专题37 不等式的性质与基本不等式-2019年高考理科数学一轮总复习检测
人教版高中总复习一轮数学精品课件 第1章 等式的性质与不等式的性质、基本不等式
b
c
3.不等式的基本性质
性质
性质 1
性质 2
性质 3
别名
对称性
传递性
可加性
性质 4
可乘性
性质 5
同向可加性
性质 6
性质 7
同向同正可
乘性
乘方法则
性质内容
注意
a>b⇔b<a
可逆
a>b,b>c⇒a>c
同向
a>b⇔a+c>b+c
可逆
a > b,
⇒ac>bc
c>0
c 的符号
a > b,
⇒ac<bc
c<0
2
故 D 错误.
(2)下列说法正确的是( C )
A.若a>b,c>d,则ac>bd
B.若ac>bc,则a>b
C.若 2 < 2,则 a<b
D.若a>b,c>d,则a-c>b-d
取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,故B错误;
因为 2 < 2 ,且c≠0,所以c2>0,即a<b,C正确;取a=c=2,b=d=1,可知D错误.
(1)若x∈R,y∈R,则( A )
A.x2+y2>2xy-1
B.x2+y2=2xy-1
C.x2+y2<2xy-1
D.x2+y2≤2xy-1
因为x2+y2-(2xy-1)=x2-2xy+y2+1=(x-y)2+1>0,
近年高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式演练文(2021年整理)
2019高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式分层演练文的全部内容。
第2讲不等式的性质与基本不等式一、选择题1.已知a,b为非零实数,且a<b,则下列不等式一定成立的是( )A.a2<b2B.ab2>a2bC.错误!<错误!D.错误!〈错误!解析:选C。
若a<b<0,则a2>b2,故A错;若0<a<b,则错误!>错误!,故D 错;若ab〈0,即a<0,b>0,则a2b〉ab2,故B错;故C正确.所以选C.2.已知0<a<b<1,则()A.错误!>错误! B.错误!错误!<错误!错误!C.(lg a)2<(lg b)2D。
错误!〉错误!解析:选D.因为0〈a〈b〈1,所以错误!-错误!=错误!〈0,可得错误!〈错误!;错误!错误!>错误!错误!;(lg a)2〉(lg b)2;因为lg a<lg b<0,所以1lg a〉错误!,综上可知D正确,另解:取a=错误!,b=错误!,排除验证,知D正确,故选D. 3.当x>0时,函数f(x)=错误!有( )A.最小值1 B.最大值1 C.最小值2 D.最大值2解析:选B。
f(x)=错误!≤错误!=1。
高考数学第一轮复习(典型题+详解)不等式的基本性质、
不等式的基本性质、含有绝对值的不等式1.两个实数大小关系的基本事实a>b⇔________a=b⇔________a<b⇔________2.不等式的基本性质(1)对称性:如果a>b,那么______;如果______,那么a>b.即a>b⇔______.(2)传递性:如果a>b,b>c,那么______.即a>b,b>c⇒______.(3)可加性:如果______,那么a+c>b+c.(4)可乘性:如果a>b,c>0,那么______;如果a>b,c<0,那么______.(5)乘方:如果a>b>0,那么a n____b n(n∈N,n>1).(6)开方:如果a>b>0,那么na____nb(n∈N,n>1).3.绝对值三角不等式(1)性质1:|a+b|≤________.(2)性质2:|a|-|b|≤________.(3)性质3:________≤|a-b|≤________.4.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a|x|>a(2)|ax+b|≤c (c>0)和|ax+b①|ax+b|≤c⇔______________;②|ax+b|≥c⇔______________.(3)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.判断下面结论是否正确(请在括号内打“√”或“×”)(1)|x -a |+|x -b |的几何意义是表示数轴上的点x 到点a ,b 的距离之和.( )(2)不等式|a |-|b |≤|a +b |等号成立的条件是ab ≤0.( )(3)不等式|a -b |≤|a |+|b |等号成立的条件是ab ≤0.( )2.不等式|2x -1|-|x -2|<0的解集为__________.3.不等式1<|x +1|<3的解集为________.4.不等式1-3|x |x>0的解集为________. 5.(2013·福建改编)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .则a 的值为________.题型一 绝对值三角不等式定理的应用例1 “|x -A |<ε2且|y -A |<ε2”是“|x -y |<ε”(x ,y ,A ,ε∈R )的________条件. 思维升华 对绝对值三角不等式定理的理解注意以下三点:(1)两端的等号成立的条件在解题时经常用到,特别是用此定理求函数的最大(小)值时.(2)该定理可以推广为|a +b +c |≤|a |+|b |+|c |,也可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它们经常用于含绝对值的不等式的推证.(3)当ab ≥0时,|a +b |=|a |+|b |;当ab ≤0时,|a -b |=|a |+|b |.(1)设a ,b 是满足ab <0的实数,则下列不等式正确的是________.①|a +b |>|a -b | ②|a +b |<|a -b |③|a -b |<||a |-|b || ④|a -b |<|a |+|b |(2)已知命题p :|a |<1,且|b |<2,命题q :|a +b |<3,则p 是q 的________条件.题型二 含绝对值的不等式的解法例2 (2012·课标全国改编)已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,不等式f (x )≥3的解集为________;(2)若f (x )≤|x -4|的解集包含[1,2],则a 的取值范围为________.思维升华 解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.(1)不等式|x +1|-|x -3|≥0的解集是__________.(2)不等式|x +3|-|x -2|≥3的解集为________.题型三 含参数的绝对值不等式问题例3 已知不等式|x +1|-|x -3|>a .若不等式有解,则实数a 的取值范围为__________.若不等式的解集为R ,则实数a 的取值范围为___________________________________. 若不等式的解集为∅,则实数a 的取值范围为_____________________________________. 思维升华 不等式有解是含参数的不等式存在性问题,只要求存在满足条件的x 即可;不等式的解集为R 是指不等式的恒成立问题,而不等式的解集为∅的对立面(如f (x )>m 的解集是空集,则f (x )≤m 恒成立)也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.绝对值不等式的解法典例:(5分)不等式|x +1|+|x -1|≥3的解集为________________________________.思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法.解析 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x .∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32. 从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 方法二 当x ≤-1时,原不等式可化为-(x +1)-(x -1)≥3,解得:x ≤-32. 当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解.当x ≥1时,原不等式可以化为x +1+x -1≥3.所以x ≥32. 综上,可知原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32. 方法三 将原不等式转化为|x +1|+|x -1|-3≥0.构造函数y =|x +1|+|x -1|-3,即y =⎩⎪⎨⎪⎧ -2x -3,x ≤-1;-1,-1<x <1;2x -3,x ≥1.作出函数的图象,如图所示:函数的零点是-32,32. 从图象可知,当x ≤-32或x ≥32时,y ≥0, 即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 答案 ⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞ 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.方法与技巧1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x-a|+|x-b|>m或|x -a|+|x-b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.2.含绝对值不等式的证明,可考虑去掉绝对值符号,也可利用重要不等式|a+b|≤|a|+|b|及推广形式|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|进行放缩.3.应用绝对值不等式性质求函数的最值时,一定要注意等号成立的条件.失误与防范1.理解绝对值不等式的几何意义.2.掌握分类讨论的标准,做到不重不漏.A组专项基础训练1.不等式|2x-1|<3的解集为________.2.已知全集U=R,集合M={x||x-1|≤2},则∁U M=______________.3.