2018届高三数学(文)一轮复习夯基提能作业本第二章 函数 第一节 函数及其表示 Word版含解析

合集下载

[学习资料]2018版高考学习复习资料数学一轮总复习第2章函数导数及其应用2.2函数的单调性与最值模拟演练理

[学习资料]2018版高考学习复习资料数学一轮总复习第2章函数导数及其应用2.2函数的单调性与最值模拟演练理

2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.2 函数的单调性与最值模拟演练 理[A 级 基础达标](时间:40分钟)1.[2017·北京模拟]下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x | 答案 B解析 因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e-x,即y =⎝ ⎛⎭⎪⎫1e x,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数,故选B.2.[2016·江西模拟]若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4,∴a ≤-3. 3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞) 答案 A解析 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].4.[2017·郑州质检]函数f (x )=x 2+x -6的单调增区间是( ) A .(-∞,-3) B .[2,+∞) C .[0,2) D .[-3,2]答案 B解析 ∵x 2+x -6≥0,∴x ≥2或x ≤-3,又∵y =x 2+x -6是由y =t ,t ∈[0,+∞)和t =x 2+x -6,x ∈(-∞,-3]∪[2,+∞)两个函数复合而成,而函数t =x 2+x -6在[2,+∞)上是增函数,y =t 在[0,+∞)上是增函数,又因为y =x 2+x -6的定义域为(-∞,-3]∪[2,+∞),所以y =x 2+x -6的单调增区间是[2,+∞),故选B.5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞) B.(8,9] C .[8,9] D .(0,8) 答案 B解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.6.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 答案 6解析 易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f a =1,f b =f(13,)即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6.7.[2017·山西模拟]若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.答案 -6解析 由图象的对称性,知函数f (x )=|2x +a |关于直线x =-a2对称,因为函数f (x )=|2x +a |的单调递增区间是[3,+∞),所以-a2=3,即a =-6.8.[2017·湖南模拟]函数y =x -x (x ≥0)的最大值为________. 答案 14解析 令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x=14时,y max =14. 9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解 (1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2) =x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].10.[2017·衡阳联考]已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解 (1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,且f (0)+f (0)=f (0), ∴f (0)=0,又f (-3)+f (3)=f (-3+3)=0, ∴f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.[B 级 知能提升](时间:20分钟)11.[2017·安徽合肥模拟]若2x +5y ≤2-y +5-x,则有( ) A .x +y ≥0 B.x +y ≤0 C.x -y ≤0 D.x -y ≥0 答案 B解析 设函数f (x )=2x-5-x,易知f (x )为增函数,又f (-y )=2-y-5y,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.12.[2017·山东泰安模拟]已知函数f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是( )A .(1,+∞) B.[4,8) C .(4,8) D .(1,8)答案 B解析 由f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,4-a 2>0,⎝ ⎛⎭⎪⎫4-a 2+2≤a ,解得4≤a <8.13.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________. 答案 (1)⎝ ⎛⎦⎥⎤-∞,3a (2)(-∞,0)∪(1,3]解析 (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a,即此时函数f (x )的定义域是⎝ ⎛⎦⎥⎤-∞,3a .(2)当a -1>0,即a >1时,要使f (x )在(0,1]上是减函数,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上是减函数,则需-a >0,此时a <0. 综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3]. 14.已知函数f (x )=a -1|x |. (1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解 (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫a -1x 2-⎝ ⎛⎭⎪⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x )在(0,+∞)上是增函数.(2)由题意,a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h (x 1)-h (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫2-1x 1x 2.∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1, ∴2-1x 1x 2>0,∴h (x 1)<h (x 2),∴h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3, ∴a 的取值范围是(-∞,3].。

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.10

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.10

第三页,编辑于星期六:二十二点 二十三分。
2.设 f(x)=xln x,若 f′(x0)=2,则 x0=( ) A.e2 B.e
ln 2 C. 2
D.ln 2
解析:由已知有 f′(x)=ln x+x·1x=ln x+1, 所以 f′(x0)=2⇒ln x0+1=2⇒x0=e.故选 B. 答案:B
第四页,编辑于星期六:二十二点 二十三分。
第十五页,编辑于星期六:二十二点 二十三分。
(4)y′=ln
x′x2+1-ln x2+12
xx2+1′
=1xx2+x21+-122xln
x=x2+x1x-2+21x22ln
x .
(5)令 u=2x-5,y=ln u,
则 y′=(ln u)′u′=2x-1 5·2=2x-2 5,
即 y′2x-2 5.
第五页,编辑于星期六:二十二点 二十三分。
4.(2017·保定市高三调研)已知曲线 y=ln x 的切线过原点, 则此切线的斜率为( )
A.e B.-e
1 C.e
D.-1e
解析:y=ln x 的定义域为(0,+∞),设切点为(x0,y0),则 k=f′(x0),∴切线方程为 y-y0=x10(x-x0),又切线过点(0,0), 代入切线方程得 x0=e,y0=1,∴k=f′(x0)=x10=1e.
__Δl_ix_m→(_02_)f_f(_xx0_)+_在_Δ_Δx_x_x-_=_f.xx00 处 的 瞬 时 变 化 率 是 : Δlixm→0
Δy Δx


第九页,编辑于星期六:二十二点 二十三分。
2.导数的概念 (1)f(x)在 x=x0 处的导数就是 f(x)在 x=x0 处的③_瞬__时__变__化__率_, 记作 y′| x=x0 或 f′(x0),即 f′(x0)=Δlixm→0 fx0+ΔΔxx-fx0. (2)当把上式中的 x0 看作变量 x 时,f′(x)即为 f(x)的导函数, 简称导3.数导,数即的y几′何=意f′义(x)=④_Δl_ixm→_0__f_x_+__Δ_Δ_xx_-__f_x___. 函 数 f(x) 在 x = x0 处 的 导 数 就 是 ⑤ 曲__线___y_=__f(_x_)_在__点__P_(_x_0_,_f(_x_0_))_处__的__切__线__的__斜__率____,即曲线 y=f(x) 在点 P(x0,f(x0))处的切线的斜率 k=f′(x0),切线方程为⑥ _y_-__y_0_=__f′__(_x_0_)(_x_-_.x0)

