天津市近三年高考真题
天津三年2020-2022高考数学真题按题型分类汇编-选择题(含解析)
天津三年2020-2022高考数学真题按题型分类汇编-选择题(含解析)一、单选题1.(2022·天津·统考高考真题)设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()UAB =( )A .{}01,B .{}0,1,2C .{}1,1,2-D .{}0,1,1,2-2.(2022·天津·统考高考真题)“x 为整数”是“21x +为整数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2022·天津·统考高考真题)函数()21x f x x-=的图像为( )A .B .C .D .4.(2022·天津·统考高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .185.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( ) A .a c b >> B .b c a >> C .a b c >> D .c a b >>6.(2022·天津·统考高考真题)化简()()48392log 3log 3log 2log 2++的值为( ) A .1B .2C .4D .67.(2022·天津·统考高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=8.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .279.(2022·天津·统考高考真题)已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在ππ[,]44-上单调递增;③当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,()f x 的取值范围为33,44⎡⎤-⎢⎥⎣⎦;④()f x 的图象可由1πg()sin(2)24x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( ) A .1B .2C .3D .410.(2021·天津·统考高考真题)设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}11.(2021·天津·统考高考真题)已知a ∈R ,则“6a >”是“236a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.(2021·天津·统考高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .13.(2021·天津·统考高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .8014.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .c<a<bC .b<c<aD .a c b <<15.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( ) A .3πB .4πC .9πD .12π16.(2021·天津·统考高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 1017.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若2|CD AB .则双曲线的离心率为( ) A 2B 3C .2D .318.(2021·天津·统考高考真题)设a ∈R ,函数22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩,若()f x 在区间(0,)+∞内恰有6个零点,则a 的取值范围是( ) A .95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦B .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭D .11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭19.(2020·天津·统考高考真题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---20.(2020·天津·统考高考真题)设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 21.(2020·天津·统考高考真题)函数241xy x =+的图象大致为( ) A . B .C .D .22.(2020·天津·统考高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .3623.(2020·天津·统考高考真题)若棱长为23则该球的表面积为( ) A .12πB .24πC .36πD .144π24.(2020·天津·统考高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( ) A .a b c <<B .b a c <<C .b<c<aD .c<a<b25.(2020·天津·统考高考真题)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=26.(2020·天津·统考高考真题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③27.(2020·天津·统考高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞参考答案:1.A【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1U B =-,故(){}0,1UA B =,故选:A. 2.A【分析】由当x 为整数时,21x +必为整数;当21x +为整数时,x 比一定为整数;即可选出答案.【详解】当x 为整数时,21x +必为整数; 当21x +为整数时,x 比一定为整数, 例如当212x +=时,12x =. 所以“x 为整数”是“21x +为整数”的充分不必要条件. 故选:A. 3.D【分析】分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项. 【详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D. 4.B【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为20(0.240.16)1+⨯=50,所以第三组人数为50×0.36=18, 有疗效的人数为18-6=12. 故选:B. 5.C【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C. 6.B【分析】根据对数的性质可求代数式的值.【详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=, 故选:B 7.C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线2y =的准线方程为x =c =()1F、)2F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,2222ba c c ab ⎧=⎪⎪⎪⎨⎪=+⎪⎪⎩,解得12a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C. 8.D【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠=,所以333,22CM BM HM ===, 因为重叠后的底面为正方形,所以33AB BC ==, 在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥, 由AB BC B ⋂=可得HM ⊥平面ADCB , 设重叠后的EG 与FH 交点为,I则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=. 故选:D. 9.A【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】因为1()sin 22f x x =,所以()f x 的最小正周期为2ππ2T ==,①不正确;令ππ2,22t x ⎡⎤=∈-⎢⎥⎣⎦,而1sin 2y t =在ππ,22⎡⎤-⎢⎥⎣⎦上递增,所以()f x 在ππ[,]44-上单调递增,②正确;因为π2π2,33t x ⎡⎤=∈-⎢⎥⎣⎦,sin t ⎡⎤∈⎢⎥⎣⎦,所以()12f x ⎡⎤∈⎢⎥⎣⎦,③不正确; 由于1π1πg()sin(2)sin 22428x x x ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的图象可由1πg()sin(2)24x x =+的图象向右平移π8个单位长度得到,④不正确. 故选:A . 10.C【分析】根据交集并集的定义即可求出. 【详解】{}{}{}1,0,11,3,5,0,2,4A B C =-==,, {}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴. 故选:C. 11.A【分析】由充分条件、必要条件的定义判断即可得解. 【详解】由题意,若6a >,则236a >,故充分性成立; 若236a >,则6a >或6a <-,推不出6a >,故必要性不成立; 所以“6a >”是“236a >”的充分不必要条件. 故选:A. 12.B【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解. 【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B. 13.D【分析】利用频率分布直方图可计算出评分在区间[)82,86内的影视作品数量.【详解】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=. 故选:D.14.D【分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解.【详解】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<, a c b ∴<<.