(2013·江西)在实数范围内,不等式||x-2|-1|≤1的解集为________.4.(2013·山东)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1成立的概率为________.5.不等式|x+1|+|2x-4|>6的解集为____________.6.不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为__________.7.如果关于x的不等式|x-a|+|x+4|≥1的解集是R,则实数a的取值范围是______________________.8.(2013·重庆)若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.9.(2012·湖南)不等式|2x+1|-2|x-1|>0的解集为____________.10.若不等式|3x-b|<4的解集中的整数有且仅有1、2、3,则b的取值范围为________.B组专项能力提升1.(2012·陕西)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.2.若不等式|x+1|+|x-3|≥|m-1|恒成立,则m的取值范围为________.3.已知集合A={x∈R||x+3|+|x-4|≤9},B={x∈R|x=4t+1t-6,t∈(0,+∞)},则集合A∩B=________.4.若关于x的不等式|x-1|+|x-3|≤a2-2a-1在R上的解集为∅,则实数a的取值范围是____________.5.不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.6.对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.7.设函数f(x)=|x-3|+|x-a|,如果对任意x∈R,f(x)≥4,则a的取值范围是________.答案基础知识自主学习要点梳理1.a -b >0 a -b =0 a -b <02.(1)b <a b <a b <a (2)a >c a >c (3)a >b (4)ac >bc ac <bc (5)> (6)>3.(1)|a |+|b | (2)|a +b | (3)|a |-|b | |a |+|b |4.(1){x |-a <x <a } ∅ ∅ {x |x >a 或x <-a }{x |x ∈R 且x ≠0} R(2)①-c ≤ax +b ≤c ②ax +b ≥c 或ax +b ≤-c夯基释疑1.(1)√ (2)× (3)√2.{x |-1<x <1}解析 方法一 原不等式即为|2x -1|<|x -2|,∴4x 2-4x +1<x 2-4x +4,∴3x 2<3,∴-1<x <1.方法二 原不等式等价于不等式组①⎩⎪⎨⎪⎧ x ≥2,2x -1-(x -2)<0,或②⎩⎪⎨⎪⎧ 12<x <2,2x -1+(x -2)<0.或③⎩⎪⎨⎪⎧x ≤12,-(2x -1)+(x -2)<0.不等式组①无解,由②得12<x <1,由③得-1<x ≤12. 综上得-1<x <1,所以原不等式的解集为{x |-1<x <1}.3.(-4,-2)∪(0,2) 4.(-∞,-13)∪(0,13) 5.1解析 因为32∈A ,且12∉A ,所以|32-2|<a ,且|12-2|≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.题型分类深度剖析例1 充分不必要解析 若|x -A |<ε2,|y -A |<ε2,则有|x -y |=|x -A +A -y |=|(x -A )+(A -y )|≤|x -A |+|y -A |<ε2+ε2=ε.∴|x -A |<ε2,|y -A |<ε2是|x -y |<ε成立的充分条件.反之,若|x -y |<ε,则可以取|x -A |<34ε,|y -A |<ε4使得条件|x -A |<ε2,|y -A |<ε2得不到满足. 因此,|x -A |<ε2,|y -A |<ε2是|x -y |<ε成立的充分而不必要条件. 跟踪训练1 (1)② (2)充分不必要例2 (1){x |x ≤1或x ≥4} (2)[-3,0]解析 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4.所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].跟踪训练2 (1)[1,+∞) (2){x |x ≥1}解析 (1)方法一 不等式等价转化为|x +1|≥|x -3|,两边平方得(x +1)2≥(x -3)2,解得x ≥1,故不等式的解集为[1,+∞).方法二 不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故不等式的解集为[1,+∞).(2)原不等式可化为⎩⎪⎨⎪⎧ x ≤-3,-x -3+x -2≥3或⎩⎪⎨⎪⎧ -3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3,∴x ∈∅或1≤x <2或x ≥2.∴不等式的解集为{x |x ≥1}.例3 a <4 a <-4 a ≥4解析 由|x +1|-|x -3|≤|x +1-(x -3)|=4.|x -3|-|x +1|≤|(x -3)-(x +1)|=4.可得-4≤|x +1|-|x -3|≤4.(1)若不等式有解,则a <4;(2)若不等式的解集为R ,则a <-4;(3)若不等式解集为∅,则a ≥4.跟踪训练3 解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧ -2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5.综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 练出高分A 组1.(-1,2) 2.{x |x <-1或x >3}3.[0,4]解析 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0|x -2|≤2得0≤x ≤4.∴不等式的解集为[0,4]. 4.13解析 由绝对值的几何意义知:使|x +1|-|x -2|≥1成立的x 值为x ∈[1,3],由几何概型知所求概率为P =3-13+3=26=13. 5.(-∞,-1)∪(3,+∞) 解析 由题意知,原不等式可化为⎩⎨⎧ x ≥2x +1+2x -4>6 或⎩⎪⎨⎪⎧ -1<x <2x +1-2x +4>6或⎩⎪⎨⎪⎧ x ≤-1-x -1-2x +4>6, 解得x >3或x <-1,∴x ∈(-∞,-1)∪(3,+∞).6.(-∞,-3)解析 根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P 、A 、B ,则原不等式等价于P A -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.7.(-∞,-5]∪[-3,+∞)解析 在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3.8.(-∞,8]解析 ∵|x -5|+|x +3|=|5-x |+|x +3|≥|5-x +x +3|=8,∴(|x -5|+|x +3|)min =8,要使|x -5|+|x +3|<a 无解,只需a ≤8.9.⎩⎨⎧⎭⎬⎫x ⎪⎪x >14 解析 根据绝对值的几何意义,去掉绝对值号后求解.当x ≤-12时,原不等式可化为-1-2x +2(x -1)>0, 整理得-3>0,无解.当-12<x ≤1时,原不等式可化为2x +1+2(x -1)>0,整理得4x -1>0,即x >14,∴14<x ≤1.当x >1时,原不等式可化为2x +1-2(x -1)>0,整理得3>0.此时不等式的解集为x >1.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 14<x ≤1∪{x |x >1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ x >14.10.(5,7)解析 |3x -b |<4⇔-4+b 3<x <4+b 3,由已知得:⎩⎪⎨⎪⎧ 0≤b -43<1,3<b +43≤4⇒⎩⎨⎧4≤b <7,5<b ≤8⇒5<b <7. B 组1.-2≤a ≤4解析 ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.2.[-3,5]解析 ∵|x +1|+|x -3|≥|(x +1)-(x -3)|=4,∴不等式|x +1|+|x -3|≥|m -1|恒成立,只需|m -1|≤4,即-3≤m ≤5.3.{x |-2≤x ≤5}解析 |x +3|+|x -4|≤9,当x <-3时,-x -3-(x -4)≤9,即-4≤x <-3;当-3≤x ≤4时,x +3-(x -4)=7≤9恒成立;当x >4时,x +3+x -4≤9,即4<x ≤5.综上所述,A ={x |-4≤x ≤5}.又∵x =4t +1t-6,t ∈(0,+∞), ∴x ≥24t ·1t -6=-2,当t =12时取等号. ∴B ={x |x ≥-2},∴A ∩B ={x |-2≤x ≤5}.4.(-1,3)解析 要使不等式|x -1|+|x -3|≤a 2-2a -1在R 上的解集为∅,则a 2-2a -1<(|x -1|+|x -3|)min .又(|x -1|+|x -3|)min =2,∴a 2-2a -1<2,即a 2-2a -3<0,∴-1<a <3.5.(-∞,2)解析 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.6.5解析 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2.由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.7.(-∞,-1]∪[7,+∞)解析 若a =3,则f (x )=2|x -3|,不满足题设条件;若a <3,则f (x )=⎩⎪⎨⎪⎧ -2x +a +3, x ≤a ,3-a , a <x <3,2x -a -3, x ≥3,f (x )的最小值为3-a ;若a >3,则f (x )=⎩⎪⎨⎪⎧ -2x +a +3, x≤3,a -3, 3<x <a ,2x -a -3, x ≥a ,f(x)的最小值为a-3,所以对任意x∈R,f(x)≥4的充要条件是|a-3|≥4,解得a≥7或a≤-1.故a的取值范围为(-∞,-1]∪[7,+∞).。