2018年高考数学一轮复习第二章函数导数及其应用课时达标14导数与函数的单调性理

2018年高考数学一轮复习第二章函数导数及其应用课时达标14导数与函数的单调性理

2018年高考数学一轮复习第二章函数、导数及其应用课时达标14导数与函数的单调性理[解密考纲]本考点主要考查利用导数研究函数的单调性.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.(2017·福建福州模拟)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( D )解析:由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上f′(x)>0,在(0,+∞)上f′(x)<0.选项D满足,故选D.2.(2017·苏中八校联考)函数f(x)=x-ln x的单调递减区间为( A )A .(0,1)B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)解析:函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).3.(2017·吉林长春调研)已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.4.函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),且当x ≠1时,其导函数f ′(x )满足xf ′(x )>f ′(x ),若1<a <2,则有( C )A .f (2a)<f (2)<f (log 2a ) B .f (2)<f (log 2a )<f (2a) C .f (log 2a )<f (2)<f (2a)D .f (log 2a )<f (2a)<f (2)解析:∵函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),∴函数图象的对称轴为直线x =1.又∵其导函数f ′(x )满足xf ′(x )>f ′(x ),即(x -1)f ′(x )>0,故当x ∈(1,+∞)时,函数单调递增,x ∈(-∞,1)时,函数单调递减.∵1<a <2,∴0<log 2a <1,2a >2,∴f (log 2a )<f (2)<f (2a),故选C .5.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为( D )A .(-∞,-2)∪(1,+∞)B .(-∞,2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)解析:由题图可知,f ′(x )>0,则x ∈(-∞,-1)∪(1,+∞),f ′(x )<0,则x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧f ′x >0,x 2-2x -3>0,或⎩⎪⎨⎪⎧f ′x <0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).6.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( C )A .[1,+∞)B .[1,2)C .⎣⎢⎡⎭⎪⎫1,32D .⎣⎢⎡⎭⎪⎫32,2 解析:f ′(x )=4x -1x=2x -12x +1x,∵x >0,由f ′(x )=0得x =12.∴令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1⇒1≤k <32.故C 正确.二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间为(-1,11).解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).8.f (x )=xn 2-3n (n ∈Z )是偶函数,且y =f (x )在(0,+∞)上是减函数,则n =1或2.解析:∵f (x )=xn 2-3n (n ∈Z )是偶函数,∴n 2-3n =2k (k ∈Z ),即f (x )=x 2k,∴f ′(x )=2kx 2k -1,∵f (x )是偶函数且在(0,+∞)上是减函数, ∴在(0,+∞)上f ′(x )=2kx 2k -1<0恒成立.∵x2k -1>0,∴2k <0.即n 2-3n <0,解得0<n <3.∵n ∈Z ,∴n =1或n =2.9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是-1.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x +2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),则g (x )>g (-1)=-1,所以b ≤-1,则b 的最大值为-1.三、解答题10.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析:(1)由题意得f ′(x )=1x-ln x -ke x,又f ′(1)=1-ke=0,故k =1. (2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),递减区间是(1,+∞).11.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎪⎫1,m +12上是单调函数,求实数m 的取值范围.解析:(1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2. (2)f ′(x )=6x+2x -8=2x -1x -3x,∵x >0,∴f ′(x ),f (x )的变化如下:x (0,1) 1 (1,3) 3 (3,+∞)f ′(x ) + 0- 0+ f (x )递增递减递增∴f (x )递减区间为(1,3),要使函数f (x )在区间⎝ ⎛⎭⎪⎫1,m +12上是单调函数, 则⎩⎪⎨⎪⎧1<m +12,m +12≤3,解得12<m ≤52.故m 的取值范围是⎝ ⎛⎦⎥⎤12,52.12.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解析:(1)函数的定义域为(-∞,+∞),f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x,即x =-2时等号成立,所以满足要求的a 的取值范围是(-∞,-22).。

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.11.2

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.11.2
第六页,编辑于星期六:二十二点 二十三分。
——[通·一类]—— 1.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)
的图象关于直线 x=-12对称,且 f′(1)=0. (1)求实数 a,b 的值; (2)求函数 f(x)的极值.
第七页,编辑于星期六:二十二点 二十三分。
——[悟·技法]—— 求函数 f(x)在[a,b]上的最大值和最小值的步骤
(1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值 f(a),f(b); (3)将函数 f(x)的各极值与 f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
第十二页,编辑于星期六:二十二点 二十三分。
第九页,编辑于星期六:二十二点 二十三分。
考向二 利用导数研究函数的最值 [例 2] (2017·湖北省七市(州)联考)设 n∈N*,a,b∈R,函 数 f(x)=alxnn x+b,已知曲线 y=f(x)在点(1,0)处的切线方程为 y= x-1. (1)求 a,b; (2)求 f(x)的最大值.
第十八页,编辑于星期六:二十二点 二十三分。
——[通·一类]—— 3.(2017·云南省第一次统一检测)已知常数 a≠0,f(x)=aln x
+2x. (1)当 a=-4 时,求 f(x)的极值; (2)当 f(x)的最小值不小于-a 时,求实数 a 的取值范围.
第十九页,编辑于星期六:二十二点 二十三分。
考向三 函数极值与最值的综合问题 [互动讲练型] [例 3] (2016·全国甲,理 21)(1)讨论函数 f(x)=xx-+22ex 的单 调性,并证明:当 x>0 时,(x-2)ex+x+2>0; (2)证明:当 a∈[0,1)时,函数 g(x)=ex-xa2x-a(x>0)有最小 值.设 g(x)的最小值为 h(a),求函数 h(a)的值域.

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.5

2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.5

第十六页,编辑于星期六:二十二点 二十三分。
[解析]
(1)


=23
1 3
×1

2
3 4
×2
1 4

4×27=110.
(2)
a3 3 ·
53
b 4 3 3
32
5
=a ·b =a =a a. 2 12
15 10
4
5 b2
4 a3

2 3
1 3

2

第十七页,编辑于星期六:二十二点 二十三分。
——[悟·技法]—— 指数幂的运算规律
(2)两个重要公式
⑥ a
(ⅰ)n
an=|a|=⑦⑧
a -a
a≥0 a<0
n为奇数 n为偶数 ;
(ⅱ)(n a)n=⑨____a____(注意 a 必须使n a有意义).
第十页,编辑于星期六:二十二点 二十三分。
2.分数指数幂 (1)正数的正分数指数幂是:
a
m n


__n__a_m___(a>0,m,
第二十二页,编辑于星期六:二十二点 二十三 分。
——[悟·技法]—— 指数函数图象可解决的两类热点问题
(1)求解指数型函数的图象与性质问题 对指数型函数的图象与性质问题(单调性、最值、大小比较、 零点等)的求解往往利用相应指数函数的图象,通过平移、对称 变换得到其图象,然后数形结合使问题得解. (2)求解指数型方程、不等式问题 一些指数型方程、不等式问题的求解,往往利用相应指数型 函数图象数形结合求解.
第十八页,编辑于星期六:二十二点 二十三分。
——[通·一类]——
1.求值与化简:

