2006年中考数学试题汇编及解析---动态几何型综合

合集下载

中考数学试卷2006-课标卷答案

中考数学试卷2006-课标卷答案

2006年北京市高级中等学校招生统一考试(课标A 卷)数学试卷参考答案一、选择题1.A2.C3.A4.D5.B6.C7.D8.B二、填空题9.m ≤94 10.211.10 2612.30三、解答题13.解:12320061201+---+-||()() =+-+=+2331213314.解不等式组315260x x -<+>⎧⎨⎩,①②解:由不等式①解得x <2由不等式②解得 x >-3则不等式组的解集为 -<<32x15.解:()()()()x x x x x ++-=+-121211x x x x ++-=-1222222x =3经检验x =3是原方程的解。

所以原方程的解是x =316.证明:因为AB ∥ED ,则∠A =∠D又AF =DC则AC =DF在△ABC 与△DEF 中 AB DE A D AC DF ==⎧⎨⎪⎩⎪∠=∠所以△ABC ≌△DEF所以BC =EF17.解:x x x x x ()()2259-+-- =-+--=-x x x x x 322325949当230x -=时,原式=-=+-=49232302x x x ()()18.解:如图,过点D 作DF ∥AB 交BC 于点F因为AD ∥BC所以四边形ABFD 是平行四边形所以BF =AD =1由DF ∥AB得∠DFC =∠ABC =90°在Rt △DFC 中,∠C =45°,CD =22由 cos C CFCD =求得 CF =2所以 BC =BF +FC =3在△BEC 中,∠BEC =90°s i n C BEBC =求得 BE =322四、解答题19.解:(1)证明:如图,连结OA 。

因为sin B =12所以 ∠B =30°故∠O =60°又OA =OC ,所以△ACO 是等边三角形故∠OAC =60°因为∠CAD =30°所以∠OAD =90°所以 AD 是⊙O 的切线。

2006年全国中考数学压轴题全析全解(二)

2006年全国中考数学压轴题全析全解(二)

2006年全国中考数学压轴题全析全解(二)8、(2006吉林长春)如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A 。

动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S 。

(1)求点A 的坐标。

(2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式。

(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由。

(4)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________。

解:(1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4)。

(2)点P 在y = x 上,OP = t ,则点P 坐标为).22,22(t t 点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上。

∴t x x t 212,62122-=+-=, 即点Q 坐标为)22,212(t t -。

t PQ 22312-=。

当t t 2222312=-时,23=t 。

当时230≤<t , .2623)22312(222t t t t S +-=-=当点P 到达A 点时,24=t ,当2423<t<时, 2)22312(t S -= 144236292+-=t t 。

(3)有最大值,最大值应在230≤<t 中, ,12)22(2312)824(232623222+--=++--=+-=t t t t t S当22=t 时,S 的最大值为12。

(4)212≥t 。

9、(2006湖南常德)把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,45C F ∠=∠=,AB=DE=4,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q 。

2006年 中考试题汇编(作图题)含答案

2006年 中考试题汇编(作图题)含答案

力学(06年省黄冈市)37.如图是广场上一只氢气球,用细绳系于地面上,请作出氢气球受力示意图。

(06年盐城市)28.在水平向右的2N拉力作用下,木块在水平桌面上向右作匀速直线运动.用力的图示法作出它受到的摩擦力.1. (06年浦东新区)重为12牛的物体静止在水平地面上,请在图7中用力的图示法画出该物体受到的重力。

12、力的大小正确1分;方向、作用点正确1分;力的表述正确1分。

光学06年安徽省课程改革实验区)11.光纤通信是利用激光通过光纤来传递信息的。

光从图示的光纤一端射人,从另一端射出。

请将图中未完成的光路部分补充完整。

(06年广州市)18.(1)(2分)根据光的反射规律,画出图12中光线AO经平面镜反射后的反射光线,并在图中标出反射角大小;(2)(l分)画出图13中的光线AB经过凸透镜后的径迹.(06年泰安市)18、根据左下两图中的入射光线或折射光线,分别作出相应的折射光线或入射光线。

(06年浙江省绍兴市)20.舞蹈教室有一面非常大的平面镜,如图。

甲、乙、丙、丁四个学生在教室内排练舞蹈,当老师从外面进入到图示位置时,他能从平面镜中观察到的学生是A.甲B.甲、乙C.乙、丙D.丁电磁学(06年安徽省课程改革实验区)9.请用连线的方式把图中螺口灯泡与按钮开关正确接入电路。

((06年贵阳市)27、在下面的方框中画出探究二极管单向导电特性的实验电路图。

N NS(3)小明要将一个“一开三孔”开关(即一个开关和一个三孔插座连在一起)安装在新房里。

图甲为实物图,图乙为反面接线示意图,“A ”“B ”是从开关接线柱接出的两根导线,请你帮他将图乙中的电路连接完整, 使开关控制电灯,插座又方便其它电器使用.(06太原市中考)19.(2分)在图7中根据电流方向标出通电螺线管的N ,S 极.(如图所示)S火线 零线图甲 图乙第28题第(3)问(06年苏州市)24. 如图所示,在甲、乙两个“O”内选填“灯泡”和”电流表”的符号,使两灯组成并联电路.(06年盐城市)30.在图中标出通电螺线管A端和永磁体B端的磁极极性,并标出磁感线的方向.(06年镇江市)26.由一个电源、一只开关和两个阻值相等的电阻组成的电路,电源电压恒为6V,当开关由闭合变成断开时,电路的总功率减少了6W.请设计符合题意的两种不同电路,并填写对应的电阻的阻值.(06年镇江市)27.小磁针静止时的指向如图所示,请画出通电螺线管的绕线情况.(06年南昌市)21.请用笔画线代替导线,将图12中的连有开关的电灯和三孔插座接人家庭电路中.(06年莱芜市)1、根据如图4所示的小磁针指向,画出通电螺线管的导线绕法.(06年乐山市)62.螺线管通电后,小磁针静止时指向如图3所示,请在图中标出通电螺线管的N 、S 极,并标出电源的正、负极.(06年大连市)11.小磁针在条形磁铁的轴线上静止,如图4所示。

浙江省2006年初中毕业生学业考试

浙江省2006年初中毕业生学业考试

十三、动态型试题例1、(2005年杭州)在三角形ABC 中, 60,24,16B BA cm BC cm ∠=== .现有动点P 从点A 出发, 沿射线AB 向点B 方向运动; 动点Q 从点C 出发, 沿射线CB 也向点B 方向运动. 如果点P 的速度是4cm /秒, 点Q 的速度是2cm /秒, 它们同时出发, 求:(1)几秒钟以后, PBQ ∆的面积是ABC ∆的面积的一半?(2)这时, ,P Q 两点之间的距离是多少?知识点:本题考查了用一元二次方程、三角函数等有关知识进行几何图形的面积计算方法。

精析:本题是动态几何知识问题,此类题型一般利用几何关系关系式列出方程求解。

准确答案:(1) 设t 秒后, PBQ ∆的面积是ABC ∆的面积的一半, 则2,4CQ t AP t ==, 根据题意, 列出方程11222(162)(244)sin601624sin60t t ⨯--⋅=⨯⨯⨯ , 化简, 得214240t t -+=,解得122,12t t ==. 所以2秒和12秒均符合题意; (2) 当2t =时, 12,16,BQ BP == 在PBQ ∆中,作/QQ BP ⊥于/Q ,在/Rt QQ B ∆和/Rt QQ P ∆中,//6QQ BQ ==, 所以/10,PQ PQ ==; 当12t =时, 18,24,BQ BP == 同理可求得11PQ=中考对该知识点的要求:动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。