高三一轮复习数学 不等式的性质
不等式的性质一、学习目标:1.会比较两个数(式)的大小.2.掌握不等式的性质,掌握不等式性质的简单应用二、重难点:重点:理解不等式的性质难点:会解一元二次不等式中的恒成立问题三、知识梳理知识点一两个实数比较大小的方法方法关系作差法作商法a>b a-b>0>1(a,b>0)或<1(a,b<0)a=b a-b=0=1(b≠0)a<b a-b<0<1(a,b>0)或>1(a,b<0)自查自测1.已知P=a2+3a+3,Q=a+1,则P与Q的大小关系为()A.P<Q B.P=Q C.P>Q D.不能确定2.已知x≠0,则(x2+1)2与x4+x2+1的大小关系为.3.比较两数的大小:7+1014.知识点二不等式的性质自查自测1.已知实数x,y满足x>y,则下列不等式成立的是()A.<1B.ax>ay C.x+a>y+a D.x2>y22.下列命题中,是真命题的是()A.如果ac>bc,那么a>b B.如果ac2>bc2,那么a>b C.如果>,那么a>b D.如果a>b,c>d,那么a-c>b-d 3.已知-1<a+b<2,-3<a-b<5,则3a-b的取值范围是.知识点三一元二次不等式的解法有两个相异的实数自查自测1.设x Rx x+-<成立的x的取值范围为∈,使不等式23202.不等式2340--+>的解集为x x【常用结论】1.倒数性质(1)a>b,ab>0⇒1<1.(2)a<0<b⇒1<1.(3)a>b>0,0<c<d⇒>.(4)0<a<x<b或a<x<b<0⇒1<1<12.分数性质若a>b>0,m>0,则(1)真分数性质:<r r;>K K(b-m>0).(2)假分数性质:>r r;<K K(b-m>0).3.分式不等式的解法(1)op op>0⇔opop>0(2)op op≥0⇔opop>0op≠0(3)op op>o≠0)⇔op op−>0自查自测1.不等式2301xx ->-的解集为()A .3(,4-∞B .2(,3-∞C .2(,)(1,)3-∞+∞ D .2(,1)32.下列不等式中,与不等式28223x x x +<++解集相同的是()A .2(8)(23)2x x x +++<B .282(23)x x x +<++C .212238x x x <+++D .223182x x x ++>+四、典例分析考点一不等式的性质考向1利用不等式的性质比较大小1.(多选题)已知实数a ,b ,c 满足c <b <a 且ac <0,则下列不等式一定成立的是()A .ab >acB .c (b -a )>0C .ac (a -c )<0D .cb 2<ab 22.(多选题)设b >a >0,c ∈R ,则下列不等式中正确的是()A .a 12<b12B .1>1C .r2r2>D .ac 3<bc 33.(2024·潍坊调研)()A .若1<1,则a 3>b 3B 2a <2bC .若ln a 2>ln b 2,则2|a |>2|b |D .若tan a >tan b ,则a >b 4.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bdB.若a>b,则ac 2>bc2C.若a>b>0,则(a −b)c>0D.若a>b,则a +c>b +c考向2利用不等式的性质求取值范围5.若-2<a <b <3,-2<c <0,则c (a -b )的取值范围是.6.设x ,y 为实数,满足2≤xy 2≤3,3≤2≤4,则55的最大值是.考点二分式不等式及高次不等式1.不等式K1r1≤1)A.x x ≤−2或xB.x x >−2x ≤−2或x ≥− D.x −2≤x2.已知关于x 的不等式B−1r1>0的解集是x <−1或x >a =考点三含参及综合类问题1.已知关于x的不等式ax2+(a−2)x−2≥0(a∈R).(1)若不等式的解集为{x|x≤−1或x≥2},求a的值;(2)若不等式的解集只包含一个元素,求a的值和该不等式的解集.2.已知关于x的不等式x2−ax+b<0的解集为{x|2<x<3},则关于x的不等式x2−bx+a<0的解集为()A.{x|2<x<3}B.{x|1<x<5}C.{x|2<x<5}D.{x|1<x<3}3.设a∈R,解关于x的不等式2x2+ax+2>0.4.若关于x的不等式(m−1)x2+(m−1)x+2>0的解集为R,求实数m的取值范围随堂检测1.若实数x,y满足x2+y2-xy=1,则()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥12.解关于x的不等式ax2-(a+1)x+1<0(a>0).3.若对于−2≤m≤2,不等式mx>−mx−1<−m+5恒成则实数x是.4.已知关于x的不等式-x2+4x≥a2-3a在R上有解,则实数a的取值范围是()A.{a|-1≤a≤4}B.{a|-1<a<4}C.{a|a≥4或a≤-1}D.{a|-4≤a≤1}5.函数f(x)=x2+ax+3.若当x∈[-2,2]时,f(x)≥a恒成立,则实数a的取值范围是.若当a∈[4,6]时,f(x)≥0恒成立,则实数x的取值范围是.。
不等式的性质基本不等式课件高三数学一轮复习
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.
2019版高考数学理科一轮复习课件:§7.3 基本不等式及不等式的应用
1 x
1 3y
)
答案 C ∵lg 2x+lg 8y=lg 2,∴lg(2x· 8y)=lg 2,∴2x+3y=2,∴x+3y=1.
∵x>0,y>0,∴ + =(x+3y) ≥2+2
1 x
1 3y
1 x
3y x 1 =2+ + x 3y 3y
3y x 1 当且仅当x 3 y 时, 取? ” ,故选C. =4 x 3y 2
1 8 1 4
(1)使用基本不等式求最值,易失误的原因是对其存在前提“一正、二定、三相等”的忽视.要
利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使满足基本不等式中 “定”“等”的条件. “正”
a 4 4b 4 1 3.(2017天津,12,5分)若a,b∈R,ab>0,则 的最小值为 ab
最大值为 ( A.0 C. 4
9
)
B.1 D.3
答案 B ∵正实数a,b,c满足a2-3ab+4b2-c=0, ∴c=a2-3ab+4b2,∴ = 2 由 + ≥2
a b 4b a ab c ab 1 , 2 = a 4b a 3ab 4b 3 b a
a 4b =4,当且仅当a=2b时取得等号, b a ab ∴当a=2b时, 取得最大值,且c=2b2, c
1 a 2 b2 4.(2016黑龙江牡丹江模拟,8)已知a>b>0,且ab=1,若0<c<1,p=logc ,q=logc ,则p,q 2 a b
2
的大小关系是 (
高考理科数学一轮复习课件基本不等式
特殊性质
当$a < b < 0$时,有$frac{1}{b} < frac{1}{a}$;当$0 < a < b$时,有 $frac{1}{a} > frac{1}{b}$。
D
常见不等式关系
• 算术平均值与几何平均值关系:对于非负实数$a_1, a_2, \ldots, a_n$,有 $\frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1a_2\ldots a_n}$。
• 柯西不等式(Cauchy-Schwarz Inequality):对于任意实数序列${a_i}$和 ${bi}$($i = 1, 2, \ldots, n$),有$\left(\sum{i=1}^{n} ai^2\right) \left(\sum{i=1}^{n} bi^2\right) \geq \left(\sum{i=1}^{n} a_ib_i\right)^2$。
解一元二次不等式方法
配方法
将不等式化为完全平方 的形式,从而确定解集 。
因式分解法
将不等式因式分解,根 据每个因式的符号确定 解集。
数轴标根法
在数轴上标出方程的根 ,根据不等式的性质确 定解集。
图像法
画出抛物线的图像,根 据图像确定不等式的解 集。
03 绝对值不等式解法
绝对值概念及性质
绝对值定义
绝对值不等式分类与解法
一元一次绝对值不等式
形如$|ax + b| > c$或$|ax + b| < c$的不等式。解法:根 据绝对值定义,将不等式转化为两个一元一次不等式组进 行求解。
一元二次绝对值不等式
高考数学一轮总复习 第37讲 不等式的性质与基本不等式考点集训 理 新人教A版