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标14 导数与函数的单调性 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标14 导数与函数的单调性 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标14导数与函数的单调性 理[解密考纲]本考点主要考查利用导数研究函数的单调性.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.(2017·福建福州模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( D )解析:由函数f (x )的图象可知,f (x )在(-∞,0)上单调递增,f (x )在(0,+∞)上单调递减,所以在(-∞,0)上f ′(x )>0,在(0,+∞)上f ′(x )<0.选项D 满足,故选D .2.(2017·苏中八校联考)函数f (x )=x -ln x 的单调递减区间为( A ) A .(0,1) B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)解析:函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).3.(2017·吉林长春调研)已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.4.函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),且当x ≠1时,其导函数f ′(x )满足xf ′(x )>f ′(x ),若1<a <2,则有( C )A .f (2a)<f (2)<f (log 2a ) B .f (2)<f (log 2a )<f (2a) C .f (log 2a )<f (2)<f (2a)D .f (log 2a )<f (2a)<f (2)解析:∵函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),∴函数图象的对称轴为直线x =1.又∵其导函数f ′(x )满足xf ′(x )>f ′(x ),即(x -1)f ′(x )>0,故当x ∈(1,+∞)时,函数单调递增,x ∈(-∞,1)时,函数单调递减.∵1<a <2,∴0<log 2a <1,2a >2,∴f (log 2a )<f (2)<f (2a),故选C .5.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为( D )A .(-∞,-2)∪(1,+∞)B .(-∞,2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)解析:由题图可知,f ′(x )>0,则x ∈(-∞,-1)∪(1,+∞),f ′(x )<0,则x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧fx ,x 2-2x -3>0,或⎩⎪⎨⎪⎧fx ,x 2-2x -3<0,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).6.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( C )A .[1,+∞)B .[1,2)C .⎣⎢⎡⎭⎪⎫1,32D .⎣⎢⎡⎭⎪⎫32,2 解析:f ′(x )=4x -1x=x -x +x,∵x >0,由f ′(x )=0得x =12.∴令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1⇒1≤k <32.故C 正确.二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间为(-1,11).解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x+1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).8.f (x )=xn 2-3n (n ∈Z )是偶函数,且y =f (x )在(0,+∞)上是减函数,则n =1或2.解析:∵f (x )=xn 2-3n (n ∈Z )是偶函数,∴n 2-3n =2k (k ∈Z ),即f (x )=x 2k,∴f ′(x )=2kx 2k -1,∵f (x )是偶函数且在(0,+∞)上是减函数, ∴在(0,+∞)上f ′(x )=2kx 2k -1<0恒成立.∵x2k -1>0,∴2k <0.即n 2-3n <0,解得0<n <3.∵n ∈Z ,∴n =1或n =2.9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是-1.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x +2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),则g (x )>g (-1)=-1,所以b ≤-1,则b 的最大值为-1.三、解答题10.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析:(1)由题意得f ′(x )=1x-ln x -ke x,又f ′(1)=1-ke=0,故k =1. (2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),递减区间是(1,+∞).11.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎪⎫1,m +12上是单调函数,求实数m 的取值范围.解析:(1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2. (2)f ′(x )=6x+2x -8=x -x -x,∵x >0,∴f ′(x ),f (x )的变化如下:∴f (x )递减区间为(1,3),要使函数f (x )在区间⎝ ⎛⎭⎪⎫1,m +12上是单调函数, 则⎩⎪⎨⎪⎧1<m +12,m +12≤3,解得12<m ≤52.故m 的取值范围是⎝ ⎛⎦⎥⎤12,52.12.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解析:(1)函数的定义域为(-∞,+∞),f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f=1,f =0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x,即x =-2时等号成立,所以满足要求的a 的取值范围是(-∞,-22).。

高三数学一轮复习 第二章 函数 第一节 函数及其表示夯基提能作业本 文(2021年整理)

高三数学一轮复习 第二章 函数 第一节 函数及其表示夯基提能作业本 文(2021年整理)

第一节函数及其表示A组基础题组1。

函数g(x)=+log2(6—x)的定义域是( )A。

{x|x>6}B。

{x|—3〈x〈6}C.{x|x>-3} D。

{x|—3≤x<6}2.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( )A。

g(x)=2x+1 B.g(x)=2x—1C。

g(x)=2x-3 D。

g(x)=2x+73.若二次函数g(x)满足g(1)=1,g(—1)=5,且图象过原点,则g(x)的解析式为() A。

g(x)=2x2—3x B。

g(x)=3x2—2xC.g(x)=3x2+2xD.g(x)=—3x2—2x4.已知f(x)=则f +f 的值等于( )A.1B.2C.3D.-25.具有性质:f =-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x—;②y=x+;③y=f(x)=中满足“倒负”变换的函数是()A。

①②B。

②③C。

①③ D.只有①6.(2015湖北,7,5分)设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x| B。

|x|=xsgn|x|C。

|x|=|x|sgn x D.|x|=xsgn x7.设函数f(x)=若f =4,则b= 。

8。

如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)·f(b),且f(1)=1,则++++…+= 。

9.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c 为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a的值分别是,。

10.根据如图所示的函数y=f(x)(x∈[—3,2))的图象,写出函数的解析式.11。

已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.B组提升题组12.(2016陕西西安模拟)已知函数f(x)=若f(4)=2f(a),则实数a的值为()A。

2018版高考数学一轮总复习第2章函数、导数及其应用2.11导数在研究函数中的应用模拟演练课件文

2018版高考数学一轮总复习第2章函数、导数及其应用2.11导数在研究函数中的应用模拟演练课件文
板块四 模拟演练· 提能增分
[A 级
基础达标](时间:40 分钟 ) )
1.设函数 f(x)=xex,则 ( A. x=1 为 f(x)的极大值点 B.x=1 为 f(x)的极小值点 C.x=-1 为 f(x)的极大值点 D.x=-1 为 f(x)的极小值点
解析
f′(x)=ex+ xex= (1+x)ex.令 f′(x)= 0, 则 x=-
a=- 2, 解得 b = 1
3+ 2a+b=0, f(1)= 10, 即 2 1 + a + b - a - 7a=10, a=- 6, 或 b= 9, a=- 6, 经检验 b= 9
a 2 满足题意,故 =- . 3 b
a 12 .已知函数 f(x)= - 1 + ln x,若存在 x0>0 ,使得 x f(x0 )≤0 有解,则实数 a 的取值范围是( A.a>2 C.a≤1 B.a<3 D.a≥3 )
1 f(x)在区间 a,a+ 上存在极值,求正实数 2
a
解 ln x - 2 . x
1- 1- ln x (1)函数的定义域为 (0, + ∞), f′(x)= = 2 x
令 f′(x)= 0,得 x= 1; 当 x∈ (0,1)时, f′(x)> 0, f(x)单调递增; 当 x∈ (1,+ ∞)时, f′(x)< 0, f(x)单调递减. 1 所以, x= 1 为极大值点,所以 a< 1< a+ , 2
2 1 3 1 2 8.若函数 f(x)=- x + x +2ax 在 ,+∞ 上存在单 3 2 3
1 - ,+∞ 9 的取值范围是_____________ .
调递增区间,则 a
解析

