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线﹣y2=1的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.15. 直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0),与f(x)图象的对称轴x=相邻的f(x)的零点为x=.(Ⅰ)讨论函数f(x)在区间上的单调性;(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.17. (本小题满分12分)一个多面体的直观图及三视图如图所示,M 、N 分别是AB 1、A 1C 1的中点. (1)求证:MN ⊥AB 1,MN ∥平面BCC 1B 1; (2)求二面角A ﹣BC 1﹣C 的余弦值.18.(本小题满分12分)为了研究学生的数学核素养与抽象(能力指标x )、推理(能力指标y )、建模(能力指标z )的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+z 的值评定学生的数学核心素养;若w ≥7,则数学核心素养为一级;若5≤w ≤6,则数学核心素养为二级;若3≤w ≤4,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a ,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b ,记随机变量X=a ﹣b ,求随机变量X 的分布列及其数学期望.19. (本小题满分12分)已知函数f (x )=ln (2ax+1)+3x 3﹣x 2﹣2ax (a ∈R ).(1)若x=2为f (x )的极值点,求实数a 的值;(2)若y=f (x )在[3,+∞)上为增函数,求实数a 的取值范围;(3)当a=﹣21时,方程f (1﹣x )=x b 3)x 1(3+-有实根,求实数b 的最大值.20. (本小题满分13分)已知12F F ,是椭圆22221x y a b +=的左、右焦点,O 为坐标原点,点1P ⎛- ⎝⎭在椭圆上,线段2PF 与y 轴的交点M 满足20PM F M +=. (Ⅰ)求椭圆的标准方程;(Ⅱ)圆O 是以12F F 为直径的圆,一直线:l y kx m =+与圆O 相切,并与椭圆交于不同的两点A 、B ,当OA OB λ⋅=,且满足2334λ≤≤时,求OAB 的面积S 的取值范围. 21. (本小题满分14分) 已知n 为正整数,在数列}{n a 中,,12,111+==+n n a a a 在数列}{n b 中,,11a b =当2≥n 时,.111121-+∙∙∙++=n n n a a a a b (1)求数列}{n a 的通项公式; (2)求nn n n a b a b 111+-++ 的值; (3)当2≥n 时,证明:.223)1()1)(1(2121n n n b b b b b b ->⋅⋅⋅+⋅⋅⋅++2017山东高考压轴卷数学理word 版参考答案1【答案】A【解析】A={x|x 2﹣4x+3≤0}={x|1≤x ≤3},B={x|log 3x ≥1}={x|x ≥3}, 则A ∩B={3}, 故选:A 2【答案】D【解析】∵函数,∴函数f (x )的图象如下图所示:∴函数f(x)在[﹣1,k)上为减函数,在[k,a]先减后增函数,当﹣1<k≤,x=时,,由于当x=1时,﹣x3﹣3x+2=0,当x=a(a≥1)时,﹣a3﹣3a+2≤2,可得1≤a故若存在k使得函数f(x)的值域为[0,2],则a∈[1,],故选:D.3【答案】C【解析】依题意,∵|+|=|﹣|=2||∴=∴⊥, =3,∴cos<,>==﹣,所以向量与的夹角是,故选C4【答案】B【解析】如图所示,由已知三视图可知:该几何体为正方体去掉两个倒立的三棱锥.∴该多面体的体积V=23﹣﹣=7.故选:B.5【答案】C【解析】(x﹣a)7的展开式的通项为(﹣1)r a r C7r x7﹣r,令7﹣r=4得r=3,∴展开式中x4项的系数(﹣1)3 a3C73=﹣35a3=﹣280,∴a=2,∴dx=lnx=1.故选:C.6【答案】B【解析】∵△ABF2为等边三角形,∴|AB|=|AF2|=|BF2|,.由双曲线的定义可得|AF1|﹣|AF2|=2a,∴|BF1|=2a.又|BF2|﹣|BF1|=2a,∴|BF2|=4a.∴|AF2|=4a,|AF1|=6a.在△AF1F2中,由余弦定理可得: =﹣,∴,化为c2=7a2,∴=.故选B.7【答案】B【解析】b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,由题意,b n+1+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,又由题意,b n+1﹣c n+1=,∴b n+1﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.8【答案】A【解析】由题意:第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,第二次用“调日法”后得4715是π的更为精确的过剩近似值,即4716155π<<,第三次用“调日法”后得6320是π的更为精确的过剩近似值,即47631520π<<,第四次用“调日法”后得11022=357是π的更为精确的过剩近似值,即3122107π<<,故选A.9【答案】C【解析】令g(x)=,则g′(x)=,∵当0<x<1时,(1﹣x2)ln(1﹣x2)f'(x)>2xf(x),∴>0,即g(x)=在(0,1)上为增函数,则f(x)在(0,1)上为减函数,又由函数f(x)为偶函数,且.故当x∈时,f(x)<0,故选:C10【答案】D11【答案】1【解析】设z=a+bi,则==i,∴1﹣a﹣bi=﹣b+(a+1)i,∴,解得,故z=﹣i,|z|=1,故答案为:1.12【答案】20【解析】执行程序框图,有a=1,b=1,s=2c=2,s=4不满足条件c>5,a=1,b=2,c=3,s=7不满足条件c>5,a=2,b=3,c=5,s=12不满足条件c>5,a=3,b=5,c=8,s=20满足条件c>5,退出循环,输出s的值为20.故答案为:20.13【答案】6【解析】画出不等式表示的平面区域,如图.作出目标函数对应的直线,因为直线z=x+y与直线x+y=4平行,故直线z=x+y过直线x+y=4上的整数点:(4,0),(3,1),(2,2),(1,3)或(0,4)时,直线的纵截距最大,z最大;当直线过(0,1)时,直线的纵截距最小,z最小,从而点集T={(4,0),(3,1),(2,2),(1,3),(0,4),(0,1)},经过这六个点的直线一共有6条.即T中的点共确定6条不同的直线.故答案为:6.14【答案】【解析】设M点到抛物线准线的距离为d,则⇒p=8,所以抛物线方程为y2=16x,M的坐标为(1,4);又双曲线的左顶点为,渐近线为,所以,由题设可得,解得.