目标达成:13-1-1、(2005年南京)如图,形如量角器的半圆O 的直径DE=12cm ,形如三角板的⊿ABC 中,∠ACB=90°,∠ABC=30°,BC=12cm 。

半圆O 以2cm/s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上。

设运动时间为t (s),当t=0s 时,半圆O 在⊿ABC 的左侧,OC=8cm 。

2006年河北省中考数学试卷答案

2006年河北省中考数学试卷答案
46
……………………………(7 分)
y 能反映. …………………………………………………………………(8 分)
24.(本小题满分 8 分)
解:连结 OB,过点 O 作 OE⊥AB,垂足为 E,交 ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2006年中考动态几何题赏析

2006年中考动态几何题赏析

2006年中考动态几何题赏析
近年来,涉及动态几何的题目成为中考考试中经常考查的内容。

动态几何是一门研究定义为动态变量的几何问题的学科,具有较强的动手能力与推理能力,是学生自学能力的重要考查对象。

一般而言,动态几何题的特点是:简单、常见、有效。

从简单动态变量的角度来看,可以
从四个方面来分析:(1)通过实验判断解的变化规律,把调整变量理论转化为实践操作;(2)根据运动物体的路径与夹角判断几何图形;(3)联系实际对空间位置进行变换;(4)把动态变量转化为几何关系,有助于理解解题。

此外,中考动态几何题通常出现在解答问题或有关图形变换等形式,要求考生根据运动物
体的变化,来确定直线、点以及圆形等图形上的关系,变换几何图形的位置等。

因此,在应考动态几何题的过程中,应对解题思路进行科学的分析,从多方面解析同一问题,并要灵活地运用几何图形变换的方法来解决实际问题。

此外,还要加强实践能力的训练,把考点用具体的操作来解释。

综上所述,当我们应对动态几何题时,应注重实践能力的发展,以解决实际问题为目标,加强对空间知识的积累,培养解题的分析、研究归纳能力,做到及时发现解题中的问题,
以及把握解题思路的有效解决。

06数学中考试卷及专家分析-1

06数学中考试卷及专家分析-1
育网 -
8.精心设置综合试题,有效考查
学生能力,提高试卷区分度
试卷注意到数学能力考试的目的和性质,精 心设置综合试题,综合考查学生的合情说理和 逻辑推理能力、利用数学知识解决实际问题的 能力、以及基本的数学思想方法,又兼顾了高 一级学校选拔新生的需要。 如第10题将平移、面积与相似的综合;16 题继续进行数学概念的判别;24题第(3)问 对面积的求法和对动点的讨论等。
需要更完整的资源请到 新世纪教 育网 -
新中考难度下降的主要原因
新课程改革的目标之一 省级行政部门多次强调 杭州市教育局再三关照 考虑到杭州两区五县市实际水平 四月底全市针对后30%的抽测作用 各校认真研究新课程充分准备新中考
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
教师对新课标的看法
新中考,软着陆, 重基础,稳发展!
---2006杭州新中考反思
需要更完整的资源请到 新世纪教 育网 -
杭州市2006年第一届新中考
形式突变 内容渐变
先测评,再特招,最后考试 综合素质评价 六项内容 三级评定
道德与素养 劳动与技能 实践与探究 交流与合作 运动与健康 审美与艺术
需要更完整的资源请到 新世纪教 育网 -
7.以学生发展为本,为学生保证 公平竞争的同时提供展示水平的空间
试卷难度合理,无论是基础知识的数学题, 还是带有一定开放性、探究性的数学题,均能 贴近学生,背景公平,试题的表述准确、清晰、 科学,绝大多数试题阅读量适中,没有对学生 的分析和思考构成障碍。 试卷起点较低,难易有序,层次性、阶梯 性较为合理,能使各个层次的学生都较好地发 挥出自己的水平。 并把三类常规性的题型改为“仔细选一 选”、“认真填一填”、“全面答一答” , 更具亲和力。 需要更完整的资源请到 新世纪教