考点集训(三十七) 第37讲 不等式的性质与基本不等式1.已知a ,b ,c ∈R ,那么下列命题中正确的是A .若a >b ,则ac 2>bc 2B .若a c >b c ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b2.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎣⎢⎡⎦⎥⎤0,π2,那么2α-β3的取值范围是 A.⎝ ⎛⎭⎪⎫0,56π B.⎝ ⎛⎭⎪⎫-π6,56π C .(0,π) D.⎝ ⎛⎭⎪⎫-π6,π 3.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为A .1B .2C .4D .84.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy A .有最大值e B .有最大值 eC .有最小值eD .有最小值 e5.下列各函数中,最小值为4的个数为 ①y =x +4x ;②y =sin x +4sin x(0<x <π);③y =e x +4e -x ;④y =log 3x +4log x 3. A .4 B .3 C .2 D .16.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 A .3 B .4 C.92 D.1127.函数y =9sin 2x+4sin 2x 的最小值是________. 8.已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是______________.9.某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.假定当天所买饲料当天用,不需保管与其他费用.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少;(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时其价格可享受八五折优惠(即为原价的85%),问该厂是否可以考虑利用此优惠条件?若考虑优惠条件,则应如何安排可使平均每天所支付的费用最少?第37讲 不等式的性质与基本不等式【考点集训】1.C 2.D 3.C 4.C 5.D 6.B 7.138.⎝ ⎛⎭⎪⎫-92,132 9.【解析】(1)设该厂应隔x(x ∈N *)天购买一次饲料,平均每天支付的总费用为y 1.∵饲料的保管与其他费用每天比前一天少200×0.03=6(元),∴x 天饲料的保管与其他费用共是6(x -1)+6(x -2)+…+6=3x 2-3x (元).从而有y 1=1x(3x 2-3x +300)+200×1.8 =300x+3x +357≥417. 当且仅当300x=3x ,即x =10时,y 1有最小值. 即每隔10天购买一次饲料才能使平均每天支付的总费用最少.(2)设该厂利用此优惠条件,每隔x 天(x ≥25)购买一次饲料,平均每天支付的总费用为y 2,则y 2=1x(3x 2-3x +300)+200×1.8×0.85 =300x+3x +303(x ≥25). ∵y ′2=-300x 2+3, ∴当x ≥25时,y ′2>0,即函数y 2在[25,+∞)上是增函数,∴当x =25时,y 2取得最小值为390.而390<417,∴该厂可以接受此优惠条件.。
高三一轮复习《不等式的性质与基本不等式》
第六章 不等式§6.1不等式的性质与基本不等式知识梳理1、比较原理两实数b a ,之间有且只有以下三个大小关系之一: 、 、 。
其中0>-⇔>b a b a ;⇔<b a ;⇔=b a 。
(比较大小常用方法: )2、不等式的性质(1)对称性:⇔>b a 。
(2)传递性:⇒>>c b b a , 。
(3)不等式加等量:c a b a +⇔> c b +。
(4)不等式乘正量:⇒>>0,c b a 。
不等式乘负量:⇒<>0,c b a 。
(5)同向不等式相加:⇒>>d c b a , 。
(6)异向不等式相减:⇒<>d c b a , 。
(7)同向不等式相乘:⇒>>>>0,0d c b a 。
(8)异向不等式相除:⇒<<>>d c b a 0,0 。
(9)不等式取倒数:a ab b a 10,⇒>> b1 (10)不等式的乘方:⇒>>0b a 。
(11)不等式的开方:⇒>>0b a 。
(12)真分数性质:0,0___b b m a b m a a m+>>>⇒+ 3、重要不等式和基本不等式 (1)如果0,0>>b a ,那么 叫做这两个正数的算术平均数。
(2)如果0,0>>b a ,那么 叫做这两个正数的几何平均数。
(3)基本不等式:0,0>>b a ,则 ,当且仅当b a =时取等号,即两个正数的算术平均数不小于它们的几何平均数。
注:①用基本不等式求最值时注意三个条件:“ ”②基本不等式的几何解释:在直角三角形中,直角三角形斜边上的 不小于 ,如图所示.(4)常见变形:① (,a R b R ∈∈取等条件: )② (,a R b R ∈∈取等条件: )③ (,a R b R ∈∈取等条件: )(5)求最小值:0,0>>b a ,当ab 为定值时,22,b a b a ++有最 值,即≥+b a ,≥+22b a 。
高考数学一轮复习《不等式的性质》综合复习练习题(含答案)
高考数学一轮复习《不等式的性质》综合复习练习题(含答案)一、单选题1.已知01,0a b <<<,则下列大小关系正确的是( ) A .21ab a b << B .21ab a b << C .21ab a b << D .21a b ab <<2.如果a bc c>,那么下列不等式中,一定成立的是( ) A .22ac bc >B .a b >C .a c b c ->-D .ac bc >3.如果,,,R a b c d ∈,则正确的是( ) A .若a >b ,则11a b <B .若a >b ,则22ac bc >C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd4.若a >b ,c >d ,则下列不等式中一定正确的是( ) A .a d b c +>+ B .a d b c ->- C .ad bc >D .a b d c> 5.若,R a b ∈,下列命题正确的是( ) A .若a b >,则22a b > B .R c ∈,若a b >,则22ac bc > C .若33a b ->-,则a b <D .0a ≠,0b ≠,若a b >,则11a b <6.已知,a b R ∈且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8]7.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( ) A .11a b<B .ac bc >C .()20a b c -≥D .b c ba c a+>+ 8.设a ,b ∈R ,0a b <<,则( ) A .22a b <B .b a a b> C .11a b a>- D .2ab b >9.若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤10.设0a b <<,给出下列四个结论:①a b ab +<;②23a b <;③22a b <;④a a b b <.其中正确的结论的序号为( ) A .①②B .①④C .②③④D .①②③11.若向量a 、b 、c 满足0a b c ++=,且222a b c <<,则a b ⋅、b c ⋅、a c ⋅中最大的是( ) A .a b ⋅B .b c ⋅C .a c ⋅D .不能确定12.已知0a b >>,且1a b +=,则下列结论正确的是( ) A .n 0()l a b ->B2C .a b b a >D .114a b+>二、填空题13.已知25,21a b a b ≤+≤-≤-≤,则3a b -的取值范围是___________.14.若2312a b <<<<,,则2a b -的取值范围是____. 15.已知12,03a b ≤≤≤≤,则2+a b 的取值范围为__________. 16.若23a -<<,12b <<,则2a b -的取值范围是____________.三、解答题17.比较(x -2)(x -4)与(x -1)(x -5)的大小关系.18.求解下列问题:(1)已知a ∈R ,比较()()37a a ++和()()46a a ++的大小; (2)已知0x y <<,比较1x与1y 的大小.19.(1)已知022a b <-<,123a b <+<,求a b +的取值范围; (2)已知x ,y ,z 都是正数,求证:222x y z xy xz yz ++≥++.20.对于四个正数m n p q 、、、,若满足mq np <,则称有序数对(),m n 是(),p q 的“下位序列”. (1)对于2、3、7、11,有序数对()3,11是()2,7的“下位序列”吗?请简单说明理由;(2)设a b a d 、、、均为正数,且(),a b 是(),c d 的“下位序列”,试判断a c a c b d b d ++、、之间的大小关系.21.请选择适当的方法证明. (1)已知0a >,0b >,且ab ,证明:3322a b a b ab +>+;(2)已知x ∈R ,22a x =-,23b x =-+,证明:a ,b 中至少有一个不小于0.22.已知关于x 的不等式2260ax x a -+<的解集为A ,集合(2,3)B =. (1)若A B ⊆,求实数a 的取值范围; (2)若B A ⊆,求实数a 的取值范围.23.求证下列问题:(1)已知a b c ,,均为正数,求证:bc ac aba b c++a b c ≥++. (2)已知0xy >,求证: 11x y>的充要条件是x y <.24.已知定义在R 的偶函数()f x 和奇函数()g x 满足:()()3x f x g x +=. (1)求(),()f x g x ,并证明:22()()(2)f x g x f x +=;(2)若存在1,12x ⎡⎤∈⎢⎥⎣⎦,使得不等式2(2)2()10f x ag x ++≤成立,求实数a 的取值范围。
2019届高考数学一轮复习 第七章 不等式 推理与证明 37 基本不等式及其应用 文