故答案为:15【答案】[4,16]【解析】直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].16【解答】解:(Ⅰ) ==由与f(x)图象的对称轴相邻的零点为,得,所以ω=1,即令,函数y=sinz单调增区间是,k∈Z,由,得,k∈Z,设,,易知,所以当时,f(x)在区间上单调递增,在区间上单调递减.(Ⅱ),则,因为0<C<π,所以,从而,解得.因为与向量共线,所以sinB=2sinA,由正弦定理得,b=2a①由余弦定理得,c2=a2+b2,即a2+b2﹣ab②由①②解得a=1,b=217【解答】(1)证明:由三视图可知,在这个多面体的直观图中,AA1⊥平面ABC,且AC⊥BC,AC=3,BC=BB1=4 ∴CA,CB,CC1两两垂直以C为原点,CA,CB.CC1所在直线分别为x,y,z轴,建立空间直角坐标系,则由已知可得:C(0,0,0),A(3,0,0),B(0,4,0),C1(0,0,4),A1(3,0,4),B1(0,4,4),故M,2,2),N,0,4)∴,∴∴MN⊥AB1,∵,∴∴MN∥BC1,∵MN⊄平面BCC1B1,BC1⊂平面BCC1B1;∴MN∥平面BCC1B1;(2)解:过A作AH⊥BC1于H,连接CH,则CH⊥BC1,∴∠AHC是二面角A﹣BC1﹣C的平面角在直角△BC1C中,CH=BCsin∠CBC1=4sin45°=2在直角△ACH中,AC=3,CH=2,∴AH=,∴cos∠AHC==∴二面角A﹣BC1﹣C的余弦值为18【解答】解:(1)由题可知:建模能力一级的学生是A9;建模能力二级的学生是A2,A4,A5,A7,A10;建模能力三级的学生是A1,A3,A6,A8.记“所取的两人的建模能力指标相同”为事件A,则.(2)由题可知,数学核心素养一级:A1,A2,A3,A5,A6,A8,数学核心素养不是一级的:A4,A7,A9,A10;X的可能取值为1,2,3,4,5.;;;;.∴随机变量X的分布列为:∴=.19【解答】解:(1)=.…因为x=2为f(x)的极值点,所以f'(2)=0.…即,解得a=0.…又当a=0时,f'(x)=x(x﹣2),从而x=2为f(x)的极值点成立.…(2)因为f(x)在区间[3,+∞)上为增函数,所以在区间[3,+∞)上恒成立.…①当a=0时,f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上为增函数,故a=0符合题意.…②当a≠0时,由函数f(x)的定义域可知,必须有2ax+1>0对x≥3恒成立,故只能a>0,所以2ax2+(1﹣4a)x﹣(4a2+2)≥0对x∈[3,+∞)上恒成立.…令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其对称轴为,…因为a>0所以,从而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,因为g(3)=﹣4a2+6a+1≥0,解得.…因为a>0,所以.由①可得,a=0时,符合题意;综上所述,a的取值范围为[0,].…(3)若时,方程x>0可化为,.问题转化为b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函数g(x)=xlnx+x2﹣x3的值域.…以下给出两种求函数g(x)值域的方法:方法1:因为g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),则,…所以当0<x<1,h′(x)>0,从而h(x)在(0,1)上为增函数,当x>1,h′(x)<0,从而h(x')在(1,+∞上为减函数,…因此h(x)≤h(1)=0.而x>1,故b=x•h(x)≤0,因此当x=1时,b取得最大值0.…方法2:因为g(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.设p(x)=lnx+1+2x﹣3x2,则.当时,p'(x)>0,所以p(x)在上单调递增;当时,p'(x)<0,所以p(x)在上单调递减;因为p(1)=0,故必有,又,因此必存在实数使得g'(x 0)=0,∴当0<x <x 0时,g′(x )<0,所以g (x )在(0,x 0)上单调递减; 当x 0<x <1,g′(x )>0,所以,g (x )在(x 0,1)上单调递增;又因为,当x→0时,lnx+<0,则g (x )<0,又g (1)=0. 因此当x=1时,b 取得最大值0.… 20【答案】(Ⅰ)因为20PM F M +=,所以 M 是线段2PF 的中点,所以OM 是12PF F 的中位线,又12OM F F ⊥,所以112PF F F ⊥,所以1c =,又因为22222111{2a b a b c +==+121222222111,.{12c OM F F PF PF a ba b c =⊥∴⊥∴+==+,解得2222,1,1a b c ===,所以椭圆的标准方程为2212x y +=. (Ⅱ)因为直线:l y kx m =+与O 211m k =+,即221m k =+联立221{2x y y kx m+==+得()222124220k x kmx m +++-=.设()()1122A x y B x y ,,,因为直线l 与椭圆交于不同的两点A 、B ,所以212122242201212km m x x x x k k -∆>+=-⋅=++,,,()()2212122212m k y y kx m kx m k-⋅=+⋅+=+, 212122112k OA OB x x y y k λ+⋅=⋅+⋅==+,又因为2334λ≤≤,所以222133124k k +≤≤+解得2112k ≤≤.1211122S AB x=⋅⋅=-=,设42u kk=+,则324u S≤≤=,单调递增,所以()324S S S⎛⎫≤≤⎪⎝⎭,即243S≤≤21.【答案】21【答案】解:(1∵1121,1n na a a+=+=∴()21213,12,14,121n na a a a a+=+=+=+=+∴{}1na+是以2为首项,2为公比的等比数列。
2017年高考数学30道压轴题分类训练(含详解)
公式及前 n 项和.
9. 已知函数 f(x)=
bx+c 的图象过原点,且关于点(-1,1)成中心对称. x+1
(1)求函数 f(x)的解析式; (2)若数列{an}(n∈N*)满足:an>0,a1=1,an+1= [f( an)] ,求数列{an}的通项公式 an,并证明你的结 论.
2
10. 已知点集 L
(1)求数列 {a n } 的通项 a n ; (2)若 0 (3)若 a
a 1, 数列{an } 的前 n 项和为 Sn,求 lim S n ;
n
2, 令bn an f (an ) ,对任意 n N , 都有bn f 1 (t ) ,求实数 t 的取值范围.