故选:D.15.B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果. 【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,3CD AD BD ∴=⋅因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.16.C【分析】由已知表示出,a b ,再由换底公式可求. 【详解】2510a b ==,25log 10,log 10a b ∴==,251111lg 2lg 5lg101log 10log 10a b ∴+=+=+==. 故选:C.17.A【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b -=>>与抛物线22(0)y px p =>的公共焦点为(),0c , 则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a=±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bc CD a=,所以2bc ac =,所以222212a cbc =-=,所以双曲线的离心率c e a=故选:A.18.A 【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a ππ-=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出.【详解】()222150x a x a -+++=最多有2个根,所以()cos 220x a ππ-=至少有4个根, 由22,2x a k k Z ππππ-=+∈可得1,24k x a k Z =++∈, 由1024k a a <++<可得11222a k --<<-, (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤; 当17262a -≤--<-,()f x 有6个零点,即111344a <≤; (2)当x a ≥时,22()2(1)5f x x a x a =-+++,()()22Δ4(1)4582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点;当2a >时,令22()2(1)5250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点; 所以若52a >时,()f x 有1个零点. 综上,要使()f x 在区间(0,)+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩, 则可解得a 的取值范围是95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦. 【点睛】关键点睛:解决本题的关键是分成x a <和x a ≥两种情况分别讨论两个函数的零点个数情况.19.C【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1AB =-.故选:C.【点睛】本题主要考查补集运算,交集运算,属于基础题.20.A【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或a<0,据此可知:1a >是2a a >的充分不必要条件.故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.21.A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.22.B【分析】根据直方图确定直径落在区间[)5.43,5.47之间的零件频率,然后结合样本总数计算其个数即可.【详解】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=,则区间[)5.43,5.47内零件的个数为:800.22518⨯=.故选:B.【点睛】本题主要考查频率分布直方图的计算与实际应用,属于中等题.23.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.24.D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.25.D【分析】由抛物线的焦点()1,0可求得直线l 的方程为1y x b +=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a-=-,1b b a -⨯=-即可求出,a b ,得到双曲线的方程.【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1y x b +=,即直线的斜率为b -, 又双曲线的渐近线的方程为b y x a =±,所以b b a-=-,1b b a -⨯=-,因为0,0a b >>,解得1,1a b ==. 故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.26.B【分析】对所给选项结合正弦型函数的性质逐一判断即可. 【详解】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.27.D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2y x 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.。
天津市高考语文真题2023
天津市高考语文真题2023(正文部分)2023年天津市高考语文真题第一卷(选择题共85分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AAt the recent Beijing International Horticultural Exhibition, visitors were charmed and mystified by a playing device drawn by a white donkey. Belfled (身临其境) by the lifelike movements and magical voice of the singing puppet(木偶), thousands forgot that they were at an exhibition and fell into a romantic past.The puppet "maestro" is called Mr. Yang Zhenjun. Born into a family with six generations devoted to wood sculpture(雕刻), it seems that it was destined to be a "wooden" guy. He was taught wood sculpture by his father when young, and at the same time, he learned how to make simple musical instruments. When he was 13, Yang started to learn to make puppet heads from his father, the No. 1 puppet head maker in the area.World Cultural Heritage artisan Yang Zhenjun explained how one had to have skillful carving together with superimposed(重叠) painting to produce puppet faces that faithfully look like human faces. His father went to Beijing to carve and paint the 191 Xuanshan puppet heads in the famous Huguang Guild Hall《胡光岛会馆》. The heads seemed to breathe and had natural expressions, making the puppets come alive on the stage.For 29 years, Yang had traveled and provided over 300 Shadow Puppet(皮影戏) groups with more than 20,000 complete sets and 100,000 single heads which are made of sheepskin with holes cut out to show the different characters. It took him 15 years to make the 191 heads of the story " Shajiabang" alone. The heads and the facial expressions had to be very crisp and sharp.Last month, at the Beijing International Horticultural Exhibition, Yang took his work to the pavilion of Hebei Province.21. What does the underlined word “Belfled”in the first paragraph most probably mean?A. Satisfied.B. Spontaneous.C. Confused.D. Surprised.22. How many years did Yang Zhenjun's father take to accomplish the 191 Xuanshan puppet heads?A. 13.B. 15.C. 29.D. 35.23. How many complete sets of Shadow Puppet did Yang provide in total?A. Over 300.B. Over 15.C. Over 29.D. Over 191.BKnowing how much something is going to cost is a big part of any purchase decision. That’s especially true for larger things like