2006年河北省中考数学试题及参考答案

2006年河北省中考数学试题及参考答案

2006年河北省课程改革实验区初中毕业生升学考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的值是A .-2B .2C .12D .-122.图1中几何体的主视图是3.下列运算中,正确的是A .a +a =a 2B .a ⋅a 2=a 2C .(2a )2=2a 2D .a +2a=3a4.图2是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为 A .50台 B .65台 C .75台D .95台5.某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是 A .300(1+x )=363 B .300(1+x )2=363 C .300(1+2x )=363D .363(1-x )2=3006.在平面直角坐标系中,若点P (x -2,x )在第二象限,则x 的取值范围为A .0<x <2B .x <2销售量(台)30 45 20 甲 乙 丙图2A B C D正面 图1C .x >0D .x >27.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足mVρ=,它的图象如图3所示,则该气体的质量m 为 A .1.4kg B .5kg C .6.4kgD .7kg8.如图4,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为 A .2和3 B .3和2 C .4和1D .1和49.如图5,现有一圆心角为90°,半径为8cm 的扇形纸片, 用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆 锥底面圆的半径为 A .4cm B .3cm C .2cmD .1cm10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一 次方程组是由算筹布置而成的.《九章算 术》中的算筹图是竖排的,为看图方便, 我们把它改为横排,如图6-1、图6-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图6-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图6-2所示的算筹图我们可以表述为A .211,4327.x y x y ⎧⎨⎩+=+=B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨+=+=D .26,4327.x y x y ⎧⎨⎩+=+=2006年河北省课程改革实验区初中毕业生升学考试数 学 试卷卷II (非选择题,共100分)图5m 3)图3ABCDE 图4图6-2图6-1注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上)11.分解因式:a 3-a =______________.12.图7是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号) 13.有四张不透明的卡片为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片, 抽到写有无理数卡片的概率为_______.14.如图8,PA是⊙O 的切线,切点为A ,PA =APO =30°,则⊙O 的半径长为_______.15.小宇同学在一次手工制作活动中,先把一张矩形纸片按图9-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图9-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离 是_______cm .三、解答题(本大题共10个小题;共85分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分) 已知x =-32,求(1+11x +)⋅(x +1)的值.试试基本功 图8左 右左 右 第二次折叠第一次折叠 图9-1 图9-2图717.(本小题满分7分)如图10所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮.(1)请你在图10中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C 标出);(2)已知:MN =20 m ,MD =8 m ,PN =24 m ,求(1)中的点C 到胜利街口的距离CM .18.(本小题满分7分)观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:归纳与猜想① ② ③⑤④4×0+1=4×1-3; 4×1+1=4×2-3; 4×2+1=4×3-3;___________________;___________________;PN 图10Q部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗? 欢迎你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高(2)通过猜想,写出与第n 个图形相对应的等式.19.(本小题满分8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图:(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先下棋的概率.20.(本小题满分8分)员工 管理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数/名 1 3 2 3 24 1 每人月工资/元21000 840020252200 1800 1600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有 名; (2)所有员工月工资的平均数x 为元, 中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员. 请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍 员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.得 分评卷人得 分评卷人………… 判断与决策游戏规则三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到解: (1)树状图为:开始正面正面正面 反面小明 小亮小强 不确定确定结果21.(本小题满分8分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图11所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30m 时,用了_____h .开挖6h时甲队比乙队多挖了_____m ;(2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;(3)当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?22.(本小题满分8分)探索在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD , FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3, 则S 3=__________(用含a 的代数式表示).发现操作与探究 图12-1 C DCD 图12-2 F图12-3像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍. 应用去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?23.(本小题满分8分)如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.实验与推理 图13-2E 图13-3G 图13-1A ( G )B ( E )图12-4HM G24.(本小题满分12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.25.(本小题满分12分)图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.如图14-1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH和正方形MNPQ从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y个平方单位.综合与应用图14-7DQ(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6DQ图14-2图14-3DDD图14-1 (P ) D N图14-5DQ2006年河北省课程改革实验区初中毕业生升学考试数学试题参考答案及评分标准说明:1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 4.对于25(3)题加分的说明:(1)按评分标准给予相应的加分;(2)加分后不超过120分的,按照“原得分+加分=总分”计算考生的总分.加分后超过120分的,按照120分登记总分.一、选择题(每小题2分,共20分)二、填空题(每小题3分,共15分) 11.a (a +1)(a -1); 12.13.21; 14.2; 15.1.三、解答题(本大题共10个小题;共85分)16.解:原式=x +2. ……………………………………………………………………(4分)当x =32 时,原式=12. ……………………………………………………(7分) (说明:本题若直接代入求值正确,也相应给分)17.解:(1)如图1所示,CP 为视线,点C 为所求位置.……………………………(2分)(2)∵AB ∥PQ ,MN ⊥AB 于M ,∴∠CMD =∠PND =90°. 又∵ ∠CDM =∠PDN , ∴ △CDM ∽△PDN ,图1天津中考网( ) ∴ CM MD PN ND=.……………………………………………………………(5分) ∵MN =20m ,MD =8m ,∴ND =12m . ∴82412CM =, ∴CM =16(m ). ∴点C 到胜利街口的距离CM 为16m .…………………………………(7分)18.解:(1)④4×3+1=4×4-3;…………………………………………………………(2分)⑤4×4+1=4×5-3.…………………………………………………………(4分)(2)4(n -1)+1=4n -3.………………………………………………………(7分)19.解:(1)(2)由(1)中的树状图可知:P (确定两人先下棋)=34.…………………(8分) 20.解:(1)16;…………………………………………………………………………(1分)(2)1700;1600;………………………………………………………………(3分)(3)这个经理的介绍不能反映该公司员工的月工资实际水平.……………(4分)用1700元或1600元来介绍更合理些.…………………………………(5分) (说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也得分)(4)250050210008400346y ⨯--⨯=≈1713(元). ……………………………(7分) y 能反映.……………………………………………………………………(8分)21.解:(1)2,10;………………………………………………………………………(2分)(2)设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x .………………………………………(4分) 设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b ⎧⎪⎨⎪⎩+=+= 解得25,20.k b ⎧⎪⎨⎪⎩== ∴y =5x +20. ……………………(6分)(3)由题意,得10x =5x +20,解得x =4(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.……………………(8分)22.探索 (1)a ; ………………………………………………………………………(1分)(2)2a ;………………………………………………………………………(2分) 理由:连结AD ,∵CD =BC ,AE =CA ,∴S △DAC = S △DAE = S △ABC = a ,∴S 2=2a . ………………………………………………………………………(4分)…………………………(6分) 开始 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 小明 小亮 小强 不确定 确 定 确 定 确 定 确 定 确 定 确 定 不确定结果天津中考网( ) (3)6a ; ………………………………………………………………………(5分) 发现 7.………………………………………………………………………………(6分) 应用 拓展区域的面积:(72-1)×10=480(m 2). ……………………………(8分)23.解:(1)BM =FN . …………………………………………………………………(1分)证明:∵△GEF是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF .又∵∠BOM =∠FON , ∴ △OBM ≌△OFN .∴ BM =FN .…………………………………………………………(4分)(2)BM =FN 仍然成立.…………………………………………………………(5分) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF .∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN .∴ BM =FN . ………………………………………………………(8分)24.解:(1)5.71024026045⨯-+=60(吨).……………………………………………(3分)(2)260(100)(457.5)10x y x -=-+⨯,…………………………………………(6分) 化简得: 23315240004y x x =-+-.……………………………………(7分) (3)24000315432-+-=x x y 23(210)90754x =--+. 利达经销店要获得最大月利润,材料的售价应定为每吨210元. ……(9分)(4)我认为,小静说的不对. ………………………………………………(10分)理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=x x W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对. …………………………………………………(12分)方法二:当月利润最大时,x 为210元,此时,月销售额为17325元; 而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大.∴小静说的不对.…………………………………………………(12分)(说明:如果举出其它反例,说理正确,也相应给分)25.解:(1)相应的图形如图2-1,2-2. ……………………………………………(2分)当x =2时,y =3; ………………………………………………………(3分) 当x =18时,y =18. ……………………………………………………(4分)图2-3D Q P 图2-2 D 图2-1 D Q P天津中考网( )(2)①当2-3与=6+x ,SK =MK =2x -1,MT =6-(7-x )-1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.…………………………(6分)②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1.∴y=MN ·MT =6(x -1)=6x -6. ………………………………………(8分) ③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x .∴y = MN ·MT =6(13-x )=78-6x . …………………………………(10分) ④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.……………………(12分)(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分)(3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36. ……………………………………………(1分) ②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36.……………………………………………(2分) ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.……………………………………………(3分) ④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0;当x =49时,y 取得最大值36.……………………………………………(4分) (说明:问题(3)是额外加分题.若考生能指出在各边运动过程中,y 都经历了由0逐步增大到36,又逐步减小到0的变化,所以最小值是0,最大值是36,给2分.)图2-4 D 图2-5 D P 图2-6 D。

2006年中考数学试题汇编及解析---动态几何型综合

2006年中考数学试题汇编及解析---动态几何型综合

2006年中考数学试题汇编及解析---动态几何型综合纵观近5年全国各地的中考数学试卷,动态几何型综合题常常出现在一张试卷的压轴题位置,估计这一趋势在今后几年的中考中会越来越明显,这类试题往往综合性较强,往往涉及到函数、直线型、圆等初中数学的重点考察对象中的好几个,应加大训练的力度。