5. 已知函数
1 f ( x) 对任意实数 p、q 都满足 f ( p q) f ( p) f (q), 且f (1) . 3
f (n) 的表达式;
n 3 (n N ), 求证: ak ; 4 k 1
n
(1)当 n N 时,求
(2)设 an
nf (n)
(3)设 bn
2
( y 3) 2 1 。
若动点 M 到点 F 的距离比它到直线 L 的距离小 1,求动点 M 的轨迹 E 的方程; 过点 F 的直线 g 交轨迹 E 于 G(x1,y1) 、H(x2,y2)两点,求证:x1x2 10 为定值; 过轨迹 E 上一点 P 作圆 C 的切线,切点为 A、B,要使四边形 PACB 的面积 S 最小,求点 P 的坐 标及 S 的最小值。
2017 年高考数学 30 道压轴题分类训练
一、 数列
1. 已知数列{an}满足 a1
2 an a2 a a , 设bn n 2a n an a
2017年高考数学全国乙卷理科考前抢分必做:压轴大题突
压轴大题突破练压轴大题突破练(一) 直线与圆锥曲线(1)1.在平面直角坐标系中,已知点A (1,0),点B 在直线l :x =-1上运动,过点B 与l 垂直的直线和线段AB 的垂直平分线相交于点M . (1)求动点M 的轨迹E 的方程;(2)过(1)中轨迹E 上的点P (1,2)作两条直线分别与轨迹E 相交于C (x 1,y 1),D (x 2,y 2)两点.试探究:当直线PC ,PD 的斜率存在且倾斜角互补时,直线CD 的斜率是否为定值?若是,求出这个定值;若不是,请说明理由. 解 (1)依题意,得|MA |=|MB |.∴动点M 的轨迹E 是以A (1,0)为焦点,直线l :x =-1为准线的抛物线, ∴动点M 的轨迹E 的方程为y 2=4x .(2)∵P (1,2),C (x 1,y 1),D (x 2,y 2)在抛物线y 2=4x 上,∴⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2,② 由①-②得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2), ∴直线CD 的斜率为k CD =y 1-y 2x 1-x 2=4y 1+y 2.③设直线PC 的斜率为k ,则PD 的斜率为-k , 则直线PC 方程为y -2=k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =kx -k +2,得ky 2-4y -4k +8=0. 由2+y 1=4k ,求得y 1=4k -2,同理可求得y 2=-4k-2.∴k CD =4y 1+y 2=4(4k -2)+(-4k -2)=-1,∴直线CD 的斜率为定值-1.2.如图所示,椭圆x 2a 2+y 2b 2=1(a >b >0)的上、下顶点分别为A ,B ,已知点B 在直线l :y =-1上,且椭圆的离心率e =32.(1)求椭圆的标准方程;(2)设P 是椭圆上异于A ,B 的任意一点,PQ ⊥y 轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l 于点C ,N 为线段BC 的中点,求证:OM ⊥MN . (1)解 依题意,得b =1.因为e =c a =32,又a 2-c 2=b 2,所以a 2=4.所以椭圆的标准方程为x 24+y 2=1.(2)证明 设点P 的坐标为(x 0,y 0),x 0≠0,因为P 是椭圆上异于A ,B 的任意一点,所以x 204+y 20=1. 因为PQ ⊥y 轴,Q 为垂足,所以点Q 坐标为(0,y 0). 因为M 为线段PQ 的中点,所以M ⎝⎛⎭⎫x 02,y 0. 又点A 的坐标为(0,1),可得直线AM 的方程为y =2(y 0-1)x 0x +1.因为x 0≠0,所以y 0≠1,令y =-1,得C ⎝⎛⎭⎫x 01-y 0,-1.因为点B 的坐标为(0,-1),点N 为线段BC 的中点, 所以N ⎝⎛⎭⎫x 02(1-y 0),-1.所以向量NM →=⎝⎛⎭⎫x 02-x 02(1-y 0),y 0+1.又OM →=⎝⎛⎭⎫x 02,y 0, 所以OM →·NM →=x 02⎣⎡⎦⎤x 02-x 02(1-y 0)+y 0(y 0+1)=x 204-x 204(1-y 0)+y 20+y 0=⎝⎛⎭⎫x 204+y 20-x 204(1-y 0)+y 0 =1-(1+y 0)+y 0=0. 所以OM ⊥MN .3.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =22.设动直线l :y =kx+m 与椭圆E 相切于点P 且交直线x =2于点N ,△PF 1F 2的周长为2(2+1). (1)求椭圆E 的方程;(2)求两焦点F 1、F 2到切线l 的距离之积; (3)求证:以PN 为直径的圆恒过点F 2. (1)解 设F 1(-c ,0),F 2(c ,0),则⎩⎪⎨⎪⎧c a =22,2a +2c =2(2+1),解得a =2,c =1. ∴b 2=a 2-c 2=1,∴椭圆E 的方程为x 22+y 2=1.(2)解 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m⇒(1+2k 2)x 2+4kmx +2(m 2-1)=0.设直线l 与椭圆E 相切于点P (x 0,y 0), 则Δ=0,化简2k 2+1=m 2,焦点F 1,F 2到直线l 的距离d 1,d 2分别为d 1=|-k +m |k 2+1,d 2=|k +m |k 2+1,则d 1·d 2=m 2-k 2k 2+1=k 2+1k 2+1=1.(3)证明 ∵x 0=-2km 1+2k 2=-2km , ∴y 0=kx 0+m =-2k 2m +m =m 2-2k 2m =1m ,∴P (-2k m ,1m).又联立y =kx +m 与x =2,得到N (2,2k +m ), PF 2→=(1+2k m ,-1m ),F 2N →=(1,2k +m ).∴PF 2→·F 2N →=(1+2k m ,-1m )·(1,2k +m )=1+2k m -1m (2k +m )=1+2k m -2km -1=0.∴PF 2→⊥F 2N →,∴以PN 为直径的圆恒过点F 2.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C 相交于A ,B 两点,O 为坐标原点. (1)求椭圆C 的方程; (2)求OA →·OB →的取值范围;(3)若B 点关于x 轴的对称点是N ,证明:直线AN 恒过一定点. (1)解 由题意知b =1,e =c a =22,得a 2=2c 2=2a 2-2b 2,故a 2=2. 故所求椭圆C 的方程为x 22+y 2=1.(2)解 设l :y =k (x -2),与椭圆C 的方程联立,消去y 得(1+2k 2)x 2-8k 2x +8k 2-2=0. 由Δ>0得0≤k 2<12.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,∴OA →·OB →=x 1x 2+y 1y 2=x 1x 2+k 2(x 1-2)(x 2-2) =(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=10k 2-21+2k 2=5-71+2k 2. ∵0≤k 2<12,∴72<71+2k 2≤7,故所求范围是[-2,32).(3)证明 由对称性可知N (x 2,-y 2),定点在x 轴上, 直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1).令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1,故直线AN 恒过定点(1,0).2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.02.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。
2017天津市高考压轴卷数学(理)附答案解析
2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1. 已知集合2{|1}M x x=<,{|1}N y y x ==-,则()R C M N =( )A.(0,2]B.[0,2]C.∅D.[1,2]2. 函数错误!未找到引用源。
()()1ln 52x f x e x =+-- )A .错误!未找到引用源。
[0,+∞)B .错误!未找到引用源。
(-∞,2] C.错误!未找到引用源。
[0,2] D .错误!未找到引用源。
[0,2)3. 平行四边形中,,点在边上,则的最大值为A. B. C. D.4. 某几何体的三视图如图所示,在该几何体的体积是( )A .B .C .D .5. (x 3+x )3(﹣7+)的展开式x 3中的系数为( )A .3B .﹣4C .4D .﹣76. 已知椭圆+=1(m >0)与双曲线=1(n >0)有相同的焦点,则m+n 的最大值是( )A .3B .6C .18D .367. 已知数列{a n }中,前n 项和为S n ,且n n a 32n S +=,则1n n a a -的最大值为( )A .﹣3B .﹣1C .3D .18. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为b a 和dc (a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道 3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( )A .227B .6320C .7825D .10935二、填空题:本大题共6小题,每小题5分,共30分.9.若复数z 满足(1﹣i )z=1﹣5i ,则复数z 的虚部为 .10. 阅读程序框图,如果输出的函数值y 在区间内,则输入的实数x 的取值范围是 .11设变量x 、y 满足约束条件:则z =x 2+y 2的最大值是__ __.12在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .13. 在平面直角坐标系中,已知直线l 的参数方程为11x s y s =+⎧⎨=-⎩,(s 为参数),曲线C 的参数方程为22x t y t =+⎧⎨=⎩,(t 为参数),若直线l 与曲线C 相交于A B ,两点,则AB =____.14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。