2018高考一轮数学浙江专版练习第2章 第1节 函数及其表示 含答案 精品

2018高考一轮数学浙江专版练习第2章 第1节 函数及其表示 含答案 精品

第二章函数、导数及其应用[深研高考·备考导航]为教师备课、授课提供丰富教学资源[五年考情]从近五年浙江高考试题来看,函数导数及其应用是每年高考命题的重点与热点,既有客观题,又有解答题,各种难度的题目均有.第一节函数及其表示1.函数与映射的概念(1)函数的定义域、值域在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有解析法、图象法和列表法.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎨⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2017·金华十校联考)已知函数f (x )=⎩⎨⎧log 5x ,x >0,2x , x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=( )A .4 B.14 C .-4D .-14B [∵f ⎝ ⎛⎭⎪⎫125=log 5125=log 55-2=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=f (-2)=2-2=14,故选B.] 4.已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.【导学号:51062013】-2 [∵f (x )=ax 3-2x 的图象过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确.∵满足⎩⎨⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确.](1)函数y =3-2x -x 2的定义域是________.(2)(2017·浙江五校联考模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是________. (1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;(2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[变式训练1] (1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x )的定义域为[-1,1],则f (x )的定义域为________.(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎨⎧1-2x ≥0,x +3>0,解得⎩⎨⎧x ≤0,x >-3,∴-3<x ≤0. (2)∵f (2x )的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式. (3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1).5分 (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.10分(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x .联立方程组⎩⎪⎨⎪⎧f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x ,解得f (x )=23x -x3(x ≠0).15分[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.【导学号:51062014】(1)x 2-1(x ≥1) (2)23 x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,得f (x )=23 x +13(x >0).]☞角度1 求分段函数的函数值(1)(2017·温州联考)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9(2)(2017·嘉兴市中学模拟)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,那么f ⎝ ⎛⎭⎪⎫2 016+π4·f (-7 984)=( )A .2 016 B.14 C .4D.12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C.(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝ ⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f ⎝ ⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4,故选C.] ☞角度2 已知分段函数的函数值求参数(1)(2017·台州二诊)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( )A .1B .1或-1 C. 3D.3或- 3(2)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1 B.78 C.34 D.12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D.(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则2-b =4,解得b =12.]☞角度3 解与分段函数有关的方程或不等式(1)(2017·温州一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2(x +1),0<x <1,且f (x )=-12,则x 的值为________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13; 当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13. (2)当x <1时,x -1<0,e x -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x≥1时,x≤2,x≤23=8,∴1≤x≤8.综上可知x∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法.4.分段函数问题要分段求解.[易错与防范]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的范围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;如果x0的范围不确定,要分类讨论.课时分层训练(三)函数及其表示A组基础达标(建议用时:30分钟)一、选择题1.下列各组函数中,表示同一函数的是()A.f(x)=x,g(x)=(x)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=x2,g(x)=|x|D.f(x)=0,g(x)=x-1+1-xC[在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.] 2.(2017·浙江名校联考)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()A B C DB[A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应.故选B.]3.(2017·宁波市质检)已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=() A.x+1B.2x-1C.-x+1 D.x+1或-x-1A[设f(x)=kx+b,则由f[f(x)]=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b=x+2,∴k2=1,kb+b=2,解得k=1,b=1,则f(x)=x+1.故选A.] 4.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( ) 【导学号:51062015】A .y =xB .y =lg xC .y =2xD .y =1xD [函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D.]5.已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74 B .-54 C .-34D .-14A [由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1. 由于2x >0,所以2a -1=-1无解; ②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.故选A.] 二、填空题6.(2017·温州二次质检)若函数f (x )=⎩⎨⎧f (x -2),x ≥2,|x 2-2|,x <2,则f (5)=________.【导学号:51062016】1 [由题意得f (5)=f (3)=f (1)=|12-2|=1.]7.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.[-1,2] [∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].]8.设函数f (x )=⎩⎨⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.(-∞,2] [由题意得⎩⎨⎧ f (a )<0,f 2(a )+f (a )≤2或⎩⎨⎧f (a )≥0,-f 2(a )≤2,解得f (a )≥-2. 由⎩⎨⎧ a <0,a 2+a ≥-2或⎩⎨⎧a ≥0,-a 2≥-2,解得a ≤ 2.] 三、解答题9.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 【导学号:51062017】[解] 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,4分即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎨⎧a =2,b +5a =17,8分 解得⎩⎨⎧a =2,b =7,∴f (x )=2x +7.15分10.已知f (x )=x 2-1,g (x )=⎩⎨⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.[解] (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2.4分 (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ;8分 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.∴f (g (x ))=⎩⎨⎧x 2-2x ,x >0,x 2-4x +3,x <0.15分B 组 能力提升 (建议用时:15分钟)1.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①B [对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.]2.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________. 【导学号:51062018】⎣⎢⎡⎭⎪⎫23,+∞ [由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.]3.根据如图2-1-1所示的函数y =f (x )的图象,写出函数的解析式.图2-1-1[解] 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72;3分当-1≤x <1时,同理可设f (x )=cx +d (c ≠0), 将点(-1,-2),(1,1)代入,可得f (x )=32x -12;8分 当1≤x <2时,f (x )=1.10分所以f (x )=⎩⎪⎨⎪⎧-32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.15分。