a new houseor car. My son has been asking me to give him some driving lessons recently so he can get his driver’s license(驾照). I told him that I would be willing to do that as long as he paid for the gas(汽油) that we would use. That’s when he asked me how much it wou ld cost to fill up the car’s gas tank.I had no idea. For the entire time I have had the car, I’ve never paid attention to how much gas were would put in during each 10, 20, or even 50 miles of driving. I guessed we could look at the car’s user manual or o n the manufacturer’s website to see if we couldn’t find out. But we didn’t end up finding the answer that way.Instead, we waited until the car was almost out of gas before we drove to a gas station to fill up. We chose a station where the prices are clearly posted(公布的). My son only had a twenty-dollar bil(美元纸币), so I had to pay for the gas myself. I noted how much the cost was and kept thereceipt(发票).Back at home, I recorded the amount of gas the car had used accordingto the number of miles it showed on the dashboard(仪表盘). I needed to find out at least the rate(费率) we use the gasoline. If I recorded that information each time we filled up the tank and how much the tank had transferred(流逝), then I would be able to figure out how much each mile cost.Look ing at it like that, I don’t understand how I never noticed it before. Having paid for the car myself, and paying repair bills when accidentshappened, I had paid enough money already. I should find out how much I was spending on gas!24. What does the aut hor mean when he says he “had paid enough money already”?A. He is tired of paying for car repairs.B. He already knows how much car repairs cost.C. He has not paid much for the car.D. He wants to calculate how much he spends on gas.25. Why did the author record the amount of gas used according to the number of miles on the dashboard?A. To find the best gas station.B. To figure out how much each mile cost.C. To save money.D. To see how often they would need to fill up the tank.26. What is the purpose of this article?A. To explain how to save money by driving less.B. To persuade readers to buy a new car.C. To encourage readers to learn to drive.D. To illustrate a lesson learned about car expenses.(剩余正文内容超出字数限制,请见谅。
2024天津高考真题政治(教师版)
D.若合同无效,则当事人订立的合同内容不合法或意思表示不真实
14.天津是久负盛名的曲艺之乡,被亲切地称为“哏儿都”。“会说相声的是有幽默感的”“有些天津人是会说相声的”。若以上判断为真,依据逻辑规则,下列判断肯定为真的是()
A.天津人是有幽默感的B.有些相声演员是天津人
①真理是理论与实践的具体的历史的统一②马克思主义生产力理论的不断丰富和发展
③中国特色社会主义理论 创立、发展和完善④真理总是在否定原有理论的基础上不断发展的
A.①②B.①④C.②③D.③④
2.小岗破冰,深圳兴涛,浦东逐浪,雄安扬波……改革开放以来,我们党不断变革生产关系与生产力、上层建筑与经济基础不相适应的方面,推进各领域体制改革,形成和发展符合当代中国国情、充满生机活力的体制机制。由此可见,改革开放()
①创新政治协商的内容和形式②通过协商民主助力改善民生
③参与基层治理促进社会和谐④保证居民享有更切实的权利
A.①③B.①④C.②③D.②④
5.某地交警为引导广大市民遵守交通法规,通过循环播报交通安全“小喇叭”、设置劝导点、整治不按规定佩戴安全头盔的交通行为,采取“宣传+劝导+整治”的方式,极大提升了执法效果。这体现了()
①提升中国的国际地位,扩大国际影响力②加深各国政治互信,促进世界互联互通
③促进人民相知相亲,推动文明交流互鉴④推动中国同各国交往,拉紧互利合作纽带
A.①②B.①③C.②④D.③④
10.近年来,国货热销、国潮涌动。植入苏绣元素的运动服饰被抢购,自信优雅的“中国妆”受追捧,带有中国元素、传统特色的国货越来越被市场认可。这股以中国元素、中国审美为内核的社会风尚,传递着中国哲学与价值观,滋养着国人,也带给世界新鲜感。国潮涌动()
2024年天津高考数学真题(原卷版+解析版】
2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。
2023年天津市高考生物真题及答案解析
2023年天津市高考生物真题及答案解析一、选择题部分1. 题目:下列关于细胞分裂的说法中,正确的是A. 减数分裂是有丝分裂的特殊形式B. 有丝分裂是减数分裂的特殊形式C. 有丝分裂和减数分裂是同一过程的两个不同阶段D. 有丝分裂和减数分裂是两个完全独立的过程解析:答案为A。
减数分裂是有丝分裂的特殊形式,有丝分裂是细胞分裂的一种形式。
2. 题目:以下哪个属于动物的细胞器?A. 叶绿体B. 核糖体C. 细胞壁D. 中心体解析:答案为D。
中心体只存在于动物细胞中,起着细胞分裂和细胞运动的重要作用。
3. 题目:DNA分子的结构单元是A. 鸟嘌呤、胸腺嘧啶、腺嘌呤、胞嘧啶B. 核糖、腺嘌呤、胞嘧啶、核糖C. 腺嘌呤、胞嘧啶、磷酸基团D. 腺嘌呤、胞嘧啶、核糖、磷酸基团解析:答案为C。
DNA由腺嘌呤(A)、胞嘧啶(T)、鸟嘌呤(G)、胸腺嘧啶(C)四种碱基和磷酸基团组成。
4. 题目:以下哪项不属于有丝分裂的特点?A. 染色体数目保持不变B. 纺锤体形成C. 细胞质等分D. 线粒体数量增加解析:答案为D。
有丝分裂中,染色体数目保持不变,纺锤体形成,细胞质等分,但线粒体数量不会增加。
5. 题目:细菌繁殖方式中,以下哪种属于有性繁殖?A. 培养基上的二分裂B. 隔膜孔分裂C. 克隆生殖D. 细胞内共生解析:答案为B。
隔膜孔分裂是细菌有性繁殖的一种方式,通过胞内形成筛孔,细胞内容易流失,合并两个细胞产生新的细胞。
二、非选择题部分1. 题目:下图是人类染色体核型的一种表示形式,请结合图像回答问题。
[插入染色体核型图]a) 请说明图中的染色体数目。
b) 描述出现在图中染色体上的某种变异形式。
c) 该变异形式对人类产生的影响是什么?解析:a) 图中染色体数目为46条。
b) 图中显示了一对13号染色体出现了倒位变异,即染色体上两段发生了断裂互换。
c) 倒位变异可能导致染色体上基因顺序发生改变,可能对个体的正常生长和发育造成一定影响。
2023年天津市新高考生物真题(含答案)
-
-Hale Waihona Puke +--
菌C
+
-
-
-
+
-
菌D
+
-
-
-
-
+
注:+代表存在这种菌,-代表不存在这种菌
羽化率
极高
极低
中
高
中
低
(1)根据第_____列,在有菌A的情况下,菌_____会进一步促进提高幼蜂羽化率。
(2)研究人员对幼蜂寄生可能造成的影响进行研究。
(i)研究发现幼蜂会分泌一种物质,类似于人体内胰岛素的作用,则其作用可以是促进_____物质转化为脂质。
经合成加工后,高尔基体会释放含有溶酶体水解酶的囊泡,与前溶酶体融合,产生最适合溶酶体水解酶的酸性环境,构成溶酶体。溶酶体对于清除细胞内衰老、损伤的细胞器至关重要。
10.某种抗生素对细菌核糖体有损伤作用,大量摄入会危害人体,其最有可能危害人类细胞哪个细胞器?()
A.线粒体B.内质网C.细胞质核糖体D.中心体
15.(1)极性运输(主动运输)
(2)①.中央②.顶膜③.侧膜和底膜④.顶膜处最多,侧膜和细胞质中也有分布
(3)促进生长素从细胞质和侧膜等部位向伸长区细胞顶膜集中
16.(1)①.等位②.自交后代中基因型为A25-A25-的个体死亡,基因型为A25-A和AA的个体由于都至少含有一个A基因,因此可以与正向引物和反向引物结合进而完成PCR,获得明亮条带。③. AA ④. 1/3
(2)同源切割是一种代替限制酶、DNA连接酶将目的基因导入基因表达载体的方法。当目的基因两侧的小段序列与基因表达载体上某序列相同时,就可以发生同源切割,将目的基因直接插入。研究人员,运用同源切割的方式,在目的基因两端加上一组同源序列A.B,已知酵母菌体内DNA有许多A-B序列位点可以同源切割插入。构建完成的目的基因结构如图,则应选择图中的引物_____对目的基因进行PCR。