2017高考数学压轴题大集合
2017备战 高考数 学压轴题 集合1.(本小题满分14分)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛 物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨 迹方程. (2)证明∠PFA=∠PFB.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和, ∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方 法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在 抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠ 同理有41)1)(1(cos 102110110x x x x x x x x BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x 所以P 点到 直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线 AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图) 本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根,∴,0])3(3)3([422>--+=∆k k λ ② 且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而 又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞). 直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0, 代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根, ∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且 于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD ) 3.(本小题满分14分)已知不等式n n n 其中],[log 21131212>+++Λ为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足Λ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明Λ,5,4,3,][log 222=+<n n b ba n(Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明); (Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b>0,都有.51<n a 本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a n n n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥--Λ 所有不等式两边相加可得.13121111na a n +++≥-Λ 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba bn b n b a b a n n +<+=+>∴=证法2:设nn f 13121)(+++=Λ,首先利用数学归纳法证不等式 .,5,4,3,)(1Λ=+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k +≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bb k k f bbb k f k k bk ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1Λ=+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122Λ=+=+<n n b bb n b a n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a 4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y yPF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠Q 设直线的斜率,直线的斜率 为锐角。
2017北京市高考压轴卷 数学(理)Word版含解析新
2017北京市高考压轴卷理科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集U=R ,A={x|x 2﹣4x+3≤0},B={x|log 3x ≥1},则A ∩B=( )A .{3}B .{x|<x ≤1}C .{x|x <1}D .{x|0<x <1}2. 已知数列{a n }为等差数列,且满足a 1+a 5=90.若(1﹣x )m 展开式中x 2项的系数等于数列{a n }的第三项,则m 的值为( )A .6B .8C .9D .103已知单位向量,,满足,则与夹角的余弦值为( )A .B .C .D .4.设x R ∈,则“x>21”是“0122>-+x x ”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .B .C .D .46.已知函数,曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,则实数的取值范围是A. B. C. D.7.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.8.已知函数,若m<n,且f(m)=f(n),则n﹣m的取值范围是()A.[3﹣2ln2,2)B.[3﹣2ln2,2] C.[e﹣1,2] D.[e﹣1,2)第Ⅱ卷(非选择题共110分)二、填空题(共6个小题,每题5分,共30分)9.若目标函数z=kx+2y在约束条件下仅在点(1,1)处取得最小值,则实数k的取值范围是.10若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是.11采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为.12.直线(t为参数)与圆C:(x+6)2+y2=25交于A,B两点,且,则直线l的斜率为.13.已知直线l:y=k(x﹣2)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=3|BF|,则直线l的倾斜角为.14.若函数,,则不等式的解集是______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题满分13分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.16. (本小题满分13分)某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.(Ⅰ)求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;(Ⅱ)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.17.(本小题满分13分)如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,AB//CD ,60,2,DAB AB AD CD ∠===侧面PAD ⊥ABCD 底面,且PAD 为等腰直角三角形,90APD ∠=.(Ⅰ)求证:;AD PB ⊥(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.18.(本小题满分13分)已知函数()()2=-33x f x x x e +的定义域为[]-2t ,,设()-2=f m ,()f t n =. (Ⅰ)试确定t 的取值范围,使得函数()f x 在[]-2t ,上为单调函数;(Ⅱ)求证:m n <;(Ⅲ)若不等式()()()72ln 1xf x x k x x k e +->-为正整数对任意正实数恒成立,求的最大值,并证明14ln.9x<(解答过程可参考使用以下数据ln7 1.95ln8 2.08≈≈,)19.(本题满分14分)已知椭圆E:的离心率为,其右焦点为F(1,0).(1)求椭圆E的方程;(2)若P、Q、M、N四点都在椭圆E上,已知与共线,与共线,且=0,求四边形PMQN的面积的最小值和最大值.20.