1、(2006山东青岛)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC =8cm ,BC =6cm ,∠C =90°,EG =4cm ,∠EGF =90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交 AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).(1)当x 为何值时,OP ∥AC ?(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围.(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)[解析] (1)∵Rt △EFG ∽Rt △ABC ,∴BC FG AC EG =,684FG=. ∴FG =864⨯=3cm .∵当P 为FG 的中点时,OP ∥EG ,EG ∥AC , ∴OP ∥AC .∴ x =121FG=21×3=1.5(s ).∴当x 为1.5s 时,OP ∥AC .(2)在Rt △EFG 中,由勾股定理得:EF =5cm . ∵EG ∥AH ,∴△EFG ∽△AFH .∴FH FGAF EF AH EG ==. ∴FHx AH 3554=+=. ∴ AH =54( x +5),FH =53(x +5).过点O 作OD ⊥FP ,垂足为 D .∵点O 为EF 中点, ∴OD =21EG =2cm . ∵FP =3-x ,∴S 四边形OAHP =S △AFH -S △OFP=21·AH ·FH -21·OD ·FP =21·54(x +5)·53(x +5)-21×2×(3-x ) =256x 2+517x +3 (0<x <3).(3)假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13∶24.则S 四边形OAHP =2413×S △ABC ∴256x 2+517x +3=2413×21×6×8 ∴6x 2+85x -250=0 解得 x 1=25, x 2= -350(舍去). ∵0<x <3, ∴当x =25(s )时,四边形OAHP 面积与△ABC 面积的比为13∶24. 2、(2006河北)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.[解析] (1)由题意知 CQ =4t ,PC =12-3t ,∴S △PCQ =t t CQ PC 246212+-=⋅.∵△PCQ 与△PDQ 关于直线PQ 对称, ∴y=2S △PCQ t t 48122+-=. (2)当CQCP CA CB=时,有PQ ∥AB ,而AP 与BQ 不平行,这时四边形PQBA 是梯形,∵CA =12,CB =16,CQ =4t , CP =12-3t ,∴16412312tt =-,解得t =2. ∴当t =2秒时,四边形PQBA 是梯形.(3)设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如下图,若PD ∥AB ,则∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC ,从而ACQDAB QM =, ∵QD =CQ =4t ,AC =12, AB=20, ∴QM =203t . 若PD ∥AB ,则CP CMCA CB=,得20412331216t t t +-=, 解得t =1211. ∴当t =1211秒时,PD ∥AB .(4)存在时刻t ,使得PD ⊥AB .时间段为:2<t ≤3.3、(2006重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线PCD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想; (2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.[解析](1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠.又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB =CB D A 图1122图3C 2D 2C 1BD 1A 图2即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在. 当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.4、(2006山东济南)如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . (1)求点1B 的坐标与线段1B C 的长;(2)将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停止.设点P 运动的距离为x ,矩形222PA B C 与原矩形OABC 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你思考如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.[解析](1)如图1,因为15OB OB ===,所以点1B 的坐标为(05),.11541B C OB OC =-=-=.(2)在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC 的边BC 上时,求得P 点移动的距离115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△,得1334x CM +=,此时,2221113334(1)224B A P B CM xy S S x +=-=⨯⨯-⨯+△△. 即23(1)68y x =-++(或23345848y x x =--+).当自变量x 的取值范围为1145x ≤≤时,求得122(4)3PCM y S x '==-△(或221632333y x x =-+).1C 3C(3)部分参考答案:①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度. ③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.5、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠= ,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相切..,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解析](1) 在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,CCD图1图2tanAE ABE AB ∴∠===60ABE ∴∠= . 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+ 6、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式;(2)若S 梯形OBCD 求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.[解析] (1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33)方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30°过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433). 方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 7、(2006河北课改)图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.(3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少. D 图14-2 图 D DD图14-1(P ) D N D[解析] (1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,图2-4D 图2-5D P图2-6D图2-3DQP 图2-2D 图2-1D QP∴SM=SK-MK=2x-21,从而SN=MN-SM=27-2x,NR=NP-RP=13-x.∴y=NR·SN=(13-x)(27-2x)=2x2-53x+351.(3)对于正方形MNPQ,①在AB边上移动时,当0≤x≤1及13≤x≤14时,y取得最小值0;当x=7时,y取得最大值36.②在BC边上移动时,当14≤x≤15及27≤x≤28时,y取得最小值0;当x=21时,y取得最大值36.③在CD边上移动时,当28≤x≤29及41≤x≤42时,y取得最小值0;当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。

2006年沈阳中考数学真题及答案解析

2006年沈阳中考数学真题及答案解析

辽宁省沈阳市2006年中考数学试题课标卷一、选择题(每小题 3分,共24分)1.下列物体中,主视图为如图 1的是()3.如图是几种汽车的标志,其中是轴对称图形的有() D. 8f2x -4> 0 ,.……X的解集表示在数轴上,正确的是(6 -x 36 .下列事件:(1)阴天会下雨;(2)随机掷一枚均匀的硬币,正面朝上; 生月份相同;(4) 2008年奥运会在北京举行.其中不确定事件有(A. 1个B. 2个C. 3个D. 4个7 .估算V24+3的值( )A .在5和6之间 B.在6和7之间 C.在7和8之间D .在8和9之间8 .已知点I 为4ABC 的内心,/ BIC=130 ° ,则/ BAC 的度数是(A. 65°B. 75°C. 80°D, 100°二、填空题(每小题 3分,共24分)9 . 2006年是我国公民义务植树运动开展 25周年,25年来我市累计植树科学记数法表示为 株.10 .分解因式:2x 2-4x+2=11 .如图,已知△ ABC 的一边BC 与以AC 为直径的。

O 相切于点 C,若BC=4, AB=5 , 贝U cosB=../ 3、47 A. (a ) =a 4 3 7 B. a +a =a C. (-a)4|_( -a)3 =a 7 5 3 2D. a 丁 a = aD AD, 4个5.把不等式组(3) 12名同学中,有两人的出154000000株,这个数字可以用C. 6A. 1B. 5 C,E ....... k —3,,…,、…F …一一,一一…12 .如果反比例函数 y=——的图象位于第二、四象限内,那么满足条件的正整数 k 的值是.13 .已知等腰三角形 ABC 中,AB=AC,D 为BC 边上一点,连接AD ,若△ ACD 和4ABD 都是等腰三角形, 则/ C 的度数是(1)如果A, D 两点的坐标分别是(1, 1)和(0, 1),请你在方格纸中建立平面直角坐标系,并直接写出点 B,点C 的坐标;(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图案”是如何通过“格点△ ABC 图案”变换得到的.20 . 一个不透明的袋子中装有三个完全相同的小球,分别标有数字 3, 4, 5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回,再取出一个小球,用小球上的数字作为个位上的数字,这 样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为 9的两位数的概率是多少?用列表法或画树状图法加以说明.四、(每小题10分,共20分)21 .某工程队在我市实施棚户区改造过程中承包了一项拆迁工程, 原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆迁了 20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了 1440m 2.求:(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.22 .学校鼓励学生参加社会实践,小萌所在班级的研究性学习小组在假期对她们所在城市的一家晚报的读14 .如图,已知△ ABC s^DBE AB=6 , DB=8 , 15 .观察下列等式:21=2, 22 =4, 23 =8,SA ABC : SA DBE =24 =16 , 25 = 32 , 26 = 64 ,B27 =128,…….通过观察,用你所发现的规律确定 22006的个位数字是16 .如图,已知在。