天津数学高考真题分类汇总(2017-2021)
一、集合1.(2017)设集合A={1,2,6},B={2,4},C={x∈R∣-1≤x≤5},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R∣-1≤x≤5}2.(2018)(1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}3.(2019)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3}则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2.3}D.{1,2,3,4}4.(2020)设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2}, B={−3,0,2,3},则A∩(∁U B)=()A.{−3,3} B.{0,2} C.{−1,1} D.{−3,−2,−1,1,3}5.(2021)设集合A={-1,0,1}, B={1,3,5}, C=[0,2,4],则(A∩B)∪C=( )A. {0}B. { 0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}二、充分、必要条件玉全称、存在量词1.(2017).设,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件2.(2018)设x∈R,则“”是“x3<1”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(2019)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2020)设a∈R ,则“a>1”是“a²>a”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2021)已知a∈R ,则“a>6”是“a²>36”的( )A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不允分也不必要条件三、函数及其表示1.(2020)函数的图像大致为()2. (2021)函数的图像大致为()四、函数的基本性质1.(2017)2.(2018)3.(2019)4.(2020)5.(2021)若2a=5b=10,则=()A.-1B.C.1D.㏒710五、基本初等函数1.(2017)已知奇函数f(x)在R上是增函数,g(x)=xf(x).a=g(-㏒25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a2.(2018)已知则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b3.(2019)已知则a,b,c的大小关系为()A. a<c<bB.a<b<cC. b<c<aD.c<a<b4.(2020)设则a,b,c的大小关系为()A. a<b<cB.b<a<cC.b<c<aD.c<a<b5.(2021)设,则a,b,c的大小关系为()A.a<b<cB.c<a<bC.b<c<aD.a<c<b六、函数的零点1.(2017)已知函数设a∈R,若关于x的不等式在R上恒成立则a的取值范围是()A. B. C. D.2.(2018)已知a>0,函数若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是_____3.(2019)已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]4.(2020)已知函数若函数恰有4个零点,则k的取值范围是()A. B.C. D.5.(2021)七、导数及其应用(大题)1.(2017)2.(2018)3.(2019)4.(2020)5.(2021)已知a>0 函数f(x)=ax-xe x(I)求曲线y=f(x)在点(0,f(0))处的切线方程(II)证明f(x)存在唯一的极值点(III)若存在a,使得f(x)≤a+b对任意x∈R成立,求实数b的取值范围八、三角函数、三角恒等变换(大题)1.(2017)2.(2018)3.(2019)4.(2020)5.(2021)九、平面向量1.(2017)2.(2018)8.如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1. 若点E为边CD上的动点,则的最小值为()A. B. C. D.33.(2019)14.在四边形ABCD中,AD∥BC, AB=AD=5, ∠A=30°,点E在线段CB的延长线上,且AE=BE,则=_____.4.(2020)5.(2021)十、数列(大题)1.(2017)2.(2018)3.(2019)4.(2020)5.(2021)十一、不等式、一元二次不等式1.(2017)设变量x,y满足约束条件则目标函数z=x+y的最大值为( )A. B.1 C. D. 32.(2018)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为( )A.6B.19C.21D.453.(2019)设变量x,y满足约束条件则目标函数z=-4x+y的最大值为( )A.2B.3C.5D.6十二、基本不等式1.(2017)若a,b∈R,ab>0,则的最小值为______.2.(2018)已知a , b∈R,且a−3b+6=0,则的最小值为 ________.3.(2019)4.(2020)5.(2021)若a>0,b>0则的最小值为_____十三、立体几何(大题)1.(2017)2.(2018)3.(2019)4.(2020)5.(2021)十四、直线与圆的方程1.(2017)在极坐标系中,直线与圆的公共点的个数为______.2.(2018)已知圆x 2 +y 2−2x=0的圆心为C,直线(t为参数)与该圆相交于A,B两点,则△ABC的面积为 ______.3.(2019)4.(2020)已知直线x−y+8=0和圆x 2+y 2=r 2(r>0)相交于A,B两点.若∣AB∣=6,则r的值为_________.5.(2021)若斜率为的直线与y轴交于点A,与圆x2+(y-1)2=1相切于点B,则|AB|=_________十五、圆锥曲线与方程(大题)1.(2017)2.(2018)3.(2019)4.(2020)5.(2021).十六、概率、统计、计数原理、随机变量1.(2017)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有_______个.(用数字作答)2.(2018)(10).在的展开式中,x2的系数为_______.3.(2019)(10).的展开式中的常数项为_______ 4.(2020)(11) 在的展开式中,x2的系数是_______5.(2021)(11).在的展开式中,x6的系数是_______14.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为______, 3次活动中,甲至少获胜2次的概率为______十七、数系的扩充与复数的引入1.(2017)已知a∈R,i是虚数单位,若为实数,则a的值为______2.(2018)i是虚数单位,复数3.(2019)i是虚数单位,复数的值为_____4.(2020)i是虚数单位,复数5.(2021)i是虚数单位,复数。
天津语文高考试题及答案
天津语文高考试题及答案(以下是一些天津地区历年语文高考试题及答案的汇总)第一部分:阅读理解(共10小题,每小题2分,共20分)阅读下列短文,根据短文内容,从短文后各题所给的四个选项中选出最佳答案。
短文一恐龙的秘密恐龙是地球上的“物种霸主”,它们生活在地球上的时间比人类长很多。
据科学家推测,恐龙起源于距今2亿多年前的三叠纪晚期,它们一直生活到距今6500万年前的白垩纪末期。
那么,恐龙的生活方式和特点是怎样的呢?首先,恐龙是爬行动物,它们有四只脚,体形庞大,许多恐龙的长度超过了100米。
因此,它们在行走时需要四肢支撑和波动各个节段的身体。
其次,恐龙的牙齿形状各异,不同的恐龙根据自身食性演化出了各自独特的牙齿结构。
有些恐龙长着利齿,适合咬食植物和小型动物,而有些则长着锯齿状的牙齿,适合撕咬食物。
此外,恐龙的眼睛和耳朵都比较大,它们的视觉和听觉相对敏锐,能及时察觉周围的危险。
古生物学家对恐龙的生活方式也做了一些推测。
通过化石发现,恐龙的足迹遍布各个地方,推测它们是以群体方式活动的,可能是为了更好地保护自己。
此外,由于恐龙的大部分化石是在河流旁边发现的,使得科学家推测它们在水域附近生活并取食。
不过,这些只是一些推测,目前对恐龙的了解还有待更多的科学研究。
1. 恐龙可能在行走时需要依靠什么运动方式?A. 动蛙泳B. 四肢支撑和波动各个节段的身体C. 直立行走D. 用两肢支撑身体前进2. 恐龙的牙齿形状为什么各异?A. 恐龙的牙齿结构与它们的食性有关B. 恐龙进化的结果C. 恐龙是杂食动物,所以牙齿有多种形状D. 恐龙的牙齿与其体型有关3. 恐龙的眼睛和耳朵的特点是什么?A. 大B. 小C. 锋利D. 尖4. 根据化石发现,古生物学家推测恐龙可能是以什么方式活动的?A. 分散活动B. 独自活动C. 群体活动D. 依靠其他动物的帮助活动5. 科学家通过什么发现了恐龙可能生活在水域附近?A. 化石的大小B. 化石的种类C. 化石的位置D. 化石的颜色答案:B、A、A、C、C短文二文明古国:埃及埃及是古代文明史上重要的一部分,其悠久的文化历史和众多的世界遗产吸引着无数游客的目光。
天津高考语文试卷往年作文(含答案)
天津高考语文试卷往年作文(含答案)下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!专业课原理概述部分一、选择题1. 以下哪个选项是天津高考语文试卷作文评分标准之一?()A. 内容充实B. 语言流畅C. 结构完整D. 思想深刻2. 天津高考语文试卷作文常考的文体不包括以下哪一种?()A. 记叙文B. 议论文C. 说明文D. 应用文3. 以下哪个选项是天津高考语文试卷作文常见的命题形式?()A. 命题作文B. 材料作文C. 话题作文D. 以上都是4. 天津高考语文试卷作文要求字数一般在多少字左右?()A. 800字B. 1000字C. 1200字D. 1500字5. 以下哪个选项是天津高考语文试卷作文评分标准之一?()A. 观点明确B. 论据充分C. 语言得体D. 以上都是二、判断题1. 天津高考语文试卷作文评分标准包括内容充实、语言流畅、结构完整、思想深刻等要素。
[五年高考]2014年-2015-2016-2017-2018年天津市语文卷高考试题真题卷(含详细答案)