(本小题满分 14 分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(1)求{a n}的通项公式;(2)设,b1=8,T n是数列{b n}的前n项和,求正整数k,使得对任意n∈N*均有T k≥T n恒成立;(3)设,R n是数列{c n}的前n项和,若对任意n∈N*均有R n<λ恒成立,求λ的最小值.试卷答案1A【分析】求出A,B中不等式的解集,找出A与B的交集即可.【解答】解:A={x|x2﹣4x+3≤0}={x|1≤x≤3},B={x|log3x≥1}={x|x≥3},则A∩B={3},故选:A2D【分析】利用等差数列的性质,求出a3=45,利用(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,可得=45,即可求出m.【解答】解:数列{a n}为等差数列,且满足a1+a5=2a3=90,∴a3=45,∵(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,∴=45,∴m=10,故选D.3D【分析】设单位向量,的夹角为θ,根据,得•(+2)=0,代入数据求出cosθ的值.【解答】解:设单位向量,的夹角为θ,∵,∴•(+2)=+2=0,即12+2×1×1×cosθ=0,解得cosθ=﹣,∴与夹角的余弦值为﹣.故选:D.4.A 5B【解答】解:如图所示,由三视图可知该几何体为:四棱锥P﹣ABCD.连接BD.其体积V=V B﹣PAD+V B﹣PCD==.故选:B.6D【解析】本题主要考查导数与导数的几何意义,考查了存在问题与逻辑思维能力.,因为曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,所以有两个不同的解,令,,由得x>2,由得x<2,所以当x=2时,函数取得极小值,所以a>7A【解答】解:由题意cosC=,a=1,c=2,那么:sinC=,cosC==,解得b=2.由,可得sinB=,那么△ABC的面积=故选A8A【解答】解:作出函数f(x)的图象如图:若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e﹣1,则满足0<n≤e﹣1,﹣2<m≤0,则ln(n+1)=m+1,即m=2ln(n+1)﹣2,则n﹣m=n+2﹣2ln(n+1),设h(n)=n+2﹣2ln(n+1),0<n≤e﹣1则h′(n)=1﹣==,当h′(x)>0得1<n≤e﹣1,当h′(x)<0得0<n<1,即当n=1时,函数h(n)取得最小值h(1)=1+2﹣2ln2=3﹣2ln2,当n=0时,h(0)=2﹣2ln1=2,当n=e﹣1时,h(e﹣1)=e﹣1+2﹣2ln(e﹣1+1)=1+e﹣2=e﹣1<2,则3﹣2ln2≤h(n)<2,即n﹣m的取值范围是[3﹣2ln2,2),故选:A9. 【答案】(﹣4,2)【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出k的取值范围.【解答】解:作出不等式对应的平面区域,由z=kx+2y得y=﹣x+,要使目标函数z=kx+2y仅在点B(1,1)处取得最小值,则阴影部分区域在直线z=kx+2y的右上方,∴目标函数的斜率﹣大于x+y=2的斜率且小于直线2x﹣y=1的斜率即﹣1<﹣<2,解得﹣4<k<2,即实数k的取值范围为(﹣4,2),故答案为:(﹣4,2).10.6【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.11.10【分析】由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数,即为所求.【解答】解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由 451≤30n﹣21≤750 解得 15.7≤n≤25.7.再由n为正整数可得 16≤n≤25,且 n∈z,故做问卷B的人数为10,故答案为:10.12.±【分析】直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0,|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,即可得出结论.【解答】解:直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcos α+11=0.t1+t2=﹣12cosα,t1t2=11.∴|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,⇒cos2α=,tanα=±,∴直线AB的斜率为±.故答案为±.13.或【分析】设A,B两点的抛物线的准线上的射影分别为E,F,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,在直角三角形ABC中,得出直线AB的斜率.【解答】解:如图,设A,B两点的抛物线的准线上的射影分别为E,F′,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,设|BF|=n,∵|AF|=3|BF|,∴|AF|=3n,根据抛物线的定义得:|AE|=3n,|BF′|=n,∴|AC|=2n,在直角三角形ABC中,tan∠BAC==,∴k AB=k AF=.∴直线l的倾斜角为.根据对称性,直线l的倾斜角为,满足题意.故答案为或.14. 【答案】(1,2)15. 【答案】(1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0,由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.16.解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375, 因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,. 所以随机变量ξ的分布列为:ξ 0 1 2 3P .17. 解:(Ⅰ)取AD 的中点G ,连结PG GB BD 、、.PA PD =,PG AD ∴⊥……………………………2分AB AD =,且60DAB ∠=︒,ABD ∴∆是正三角形,AD BG ⊥,又PG BG G =,AD ∴⊥平面PGB .AD PB ∴⊥. ……………………………5分(Ⅱ) ∵侧面PAD ⊥底面ABCD ,又PG AD ⊥,PG ∴⊥底面ABCD .PG BG ∴⊥.∴直线GA GB GP 、、两两互相垂直,故以G 为原点,直线GA GB GP 、、所在直线为x 轴、y 轴和z 轴建立 如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,),(,0,0),P a A a 3,0)B a ,(,0,0)D a -,)0,23,23(a a C -.…………………………………………………7分 33(,,0)22BC a a ∴=--.3,)PB a a ∴=- 设000(,,)n x y z =是平面PBC 的法向量,则0n BC ⋅=且0n PB ⋅=.0000330,2230.ax ay ay az ⎧--=⎪∴-= 00003,3.x y z ⎧=⎪⇒⎨⎪=⎩ 取03y =(1,3,3)n =-. …………………………………………9分 又平面PAD 的法向量1(0,3,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ,则1139cos 131393n n an n θ⋅===++⋅⋅,所以平面PAD 与平面PBC 所成锐二面角的余弦值为13.……………………13分 18. 解:(Ⅰ)因为x x x e x x e x e x x x f ⋅-=⋅-+⋅+-=')1()32()33()(2 ………………1分令()0f x '>,得:1x >或0x <;令()0f x '<,得:01x <<所以()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减………………………………3分 要使()f x 在[2,]t -为单调函数,则20t -<≤所以t 的取值范围为(2,0]- …………………………………………………4分 (Ⅱ)证:因为()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减,所以()f x 在1x =处取得极小值e 又213(2)f e e-=<,所以()f x 在[2,)-+∞的最小值为(2)f -………………………6分 从而当2t >-时,)()2(t f f <-,即m n < ………………………………………8分 (Ⅲ)()72(ln 1)x f x x k x x e+->-等价于241(ln 1)x x k x x ++>- 即14ln 0k x k x x+++->………………………………………9分 记1()4ln k g x x k x x+=++-, 则221(1)(1)()1k k x x k g x x x x ++--'=--=, 由()0g x '=,得1x k =+,所以()g x 在(0,1)k +上单调递减,在(1,)k ++∞上单调递增,所以()(1)6ln(1)g x g k k k ≥+=+-+()0g x >对任意正实数x 恒成立,等价于6ln(1)0k k +-+>,即61ln(1)0k k+-+>………………………………11分 记6()1ln(1)h k k k=+-+, 则261()01h x x x =--<+, 所以()h x 在(0,)+∞上单调递减,又(6)2ln 70h =->,13(7)ln807h =-<, 所以k 的最大值为6………………………………………12分当6k =时,由2416(ln 1)x x x x ++>- 令3x =,则14ln 39<………………………………………13分19解:(1)由椭圆的离心率公式可知:e==,由c=1,则a=,b 2=a 2﹣c 2=1,故椭圆方程为;…(4分) (2)如图,由条件知MN 和PQ 是椭圆的两条弦,相交于焦点F (1,0), 且PQ ⊥MN ,设直线PQ 的斜率为k (k ≠0), 则PQ 的方程为y=k (x ﹣1),P (x 1,y 1),Q (x 1,y 1), 则,整理得:(1+2k 2)x 2﹣4k 2x+2k 2﹣2=0, x 1+x 1=,x 1x 2=,则丨PQ 丨=•,于是,…(7分) 同理:.