数学f1初中数学2006年中考试题分类汇编

数学f1初中数学2006年中考试题分类汇编

数学f1初中数学2006年中考试题分类汇编本文为自本人珍藏版权所有仅供参考本文为自本人珍藏版权所有仅供参考2006年中考试题分类汇编—三角形1. (20062陕西省如图,在△ ABC 中, D 、 E 、 F 分别是边 AB 、 BC 、 AC 的中点,若△ ABC 的周长为 20cm ,则△ DEF 的周长为( BA . 5cmB . 10cmC . 12cmD . 15cm 2. (20062陕西省如图,△ ABC 是不等边三角形 DE =BC ,以 D 、 E 为两个顶点作位置不同 .... 的三角形,使所作三角形与△ ABC 全等,这样的三角形可以画出 ( BA. 2个 B . 4个 C . 6个 D. 8个3. (20062湛江市在下列长度的四根木棒中,能与 3cm , 7cm 两根木棒围成一个三角形的是( A A . 7cm B . 4cm C . 3cm D . 10cm4. (20062广东省如图,若△OAD≌△OBC,且∠0=65°,∠C=20°, 则∠OAD= 95° .5. (20062株洲市如图, AE AD =, 要使 A B D A C E △≌△ , 请你增加一个 .. 条件是 . (只需要填一个 .. 你认为合适的条件 B C ∠=∠6. (20062永州市如右图, 已知 142ABE = ∠ , 72C = ∠ ,则 A =∠ , A B C =∠ .A∠ 7. (20062永州市示, 钉上两条斜拉的木条, 8. (20062永州市如图所示,在等腰三角形第 4题图 BC 72D (第 10题12cm AB AC ==, 30ABC = ∠ ,那么底边上的高 AD = cm . 6 9. (20062江西省在△ ABC 中,∠ A = 80°,∠ B = 60°,则∠ C = . 40°10. ( 20062湖州市已知 Rt △ ABC 中,∠ C=90o。

2006年中考数学试题分类汇编及解析---圆---新人教范文

2006年中考数学试题分类汇编及解析---圆---新人教范文

1、(2006浙江嘉兴)如图,已知△ABC ,6==BC AC ,︒=∠90C .O 是AB的中点,⊙O 与AC 相切于点D 、与BC 相切于点E .设⊙O 交OB 交CB 的延长线于G .(1)BFG ∠与BGF ∠是否相等?为什么? (2)求由DG 、GE 和弧ED 所围成图形的面积(阴影部分).[解析] (1)BGF BFG ∠=∠(…1分) 连OD ,∵OF OD =(⊙O 的半径),∴OFD ODF ∠=∠ (…2分)∵⊙O 与AC 相切于点D ,∴AC OD ⊥又∵︒=∠90C ,即AC GC ⊥,∴GC OD //, ∴ODF BGF ∠=∠ 又∵OFD BFG ∠=∠,∴BGF BFG ∠=∠ (2)连OE ,则ODCE 为正方形且边长为3∵BGF BFG ∠=∠∴323-=-==OF OB BF BG 从而233+=+=BG CB CG∴阴影部分的面积=△DCG 的面积-(正方形ODCE 的面积-扇形ODE 的面积))3413()233(32122⋅--+⋅⋅=π=2922949-+π2、(2006山东日照)阅读下面的材料:如图(1),在以AB 为直径的半圆O 内有一点P ,AP 、BP 的延长线分别交半圆O 于点C 、D .求证:AP ·AC+BP ·BD=AB 2.证明:连结AD 、BC ,过P 作PM ⊥AB ,则∠ADB =∠AMP =90o,∴点D 、M 在以AP 为直径的圆上;同理:M 、C 在以BP 为直径的圆上. 由割线定理得: AP ·AC=AM ·AB ,BP ·BD=BM ·BA , 所以,AP ·AC+BP ·BD=AM ·AB+BM ·AB=AB ·(AM+BM )=AB 2.当点P 在半圆周上时,也有AP ·AC+BP ·BD=AP 2+BP 2=AB 2成立,那么:(1)如图(2)当点P 在半圆周外时,结论AP ·AC+BP ·BD=AB 2是否成立?为什么? (2)如图(3)当点P 在切线BE 外侧时,你能得到什么结论?将你得到的结论写出来.[解析] (1)成立.证明:如图(2),∵∠PCM=∠PDM=900,∴点C 、D 在以PM 为直径的圆上,∴AC ·AP=AM ·MD ,BD ·BP=BM ·BC , ∴AC ·AP+BD ·BP=AM ·MD+BM ·BC ,由已知,AM ·MD+BM ·BC=AB 2, ∴AP ·AC+BP ·BD=AB 2. (2)如图(3),过P 作PM ⊥AB ,交AB 的延长线于M ,连结AD 、BC ,则C 、M 在以PB 为直径的圆上,∴AP ·AC=AB ·AM ,① D 、M 在以PA 为直径的圆上,∴BP ·BD=AB ·BM ,② 由图象可知:AB=AM-BM ,③由①②③可得:AP ·AC-BP ·BD=AB ·(AM-BM )=AB 2.3、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解析](1)在Rt ABC △中,305CAB BC ∠==,,210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==.CD图1图2:3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tanAE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,,BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+4、(2006江苏盐城)如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD于点F ,直线CF 交直线AB 于点G . (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径.[解析](1)证明:∵CH ⊥AB ,DB ⊥AB ,∴△AEH ∽AFB ,△ACE ∽△ADF ∴FDCEAF AE BF EH ==,∵HE =EC ,∴BF =FD ′ (2)方法一:连接CB 、OC ,∵AB 是直径,∴∠ACB =90°∵F 是BD 中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG 是⊙O 的切线方法二:可证明△OCF ≌△OBF(参照方法一标准得分) (3)解:由FC=FB=FE 得:∠FCE=∠FEC 可证得:FA =FG ,且AB =BG由切割线定理得:(2+FG )2=BG ×AG=2BG 2 ○1在Rt △BGF 中,由勾股定理得:BG 2=FG 2-BF 2 ○2 由○1、○2得:FG 2-4FG-12=0 解之得:FG 1=6,FG 2=-2(舍去) ∴AB =BG =24 ∴⊙O 半径为225、(2006山东烟台)如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,且⊙O 直经BD=6,连结CD 、AO 。

2006年中考数学复习专题六动态几何综合题(下学期)

2006年中考数学复习专题六动态几何综合题(下学期)