高考试题汇总目录(精心整理)2018年天津卷高考试题word版(含详细答案)2017年天津卷高考试题word版(含详细答案)2016年天津卷高考试题word版(含详细答案)2015年天津卷高考试题word版(含详细答案)2014年天津卷高考试题word版(含详细答案)绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)语文本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷两部分,共150分,考试用时150分钟。
第Ⅰ卷1至6页,第Ⅱ卷7至11页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
一、(12分)阅读下面一段文字,完成1~2题。
转过山角,悄.无声息地盘垣.一段古潭般______的河湾。
一片暗绿扑上眉睫,浑身一阵清凉。
溪水到这里更加澄澈.,像一汪流动的绿玻璃。
夹岸竹树环合,上面是翠盖蓊.郁,中间的虬.藤柔曼.,纠挽披拂.。
只有两头逆射出来的波光云影,参差..画出流水的_______来。
一棵倔强的老柳树,偃.卧在河面,_____的枝叶梢头,兀.立着一只鹭鸶,侧头睥.睨着岸边的林子。
1.文中加点字的字音和字形,全都正确的一组是A.悄.(qiāo)无声息盘垣.(huán)澄澈.(chè)B.蓊.(wēng)郁虬.(qiú)藤柔曼.(màn)C.披拂.(fú)参差.(cī)倔拗.(ào)D.偃.(yǎn)卧兀.(wù)立睥.(pì)睨2.依次填入文中横线处的词语,最恰当的一组是A.深邃蜿蜒荒疏B.幽邃蜿蜒稀疏C.深邃曲折稀疏D.幽邃曲折荒疏3.下列各句中没有语病的一句是A.尤瓦尔・赫拉利写作了《人类简史》一经上市就登上了以色列畅销书排行榜第一名,蝉联榜首长达100周,30多个国家争相购买版权。
近3年(2017,2018,2019)天津市高考语文试卷以及答案(word解析版)
2017年普通高等学校招生全国统一考试(天津卷)语文本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷两部分,共150分,考试用时150分钟。
第Ⅰ卷1至6页,第Ⅱ卷7至11页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
一、(12分)1.下列词语中加点字的字音和字形,全都正确的一项是A.追溯.(sù)隽.(jùn)永忙不迭.(dié)返璞.(pú)归真B.信笺.(qiān)洗漱.(shù)一溜.(liù)烟恪.(kè)守不渝C.收敛.(liǎn)蕴藉.(jiè)一刹.(chà)那敷衍塞.(sè)责D.整饬.(chì)框.(kuàng)架肇.(zhào)事者心无旁鹜.(wù)2.依次填入下面语段横线处的词语,最恰当的一组是大多数人的______中,真与美并不是一回事,尤其是文艺复兴以后,美成为人文素养中的主要______,真与美就______了。
这并不是说真与美是对立的,而是把美的价值提高,达到与真______的程度。
A.观点内含劳燕分飞同日而语B.观念涵义天南海北平分秋色C.理念涵养南辕北辙相提并论D.心目内涵分道扬镳分庭抗礼3.下列各句中没有..语病的一句是A.为迎办第十三届全国运动会,市容园林系统集中力量营造整洁有序、大气靓丽、优质宜居的城市形象。
B.随着厂商陆续推出新车型,消费者又再次将目光聚焦到新能源车上,不少新能源车的增长在15%到30%左右C.河道综合治理工程完成后,将为尽早实现京津冀北运河全线通航打好基础,并将成为北运河的一个重要旅游节点。
近三年天津高考文综政治试题
近三年天津高考文综政治试题(主观题部分)2010年12.(21分)阅读材料,回答问题。
低碳经济是以低能耗、低污染、低排放为基础的经济模式,是未来新的经济增长点。
我国很多企业面对低碳经济的发展机遇摩拳擦掌,却面临资金、技术等困难。
发展低碳经济不仅成本高、周期长、见效慢,而且少数发达国家还垄断着低碳经济的核心技术,不愿意转让。
为推动企业走低碳发展之路,国家强化政策支持,包括加大财政投入力度,落实研发投入抵扣所得税政策,完善知识产权保护制度,鼓励国际合作等,从而坚定了企业发展的信心。
(1)结合材料,运用经济生活知识,分析企业面对低碳经济发展趋势应怎样实现自身发展。
答案:①企业要利用国家宏观调控的优惠政策,赢得发展机遇。
②企业需要制定正确的经营战略,在生产经营中注重节能减排。
③企业要加强自主创新,掌握自主知识产权,形成竞争优势。
④企业要坚持“引进来”和“走出去”相结合,提高对外开放水平。
⑤企业在追求利润的同时,也要承担相应的社会责任。
(2)低碳商品上市初期,价格往往会高于同类非低碳商品,但最终其价格会下降。
运用马克思劳动价值论的有关知识,阐释低碳商品价格下降的必然性。
答案:①价值是凝结在商品中的无差别的人类劳动。
商品的价值量由生产商品所耗费的社会必要劳动时间决定。
②价格以价值为基础。
商品生产者通过改进技术、改善经营管理等手段降低个别劳动时间,客观上促进社会劳动生产率提高,缩短社会必要劳动时间,降低单位商品价值量,因而价格会下降。
③受供求关系的影响,价格围绕价值上下波动是价值规律发挥作用的表现。
低碳商品供给增加,使价格下降。
13.(10分)阅读材料,回答问题。
材料一党的十七届四中全会通过的《中共中央关于加强和改进新开势下党的建设若干重大问题的决定》指出,党内民主是党的生命,推进党内民主,必须以保障党员的民主权利为根本,落实党员的知情权、参与权、选举权、监督权,提高党员对党的事务的参与度。
材料二我国是人民民主专政的社会主义国家。
天津历年高考试题及答案
天津历年高考试题及答案自1977年恢复高考以来,天津市高考试题和答案一直备受广大考生的关注。
作为一项重要的选拔制度,高考对于每个学子来说,都意味着人生的转折点。
因此,熟悉历年高考试题和答案,对于考生们的备考和实战都具有重要意义。
天津市高考试题的命题特点可以总结为注重思维能力的考察,并且广泛涉及多个学科领域的知识。
试题形式不仅包括选择题、填空题等传统的形式,还包括现代文阅读等能够考察学生综合能力的题目。
下面将针对几个不同年份的高考试题进行分析和解答。
首先,我们来看一道典型的天津高考数学试题。
2015年天津高考数学卷中的一道选择题如下:已知等差数列的前三项分别是5,9,13,求其第n项的值。
选项中给出了四个不同的答案。
答案是D选项,即n项的值为4n+1。
这道题考察了考生对等差数列的理解和掌握程度,同时也考察了考生的运算能力和逻辑思维能力。
对于这样的题目,考生需要首先找到前三项之间的规律,发现每个项之间的差值都是4,然后利用这个规律计算第n项。
接下来,我们来看一道英语阅读理解的题目。
2018年天津高考英语卷中的一道阅读理解题如下:根据短文内容,回答问题。
Why do children like reading Harry Potter? The story is about a young wizard called Harry and his friends, Ron Weasley and Hermione Granger. They study atHogwarts School of Witchcraft and Wizardry. Together they experience many exciting and dangerous adventures.根据题目给出的关键词,考生需要在文章中找到相关的信息,并将其与题目要求进行对比和判断。
在这道题目中,考生需要理解为什么孩子们喜欢读《哈利·波特》这本书。
天津市高考试卷化学真题
天津市高考试卷化学真题一、选择题(每题3分,共30分)1. 下列元素中,原子半径最大的是:A. 氢(H)B. 氧(O)C. 钠(Na)D. 氯(Cl)2. 根据元素周期律,同一周期内,从左到右,元素的金属性逐渐:A. 增强B. 减弱C. 不变D. 先增强后减弱3. 某化合物的化学式为AB2,其中A的化合价为+2,B的化合价为-1,该化合物的名称是:A. 氧化物B. 氢化物C. 硫化物D. 氯化物4. 根据化学平衡原理,当一个化学反应达到平衡状态时,下列说法正确的是:A. 正反应速率等于逆反应速率B. 反应物和生成物的浓度不再变化C. 反应物和生成物的摩尔数不再变化D. 所有选项都正确5. 根据酸碱中和反应原理,下列物质中属于酸的是:A. 氢氧化钠(NaOH)B. 硫酸(H2SO4)C. 碳酸钠(Na2CO3)D. 硝酸银(AgNO3)6. 根据氧化还原反应原理,下列反应中属于氧化反应的是:A. 铁与盐酸反应B. 铜与硝酸银反应C. 锌与硫酸反应D. 所有选项都是氧化反应7. 根据化学计量学原理,下列物质中摩尔质量最大的是:A. 氢气(H2)B. 氧气(O2)C. 氮气(N2)D. 氦气(He)8. 根据电离理论,下列物质中属于电解质的是:A. 氢氧化钠(NaOH)B. 硫酸(H2SO4)C. 氯化钠(NaCl)D. 所有选项都是电解质9. 根据有机化学原理,下列化合物中属于烃的是:A. 乙醇(C2H5OH)B. 甲烷(CH4)C. 乙醛(C2H4O)D. 乙酸(CH3COOH)10. 根据化学反应速率与温度的关系,下列说法正确的是:A. 温度升高,反应速率一定增大B. 温度降低,反应速率一定减小C. 温度对反应速率无影响D. 温度对反应速率的影响取决于反应类型二、填空题(每空2分,共20分)11. 原子的核外电子排布遵循_________原则。
12. 根据化学键理论,水分子中的氢原子和氧原子之间形成的化学键是_________键。
2023年高考真题天津卷版含答案
一般高等学校招生全国统一考试(天津卷)第Ⅰ卷(选择题)注意事项:1. 每题选出答案后, 用铅笔将答题卡上对应题目旳答案标号涂黑。
如需改动, 用橡皮擦洁净后, 再选涂其他答案标号。
2.本卷共11题, 每题4分, 共44分。
在每题给出旳四个选项中, 只有一项是最符合题目规定旳。
结合图1和图2中旳信息, 回答1—2题。
1. 最有也许观测到图1中景观旳地点, 是图2中旳()A. 甲地B. 乙地C. 丙地D. 丁地2.在图1所示地区, 年降水量最多旳地带应位于()A. 长年积雪区B. 高山草甸带C. 云杉林带D. 山麓草原读图文材料, 回答3—4题。
3. 根据图3中信息判断, 导致甲、乙、丙三地地貌类型不一样旳最重要原因是()A. 年降水量旳差异B. 地质构造部位不一样C. 植被覆盖率不一样D. 地表岩石种类不一样古河床沉积物是某地质历史时期河流位置旳标志。
在乙地不一样高度上分布着两个地质历史时期旳古河床沉积物。
4. 这反应了自古河床形成以来, 该地区地壳经历过()A. 间歇性抬升B. 持续性抬升C. 间歇性沉降D. 持续性沉降全球变暖导致冰川融化和海平面上升。
为减缓全球变暖, 发展低碳经济是人类社会旳必然选择。
读图文资料, 回答5—7题。
科学家们考察了美国西北部某山岳冰川消融旳状况(图4)及产生旳影响。