高考数学一轮复习 第二章 函数 第一节 函数及其表示夯基提能作业本 文

高考数学一轮复习 第二章 函数 第一节 函数及其表示夯基提能作业本 文

第一节函数及其表示A组基础题组1.函数g(x)=+log2(6-x)的定义域是( )A.{x|x>6}B.{x|-3<x<6}C.{x|x>-3}D.{x|-3≤x<6}2.下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x3.已知函数f(x)=x|x|,若f(x0)=4,则x0的值为( )A.-2B.2C.-2或2 8D.4.已知g(x)=1-2x, f(g(x))=(x≠0),那么f=( )A.15B.1C.3D.305.(2017广东广州综合测试(一))已知函数f(x)=则f(f(3))=( )A. B. C.- D.-36.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x7.已知f=2x-5,且f(a)=6,则a等于( )A.-B.C.D.-8.已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于( )A.-3B.-1C.1D.39.已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是( )A.[-3,7]B.[-1,4]C.[-5,5]D.10.设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x |B.|x|=xsgn|x|C.|x|=|x|sgn xD.|x|=xsgn x11.(2018广东惠州质检)已知f(x)=则f +f 的值等于.12.函数f(x),g(x)的部分对应值分别由下表给出.则f(g(1))的值为;满足f(g(x))>g(f(x))的x的值是.13.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(1)= .14.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a的值分别是, .15.已知函数f(x)满足对任意的x∈R都有f+f=2成立,则f +f +…+f = .B组提升题组1.(2017河北石家庄质量检测(一))设函数f(x)=若f=2,则实数n的值为( )A.-B.-C.D.2.(2017河北石家庄质量检测(一))已知函数f(x)=则f(f(x))<2的解集为( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)3.具有性质f =-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=f(x)=中满足“倒负”变换的函数是( )A.①②B.②③C.①③D.只有①4.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,则++++…+= .5.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.6.已知函数f(x)对任意实数x均有f(x)=-2f(x+1),且f(x)在区间[0,1]上有表达式f(x)=x2.(1)求f(-1), f(1.5);(2)写出f(x)在区间[-2,2]上的表达式.答案精解精析A组基础题组1.D2.C 将f(2x)表示出来,看与2f(x)是否相等.对于A, f(2x)=|2x|=2|x|=2f(x);对于B, f(2x)=2x-|2x|=2(x-|x|)=2f(x);对于C, f(2x)=2x+1≠2f(x);对于D, f(2x)=-2x=2f(x),所以只有C不满足f(2x)=2f(x),故选C.3.B 当x≥0时, f(x)=x2,此时f(x0)=4,即=4,解得x0=2(舍负).当x<0时, f(x)=-x2,此时f(x0)=4,即-=4,无解.所以x0=2,故选B.4.A 令g(x)=1-2x=,得x=,∴f==15.故选A.5.A 因为f(3)=1-log23=log2<0,所以f(f(3))=f===.故选A.6.B 设g(x)=ax2+b x+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴解得∴g(x)=3x2-2x.7.B 令t=x-1,则x=2t+2,∴f(t)=2(2t+2)-5=4t-1,∴f(a)=4a-1=6,∴a=.8.A 因为f(1)=2,所以f(a)=-f(1)=-2,当a>0时, f(a)=2a=-2,无解;当a≤0时, f(a)=a+1=-2,所以a=-3.综上,a=-3,故选A.9.D x∈[-2,3]⇒x+1∈[-1,4],则2x-1∈[-1,4],解得x∈.10.D 由已知可知xsgn x=而|x|=所以|x|=xsgn x,故选D.11.答案 3解析f=-cos=cos=, f=f+1=f+2=-cos+2=+2=,故f+f=3.12.答案1;2解析∵g(1)=3, f(3)=1,∴f(g(1))=1.当x=1时, f(g(1))=f(3)=1,g(f(1))=g(1)=3,不符合题意.当x=2时, f(g(2))=f(2)=3,g(f(2))=g(3)=1,符合题意.当x=3时, f(g(3))=f(1)=1,g(f(3))=g(1)=3,不符合题意.13.答案 2解析令x=1,得2f(1)-f(-1)=4,①令x=-1,得2f(-1)-f(1)=-2,②联立①②得f(1)=2.14.答案60;16解析因为组装第a件产品用时15分钟,所以=15,①所以必有a>4,且==30.②联立①②得c=60,a=16.15.答案7解析由f+f=2,得f+f=2,f+f=2,f+f=2,又f==×2=1,∴f+f+…+f=2×3+1=7.B组提升题组1.D 因为f=2×+n=+n,当+n<1,即n<-时, f=2+n=2,解得n=-,不符合题意;当+n≥1,即n≥-时, f=log2=2,即+n=4,解得n=.故选D.2.B 因为当x≥1时, f(x)=x3+x≥2,当x<1时, f(x)=2e x-1<2,所以f(f(x))<2等价于f(x)<1,即2e x-1<1,解得x<1-ln 2,所以f(f(x))<2的解集为(-∞,1-ln 2).故选B.3.C 易知①满足条件;②不满足条件;对于③,易知f=满足f=-f(x),故③满足“倒负”变换,故选C.4.答案 2 016解析已知f(a+b)=f(a)f(b),令b=1,∵f(1)=1,∴f(a+1)=f(a),即=1,由于a是任意实数,所以当a取1,2,3,…,2 016时,==…==1.故++++…+=2 016.5.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知整理得∴解得∴f(x)=x2+x.(2)由(1)知y=f(x2-2)=(x2-2)2+(x2-2)=(x4-3x2+2)=-,当x2=时,y取最小值-,故函数y=f(x2-2)的值域为. 6.解析(1)由题意知f(-1)=-2f(-1+1)=-2f(0)=0,f(1.5)=f(1+0.5)=-f(0.5)=-×=-.(2)当x∈[0,1]时, f(x)=x2;当x∈(1,2]时,x-1∈(0,1], f(x)=-f(x-1)=-(x-1)2;当x∈[-1,0)时,x+1∈[0,1),f(x)=-2f(x+1)=-2(x+1)2;当x∈[-2,-1)时,x+1∈[-1,0),f(x)=-2f(x+1)=-2×[-2(x+1+1)2]=4(x+2)2.综上, f(x)=。