课时跟踪训练(三十七) 基本不等式及其应用[基础巩固]一、选择题1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2[解析] ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2. [答案] D2.(2017·福建福州外国语学校期中)在下列各函数中,最小值为2的函数是( ) A .y =x +1x(x ≠0)B .y =cos x +1cos x ⎝ ⎛⎭⎪⎫0<x <π2 C .y =x 2+3x 2+2(x ∈R )D .y =e x+4ex -2(x ∈R )[解析] 对于A 项,当x <0时,y =x +1x ≤-2,故A 错;对于B 项,因为0<x <π2,所以0<cos x <1,所以y =cos x +1cos x≥2中等号不成立,故B 错;对于C 项,因为x 2+2≥2,所以y =x 2++1x 2+2=x 2+2+1x 2+2≥2中等号也不能取到,故C 错;对于D 项,因为e x >0,所以y =e x+4e x -2≥2e x ·4ex -2=2,当且仅当e x=2,即x =ln2时等号成立.故选D.[答案] D3.(2017·陕西咸阳质检)已知x +y =3,则2x+2y的最小值是( ) A .8 B .6 C .3 2 D .4 2[解析] 因为2x>0,2y>0,x +y =3,所以由基本不等式得2x+2y≥22x·2y=22x +y=42,当且仅当2x =2y,即x =y =32时等号成立,故选D.[答案] D4.(2017·湖南衡阳四校联考)设x ,y 为正实数,且x +2y =1,则1x +1y的最小值为( )A .2+2 2B .3+2 2C .2D .3[解析] 因为x ,y 为正实数,且x +2y =1,所以1x +1y=(x +2y )·⎝ ⎛⎭⎪⎫1x +1y =3+2y x +x y≥3+22y x ·x y =3+22,当且仅当x =2y =2-1时取等号.所以1x +1y的最小值为3+2 2.故选B.[答案] B5.(2017·江西九江一中期中)已知a >0,b >0,如果不等式2a +1b ≥m 2a +b 恒成立,那么m的最大值等于( )A .10B .7C .8D .9[解析] 不等式2a +1b ≥m 2a +b 恒成立,即不等式m ≤(2a +b )·⎝ ⎛⎭⎪⎫2a +1b 恒成立,而(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+2 2a b ·2ba=9,当且仅当a =b 时“=”成立,所以m ≤9,m的最大值等于9,故选D.[答案] D6.(2015·陕西卷)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q[解析] ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f (ab )=p ,∴p=r <q .故选B.[答案] B 二、填空题7.(2017·山东卷)若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. [解析] ∵直线x a +y b=1(a >0,b >0)过点(1,2),∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +2+4a b≥4+2b a ·4ab=8(当且仅当b =2a ,即a =2,b =4时取等号).[答案] 88.设b >a >0,且a +b =1,则12,2ab ,a 2+b 2,b 四个数中最大的是________.[解析] 根据基本不等式知a 2+b 2>2ab (b >a >0),因为b >a >0,且a +b =1,所以b >12>a .因为b -a 2-b 2=b (a +b )-a 2-b 2=a (b -a )>0,所以12,2ab ,a 2+b 2,b 四个数中最大的是b .[答案] b9.(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.[解析] 本题考查基本不等式及其应用. 设总费用为y 万元,则y =600x×6+4x =4⎝ ⎛⎭⎪⎫x +900x ≥240.当且仅当x =900x,即x =30时,等号成立.[答案] 30 三、解答题10.(1)已知a >0,b >0,c >0,且a +b +c =1, 求证:1a +1b +1c≥9.(2)设a 、b 均为正实数,求证:1a 2+1b2+ab ≥2 2.[证明] (1)∵a >0,b >0,c >0,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +bc=3+⎝⎛⎭⎪⎫b a +ab +⎝⎛⎭⎪⎫c a +ac +⎝⎛⎭⎪⎫c b +bc≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.(2)∵1a 2+1b 2≥21a2·1b 2=2ab,当且仅当a =b 时取等号.又2ab+ab ≥22,当且仅当ab =2时取等号,∴1a 2+1b 2+ab ≥22,当且仅当⎩⎨⎧a =b ,ab =2,即a =b =42时取等号.[能力提升]11.(2017·河北保定一模)司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析( )A .甲合适B .乙合适C .油价先高后低甲合适D .油价先低后高甲合适[解析] 设甲每次加m 升油,乙每次加n 元钱的油,第一次加油x 元/升,第二次加油y 元/升.甲的平均单价为mx +my 2m =x +y 2,乙的平均单价为2n n x +n y =2xyx +y ,因为x ≠y ,所以x +y22xyx +y=x 2+y 2+2xy 4xy >4xy4xy=1,即乙的两次平均单价低,乙的方式更合适,故选B.[答案] B12.(2018·贵州铜仁一中月考)若两个正实数x ,y 满足1x +2y =1,且不等式x +y 2<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-4,1)C .(-∞,-1)∪(4,+∞)D .(-∞,-4)∪(1,+∞)[解析] x +y 2=⎝ ⎛⎭⎪⎫x +y 2⎝ ⎛⎭⎪⎫1x +2y =2+y 2x +2xy≥2+2y 2x ·2x y =4.当且仅当y 2x =2xy,即y =2x 时等号成立,所以x +y2最小值为4.因为x +y2<m 2-3m 有解,所以m 2-3m >4.解得m <-1或m >4.故选C.[答案] C13.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.[解析] 因为xy +2x +y =4,所以x =4-y y +2.由x =4-yy +2>0,得-2<y <4,又y >0, 则0<y <4,所以x +y =4-y y +2+y =6y +2+(y +2)-3≥26-3,当且仅当6y +2=y +2(0<y <4),即y =6-2时取等号.[答案] 26-314.(2017·四川资阳期末)已知函数f (x )=x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围是________.[解析] 因为f (x )=x 3+3x (x ∈R ),满足f (-x )=-f (x ),所以f (x )为奇函数且f (x )在R 上单调递增.因为不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则2m +mt 2<-4t 在t ≥1时恒成立,分离参数得m <-4t t 2+2=-4t +2t.因为t +2t≥2t ·2t=22(当且仅当t =2时取等号),所以m <- 2.[答案] (-∞,-2)15.(2017·河北唐山一模)已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y的最小值.(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.[解] (1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x+1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤x ++y +22≤4,因此不存在x ,y 满足(x +1)(y +1)=5.16.某品牌电脑体验店预计全年可以销售360台电脑,已知该品牌电脑的进价为3000元/台,为节约资金,经理决定分批购入,若每批都购入x 台(x 为正整数),则每批需付运费300元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,且每批购入20台时,全年需用去运费和保管费7800元.(1)求全年所付运费和保管费之和y 关于x 的函数关系式;(2)若全年只有8000元资金可用于支付运费和保管费,则能否恰当地安排每批进货的数量,使资金够用?如果够用,求出每批进货的数量;如果不够用,最少还需多少?[解] (1)设储存购入的电脑全年所付保管费与每批购入电脑总价值的比例系数为k ,则y =360x ×300+k (3000×x )=108000x+3000kx .又当x =20时,y =7800,代入可得k =0.04.故所求y 关于x 的函数关系式为y =108000x+120x (x ∈N *).(2)由(1)知,y =108000x+120x (x ∈N *).根据基本不等式可得,y =108000x+120x ≥2108000x ×120x =2×3600=7200,当且仅当108000x=120x ,即x =30时,等号成立.故当每批购入30台时,支付的运费和保管费最低,为7200元,此时资金够用.[延伸拓展](2017·内蒙古包头二模)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得 a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256[解析] 解法一(常数代换法):设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4,所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以qm +n -2=16,所以2m +n -2=24,所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4m n 时,等号成立.所以1m +4n 的最小值为32,故选A.解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5. 故1m +4n =1m +46-m =6-m +4m m -m =3m +m-m =3m-m m +2=-3m +-m +-8]m +2=-3m ++16m +2-10.由基本不等式可得(m +2)+16m +2-10≥2m +16m +2-10=-2(当且仅当m +2=16m +2,即m =2时等号成立),易知(m +2)+16m +2-10<0,所以1m +4n ≥-3-2=32.故选A.[答案] A。