5. 对图4所示地区1936—期间地表环境变化旳表述, 与实际状况相符旳是()A. 年蒸发量一直不变B. 河湖水量持续稳定增长C. 生物种类保持不变D. 地表淡水资源总量减少6.科学家们在推断海平面上升所沉没旳陆地范围时, 不作为重要根据旳是()A. 沿海地区旳海拔高度B. 海水受热膨胀旳幅度C. 全球冰川融化旳总量D. 潮汐规模和洋流方向循环经济是低碳经济旳重要形式之一。
循环经济意在生产过程中对物质资源循环高效运用, 实现无害、减量排放。
天津市采用了许多循环经济旳模式。
7.在下列经济活动中, 不属于循环经济旳是()天津广播电视塔(简称“天塔”)高度约415米。
2024年天津市高考数学试卷含答案解析
绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
2024年高考数学天津卷真题试卷及详解
2024年普通高等学校招生全国统一考试(天津卷)数学第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =( )A.{}1,2,3,4B.{}2,3,4C.{}2,4D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( ) A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x x y x -=+ D.||sin 4ex x x y += 5.若0.30.3 4.24.24.2log 0.2a b c -===,,,则a b c ,,的大小关系为( ) A.a b c >> B.b a c >> C.c a b >> D.b c a >>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是( )A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n ⊥D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是( )A. B.32- C.0 D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.36B.33142+C.32D.33142- 第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i ⋅=______. 11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为______. 12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.在ABC 中,92cos 5163a Bbc ===,,. (1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,k n n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数. (ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学解析一、选择题.1.【答案】B【解析】因为集合{}1,2,3,4A =,{}2,3,4,5B =所以{}2,3,4A B =故选:B2.【答案】C【解析】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.【答案】A【解析】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4.【答案】B【解析】对A,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B,设()22cos 1x x g x x +=+,函数定义域为R 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确; 对C,设()e 1x x h x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误; 对D,设()||sin 4e x x x x ϕ+=,函数定义域为R ,因为()sin141e ϕ+=,()sin141eϕ---=则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.5.【答案】B【解析】因为 4.2x y =在R 上递增,且0.300.3-<<所以0.300.30 4.2 4.2 4.2-<<<所以0.30.30 4.21 4.2-<<<,即01a b <<<因为 4.2log y x =在(0,)+∞上递增,且00.21<<所以 4.2 4.2log 0.2log 10<=,即0c <所以b a c >>故选:B6.【答案】C【解析】对于A,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C,//,αα⊥m n ,过m 作平面β,使得s βα=因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.【答案】A【解析】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω= 即()sin2f x x =-,当,126⎡⎤∈-⎢⎥⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦ 画出()sin2f x x =-图象,如下图由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减所以,当π6x =时,()min π3sin 32f x =-=- 故选:A 8.【答案】C 【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得12sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ= 21sin 5θ=,由正弦定理可得:121212::sin :sin :sin902:1:5PF PF F F θθ=︒= 则由2PF m =得1122,25PF m F F c m ===由1212112822PF F S PF PF m m =⋅=⋅=得22m = 则211222,42,2210,10PF PF F F c c =====由双曲线第一定义可得:12222PF PF a -==,222,8a b c a ==-=所以双曲线的方程为22128x y -=. 故选:C9.【答案】C【解析】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===则形成的新组合体为一个三棱柱该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=2132211311422ABC DEF ABC HIJ V V --==⨯⨯⨯⨯⨯=. 故选:C.第Ⅱ卷二、填空题.10.【答案】7-【解析】))i 2i 527⋅=-+=-. 故答案为:7.11.【答案】20【解析】因为63333x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rr r r r r r x T x r x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 令()630r -=,可得3r =所以常数项为0363C 20=.故答案为:20.12.【答案】45【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p =即2p = 由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍) 故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-= 故原点到直线AF 的距离为4455d == 故答案为:45 13.【答案】①.35②.12 【解析】设甲、乙选到A 为事件M ,乙选到B 为事件N则甲选到A 的概率为()2435C 3C 5P M ==; 乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M === 故答案为:35;12 14.【答案】①.43②.518- 【解析】因为12CE DE =,即23CE BA =,则13BE BC CE BA BC =+=+ 可得1,13λμ==,所以43λμ+=; 由题意可知:1,0BC BA BA BC ==⋅=因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭可得11111113232AF DG k BA kBC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-; 15.【答案】()()11,3-【解析】令()0fx =,即21ax =-- 由题可得20x ax -≥当0a =时,x∈R ,有211=--=,则x =,不符合要求,舍去; 当0a >时,则23,121,ax x a ax ax x a ⎧-≥⎪⎪=-=⎨⎪-<⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点 由20x ax -≥,可得x a ≥或0x ≤当0x ≤时,则20ax-<,则211ax ax =--=-即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦ 当2a =时,即410x +=,即14x =- 当()0,2a ∈,12x a =-+或102x a =>-(正值舍去)当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去 即当(]0,2a ∈时,210ax -+=在0x ≤时有唯一解 则当(]0,2a ∈时,210ax -+=在x a ≥时需无解 当(]0,2a ∈,且x a ≥时由函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫⎪⎝⎭上单调递增 令()g x y ==即2222142a x y a a ⎛⎫- ⎪-⎭=⎝ 故x a ≥时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得 由()222214y x a a-=的渐近线方程为22a y x x a =±=± 即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2又(]0,2a ∈,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈令()0g