【最新】高中数学-2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-3 w

【最新】高中数学-2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-3 w

(时间:40分钟)1.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则( ) A .函数f 是奇函数 B .函数g 是奇函数C .函数f (x )·g (x )是奇函数D .函数f (x )+g (x )是奇函数 答案 C解析 令h (x )=f (x )·g (x ),∵函数f (x )是奇函数,函数g (x )是偶函数,∴f (-x )=-f (x ),g (-x )=g (x ),∴h (-x )=f (-x )g (-x )=-f (x )·g (x )=-h (x ), ∴h (x )=f (x )·g (x )是奇函数,故选C.2.函数f (x )=ax 2+bx +2a -b 是定义在上的偶函数,则a +b =( ) A .-13 B.13 C .0 D .1答案 B解析 首先数轴上表示a -1和2a 的两点应关于原点对称,即2a =1-a ,解得a =13,代入得f (x )=13x 2+bx +23-b ,又因为函数f (x )是偶函数,得b =0,所以a +b =13.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3 答案 C解析 ∵f (-x )=f (x ),g (-x )=-g (x ),f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1,即f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.4.f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln (1+x ).则当x <0时,f (x )=( ) A .-x 3-ln (1-x ) B .x 3+ln (1-x ) C .x 3-ln (1-x ) D .-x 3+ln (1-x )答案 C解析 当x <0时,-x >0,f (-x )=(-x )3+ln (1-x ),∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-,∴f (x )=x 3-ln (1-x ).5.函数f (x )是周期为4的偶函数,当x ∈时,f (x )=x -1,则不等式xf (x )>0在上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)答案 C解析 f (x )的图象如图.当x ∈时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).6.已知偶函数f (x )在上单调递增,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则-53<2x -1<53,即-13<x <43. 7.已知f (x )=ax 3+bx +2017,且f (2017)=2018,则f (-2017)=________. 答案 2016解析 f (x )=ax 3+bx +2017,令g (x )=ax 3+bx ,则g (x )为奇函数,f (x )=g (x )+2017,f (2017)=g (2017)+2017=2018,g (2017)=1,故f (-2017)=g (-2017)+2017=-g (2017)+2017=-1+2017=2016.8.设f (x )是定义在R 上且周期为2的函数,在区间,且在区间上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.解 ∵f (x )的定义域为,∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在上递减, ∴f (x )在上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 解得-2<m <1.② 综合①②可知-1≤m <1.即实数m 的取值范围是上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在上单调递增, 结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].(时间:20分钟)11.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值可以是( )A.23 B .2 C .4 D .6 答案 B解析 由题意知,3-2a <x +1<a +1,∴2-2a <x <a ,故2-2a +a =0,∴a =2,故选B. 12.已知y =f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (-1)=________. 答案 -1解析 ∵y =f (x )+x 2是奇函数,且f (1)=1, ∴f (-1)+(-1)2=-, ∴f (-1)=-3.因此g (-1)=f (-1)+2=-1.13.定义在R 上的偶函数f (x )满足f (x +2)·f (x )=1对于x ∈R 恒成立,且f (x )>0,则f (119)=__________.答案 1解析 因为f (x +2)=1f x,所以f (x +4)=f (x +2+2)=1fx +2=f (x ),f (x )为周期函数,且周期为4,f (119)=f (29×4+3)=f (3)=f (3-4)=f (-1)=f (1),又因为f (-1+2)=1f-1, 所以f (1)·f (-1)=1,即f 2(1)=1,因为f (x )>0, 所以f (1)=1,f (119)=1.14.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数,∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是(-15,1)∪(1,17).。

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本

2018课标版理数一轮(2)第二章-函数(含答案)1第一节函数及其表示夯基提能作业本第一节函数及其表示A组基础题组1.(2017四川巴中中学月考)下列哪个函数与y=x是同一个函数()A.y=x 2x B.y=2log2x C.y= x2D.y=(x3)32.(2016安徽六校联考)已知函数f(x)=x|x|,若f(x0)=4,则x0的值为()A.-2B.2C.-2或2D.23.函数f(x)=ln1+1x+1-x2的定义域为()A.(-1,1]B.(0,1]C.[0,1]D.[1,+∞)4.已知函数f(x)=log3x,x>0,a x+b,x≤0,且f(0)=2,f(-1)=3,则f(f(-3))=()A.-2B.2C.3D.-35.已知函数f(x)对任意x∈R都有f(x+3)-f(x)=1,且f(-1)=3,则f(2015)=()B.675C.4D.56.函数f(x)=4-xln x的定义域为.7.(2017安徽芜湖一中期末)已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x 表示把M中的元素x映射到集合N中仍为x,则a+b等于.8.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为.9.设函数f(x)=ax+b,x<0,2x,x≥0,且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图象.10.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1. (1)求函数f(x)的解析式; (2)求函数y=f(x 2-2)的值域.B 组提升题组11.(2017沈阳五中期中)已知实数a ≠0,函数f(x)= 2x +a , x <1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为( )A.-32 B .-32或-34 D.32或-3412.如果函数f(x)满足:对任意实数a,b 都有f(a+b)=f(a)·f(b),且f(1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2017)f (2016)= . 13.已知函数y=f(x 2-1)的定义域为[- 3, 3],则函数y=f(x)的定义域为 .14.(2015浙江,10,6分)已知函数f(x)=x+2x-3,x≥1,lg(x2+1),x<1,则f(f(-3))=,f(x)的最小值是.15.行驶中的汽车在刹车时由于惯性作用要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/时)满足以下关系:y=x2200+mx+n(m,n是常数).如图是根据多次试验数据绘制的刹车距离y(米)与汽车的车速x(千米/时)的关系图.(1)求出y关于x的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.答案全解全析A组基础题组1.D y=x的定义域为R.而y=x 2x的定义域为{x|x∈R且x≠0},y=2log2x的定义域为{x|x∈R,且x>0},排除A、B;y=2的定义域为R,但对应关系与y=x的对应关系不同,排除C;y=(x3)3=x的定义域、对应关系与y=x的均相同,故选D.2.B当x≥0时,f(x)=x2,此时f(x0)=4即x02=4,解得x0=2(舍负).当x<0时,f(x)=-x2,此时f(x0)=4即-x02=4,无解.所以x0=2,故选B.3.B由条件知1+1x>0,x≠0,1-x2≥0,即x<-1或x>0,x≠0,-1≤x≤1.则x∈(0,1].∴原函数的定义域为(0,1].4.B f(0)=a0+b=1+b=2,解得b=1.f(-1)=a-1+b=a-1+1=3,解得a=12.故f(-3)=12-3+1=9,f(f(-3))=f(9)=log39=2.5.B因为f(x+3)=f(x)+1,所以f(x+3×2)=f(x+3)+1=f(x)+2,f(x+3×3)=f(x+3×2)+1=f(x)+3,则当n∈N*时,有f(x+3n)=f(x)+n,故f(2015)=f(2+3×671)=f(2)+671=f(-1)+672=675.6.答案(0,1)∪(1,4]解析要使函数有意义,应满足:x>0,x≠1,4-x≥0,解得0<x≤4且x≠1,所以函数的定义域为(0,1)∪(1,4].< p="">7.答案 4解析由已知可得M=N,故a2-4a=-2,b2-4b+1=-1a2-4a+2=0,b2-4b+2=0,所以a,b是方程x2-4x+2=0的两根,故a+b=4.8.答案f(x)=x+1,-1≤x<0 -12x,0≤x≤2解析由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-1 2x,所以f(x)=x+1,-1≤x<0,-12x,0≤x≤2.9.解析(1)由f(-2)=3,f(-1)=f(1)得-2a+b=3,-a+b=2,解得a=-1,b=1,所以f(x)=-x+1,x<0,2x,x≥0.(2)f(x)的图象如图.10.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知c=0,a(x+1)2+b(x+1)+c=a x2+bx+c+x+1,整理得c=0,ax2+(2a+b)x+a+b+c=a x2+(b+1)x+c+1, ∴2a+b=b+1,a≠0,a+b+c=c+1,c=0,解得a=12,b=12,c=0.∴f(x)=12x2+12x.(2)由(1)知y=f(x2-2)=12(x2-2)2+12(x2-2)=12(x4-3x2+2)=12x2-322-18,当x2=32时,y取最小值-18,故函数y=f(x2-2)的值域为-18,+∞.B组提升题组11.B分类讨论:(1)当a>0时,1-a<1,1+a>1.这时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-32,不符合题意,舍去.(2)当a<0时,1-a>1,1+a<1,这时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-34,符合题意.综合(1)(2)知a的值为-34.12.答案 2016解析由f(a+b)=f(a)f(b),令b=1,结合f(1)=1, 得f(a+1)=f(a),即f (a +1)f (a )=1,由于a 是任意实数,所以当a 取1,2,3,…,2016时,f (2)f (1)=f (3)f (2)=…=f (2017)f (2016)=1.故f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2017)f (2016)=2016.13.答案 [-1,2]解析∵y=f(x 2-1)的定义域为[- 3, 3],∴x∈[- 3, 3],x 2-1∈[-1,2], ∴y=f(x)的定义域为[-1,2]. 14.答案 0;2 2-3解析∵-3<1,∴f(-3)=lg[(-3)2+1]=lg10=1,∴f(f(-3))=f(1)=1+21-3=0.当x ≥1时,f(x)=x+2x -3≥2 当且仅当x= 时取“=”);当x<1时,x 2+1≥1,∴f(x)=lg(x 2 +1)≥0.又∵2 2-3<0,∴f(x)min =2 2-3. 15.解析(1)由题意及函数图象,得 402200+40m +n =8.4,602200+60m +n =18.6,解得m=1100,n=0,所以y=x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.</x≤4且x≠1,所以函数的定义域为(0,1)∪(1,4].<>。