复习专题六动态几何综合题【简要分析】函数是中学数学的一个重要概念.加强对函数概念、图象和性质,以及函数思想方法的考查是近年中考试题的一个显著特点.大量涌现的动态几何问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类题目的三乱扣帽子解法是抓住变化中的“不变”.以“不变”应“万变”.同时,要善于利用相似三角形的性质定理、勾股定理、圆幂定理、面积关系,借助议程为个桥梁,从而得到函数关系式,问题且有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件. 【典型考题例析】 例1:如图2-4-37,在直角坐标系中,O是原点,A 、B 、C 三点的坐标分别为A (18,0)、B (18,6)、C (8,6),四边形OABC 是梯形.点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式.(2)设从出发起运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.(3)设从出发起运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半时,直线PQ 能否把梯形的面积也分成相等的两部分?如有可能,请求出t 的值;如不可能,请说明理由.(2005年湖北省黄冈市中考题)分析与解答 (1)设OC 的解析式为y kx =,将C (8,6)代入,得34k =,∴34y x =. (2)当Q 在OC 上运动时,设3(,)4Q m m ,依题意有2223()(2)4m m t +=,∴85m t =.故86(,)(05)55Q t t t ≤≤.当Q 在CB 上运动时,Q 点所走过的路程为2t .∵CO=10,∴210C Q t =-.∴Q 点的横坐标为210812t t -+=-.∴(22,6)(510)Q t t -<≤.(3)易得梯形的周长为44.①如图2-4-38,当Q 点在OC 上时,P 运动的路程为t ,则Q 运动的路程为(22)t -.过Q 作QM ⊥OA 于M ,则3(22)5QM t =-⨯.∴13(22)25OPQ S t t ∆=-⨯,1(1810)6842S =+⨯=四边形.假设存在t 值,使得P 、Q 两点同时平分梯形的周长和面积,则有131(22)84252t t =⨯=⨯,即2221400t t -+=.∵22241400∆=-⨯<,∴这样的t 不存在.②如图2-4-39,当Q 点在BC 上时,Q 走过的路程为(22)t -,故CQ 的长为:221012t t --=-.∴1()2OCQP S CQ OP =+梯形.11(12)6368422AB t t =⨯-+⨯=≠⨯,∴这样的t 也不存在.综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积.例2: 如图2-5-40,在Rt △PMN 中,∠P=900,PM=PN ,MN=8㎝,矩形ABCD 的长和宽分别为8㎝和2㎝,C 点和M 点重合,BC 和MN 在一条直线上.令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1㎝的速度移动(图2-4-41),直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ㎝2.求y 与x 之间的函数关系式.(2005年河南省中考题)N图2-4-40N图2-4-41分析与解答 在Rt △PMN 中,∵PM=PN ,∠P=900,∴∠PMN=∠PNM=450.延长AD 分别交PM 、PN 于点G 、H .过G 作GF ⊥MN 于F ,过H 作HT ⊥MN 于T (图2-4-42).∵DC=2㎝.∴MF=GF=2㎝,∵MT=6㎝.因此矩形ABCD 以每秒1㎝的速度由开始向右移动到停止,和Rt △PMN 重叠部分的形状可分为下列三种情况:(1)当C 点由M 点运动到F 点的过程中(0≤x ≤2).如图2-4-42所示,设CD 与PM 交于点E ,则重叠部分图形是Rt △MCE ,且MC=EC=x.∴211(02)22y MC EC x x ==≤≤.(2)当C 点由F 点运动到T 点的过程中(26)x <≤,如图2-4-43所示,重叠部分图形是直角梯形MCDG .∵,2MC x MF ==,∴FC=DG=x -2,且DC=2.∴1()22(06)2y M C G D D C x x =+=-<≤图2-4-38图2-4-39N图2-4-42欢迎下载T 图2-4-44图2-4-43MT(3)当C 点由T 点运动到N 点的过程中(68)x <≤,如图2-4-44所示,设CD 与PN 交于点Q ,则重叠部分图形是五边形MCQHG .∵MC x =,∴CN=CQ=8-x ,且DC=2.∴2111()(8)12(68)222y MN G H D C C N C Q x x =+-=--+<≤. 说明:此题是一个图形运动问题,解答方法是将各个时刻的图形分别画出,将图形 则“动”这“静”,再设法分别求解.这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破. 【提高训练18】1.如图2-4-45,在平行四边形ABCD 中,∠DAB=600,AB=5,BC=3,鼎足之势P 从起点D 出发,沿DC 、CB 向终点B 匀速运动.设点P 所走过的路程为x ,点P 所以过的线段与绝无仅有AD 、AP 所围成图形的面积为y ,y 随x 的函数关系的变化而变化.在图2-4-46中,能正确反映y 与x 的函数关系的是() (2005年北京市中考题)A B C D2.如图2-4-47,四边形AOBC 为直角梯形,OB=%AC ,OC 所在直线方程为2y x =,平行于OC 的直线l 为:2y x t =+,l 是由A 点平移到B 点时,l 与直角梯形AOBC 两边所转成的三角形的面积记为S .(1)求点C 的坐标.(2)求t 的取值范围.(3)求出S 与t 之间的函数关系式.(2005年广西壮族自治区柳州市中考题)3.如图2-4-48,在△ABC 中,∠B=900,点P 从点A 开始沿AB 边向点B 以1㎝/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2㎝/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8㎝2?(2)如果P 、Q 分别从A 、B 同时出发,点P 到达点B 后又继续沿BC 边向点C 移动,点Q 到达点C 后又继续沿CA 边向点A 移动,在这一整个移动过程中,是否存在点P 、Q ,使△PBQ 的面积等于9㎝2?若存在,试确定P 、Q 的位置;若不存在,请说明理由.(2003年山东省济南市中考题)4.如图2-4-49,在梯形ABCD 中,AB=BC=10㎝,CD=6㎝,∠C=∠D=900.(1)如图2-4-50,动点P 、Q 同时以每秒1㎝的速度从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止.设P 、Q 同时从点B 出发t 秒时,△PBQ 的面积为1y (㎝2),求1y (㎝2)关于t (秒)的函数关系式.(2)如图2-4-51,动点P 以每秒1㎝的速度从点B 出发沿BA 运动,点E 在线段CD 上随之运动,且PC=PE .设点P 从点B 出发t 秒时,四边形PADE 的面积为2y (㎝2).求2y (㎝2)关于t (秒)的函数关系式,并写出自变量t 的取值范围.(2005年吉林省中考题)图2-4-51图2-4-50BB【提高训练18答案】 1.A2.(1)C (1,2) (2)-10≤t ≤2 (3)S 与t 的函数关系式为215(100)20S t t t =++-≤≤或211(02)4S t t t =-+≤≤3.(1)2秒或4秒 (2)存在点P 、Q ,使得△PBQ 的面积等于9㎝2,有两种情况:①点P 在AB 边上距离A 为3㎝,点Q 在BC 边上距离点B 为6㎝时②点P 在BC 边上,距B 点3㎝时,此时Q 点就是A 点4.(1)当点P 在BA 上运动时,21310y t =;当点P 在AD 上运动时,130y =;当点P 在DC 上运动时,190y t =-+ (2)221299025BPCPEC ABCD y S S S t t ∆∆=--=-+梯形,自变量t 的取值范围是0≤t ≤5.图2-4-47图2-4-48A图2-4-49。