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(原卷版)一、单项选择题1.设a,b均为非零实数且a<b,则下列结论中正确的是()A.1a>1bB.a2<b2C.1a2<1b2D.a3<b32.已知实数a>b>0>c,则下列结论一定正确的是()A.ab>acBC.1a<1cD.a2>c23.已知a>0,b>0,若直线l1:ax+by-2=0与直线l2:2x+(1-a)y+1=0垂直,则a+2b的最小值为()A.1B.3C.8D.94.已知x>0,y>0,且1x+2+1y=23,若x+y>m2+3m恒成立,则实数m的取值范围是()A.(-4,6)B.(-3,0)C.(-4,1)D.(1,3)5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x万件该产品,需另投入成本ω(x)万元.其中ω(x)2+10x,0<x≤40,x+10000x-945,x>40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为()A.720万元B.800万元C.875万元D.900万元二、多项选择题6.下列结论中,正确的有()A.若a>b,则ac2>b c2B.若ab=4,则a2+b2≥8C.若a>b,则ab<a2D.若a>b,c>d,则a-d>b-c7.(2023·曲靖一模)已知a>0,b>0,且a+b=4,则下列结论一定正确的有()A.(a+2b)2≥8ab B.1a+1b≥2abC.ab有最大值4D.1a+4b有最小值98.设a>0,b>0,且a+2b=2,则() A.ab的最大值为12B.a+b的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是___.10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为___.11.若a>0,b>0,a+b=9,则36a+ab的最小值为____.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;(2)求a1+b2的最大值,并求此时a,b的值.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;(2)设备占地面积x为多少时,y的值最小?2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(解析版)一、单项选择题1.设a ,b 均为非零实数且a <b ,则下列结论中正确的是(D )A .1a >1b B .a 2<b 2C .1a 2<1b2D .a 3<b 3【解析】对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a 2=b 2,B 错误;对于C ,取a =-1,b =1,则1a 2=1b 2,C 错误;对于D ,由a <b ,可得b 3-a 3=(b -a )·(b 2+ab +a 2)=(b -a +12a +34a2>0,所以a 3<b 3,D 正确.2.已知实数a >b >0>c ,则下列结论一定正确的是(A )A .a b >ac B C .1a <1cD .a 2>c 2【解析】对于A ,因为a >b >0>c ,所以a b >0>ac ,故A 正确;对于B ,因为函数y 在R 上单调递减,且a >c ,故B 错误;对于C ,因为a >0>c ,则1a >0>1c ,故C 错误;对于D ,若a =1,c =-2,满足a >0>c ,但a 2<c 2,故D 错误.3.已知a >0,b >0,若直线l 1:ax +by -2=0与直线l 2:2x +(1-a )y +1=0垂直,则a +2b 的最小值为(D )A .1B .3C .8D .9【解析】由题可知两条直线的斜率一定存在,因为两直线垂直,所以斜率乘积为-1,即-a b×1,即2a +b =ab ,整理得2b +1a =1,所以a +2b=(a +2b =2a b +1+4+2ba ≥5+22a b ·2ba=9,当且仅当a =b =3时等号成立.因此a +2b 的最小值为9.4.已知x >0,y >0,且1x +2+1y =23,若x +y >m 2+3m 恒成立,则实数m 的取值范围是(C)A .(-4,6)B .(-3,0)C .(-4,1)D .(1,3)【解析】因为x >0,y >0,且1x +2+1y =23,所以x +2+y =32(x +2+y+y x +2+x +2y ++6,当且仅当y x +2=x +2y,即y=3,x =1时取等号,所以x +y ≥4.因为x +y >m 2+3m 恒成立,所以m 2+3m <4,即(m -1)(m +4)<0,解得-4<m <1.所以实数m 的取值范围是(-4,1).5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x 万件该产品,需另投入成本ω(x )万元.其中ω(x )2+10x ,0<x ≤40,x +10000x-945,x >40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为(C)A .720万元B .800万元C .875万元D .900万元【解析】该企业每年利润为f (x )=x -(x2+10x +25),0<x ≤40,xx +10000x-945+x >40,当0<x ≤40时,f (x )=-x 2+60x -25=-(x -30)2+875,当x =30时,f(x )取得最大值875;当x >40时,f (x )=920920-2x ·10000x=720,当且仅当x =100时等号成立,即在x=100时,f (x )取得最大值720.由875>720,可得该企业每年利润的最大值为875万元.二、多项选择题6.下列结论中,正确的有(BD )A .若a >b ,则a c 2>bc 2B .若ab =4,则a 2+b 2≥8C .若a >b ,则ab <a 2D .若a >b ,c >d ,则a -d >b -c【解析】对于A ,若c =0,则a c 2,bc 2无意义,故A 错误;对于B ,若ab =4,则a 2+b 2≥2ab =8,当且仅当a =b =±2时等号成立,故B 正确;对于C ,由于不确定a 的符号,故无法判断,例如a =0,b =-1,则ab =a 2=0,故C 错误;对于D ,若a >b ,c >d ,则-d >-c ,所以a -d >b -c ,故D 正确.7.(2023·曲靖一模)已知a >0,b >0,且a +b =4,则下列结论一定正确的有(AC)A .(a +2b )2≥8abB .1a +1b ≥2ab C .ab 有最大值4D .1a +4b有最小值9【解析】对于A ,(a +2b )2=a 2+4b 2+4ab ≥2·a ·2b +4ab =8ab ,故A 正确;对于B ,找反例,当a =b =2时,1a +1b =2,2ab =4,1a +1b<2ab ,故B 错误;对于C ,因为a +b =4≥2ab ,所以ab ≤4,当且仅当a =b =2时取等号,故C 正确;对于D ,1a +4b =a +b )+4+b a ++=94,当且仅当a =43,b =83时取等号,故D 错误.8.设a >0,b >0,且a +2b =2,则(ACD )A .ab 的最大值为12B .a +b 的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2【解析】对于A,a>0,b>0,22ab≤a+2b=2⇒ab≤12,当且仅当a=1,b=12时取等号,故A正确;对于B,a+b=2-b,a=2-2b.因为a>0,b>0,所以0<b<1,1<a+b<2,故B错误;对于C,a2+b2=(2-2b)2+b2=5b2-8b+4=+45≥45,当且仅当a=25,b=45时取等号,故C正确;对于D,a-b+2ab=a-b+a+2bab=2a+bab=2b+1a=·(a+2b)·12=+2b a++=92,当且仅当2ba=2ab,即a=b=23时取等号,故D正确.三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是__[6,19]__.【解析】因为3a-5b=-(a+b)+4(a-b),由-3≤a+b≤-2,得2≤-(a +b)≤3,由1≤a-b≤4,得4≤4(a-b)≤16,所以6≤3a-5b≤19,即3a-5b 的取值范围是[6,19].10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为__6__.【解析】因为ab=a+b+3≤14(a+b)2,所以(a+b)2-4(a+b)-12≥0,即(a+b-6)(a+b+2)≥0,解得a+b≥6或a+b≤-2.因为a>0,b>0,所以a+b≥6(当且仅当a=b=3时取等号).11.若a>0,b>0,a+b=9,则36a+ab的最小值为__8__.【解析】36a+ab=4(a+b)a+ab=4+4ba+ab≥4+24ba·ab=8,当且仅当a=6,b=3时取等号,故36a+ab的最小值为8.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;【解答】由不等式4a2+b2≥4ab,解得ab≤12,当且仅当2a=b=1时取等号,所以ab的最大值为12,此时a=12,b=1.(2)求a1+b2的最大值,并求此时a,b的值.【解答】由4a2+b2=2,得4a2+(1+b2)=3.由4a2+(1+b2)≥24a2·(1+b2)=4a1+b2,得a1+b2≤34,当且仅当4a2=1+b2,即a=64,b=22时取等号,所以a1+b2的最大值为34,此时a=64,b=22.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;【解答】因为a>1,b>2,所以a-1>0,b-2>0,所以1a-1+1b-2=a-1)(b-2)=14[(b-2)+(a-1)]≥14×2(b-2)(a-1)=1,当且仅-2=a-1,a-1)(b-2)=4,即a=3,b=4时等号成立,所以1a-1+1b-2的最小值为1,此时a=3,b=4.(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;【解答】由2a+b=6,得2(a-1)+(b-2)=2,所以(a-1)+b-22=1,所以1a-1+1b-2=(a-1)+b-22=32+a-1b-2+b-22(a-1)≥3+222,当-2=2(a-1),a-1)+(b-2)=2,即a=3-2,b=22时等号成立,所以1a-1+1b-2的最小值为3+222,此时a=3-2,b=2 2.(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.【解答】因为b>2,由1a+1b=1,可得a=bb-1,所以a-1=1b-1,所以1a-1+1b-2=b-2+1b-2+1≥3,当且仅当a=32,b=3时等号成立,所以1a-1+1b-2的最小值为3,此时a=32,b=3.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;【解答】由题意得y=0.2x+80x+5x>0).由y≤7.2,得0.2x+80x+5≤7.2,整理得x2-31x-220≤0,解得11≤x≤20,即设备占地面积x的取值范围为[11,20].(2)设备占地面积x为多少时,y的值最小?【解答】y=0.2x+80x+5=x+55+80x+5-1≥2x+55×80x+5-1=7,当且仅当x+55=80x+5,即x=15时等号成立.所以设备占地面积为15平方米时,y的值最。