(全国通用)近年高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示课时分层训练 文

(全国通用)近年高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示课时分层训练 文

(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课时分层训练文新人教A版的全部内容。

课时分层训练(四) 函数及其表示A组基础达标(建议用时:30分钟)一、选择题1.下列各组函数中,表示同一函数的是()A.f(x)=x,g(x)=(错误!)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=错误!,g(x)=|x|D.f(x)=0,g(x)=x-1+错误!C [在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.]2.(2017·福建南安期末)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是() 【导学号:31222021】A B C DB [A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应.故选B.]3.(2017·安徽黄山质检)已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x-1C.-x+1 D.x+1或-x-1A [设f(x)=kx+b,则由f[f(x)]=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b =x+2,∴k2=1,kb+b=2,解得k=1,b=1,则f(x)=x+1.故选A。

2018届高三数学一轮复习 第二章 函数 第二节 函数的单调性与最值夯基提能作业本 文

2018届高三数学一轮复习 第二章 函数 第二节 函数的单调性与最值夯基提能作业本 文

第二节函数的单调性与最值A组基础题组1.(2016北京,4,5分)下列函数中,在区间(-1,1)上为减函数的是( )A.y=B.y=cos xC.y=ln(x+1)D.y=2-x2.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( )A.f(x)=-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x3.函数f(x)=x|x-2|的单调减区间是( )A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)4.(2015吉林长春质量检测(二))已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)5.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( )A.f(-1)<f(3)B.f(0)>f(3)C. f(-1)=f(3)D.f(0)=f(3)6.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1B.1C.6D.127.已知f(x)=的值域为R,那么a的取值范围是.8.已知函数f(x)=则f(x)的最小值是.9.已知f(x)=(x≠a),若a>0且f(x)在(1,+∞)内单调递减,则a的取值范围为.10.已知函数f(x)=-(a>0,x>0).(1)求证: f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.11.已知函数f(x)=ax+(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),求g(a)的最大值.B组提升题组12.设函数f(x)=若函数y=f(x)在区间(a,a+1)上单调递增,则实数a的取值范围是( )A.(-∞,1]B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞)13.(2015云南昆明模拟)记实数x1,x2,…,x n中的最大数为max{x1,x2,…,x n},最小数为min{x1,x2,…,x n},则max{min{x+1,x2-x+1,-x+6}}=( )A. B.1 C.3 D.14.已知函数f (x)=log2x+,若x1∈(1,2),x2∈(2,+∞),则( )A.f(x1)<0, f(x2)<0B.f(x1)<0, f(x2)>0C.f(x1)>0, f(x2)<0D.f(x1)>0, f(x2)>015.(2016山东日照模拟)若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]16.(2016湖南益阳一模)已知函数f(x)的值域为,则函数g(x)=f(x)+的值域为.17.(2015山东临沂模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是.18.已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是.19.已知二次函数f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立.(1)求F(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.答案全解全析A组基础题组1.D 选项A中,y==的图象是将y=-的图象向右平移1个单位得到的,故y=在(-1,1)上为增函数,不符合题意;选项B中,y=cos x在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C中,y=ln(x+1)的图象是将y=ln x的图象向左平移1个单位得到的,故y=ln(x+1)在(-1,1)上为增函数,不符合题意;选项D符合题意.2.A “∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”等价于在(0,+∞)上f(x)为减函数,易判断f(x)=-x符合题意,选A.3.A f(x)=x|x-2|=结合图象可知函数的单调减区间是[1,2].4.A 因为函数f(x)在(-∞,-a)上是单调函数,所以-a≥-1,即a≤1,故选A.5.A 依题意得f(3)=f(1),因为-1<1<2,于是由函数f(x)在(-∞,2)上是增函数得f(-1)<f(1)=f(3).6.C 由已知得,当-2≤x≤1时, f(x)=x-2,此时f(x)递增,当1<x≤2时, f(x)=x3-2,此时f(x)也递增,又在x=1处f(x)连续,∴f(x)的最大值为f(2)=23-2=6.7.答案解析由题意知∴∴-1≤a<.即a的取值范围是.8.答案2-3解析当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.9.答案(0,1]解析任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=-=.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立.∴a≤1.故a的取值范围是(0,1].10.解析(1)证明:任取x 1,x2∈(0,+∞),且x2>x1,则x2-x1>0,x1x2>0,∵f(x2)-f(x1)=-=-=>0,∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.(2)∵f(x)在上的值域是,f(x)在上单调递增,∴f=, f(2)=2.易得a=.11.解析f(x)=x+,当a>1时,a->0,此时f(x)在[0,1]上为增函数,∴g(a)=f(0)=;当0<a<1时,a-<0,此时f(x)在[0,1]上为减函数,∴g(a)=f(1)=a;当a=1时, f(x)=1,此时g(a)=1.∴g(a)=∴g(a)在(0,1)上为增函数,在[1,+∞)上为减函数,又a=1时,有a==1,∴当a=1时,g(a)取最大值1.B组提升题组12.D 作出函数y=f(x)的图象,如图所示,由图象可知f(x)的单调递增区间为(-∞,2],(4,+∞),所以要使f(x)在(a,a+1)上单调递增,需满足a+1≤2或a≥4,即a≤1或a≥4,选D.13.D 在同一坐标系下作出函数y=x+1,y=x2-x+1,y=-x+6的图象,如图所示,实线部分为函数y=min{x+1,x2-x+1,-x+6}的图象,由图象知max{min{x+1,x2-x+1,-x+6}}=.14.B ∵函数f(x)=log2x+在(1,+∞)上为增函数,且f(2)=0,∴当x1∈(1,2)时, f(x1)<f(2)=0,当x2∈(2,+∞)时, f(x2)>f(2)=0,即f(x1)<0, f(x2)>0.15.D ∵f(x)=-x2+2ax在[1,2]上是减函数,∴a≤1,又∵g(x)=在[1,2]上是减函数,∴a>0,∴0<a≤1.16.答案解析∵≤f(x)≤,∴≤≤.令t=,则f(x)=(1-t2),令y=g(x),则y=-(t-1)2+1.∴当t=时,y有最小值;当t=时,y有最大值.∴g(x)的值域为.17.答案[0,1)解析由题意知g(x)=函数图象如图所示,其递减区间是[0,1).18.答案(-2,1)解析由题意知f(x)在R上是增函数,则由题意得2-a2>a,解得-2<a<1.19.解析(1)∵f(-1)=0,∴a-b+1=0,∴b=a+1,∴f(x)=ax2+(a+1)x+1.∵对任意实数x均有f(x)≥0成立,∴∴∴a=1,从而b=2,∴f(x)=x2+2x+1,∴F(x)=(2)g(x)=x2+2x+1-kx=x2+(2-k)x+1.∵g(x)在[-2,2]上是单调函数,∴≤-2或≥2,解得k≤-2或k≥6.故k的取值范围是(-∞,-2]∪[6,+∞).。