中考数学试题北京市2006年高级中等学校招生统一考试(大纲卷)答案

中考数学试题北京市2006年高级中等学校招生统一考试(大纲卷)答案

北京市2006年高级中等学校招生统一考试(大纲卷)数学试卷答案及评分参考阅卷须知:1. 一律用红钢笔或红圆珠笔批阅,按要求签名. 2. 第Ⅰ卷是选择题,机读阅卷.3. 第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解答不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共44分)一、选择题(共11个小题,每小题4分,共44分)第Ⅱ卷(非机读卷共76分)三、(共3个小题,共15分) 17.(本小题满分4分)分解因式:2244a a b -+-. 解:2244a a b -+-22(44)a a b =-+- ······································································· 1分 22(2)a b =-- ············································································· 2分 (2)(2)a b a b =+---.································································ 4分 18.(本小题满分5分)01).01)1)1=- ···································································· 3分222221=+-- ······································································ 4分 1=. ·························································································· 5分 19.(本小题满分6分) 用换元法解方程2261x x x x-+=-. 解:设2x x y -=,则211x x y=-. ···················································· 1分 原方程化为61y y+=. ····································································· 2分 260y y ∴+-=.解得1232y y =-=,. ············································ 3分 当3y =-时,23x x -=-. 230x x ∴-+=.1120∆=-<, ∴此方程无实数根. ········································································· 4分 当2y =时,22x x -=.220x x ∴--=.解得1212x x =-=,. ············································· 5分经检验,11x =-,22x =都是原方程的根.∴原方程的根是1212x x =-=,. ······················································· 6分四、(本题满分5分)20.已知:如图,BD 为ABCD 的对角线,O 为BD 的中点,EF BD ⊥于点O ,与ADBC ,分别交于点E F ,.求证:DE DF =.证法一:在平行四边形ABCD 中,AD BC ∥, OBF ODE ∴∠=∠. ··························································· 1分 O 为BD 的中点, OB OD ∴=. ····································································· 2分 在BOF △和DOE △中,OBF ODE OB OD BOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,DC F B AEOBOF DOE ∴△≌△. ························································· 3分 OF OE ∴=. ····································································· 4分 EF BD ⊥于点O , DE DF ∴=. ···································································· 5分 证法二:O 为BD 的中点, BO DO ∴=. ···································································· 1分 EF BD ⊥于点O , BF DF ∴=.····································································· 2分 BFO DFO ∴∠=∠. ··························································· 3分 在平行四边形ABCD 中,AD BC ∥, BFO DEO ∴∠=∠. ··························································· 4分 DEO DFO ∴∠=∠. DE DF ∴=. ···································································· 5分五、(本题满分6分) 21.已知:如图,在ABC △中,120CAB ∠=,42AB AC AD BC ==⊥,,,D 是垂足.求:AD 的长.解法一:如图,过点C 作AB 边上的高CE ,则18060CAE CAB ∠=-∠=. ··········································· 1分在Rt AEC △中,90CEA ∠=,sin CE CAE AC ∠=,cos AECAE AC∠=,sin 603CE AC ∴==·,cos601AE AC ==·. ··················· 3分5BE AB AE ∴=+=.在Rt CBE △中,90CEB ∠=, 22232528BC CE BE ∴=+=+=.27BC ∴=. ··································································· 4分AD BC ⊥,90ADB ∴∠=. sin CE AD B BC AB∴==. ························································· 5分 2217AB CE AD BC ∴==·. ··················································· 6分 BACDE解法二:同解法一,得BC = ···················································· 4分1122ABC S BC AD AB CE ==△··, ········································ 5分7AB CE AD BC ∴==·. ··················································· 6分 六、(本题满分6分)22.列方程或方程组解应用题:国外营养学家做了一项研究,甲组同学每天正常进餐,乙组同学每天除正常进餐外,每人还增加六百毫升牛奶.一年后发现,乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01cm ,甲组同学平均身高的增长值比乙组同学平均身高的增长值的34少0.34cm .求甲、乙两组同学平均身高的增长值. 解法一:设甲组同学平均身高的增长值为x cm , 乙组同学平均身高的增长值为y cm . ······································· 1分依题意,得 2.0130.34.4y x y x -=⎧⎪⎨-=⎪⎩, ··················································· 3分解得 4.676.68.x y =⎧⎨=⎩, ···································································· 5分答:甲、乙两组同学平均身高的增长值分别为4.67cm 和6.68cm . ·· 6分 解法二:设甲组同学平均身高的增长值为x cm , ····································· 1分 则乙组同学平均身高的增长值为( 2.01)x +cm . ························· 2分依题意,得3( 2.01)0.344x x +-=. ······································· 3分 解得 4.67x =. ··································································· 4分 2.01 6.68x ∴+=. ······························································ 5分答:甲、乙两组同学平均身高的增长值分别为4.67cm 和6.68cm . ·· 6分 七、(本题满分7分) 23.已知:关于x 的方程21470mx x --=有两个实数根1x 和2x ,关于y 的方程 222(1)20y n y n n --+-=有两个实数根1y 和2y ,且1224y y -<≤≤. 当2121212262(2)140y y x x x x -+-+=+时,求m 的取值范围.解:关于x 的方程21470mx x --=有两个实数根1x 和2x ,210(14)280m m ≠⎧∴⎨∆=-+⎩,.≥解得7m -≥且0m ≠. ① ························································ 1分关于y 的方程222(1)20y n y n n --+-=有两个实数根1y 和2y ,222[2(1)]4(2)4n n n ∴∆=----=.2(1)2112n y n -±∴==-±.即12y n =-,2y n =. ···································································· 2分1224y y -<≤≤,224n n ∴--<≤≤. 解得04n ≤≤. ············································································ 3分由根与系数的关系得1214x x m +=,127x x m=-.2121212262(2)140y y x x x x -+-+=+,262[2(2)]14077m m n n ⎛⎫∴--+--+= ⎪⎝⎭. 整理,得2246m n n =--. ······························································ 4分 由二次函数2246m n n =--的图象可得当04n ≤≤时,810m -≤≤. ② ········································· 6分 由①,②得m 的取值范围是710m -≤≤且0m ≠. ····························· 7分 八、(本题满分8分) 24.已知:AB 是半圆O 的直径,点C 在BA 的延长线上运动(点C 与点A 不重合),以OC 为直径的半圆M 与半圆O 交于点D ,DCB ∠的平分线与半圆M 交于点E .(1)求证:CD 是半圆O 的切线(图1); (2)作EF AB ⊥于点F (图2),猜想EF 与已有的哪条线段的一半相等,并加以证明;(3)在上述条件下,过点E 作CB 的平行线交CD 于点N ,当NA 与半圆O 相切时(图3),求EOC ∠的正切值.(1)证明:如图1,连结OD ,则OD 为半圆O 的半径.OC 为半圆M 的直径,90CDO ∴∠=.CD ∴是半圆O 的切线. ······················································· 1分 (2)猜想:12EF =OA .···································································· 2分 证法一:如图2-1,连结OD OE ,,延长OE 交CD 于点K ,作EG CD ⊥于点G ,则EG OD ∥. CE 平分DCB ∠, OCE KCE ∴∠=∠. EF AB ⊥,EG EF ∴=.OC 是半圆M 的直径,E 为半圆M 上的一点,90CEO CEK ∴∠=∠=.CE 为公共边, COE CKE ∴△≌△. OE KE ∴=. EG OD ∥,DG GK ∴=.1122EF EG OD OA ∴===.······················································· 4分 证法二:如图2-2,以OC 为直径作M ,延长EF 交M 于点P ,连结OD . EF CO ⊥,12EF PF EP ∴==,EO PO =.CE 平分DCB ∠,DCE ECO ∴∠=∠.DE OE ∴=. OD EP ∴=. OD EP ∴=.DEO BA M C图1D O BA MC图2-2EF P BD O A C图2-1K G E1122EF OD OA ∴==. ························································· 4分证法三:如图2-3,连结OD ME OD ME ,,,相交于点H .CE 平分DCB ∠,DE OE ∴=. 12ME OD OH OD ∴⊥=,.EF CO ⊥,90MFE MHO ∴∠=∠=. EMF OMH ME MO ∠=∠=,,MEF MOH ∴△≌△. EF OH ∴=.1122EF OD OA ∴==. ······················································· 4分(3)解:如图3,延长OE 交CD 于点K .设OF x EF y ==,,则2OA y =.NE CB ∥,EF CB ⊥,NA 切半圆O 于点A , ∴四边形AFEN 是矩形.2NE AF OA OF y x ∴==-=-. 同(2)证法一,得E 是OK 的中点. N ∴是CK 的中点. 22(2)CO NE y x ∴==-. 43CF CO OF y x ∴=-=-.EF AB CE EO ⊥⊥,,Rt Rt CEF EOF ∴△∽△.2EF CFOF ∴=·. 2(43)y x y x ∴=-. 解得3y x =或1yx=. 当3y x =时,tan 3EF y EOC OF x ∠===. 当1yx=时,点C 与点A 重合,不符合题意,故舍去.tan 3EOC ∴∠=. ································································ 8分DOBA MC图2-3E F HDKC图3EF N九、(本题满分9分)25.已知:抛物线222(0)y x mx m m =-++>与x 轴交于A B ,两点,点A 在点B 的左边,C 是抛物线上一个动点(点C 与点A B ,不重合),D 是OC 的中点,连结 BD 并延长,交AC 于点E . (1)用含m 的代数式表示点A B ,的坐标;(2)求CEAE的值;(3)当C A ,两点到y 轴的距离相等,且85CED S =△时,求抛物线和直线BE 的解析式.(1)解:抛物线222y x mx m =-++与x 轴交于A B ,两点,∴关于x 的方程2220x mx m -++=有两个不相等的实数根1x 和2x . 解得1x m =-,22x m =.点A 在点B 的左边,且0m >,∴(0)(20)A m B m -,,,. ······················································ 1分 (2)解法一:如图1,延长BE 到F 使得DF BD =,连结CF . D 是OC 的中点, DC DO ∴=. FDC BDO ∴△≌△.2CF OB m ∴==,F OBD ∠=∠. FC AB ∴∥. EFC EBA ∴△∽△. CE CFAE AB ∴=. 32AB m CF m ==,,23CE AE ∴=. ······························································ 4分 解法二:如图2,过点O 作OG AC ∥交BE 于点G . CED OGD ∴△∽△.DC CEDO OG∴=. BAODE FCy xDC DO =, CE OG ∴=. OG AC ∥,BOG BAE ∴△∽△.OG OBAE AB∴=. 23OB m AB m ==,,23CE OG OB AE AE AB ∴===. ·· 4分 (3)解法一:如图3,点C 在抛物线上(与点A 不重合),C A ,两点到y 轴的距离相等,2(2)C m m ∴,. 过点E 作DC 边上的高EP ,过点A 作OC 边上的高AQ . EP AQ ∴∥. CEP CAQ ∴△∽△.EP CEAQ CA∴=. 23CE AE =, 25EP AQ ∴=.1212CED AOCCO EPS S OC AQ =△△··,D 是OC 的中点, 121255CED AOC S CD EP S OC AQ ∴==⨯=△△·.85585AOC CED S S ∴==⨯=△△.2311222AOCC S OA y m m m ===△··, 38m ∴=.BAO D E Cyx图3QM N PBA ODE CyxG解得2m =.∴抛物线的解析式为228y x x =-++. 点C 的坐标为(28),,点B 的坐标为(40),. 分别过点D C ,作x 轴的垂线,交x 轴于点M N ,. DM CN ∴∥. D 是OC 的中点,112OM ON ∴==. 142DM CN ∴==.D ∴点的坐标为(14),.设直线BE 的解析式为y kx b =+,044.k b k b =+⎧∴⎨=+⎩,解得4316.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BE 的解析式为41633y x =-+. ······························ 9分 解法二:如图4,连结OE .D 是OC 的中点, 2OCE CED S S ∴=△△.25OCE AOC S CE S CA ==△△,15CED AOC S S ∴=△△.以下同(3)解法一.BA ODECyx。