x ==,可得x a =或0x =(舍去) 且函数()g x 在(),a +∞上单调递增故有13a aa a ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<故1a <<; 当a<0时,则23,2121,ax x a ax ax x a ⎧-≤⎪⎪=--=⎨⎪->⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点由20x ax -≥,可得0x ≥或x a ≤当0x ≥时,则20ax -<,则211ax ax =--=-即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =-时,即410x -=,即14x = 当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =- 当(),2a ∈-∞时,102x a =->+或102x a=>-,有两解,舍去 即当[)2,0a ∈-时,210ax -+=在0x ≥时有唯一解 则当[)2,0a ∈-时,210ax -+=在x a ≤时需无解 当[)2,0a ∈-,且x a ≤时由函数()23,21,ax x ah x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a = 且函数()h x 在21,a a ⎛⎫⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得 ()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-又[)2,0a ∈-,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-令()0g x ==,可得x a =或0x =(舍去) 且函数()g x 在(),a -∞上单调递减故有13a aa a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求; 综上所述,()()11,3a ∈-.故答案为:()(1-⋃. 三、解答题.16.【答案】(1)4(3)5764 【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==. 【小问2详解】因为B 为三角形内角,所以sin 16B ===再根据正弦定理得sin sin a b A B =,即4sin A =,解得sin A =【小问3详解】 因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭由(2)法一知sin 16B =因为a b <,则A B <,所以3cos 4A ==则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=⨯=.17.【答案】(1)证明见解析(2)11(3)11【小问1详解】取1CB 中点P ,连接NP ,MP由N 是11B C 的中点,故1//NP CC ,且112NP CC =由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC 则有1//D M NP ,1D M NP =故四边形1D MPN 是平行四边形,故1//D N MP 又MP ⊂平面1CB M ,1D N ⊄平面1CB M 故1//D N 平面1CB M ; 【小问2详解】以A 为原点建立如图所示空间直角坐标系有()0,0,0A ,()2,0,0B ,()12,0,2B ,()0,1,1M ,()1,1,0C ,()11,1,2C 则有()11,1,2CB =-,()1,0,1CM =-,()10,0,2BB =设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =,()222,,n x y z =则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ 分别取121x x ==,则有13y =,11z =,21y =,20z = 即()1,3,1m =,()1,1,0n = 则13222cos ,1119111m n m n m n ⋅+===⋅++⋅+ 故平面1CB M 与平面11BB CC 的夹角余弦值为22211; 【小问3详解】由()10,0,2BB =,平面1CB M 的法向量为()1,3,1m = 则有1221111191BB m m⋅==++ 即点B 到平面1CB M 的距离为21111. 18.【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【小问1详解】因为椭圆的离心率为12e =,故2a c =,3b c =,其中c 为半焦距 所以()()32,0,0,3,0,2c A c B c C ⎛⎫--- ⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△ 故3c =,所以23a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-设()()()1122,,,,0,P x y Q x y T t由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--= 故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==-++ 而()()1122,,,TP x y t TQ x y t =-=-故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭()()22121233122kx x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+ ()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+因为0TP TQ ⋅≤恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤. 若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -此时需33t -≤≤,两者结合可得332t -≤≤. 综上,存在()30,32T t t ⎛⎫-≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 19.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b =-+=∑ 【小问1详解】设等比数列{}n a 的公比为0q > 因为1231,1a S a ==-,即1231a a a +=- 可得211q q +=-,整理得220q q --=,解得2q或1q =-(舍去)所以122112nn n S -==--. 【小问2详解】(i)由(1)可知12n n a -=,且N*,2k k ∈≥当124kk n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-< 可知12,1k k n a b k -==+()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-当且仅当2k =时,等号成立 所以1n k n b a b -≥⋅;(ii)由(1)可知:1211nn n S a +=-=-若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列 可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑ 所以()()()232113141115424845431434499nnS n n i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑ 且1n =,符合上式,综上所述:()131419nn S ii n b =-+=∑. 20.【答案】(1)1y x =-(2){}2(3)证明过程见解析 【小问1详解】由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-. 【小问2详解】设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>. 所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g ⎛⎫⎫-=-=--=⋅ ⎪⎭⎝.当()0,x ∞∈+时()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥. 一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭取2t =,得01a ≤-,故10a ≥>.再取t =得2022a a a ≤-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件. 综合以上两个方面,知a 的取值范围是{}2. 【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -≥,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a--=+=+<+--- 且1lnln ln ln ln ln ln ln 1ln 11a ab b a a b b b a b b a a a a a a b a b a bb⎛⎫--- ⎪--⎝⎭=+=+>+=+---- 所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10ex <<时()0f x '<,当1ex >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论. 情况一:当1211ex x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=-则()ln 1x x ϕ=+'. 由于()x ϕ'单调递增,且有1111111ln1ln1110 2e2e ec cϕ⎛⎫⎪=+<++=--+=⎪⎝⎭'且当2124ln1x cc≥-⎛⎫-⎪⎝⎭,2cx>时,2ln1c≥-可知()2ln1ln1ln102cx xcϕ⎛⎫=+>+=--≥⎪⎝⎭'.所以()xϕ'在()0,c上存在零点x,再结合()xϕ'单调递增,即知0x x<<时()0xϕ'<,x x c<<时()0xϕ'>.故()xϕ在(]00,x上递减,在[],x c上递增.①当x x c≤≤时,有()()0x cϕϕ≤=;②当0x x<<时,112221e ef fc⎛⎫=-≤-=<⎪⎝⎭,故我们可以取1,1qc⎫∈⎪⎭.从而当21cxq<<-时,>可得()1ln ln ln ln0 x x x c c c c c c qcϕ⎫=-<--<--=-<⎪⎭.再根据()xϕ在(]00,x上递减,即知对0x x<<都有()0xϕ<;综合①②可知对任意0x c<≤,都有()0xϕ≤,即()ln ln0x x x c cϕ=-≤.根据10,ec⎛⎤∈ ⎥⎝⎦和0x c<≤的任意性,取2c x=,1x x=,就得到1122ln ln0x x x x-≤.所以()()()()12121122ln lnf x f x f x f x x x x x-=-=-≤.情况三:当12101ex x<≤≤<时,根据情况一和情况二的讨论,可得()11ef x f⎛⎫-≤⎪⎝⎭()21ef f x⎛⎫-≤≤⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.。