2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示教师用书 文 北师大版

2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示教师用书 文 北师大版

第二章函数、导数及其应用[深研高考·备考导航] 为教师备课、授课提供丰富教学资源 [五年考情][重点关注]1.从近五年全国卷高考试题来看,函数、导数及其应用是每年高考命题的重点与热点,既有客观题,又有解答题,中高档难度.2.函数的概念、图像及其性质是高考考查的主要内容,函数的定义域、解析式、图像是高考考查的重点,函数性质与其他知识的综合是历年高考的热点.3.导数的几何意义,导数在研究函数单调性、极值、最值、函数的零点等方面的应用是高考的重点与热点.4.本章内容集中体现了四大数学思想:函数与方程、数形结合、分类讨论、转化与化归的思想,且常与方程、不等式、导数等知识交汇命题,体现了综合与创新.[导学心语]1.注重基础:对函数的概念、图像、性质(单调性、奇偶性、周期性)、导数的几何意义、导数在研究函数单调性、极值、最值、函数的零点等方面的应用,要熟练掌握并灵活应用.2.加强交汇,强化综合应用意识:在知识的交汇点处命制试题,已成为高考的一大亮点,函数的观点和方法贯穿于高中数学的全过程,因此,应加强函数与三角函数、数列、不等式、解析几何、导数等各章节之间的联系.3.把握思想:数形结合思想、函数与方程思想、分类讨论思想和等价转化思想在解决各种与函数有关的问题中均有应用,复习时应引起足够重视.第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫作自变量,集合A 叫作函数的定义域;集合{f (x )|x ∈A }叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有列表法、图像法和解析法. 3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2017·南昌一模)已知函数f (x )=⎩⎨⎧x ,x >0,2-x,x ≤0,则f (f (-4))=________.4 [∵f (-4)=24=16,∴f (f (-4))=f (16)=16=4.]4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________.【导学号:66482021】① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确.](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f xx -1的定义域是________.(1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【导学号:66482022】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.【导学号:66482023】(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.(1)x 2-1(x ≥1) (2)23 x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,用1x代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f x 1x-1,得f (x )=23 x +13(x >0).]☞角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=( )A .2 016B .14 C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝ ⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4.] ☞角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( )A .1B .1或-1 C. 3D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D.(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.] ☞角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________.(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎨⎧ex -1,x <1,x,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8. 综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法.4.分段函数问题要分段求解.[易错与防范]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的范围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f (x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;如果x0的范围不确定,要分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节函数及其表示
组基础题组
.函数()()的定义域是( )
.{>}.{<<}
.{>}.{≤<}
.设函数()()(),则()的表达式是( )
()()
()()
.若二次函数()满足()(),且图象过原点,则()的解析式为( )
()()
()()
.已知()则的值等于( )
.具有性质()的函数,我们称为满足“倒负”变换的函数,下列函
数:①;②;③()中满足“倒负”变换的函数是( )
.①②.②③
.①③.只有①
.(湖北分)设∈,定义符号函数则( )
.设函数()若,则.
.如果函数()满足:对任意实数都有()()·(),且(),则….
.根据统计,一名工人组装第件某产品所用的时间(单位:分钟)为()
(为常数).已知此工人组装第件产品用时分钟,组装第件产品用时分钟,那么和的值分别是,.
.根据如图所示的函数()(∈))的图象,写出函数的解析式.
.已知()是二次函数,若(),且()().
()求函数()的解析式;
()求函数()的值域.
组提升题组
.(陕西西安模拟)已知函数()
若()(),则实数的值为( )
或 .函数
的定义域为,则实数的取值范围为( )
<或>≤<
<<≥或≤ .设映射→是集合{>}到集合的映射.若对于实数∈,在中不存在对应的元素,则实数的取值范围是
( )。

相关文档
最新文档