则S=丨PQ 丨丨MN 丨=,令t=k 2+,T ≥2,S=丨PQ 丨丨MN 丨==2(1﹣),当k=±1时,t=2,S=,且S 是以t 为自变量的增函数,当k=±1时,四边形PMQN的面积取最小值.当直线PQ的斜率为0或不存在时,四边形PMQN的面积为2.综上:四边形PMQN的面积的最小值和最大值分别为和2.20.解:(1)由S n=2a n﹣2,得S n+1=2a n+1﹣2两式相减,得a n+1=2a n+1﹣2a n ∴a n+1=2a n数列{a n}为等比数列,公比q=2又S1=2a1﹣2,得a1=2a1﹣2,a1=2∴(2),方法一当n≤5时,≥0因此,T1<T2<T3<T4=T5>T6>…∴对任意n∈N*均有T4=T5≥T n,故k=4或5.方法二(两式相减,得,=(6﹣n)•2n+1﹣12,,当1≤n<4,T n+1>T n,当n=4,T4=T5,当n>4时,T n+1<T n,综上,当且仅当k=4或5时,均有T k≥T n(3)∵∴=∵对任意n∈N*均有成立,∴,所以λ的最小值为.。
2017全国卷Ⅲ高考压轴卷数学(理)附答案解析
绝密★启封前2017全国卷Ⅲ高考压轴卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设集合M={2|230,x x x x Z --<∈},则集合M 的真子集个数为 A .8 B .7 C . 4 D .32.若复数z 满足i iz 21+=,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为() A.)1,2(- B.)1,2(- C.)1,2( D )1,2(--3.若错误!未找到引用源。
,则错误!未找到引用源。
DA 错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.在长为3m 的线段AB 上任取一点P ,则点P 与线段AB 两端点的距离都大于1m 的概率等() A .13 B.23 C .12 D .145.已知点A (1,2),B (3,4),C (—2,0),D (—3,3),则向量AB 在向量上的投影为()A .5102 B .5102- C .510- D .5106.函数2()(1)cos 1xf x x e =-+图象的大致形状是( )7.设12,F F 是双曲线22:19x y C m-=的两个焦点,点P 在C 上,且120PF PF ⋅=,若抛物线216y x =的准线经过双曲线C 的一个焦点,则12||||PF PF ⋅的值等于()A .B .6C .14D .168.若[]x 表示不超过x 的最大整数,则下面的程序框图运行之后输出的结果为() A .48920B .49660C .49800D .518679. 定义在R 上的函数()f x 满足()2log (4),0(1)(2),0x x f x f x f x x -≤⎧=⎨--->⎩,则()3f 的值为( )A.-1B. -2C.1D. 2(10)榫卯(sŭn măo )是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.如图所示是一种榫卯构件中卯的三视图,其体积为(A )21 (B )22.5 (C )23.5 (D )2511.已知抛物线22y x =上有两点1122(,),(,)A x y B x y 关于直线x y m +=对称,且1212y y =-,则m 的值等于() A .34 B .54 C. 74 D .9412.设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为()()A 1ln2-()B 2(1ln 2)-()C 1ln2+()D 2(1ln 2)+第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
湖南省常宁市2017届高三压轴卷数学(理)含答案
湖南省常宁市2017届高三压轴卷数学(理)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设复数z 满足1ii z=-,则复数z 在复平面内的对应的点在 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限 2.已知集合{}{}22|2cos 1,|2,A y y x B x y x x ==-==-则AB =A. {}|10x x -≤≤B. {}|01x x ≤<C. {}|12x x -<<D. {}|12x x -≤≤3.我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S 的值为A. 4B. -5C. 14D. -23 4.下列选项中,错误的是A. 若p 为真,则()p ⌝⌝也为真B.若“p q ∧为真”,则“p q ∨为真”为真命题C. x R ∃∈,使得tan 2017x =D. “122x>”是“12log 0x <”的充分不必要条件5.在如图所示的矩形中随机投掷30000个点,则落在曲线C 下方(曲线C 为正态分布()1,1N 的正态曲线)的点的个数的估计值为A. 4985B. 8185C. 9970D.24555 6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是7.设0x是方程13x⎛⎫= ⎪⎝⎭0x 所在的范围是A. 10,3⎛⎫ ⎪⎝⎭B. 11,32⎛⎫ ⎪⎝⎭C. 12,23⎛⎫ ⎪⎝⎭D.2,13⎛⎫⎪⎝⎭8.函数()()af x x a R x=-∈的图象不可能是9.已知奇函数()()2223,,8y f x x R a f x x dx -⎡⎤=∈=+⎢⎥⎣⎦⎰,则二项式92,2x a x ⎛⎫⎪⎝⎭的展开式的常数项为A. 212-B. 54-C. 1-D.158-10.如图,圆锥的高2PO =底面O 的直径2AB =,C是圆上一点,且30,CAB D ∠=为AC 的中点,则点B 到平面PAC 的距离为A.12222 D. 111.已知A 是双曲线()222210,0x y a b a b-=>>的左顶点,12,F F 分别为左、右焦点,P 为双曲线上一点,G 是12PF F ∆的重心,若1125,,83GA PF GA PF PF λ==+=,则双曲线的标准方程为 A. 2218y x -= B. 22116x y -= C. 221412x y -= D. 2214y x -= 12.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是 A. 1,12⎛⎫⎪⎝⎭ B. 13,24⎛⎫ ⎪⎝⎭ C. 1,13⎛⎫ ⎪⎝⎭ D. 1,22⎛⎫⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()1,2,,1a b x ==-,若()//a a b -,则,a b 的夹角为 .14.若实数,x y 满足约束条件()0lg 1022x y x y ≥⎧⎪-≤⎨⎪-≤⎩,若1y a x <+恒成立,则a 的取值范围为 .15.已知抛物线24y x =的焦点F ,过焦点的直线与抛物线交于A,B 两点,则4FA FB +的最小值为 .16.已知锐角ABC ∆的外接圆O 的半径为1,6B π∠=,则BA BC ⋅的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)设数列{}n a 是公差大于0的等差数列,n S 为数列{}n a 的前n 项和,已知39S =,且1342,1,1a a a --成等比数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足()12n nna n Nb -*=∈,设n T 是数列{}n b 的前n 项和,证明:6n T <.18.(本题满分12分)某经销商从外地水产养殖场购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:(1)记事件A :“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求()P A 的估计值;的数 (2)若购进这批小龙虾100千克,试估计这批小龙虾量; 个等(3)为适应市场需求,该经销商将将这40只小龙虾分为三级,如下表:的数按分层抽样抽取10只,再随机抽取3只品尝,记X 为抽到二等品量,求期望().E X19.(本题满分12分)如图,22AB BC BE AD ====,且,60,//,.AB BE DAB AD BC BE AD ⊥∠=⊥(1)求证:平面ADE ⊥平面BDE ;(2)求直线AD 与平面CDE 所成角的正弦值.20.(本题满分12分)已知椭圆()2222:10x y E a b a b+=>>上点P ,其左、右焦点分别为12,F F ,12PF F ∆的面积3,且满足122112sin sin 2.sin PF F PF F F PF ∠+∠=∠.(1)求椭圆E 的方程;(2)若,,,A B C D 是椭圆上互不重合的四个点,AC 与BD 相交于1F ,且0AC BD ⋅=,求AC BD的取值范围.21.(本题满分12分)设函数()sin x f x e x =+(e 为自然对数的底数),()()()(),,g x ax F x f x g x ==- (1)若0x =是()F x 的极值点,且直线()0x t t =>分别与函数()f x 和()g x 的图象交于,P Q ,求,P Q 两点间的距离;(2)若0x ≥,函数()y F x =的图象恒在()y F x =-的图象的上方,求实数a 的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2017年浙江省高考压轴卷 数学(理) 解析版 (8)