2019版高考数学理科 课标版一轮复习题组训练:第7章第
第一讲不等式的性质与解法题组1不等式的性质1.[2014山东,5,5分][理]已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin yD.x3>y32.[2013北京,2,5分]设a,b,c∈R,且a>b,则()A.ac>bcB.<C.a2>b2D.a3>b3题组2不等式的解法3.[2016全国卷Ⅲ,1,5分][理]设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)4.[2013天津,8,5分][理]已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A.若[-,]⊆A,则实数a的取值范围是()A.(-,0)B.(-,0)C.(-,0)∪(0,)D.(-∞,-)5.[2017天津,8,5分][理]已知函数f(x)=-,,,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A[-,2] B.[-,] C.[-2 ,2] D.[-2 ,]6.[2017全国卷Ⅲ,15,5分][理]设函数f(x)=,,,,则满足f(x)+f(x-)>1的x的取值范围是.7.[2015广东,11,5分]不等式-x2-3x+4>0的解集为.(用区间表示)8.[2014江苏,10,5分][理]已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.A组基础题1.[2018贵阳市摸底考试,1]设集合A={x|(x-1)(x+2)<0},B={x|-<0},则A∪B=()A.(-2,1)B.(-2,3)C.(-1,3)D.(-1,1)2.[2018豫南九校第二次联考,8]若0<b<a<1,则下列结论不成立的是()A.<B.>C.a b>b aD.log b a>log a b3.[2018武汉市部分学校调研测试,7]已知x,y∈R,且x>y>0,若a>b>1,则一定有()A.>B.sin ax>sin byC.log a x>log b yD.a x>b y4.[2018惠州市二调,4]“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>B.0<m<1C.m>0D.m>15.[2018全国名校第二次联考,15]已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=-x+2,那么不等式f(x)+1<0的解集是.6.[2018长春市高三第一次质量监测,13]已知角α,β满足-<α-β<,0<α+β<π,则3α-β的取值范围是.B组提升题7.[2017惠州市三调,12]已知函数f(x)=x sin x+cos x+x2,则不等式f(ln x)+f(ln )<2f(1)的解集为()A.(e,+∞)B.(0,e)C.(0,)∪(1,e)D.(,e)8.[2018南宁市摸底联考,15]已知函数f(x)=(e x-e-x)x(e为自然对数的底数),f(log3x)+f(x)≤2f(1),则x的取值范围是.9.[2018南昌市摸底调研,16]已知函数f(x)=),,-,,若不等式|f(x)|-mx+2≥0恒成立,则实数m的取值范围为.10.[2017云南省高三统一检测,16]已知函数f(x)=),, -),,若f(x-1)<f(2x+1),则x的取值范围为.答案1.D根据指数函数的性质得x>y,但x2,y2的大小不确定,故选项A,B中的不等式不恒成立;根据三角函数的性质知,选项C中的不等式也不恒成立;根据不等式的性质知,选项D中的不等式恒成立.2.D对于A项,若c<0,则结论显然不正确;对于B项,若a>0,b<0,则<显然不正确;对于C项,若a=1,b=-3,则a2>b2显然不正确.选D.3.D集合S=(-∞,2]∪[3,+∞),结合数轴,可得S∩T=(0,2]∪[3,+∞).故选D.4.A由题意可得0∈A,即f(a)<f(0)=0,所以a(1+a|a|)<0,当a>0时无解,所以a<0,此时1-a2>0,所以-1<a<0.函数f(x)的图象(图略)中x=,x=-之间的距离大于1,而[x+a,x]的区间长度小于1,所以不等式f(x+a)<f(x)的解集是(-,--),所以[-,]⊆(-,--),所以--, --,即--,,解得-<a<,又-1<a<0,所以实数a的取值范围是(-,0).故选A.5.A根据题意,作出函数f(x)的大致图象,如图D 7-1-2所示.图D 7-1-2当x≤1时,若要f(x)≥|+a|恒成立,结合图象,只需x2-x+3≥-(+a),即x2-+3+a≥0,故对于方程x2-+3+a=0,Δ=(-)2-4(3+a)≤0,解得a≥-;当x>1时,若要f(x)≥|+a|恒成立,结合图象,只需x+≥+a,即+≥a.又+≥2,当且仅当=,即x=2时等号成立,所以a≤2.综上,a的取值范围是[-,2].6.(-,+∞)当x>0时,f(x)=2x>1恒成立,当x->0,即x>时,f(x-)=->1,当x-≤0,即0<x≤时,f(x-)=x+>,则不等式f(x)+f(x-)>1恒成立.当x≤0时,f(x)+f(x-)=x+1+x+=2x+>1,所以-<x≤0.综上所述,x的取值范围是(-,+∞).7.(-4,1)-x2-3x+4>0⇒(x+4)(x-1)<0⇒-4<x<1.8.(-,0)由题可得f(x)<0对于任意x∈[m,m+1]恒成立,即)-,),解得-<m<0.A组基础题1.B A={x|-2<x<1},B={x|-1<x<3},所以A∪B={x|-2<x<3},故选B.2.D对于A, 函数y=在(0,+∞)上单调递减,所以当0<b<a<1时,<恒成立;对于B, 函数y=在(0,+∞)上单调递增,所以当0<b<a<1时,>恒成立;对于C, 函数y=a x(0<a<1)单调递减,函数y=x a(0<a<1)单调递增,所以当0<b<a<1时,a b>a a>b a恒成立;当a=,b=时,log a b=2,log b a=,log a b>log b a,D选项不成立,故选D.3.D对于A选项,不妨令x=8,y=3,a=5,b=4,显然=<=,A选项错误;对于B选项,不妨令x=π,y=,a=2,b=,此时sin ax=sin 2π=0,sin by=sin =,显然sin ax<sin by,B选项错误;对于C选项,不妨令x=5,y=4,a=3,b=2,此时log a x=log35,log b y=log24=2,显然log a x<log b y,C选项错误;对于D选项,∵a>b>1,x>y>0,∴a x>b x,b x>b y,∴a x>b y,D选项正确.综上,选D.4.C不等式x2-x+m>0在R上恒成立⇔Δ<0,即1-4m<0,∴m>,同时要满足“必要不充分”,在选项中只有“m>0”符合.故选C.5.{x|x>0}由题意知,函数y=f(x)的定义域为R,当x<0时,f(x)=-x+2,则当x>0时,-x>0,所以f(-x)=x+2,又函数y=f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-x-2,即f(x)=-,, ,,--,,因此不等式f(x)+1<0等价于,-或,或,--,解得x>0.故不等式f(x)+1<0的解集为{x|x>0}.6.(-π,2π)设3α-β=m(α-β)+n(α+β)=(m+n)α+(n-m)β,则,--,解得,因为-<α-β<,0<α+β<π,所以-π<2(α-β)<π,故-π<3α-β<2π.B组提升题7.D由f(x)=x sin x+cos x+x2,可知f(-x)=f(x),即f(x)是偶函数,所以f(ln)=f(-ln x)=f(ln x),所以f(ln x)+f(ln)<2f(1)可变形为f(ln x)<f(1).f'(x)=x cos x+2x=x(2+cos x),因为2+cos x>0,所以f(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f(ln x)<f(1)等价于-1<ln x<1,所以<x<e.故选D.8.≤x≤3∵f(x)=(e x-e-x)x,∴f(-x)=(e-x-e x)(-x)=(e x-e-x)x=f(x),即函数f(x)是偶函数.∵f'(x)=(e x-e-x)+x(e x+e-x)≥0在[0,+∞)上恒成立,∴函数f(x)在[0,+∞)上单调递增.由f(log3x)+f(x) ≤2f(1),得2f(log3x)≤2f(1),即f(log3x)≤f(1),∴|log3x|≤1,解得≤x≤3.9.[-3-2,0]由f(x)=),,-,知|f(x)|=),,-,,不等式|f(x)|-mx+2≥0恒成立,即|f(x)|≥mx-2恒成立.令g(x)=|f(x)|,h(x)=mx-2,则原不等式恒成立等价于y=h(x)的图象不在y=g(x)图象的上方.h(x)=mx-2是过定点(0,-2)的直线系.如图D 7-1-3,图D 7-1-3l1与x轴平行,l2与曲线y=x2-3x(x≤0)相切,易知直线l1的斜率k1=0,设直线l2的斜率为k2,联立方程,得-,-⇒x2-3x-k2x+2=0,即x2-(3+k2)x+2=0,则Δ=(3+k2)2-4×2=0,故k2=-2-3(2-3舍去),结合图象易知m的取值范围为[-3-2,0].10.(-∞,-2)∪(0,+∞)若x>0,则-x<0,f(-x)=3(-x)2+ln(-)+x)=3x2+ln()=f(x),同理可得,当x<0时,f(-x)=f(x),且x=0时,f(0)=f(0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.。