2023年天津市高考语文真题及答案解析
2023年天津市高考语文真题及答案解析2023年天津市高考语文真题已结束,以下是对该真题以及答案的详细解析。
【阅读理解部分】阅读下列材料,从每篇材料后所给各题的A、B、C和D四个选项中,选出最佳选项。
文章一柏林宇航员学院的研究人员近日对2019年成功培育的一朵神秘植物进行了研究,并在最新的研究成果中披露了耐寒性植物育种的突破性进展。
据了解,该植物是由太空实验室中的一株孤雌生物成功繁殖而来的,该株植物在极端低温环境下仍能生存。
研究人员介绍说,该植物不仅能够耐受极寒天气,还能抵抗紫外线和辐射等不利环境因素。
这些特性使得该植物在太空中有望发挥重要作用,为人类探索宇宙提供了新的可能性。
题目1:根据文章内容,太空实验室中成功繁殖出的该植物具有哪些特点?A. 耐寒性B. 耐干旱性C. 耐紫外线D. 耐高温答案1:A. 耐寒性文章二太空探索计划经历了几十年的发展,人类对宇宙的认识也愈发深入。
其中,近年来的一项研究表明,宇宙中可能存在着其他智慧生物。
研究人员通过对地球外行星的观测和分析,发现了一种与地球上的生物特征非常相似的物质。
这一发现引起了科学界的广泛关注。
科学家表示,这一研究结果表明宇宙中存在着可能与地球上的生命形式相似的生物体,并进一步推测,人类有望在未来与这些智慧生物展开对话和交流。
题目2:从文章内容可以推断出什么?A. 宇宙中存在其他智慧生物B. 宇宙中不存在其他智慧生物C. 宇宙中存在与地球生命相似的生物体D. 人类永远无法与宇宙中的智慧生物交流答案2:A. 宇宙中存在其他智慧生物【完形填空部分】阅读下面的短文,从短文后所给各题的A、B、C和D四个选项中,选出可以填入空白处的最佳选项。
标题:自然的声音即使是在熙熙攘攘的都市中,我们也能够聆听到大自然的声音。
虽然生活在都市中的我们很少有机会接触到大自然,但自然的声音却让我们重新______,找到平衡和宁静。
那是一种绵延悠远的声音,从惊雷到潺潺的小溪,从清脆的鸟鸣到轻拂树叶的欢快声,每一种声音都是大自然向我们传递的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市近三年高考真题2016年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•如果事件A ,B 相互独立,那么()()()P A B P A P B =+. ()()()P AB P A P B =.•圆柱的体积公式V Sh =.•圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积, h 表示圆柱的高.h 表示圆锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 学科.网(1)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1(B )}{4(C )}{3,1(D )}{4,1 (2)设变量x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧-+-++-.0923,0632,02y x y x y x 则目标函数y x z 52+=的最小值为(A )4-(B )6(C )10(D )17≥ ≥ ≤(3)在ABC ∆中,若13=AB ,3=BC , 120=∠C , 则=AC(A )1 (B )2 (C )3 (D )4(4)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )2 (B )4 (C )6 (D )8 (5)设}{n a 是首项为正数的等比数列,学科&网公比为q ,则“0<q ”是“对任意的正整数n ,0212<n n a a +-”的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 (6)已知双曲线14222=-byx )>(0b ,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,学科&网四边形ABCD 的面积为b 2,则双曲线的方程为(A )143422=-y x (B )134422=-y x (C )144222=-y x (D )112422=-y x (7)已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为(A )85-(B )81 (C )41(D )811 (8)已知函数⎪⎩⎪⎨⎧+++-+=0,1)1(log 0,3)34()(2x x x a x a x x f a<(0>a ,学.科网且1≠a )在R 上单调递减,且关于x 的方程x x f -=2)(恰好有两个不相等的实数解,则a 的取值范围是(A )]32,0((B )]43,32[ (C ) ]32,31[{43}(D ) )32,31[{43}≥≥ (第4题图)绝密★启用前2016年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9)已知a ,∈b R ,i 是虚数单位,若a b =-+)i 1)(i 1(,则ba的值为_____________. (10)82)1(xx -的展开式中7x 的系数为_____________.(用数字作答) (11)已知一个四棱锥的底面是平行四边形,该四棱 锥的三视图如图所示(单位:m ),学科.网则该四棱锥的体积 为_____________3m .(12)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22==AE BE ,ED BD =,则线段CE 的长为_____________.(13)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增.若实数a 满足)2()2(1--f f a >,则a 的取值范围是_____________.(14)设抛物线⎩⎨⎧==pty pt x 2,22(t 为参数,0>p )的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设)0,27(p C ,AF 与BC 相交于点E .若AF CF 2=,且ACE ∆的面积为23,则p 的值为_____________.正视图侧视图俯视图(第11题图)三. 解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数3)3cos()2sin(tan 4)(---=ππx x x x f .(Ⅰ)求)(x f 的定义域与最小正周期; (Ⅱ)讨论)(x f 在区间]4,4[ππ-上的单调性.(16)(本小题满分13分)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分 别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(Ⅰ)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (Ⅱ)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列 和数学期望.(17)(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面⊥OBEF 平面ABCD ,点G 为AB 的中点,2==BE AB .(Ⅰ)求证:EG ∥平面ADF ; (Ⅱ)求二面角C EF O --的正弦值; (Ⅲ)设H 为线段AF 上的点,且HF AH 32=,求直线BH 和平面CEF 所成角的正弦值.(18)(本小题满分13分)已知}{n a 是各项均为正数的等差数列,学.科.网公差为d .对任意的*∈N n ,n b 是n a 和1+n a 的等比中项.(Ⅰ)设221n n n b b c -=+,*∈N n ,求证:数列}{n c 是等差数列;(Ⅱ)设d a =1,∑=-=nk kkn b T 212)1(,*∈N n ,求证21211d T nk k<∑=.(19)(本小题满分14分)设椭圆13222=+y a x )3(>a 的右焦点为F ,右顶点为A .已知FAeOA OF 311=+, 其中O 为原点,e 为椭圆的离心率. 学.科.网(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.(20)(本小题满分14分)设函数b ax x x f ---=3)1()(,∈x R ,其中a ,∈b R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:3201=+x x ; (Ⅲ)设0>a ,函数)()(x f x g =,求证:)(x g 在区间]2,0[上的最大值不小于...412017年普通高等学校招生全国统一考试天津数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅰ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为 .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π .若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-( )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,]1616-(C )[- (D )39[]16- 第Ⅰ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。