高考文数预测卷新课标I 卷一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数z=1﹣i ,则的虚部是( )A .0B .2C .-2iD .﹣2 2.“a=2”是“直线l 1:(a+2)x+(a ﹣2)y=1与直线l 2:(a ﹣2)x+(3a ﹣4)y=2相互垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.抛物线218y x =-的焦点坐标为( )A. (0,2) B . (-2,0) C. (2,0) D.(0,-2)4.已知函数⎩⎨⎧-+=x x 21y 2)0()0(<>x x ,使函数值为17的x 的值是( )A .4-B .4或172-C .44-或D .1744-2-或或 5.将函数y=sin2x 的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象对应的函数解析式是( ) A .y=-cos4x B .y=-cosx C .y=sin (x+) D .y=-sinx6.下列各式中最小值为2的是( ) A .B .b a a b +C .122xx + D .1cos cos x x + 7.某几何体的三视图如图所示,则该几何体的表面积等于( )A .7+.6.32D .3 8.设曲线y=在点(2,3)处的切线与直线ax+y+1=0垂直,则a=( )A .2B .﹣2C .﹣D .9.执行如图所示的程序框图,若输出S=31,则框图中①处可以填入 ( )A .n≥16?B .n≥32?C .n≥8?D .n <32?10.在△ABC 中,若A=30°,b=16,此三角形的面积S=64,则△ABC 中角B 为( ) A .75° B.30° C.60° D.90°11. f (x )=ax+sinx 是R 上的减函数,则实数a 的范围是( ) A .(﹣∞,-1] B .(﹣∞,-1) C .(-1,+∞) D .[-1,+∞)、12.已知双曲线C :﹣=1,若存在过右焦点F 的直线与双曲线C 相交于A ,B 两点且=3,则双曲线在一、三象限的渐近线的斜率的最小值为( )A .B .C .2D .2第II 卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 设S n 为数列{a n }的前n 项和,若S n =8a n ﹣1,则5a =.14.设x ,y 满足,则2log ()x y +的最小值为.15. 已知ABC ∆中,7,8,9AB AC BC ===,P 点在平面ABC 内,且70PA PC →→⋅+=,则PB →的最小值为.16. 如果椭圆221369y x +=的某条弦被点(2,4)平分,则这条弦所在的直线方程是_________(请写出一般式方程)三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{a n }的前n 项和S n =n ,(1)求通项公式a n 的表达式; (2)若n n n 11b a a +=⋅,求数列{b n }的前n 项和T n .18.(本小题满分12分)如图,四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形.∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA ⊥BD(Ⅱ)设PD=AD=1,若M 是PB 的中点,求棱锥M ﹣ABC 的体积.19. (本小题满分12分)在一次考试中,某班学习小组的五名学生的数学、物理成绩如下表(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的数学成绩不低于95分的概率.(2)请在所给的直角坐标系中画出它们的散点图,并求出这些数据的线性回归直线方程. (3)若该学习小组中有一人的数学成绩是92分,试估计其物理成绩(结果保留整数). 参考公式回归直线的方程是:y=bx+a ,其中对应的值.b=,a=﹣b .20.(本小题满分12分)已知椭圆C :+=1(a >b >0)过点,长轴长为,过右焦点F 的直线l 与C 相交于A ,B 两点.O 为坐标原点. (1)求椭圆C 的方程;(2)若点P 在椭圆C 上,且OA BP =,求直线l 的方程.21.(本小题满分12分)已知函数f (x )=ax ﹣e x (a ∈R ),g (x )=.(Ⅰ)求函数f (x )的单调区间;(Ⅱ)∀x ∈(0,+∞),使不等式f (x )≥g (x )﹣e x 恒成立,求a 的取值范围.请考生在地22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分。
2017全国卷Ⅲ高考压轴卷 数学(理) Word版含解析
绝密★启封前2017全国卷Ⅲ高考压轴卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设集合M={2|230,x x x x Z --<∈},则集合M 的真子集个数为 A .8 B .7 C . 4 D .32.若复数z 满足i iz 21+=,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为() A.)1,2(- B.)1,2(- C.)1,2( D )1,2(--3.若2cos()3cos 3πθθ-=,则tan θ=DA23B.32C.33-D.233 4.在长为3m 的线段AB 上任取一点P ,则点P 与线段AB 两端点的距离都大于1m 的概率等() A .13 B.23 C .12 D .145.已知点A (1,2),B (3,4),C (—2,0),D (—3,3),则向量AB 在向量CD 上的投影为()A .5102 B .5102- C .510- D .5106.函数2()(1)cos 1xf x x e=-+图象的大致形状是( )7.设12,F F 是双曲线22:19x y C m-=的两个焦点,点P 在C 上,且120PF PF ⋅=,若抛物线216y x =的准线经过双曲线C 的一个焦点,则12||||PF PF ⋅的值等于() A .2 B .6 C .14 D .168.若[]x 表示不超过x 的最大整数,则下面的程序框图运行之后输出的结果为() A .48920B .49660C .49800D .518679. 定义在R 上的函数()f x 满足()2log (4),0(1)(2),0x x f x f x f x x -≤⎧=⎨--->⎩,则()3f 的值为( )A.-1B. -2C.1D. 2(10)榫卯(sŭn măo )是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.如图所示是一种榫卯构件中卯的三视图,其体积为 (A )21 (B )22.5 (C )23.5 (D )2511.已知抛物线22y x =上有两点1122(,),(,)A x y B x y 关于直线x y m +=对称,且1212y y =-,则m 的值等于() A .34 B .54 C. 74 D .9412.设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为()()A 1ln2-()B ln 2)-()C 1ln2+()D ln 2)+第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给力2017届高考数学理 必做36道压轴题近几年的高考数学试题收集起来进行分析,发现近三年高考数学压轴题最常见的考点是解析几何题或函数与导数题,只要找到了解压轴题 的窍门,几乎所有高考压轴题都都 有一个突破口,可以 依照固定的思路来解决,因此我们精心挑选了“36道必做的压轴题” 进行了深刻剖析,深层次解密压轴题精髓,高效培养自主解题能力。
做太多压轴题会严重占用对基 础知识、基本技能的掌握时间,做少了又会缺乏对压轴题的自信和驾驭能力,做偏了更是一种灾难。
为了很好地巩固,本书教给你如何将复杂的问题简单化,如何做到不会也能得三分。
压轴题虽然变 化多端,但万变不离其宗,都可以从这36道题中找到影子。
让你切身体会到一切压轴题都是纸老虎。