2019高考数学(理)一轮复习全套学案
2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图111)表示的集合是( )图111A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图121(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图211所示,所给图像是函数图像的有( )图211A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题37 不等式的性质与基本不等式【学习目标】1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景. 3.掌握不等式的性质及应用. 【知识要点】 1.不等式的定义用不等号“>,≥,<,≤,≠”将两个数学表达式连接起来,所得的式子叫做不等式. 2.实数大小顺序与运算性质之间的关系a -b >0⇔_______;a -b =0⇔a =b ;a -b <0⇔______.3.不等式的性质(1)对称性:a >b ⇔________; (2)传递性:a >b ,b >c ⇒_________;(3)可加性:a >b ⇔_________________;a >b ,c >d ⇒________;(4)可乘性:a >b ,c >0⇒_____________;a >b ,c <0⇒______;a >b >0,c >d >0⇒________; (5)倒数法则:a >b ,ab >0⇒__________; (6)乘方性质:a >b >0⇒________(n ≥2,n ∈N *); (7)开方性质:a >b >0⇒________(n ≥2,n ∈N *); (8)有关分数的性质:若a >b >0,m >0,则 ①真分数的性质:b a _______b +ma +m; b a _______b -m a -m(b -m >0); ②假分数的性质:ab ________a +mb +m; a b ________a -m b -m(b -m >0). 4.基本不等式(1)a 2+b 2__________2ab ;变式:a 2+b 22≥_________;当且仅当a =b 时等号成立;(2)如果a ≥0,b ≥0,则a +b2______ab ;变式:ab ≤⎝ ⎛⎭⎪⎫a +b 22,当且仅当a =b 时,等号成立,其中a +b 2叫做正数a ,b 的______________,ab 叫做正数a ,b 的______________.5.(1)若a >0,b >0,且a +b =P (定值),则由ab ≤⎝ ⎛⎭⎪⎫a +b 22=P 24可知,当a =b 时,ab 有最____________值P 24;(2)若a >0,b >0且ab =S (定值),则由a +b ≥2ab =2S 可知,当a =b 时,a +b 有最_____________值2S .【方法总结】1.运用不等式的基本性质解决不等式问题,要注意不等式成立的条件,如性质(4)(5)(6)(7)中要求乘数大于0,性质(6)(7)中还要求n∈N 且n >1.2.比较数(式)大小,一般用:(1)作差法,具体步骤:作差—变形—判断(与0比较)—结论;(2)作商法,具体步骤:作商—变形—判断(与1比较)—结论,注意分母的符号.3.判断不等式是否成立,一般可用不等式性质、函数性质、基本不等式进行推理,也可以利用特殊值法对命题进行否定.4.实际中的不等量问题的建模:(1)将每个量用数或代数式表示,(2)用不等号连结.5.a 2+b 2≥2ab 成立的条件是a ,b ∈R ,而a +b2≥ab 成立,则要求a >0,b >0.6.利用基本不等式求最值,要注意使用条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到),要熟悉均值不等式的各种变形⎝ ⎛⎭⎪⎫如y =ax 2+bx +c x =ax +c x +b .7.连续使用以上公式中的任一个或两个,取等号的条件要在同一条件下取得,方可取到最值.【高考模拟】 一、单选题 1.若,则下列结论一定成立的是( )A .B .C .D .【答案】B 【解析】 【分析】根据指数函数的性质可得m >n ,再分类讨论即可. 【详解】由得到.当时,由不等式同向可乘性知,即;当时,;当时,,由不等式同向可乘性知,故,. 故选:B【考点】不等式、指数、对数的基本性质,不等式性质.【点睛】本题考查了指数函数的图象与性质,不等式的基本性质,属于基础题.2.若,,则下列不等式不正确的是()A. B. C. D.【答案】D【解析】分析:根据不等式性质推导,确定选项.点睛:本题考查不等式性质,考查基本推理论证能力.3.设,,则下列不等式恒成立的是()A. B. C. D.【答案】D【解析】【分析】根据题意,利用不等式的基本性质,对各选项中的不等式进行判定即可.【详解】∵a>b>0,c∈R,∴A中,c=0时,a|c|>b|c|不成立;B中,c=0时,ac2>bc2,不成立;C中,当c≤0时,a2c>b2c不成立;D中,由a>b>0,两边同时除以ab,得到<,∴D成立.故选:D.【点睛】不等式的性质及其应用: (1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.4.设,那么下列条件中正确的是().A. a>ab>ab2 B. C. ab>ab2>a D.【答案】C【解析】【分析】利用不等式的性质和“作差法”即可得出.【详解】【点睛】熟练掌握不等式的性质和“作差法”是解题的关键.5.已知,且,,则,的关系是()A. B. C. D.【答案】C【解析】分析:因为P2﹣Q2=﹣≤0,所以P2≤Q2,则P≤Q,点睛:比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. (4)借助第三量比较法6.已知,满足,则的取值范围是()A. B. C. D.【答案】A【解析】分析:该问题是已知不等关系求范围的问题,可以用待定系数法来解决.详解:设α+3β=λ(α+β)+v(α+2β)=(λ+v)α+(λ+2v)β.比较α、β的系数,得,从而解出λ=﹣1,v=2.分别由①、②得﹣1≤﹣α﹣β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7. 故α+3β的取值范围是[1,7]. 故选:A点睛:本题考查待定系数法,考查不等式的基本性质,属于基础题. 7.已知,且,则下列不等式一定成立的是( )A .B .C .D .【答案】B 【解析】分析:利用不等式性质,指数函数的单调性,特值法逐一判断即可.点睛:不等式的性质及其应用: (1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等. 8.设,且,则下列命题一定正确的是( )A .B .C .D .【答案】B 【解析】 【分析】根据不等式的基本性质,以及函数的单调性,判断四个答案的真假【详解】,当时,,故错误为增函数,故,故正确时,满足,但,故错误时,,故错误故选【点睛】本题主要考查了命题的真假判断与应用,结合不等式的性质,找出一个反例即可判断错误。
9.给出以下四个命题:()①若a>b,则;②若ac2>bc2,则a>b;③若a>|b|,则a>b;④若a>b,则a2>b2.其中正确的是( )A.②④ B.②③ C.①② D.①③【答案】B【解析】分析:根据不等式的性质分别进行判断,注意结合特值法求解.点睛:本题考查不等式的性质的应用,要求熟练掌握不等式性质成立的条件,同时注意运用特值法判断,属于简单题.10.已知,则,的大小关系为()A. B. C. D.【答案】D【解析】分析:平方后作差可得.详解:,∴,又,∴.故选D.点睛:实数比较大小一般用作差法,作差后因式分解然后与0比较大小,本题中由于是方根,因此可两者平方后再作差比较后,由结论可得.11.若则下列式子:(1),(2),(3),(4).其中恒成立的个数是A. 1个 B. 2个 C. 3个 D. 4个【答案】A【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.12.设正数满足,则的最小值为( )A. B. C. D.【答案】A【解析】【分析】因为x+2y=3,所以2x+4y=6,所以(x-y)+(x+5y)=6,再利用基本不等式求的最小值.【详解】因为x+2y=3,所以2x+4y=6,所以(x-y)+(x+5y)=6,所以=,当且仅当时取最小值.故答案为:A【点睛】(1)本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)、本题的解题关键是常量代换,即把化成,再利用基本不等式求函数的最小值. 利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.13.在面积为1的中,,分别是,的中点,点在直线上,则的最小值是()A. 1 B. C. D. 2【答案】C【解析】【分析】以为原点,所在的直线为轴建立平面直角坐标系,设,结合三角形面积公式与平面向量数量积公式可得,利用二次函数的性质与基本不等式即可得结果. 【详解】的最小值为(当且仅当取等号),故选C.【点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数,求最值与范围问题,往往利用坐标运算比较简单.14.已知函数的图像在点处的切线的斜率为2,则的最小值是A. 10 B. 9 C. 8 D.【答案】B15.设函数,若是两个不相等的正数且,则下列关系式中正确的是()A. B. C. D.【答案】B【解析】由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,=(f(a)+f(b))=(lna+lnb),∴p=<q,.故.故答案为:B。