轻松搞定高考压轴题!第一部分 2017年高考数学理科真题压轴题精选解析几何1、(2017新课标卷1)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c ,由条件知2233c =,得3c = 又32c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,21,28243k k x ±-=从而2221241431k k PQ k x x +-=+-=又点O 到直线PQ的距离d =,所以∆OPQ 的面积21214OPQS d PQ k ∆==+ ,t =,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =等号成立,且满足0∆>,所以当∆OPQ 的面积最大时,l的方程为:22y x =-或22y x =--. …………………………12分2、(2017新课标卷2)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .【答案】 (1) 21(2)72,7==b a【解析】 (1).21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=(2)72,7.72,7.,,1:4:)23-(,:.23-,,.4,.42222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF 所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可3、(2017辽宁卷)圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图16所示).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.图16(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.【解析】解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝ ⎛⎭⎪⎫4x 0,0,⎝ ⎛⎭⎪⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1,解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0.又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-2 3m m 2+2, ①y 1y 2=-3m 2+2,②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m (y 1+y 2)+2 3=4 3m 2+2, ③x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0, 所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤ 将①②③④代入⑤式整理得 2m 2-2 6m +4 6-11=0, 解得m =3 62-1或m =-62+1.因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0.4、(2017上海卷)在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔。
若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E ,求证:通过原点的直线中,有且仅有一条直线是E 的分隔线.【答案】 (1) 省略 (2) ∞),21[∪]21-,∞-(+(3) 0=x 只有直线【解析】 (1)平分被直线所以,点中,得分别代入直线方程左式把点平分,过程如下被直线证明点01-)0,1-(),2,1(04-)1-01-)(1-21(η,.01-)0,1-(),2,1(=+<=++==+y x B A B A y x B A (2)的分割线是曲线时,直线所以,当线上。
上下方存在点均在双曲且直线与双曲线无焦点时,直线当为是双曲线,渐近线方程曲线在曲线上,且的分割线,则是曲线若直线14y -kx y ∞),21[∪]21-,∞-(∈kx y kx y ]∞,21[∪]21-,∞-(∈∴2114y -0)-)(-(),(∃),,(∃14y -22222211221122==+==+±==<==x k k x y x kx y kx y y x P y x P x kx y (3)的分割线是所以,只有直线在直线左右两侧与图像不相交,且图像只有直线可知画出图像利用数形结合法减时,曲线的图像单调递当中心对称,且对称,也关于的图像关于曲线,变形为:即,即据题有,设动点E x x y x R y y x xy x x y x x x y x x MQ x MQ Q y x M 0.0,,,.2,0)2,0(2,01)2-(∴.0≠0)2-(1-1)2-(,1||1||),20(),,(222222222222==≥>∈===+=+=+=•=•5、(2017四川卷)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。
(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 与点P ,Q 。
(ⅰ)证明:OT 平分线段PQ (其中O 为坐标原点); (ⅱ)当||||TF PQ 最小时,求点T 的坐标。
【答案】 (Ⅰ)12622=+y x (Ⅱ) )1-,3-(),1,3-(T T 或【解析】(Ⅰ)1262,6,4∴,3,4222222222=+===+===y x b a c c b a b a c 所以,椭圆方程为解得(Ⅱ-1).,236-x ⇒)2(30⇒)2(13-)2(13-312-∴0.6-1212)3(1244637378059220140614126),(),,(),2(1∴-.0≠.0).0,2-(),,3-(2122221222222222211PQ OT PQ xx m x x m x mx m x m y PQ x m y OT m x x m x x m m x x x qq y x y x Q y x P x my FT F m k m PQ OT m F m T TF 平分线段所以线段中点横坐标即交点横坐标,解得方程与直线方程联立,即联立得完成时间与椭圆方程的直线方程为且垂直设过时下面证明平分线段时,当设=+=+=++=+=+==+=+=+++=+++=++===(Ⅱ-2))1-,3-(),1,3-(,12.32262262262,11316213162∴13162)32-1(62)312-(3662)(6262)()(2222222222222121T T PQTFm PQ TFTF PQ t tt t t TF PQ m t m m m m m TF PQ m TF m m m m x x x a c a x a c a QF PF PQ 或取最小值时,点当所以为最小值,这时取最大值,即时,当则,令由上得,±==∴=≤+=+=>+=++•=+++•=+=++•=++=++=++=+++=+=6、(2017湖北卷)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.【答案】(Ⅰ)24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ② 设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x-=+,令0y=,得021 kxk+=-. ③(ⅰ)若0,0,x∆<⎧⎨<⎩由②③解得1k<-,或12k>.即当1(,1)(,)2k∈-∞-+∞时,直线l与1C没有公共点,与2C有一个公共点,故此时直线l与轨迹C恰好有一个公共点.7、(2017天津卷)设椭圆22221x ya b+=(0a b>>)的左、右焦点为12,F F,右顶点为A,上顶点为B.已知1232AB F F.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点1F,经过原点的直线l与该圆相切. 求直线的斜率.【答案】 (1) 22(2)154±【解析】 (1)22.22.,443|F F |23|AB |22222221所以,离心率为解得且==+=•=+∴=a c ebc a c b a(2)()154.154018-1)1(45.45)2()-()2(,1)1()2(,1)22(,),2-,2()2,2(,.043,2)(21200)(F F ),,(F ),,(F .12),0,-(F ,,0,)1(),,(2222121212121222221222112111112212122122111111111112222111±±==+++=∴=++=+==++=++=+==+=++∴=+=++=++=•+===+所以,所求直线斜率为,解得,即又即则半径即圆心设所求直线为即,,且,即则椭圆方程为知由设k k k k k x b x x b y x BP r k k x r k x k x r r x x b y x kx y b x b b x x by b x y b x y b x b P B y b x b b by b x b b B y x P8、(2017安徽卷)如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O 的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点.(1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点.记111C B A ∆与222C B A ∆的面积分别为1S 与2S ,求21S S 的值.9、(2017湖南卷)如图17,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.图17【解析】解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0.易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎪⎨⎪⎧y =-m 2x ,x22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m22-m 2=22·-1+32-m2.而0<2-m 2≤2,故当m =0时,S 取最小值2. 综上所述,四边形APBQ 面积的最小值为2.10、(2017湖南卷)如图7,O 为坐标原点,椭圆1C :22221x y a b+=(a >b >0)的左.右焦点分别为1F ,2F ,离心率为1e :双曲线2C :2222-1x y a b=的左.右焦点分别为3F ,4F ,离心率为2e 。