2006年全国中考数学压轴题全解全析完整版第一辑

2006年全国中考数学压轴题全解全析完整版第一辑

A D E FC BO 图2 AD E F C B O 图12006年全国中考数学压轴题全解全析 一年一度的中考结束了,中考数学中的压轴题向来是广大师生非常关注的,因为这些试题往往在很大程度上决定了考分的高下,为了帮助大家迎接明年的中考,特别制作了此资料,希望能对大家有一定的帮助。

1、(北京课改B 卷)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60º时,这对60º角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.[解] (1)答案不唯一,如正方形、矩形、等腰梯形等等.(2)结论:等对角线四边形中两条对角线所夹锐角为60º时,这对60º角所对的两边之和大于或等于一条对角线的长. 已知:四边形ABCD 中,对角线AC ,BD 交于点O ,AC =BD ,∠AOD =60º. 求证:BC +AD≥AC . 证明:过点D 作DF ∥AC ,在DF 上截取DE ,使DE =AC .连结CE ,BE . 则∠EDO =60º,四边形ACED 是平行四边形. ∴△BDE 是等边三角形,CE =AD . ∴DE =BE =AC . ①当BC 与CE 不在同一条直线上时(如图1),在△BCE 中,有BC +CE >BE .∴BC +AD >AC . ②当BC 与CE 在同一条直线上时(如图2), 则BC +CE =BE . 因此BC +AD =AC .综合①、②,得BC +AD ≥AC . 即等对角线四边形中两条对角线所夹角为60º时,这对60º角所对的两边之和大于或等于其中一条对角线的长.[点评]本题是一道探索题,是近年来中考命题的热点问题,在第2小题中要求学生先猜想可能的结论,再进行证明,这对学生的确有较高的能力要求,而在探索结论前可以自己先画几个草图,做到心中有数再去努力求证;很多学生往往会忽略特殊情况没有进行讨论,应当予以关注,总之这是一道新课标形势下的优秀压轴题。

中考数学中的动态几何综合题例析

中考数学中的动态几何综合题例析
例 1如 图① , △P . 在 MN 中 , P= 0 ,M = A, N = c 9 。P Pl M 8m,
矩形 A C B D的长和宽分别为 8m和 2m, c c C点和 M 点重合 ,C和 B MN在一条直线上。令 △P MN不动, 矩形 A C B D沿 MN所在直 线 向右 以每秒 l c m的速度移动如 图② , 直到 c点与 Ⅳ点重合为 止 。设移动 秒 后 , 形 A C 与 AP 矩 BD MN重 叠部 分 的面 积为 y m2 c 求 )与 之间的关系式。( , 河南省中考题 )

④ 若点 P在 C 上运 动 , 点 P在 点 Q的右 侧 。当 c D 且 q C 4时 , P= oP与09外 切。



t 4 2 )= , < )
示 , C 交 P 于 点 设 D N Q 则重 叠 部 分 图 形是 , 五边 形 C H MC q。’ MC B . M 2FxC ’
中考 数 学 中 的动 态 几 何 综 合 题 例 析
江 苏省 东 台 市三 仓 镇 新 农 e 学 l , 黄 杰
近几年来 , 动态几何综合题成为全国各地在中考命题中多次 出现的热门考点.也是中考复习最后阶段的重点和难点 , , 它所考 查的内容涉及初中代数 J 何中若干不同的知识点, . UL 需要学生扎 实地掌握好数学基础知识 , 又具备灵活综合运用数学知识解决问 题的能力。在解决此类问题时, 首先要弄清几何图形在运动过程 中各部分的位置变化情况 , 特别是关键的点、 线段和角的位置变 化规律 , 从而探 索到解决 问题 的突破 口。下面以几道 中考题为 例, 来寻求解答这类题型的 些规律。


分析与解答 : (当 A D 1 ) P= p时 , 四边形 A Q P D为矩形 .4 = 0一t ’ t2 . 解得

2006年天津市中考数学试卷及答案

2006年天津市中考数学试卷及答案

(1) tan30°的值等于
1
(A)
2
3
(B)
2
3
(C)
3
(2) 下列判断中正确的是
(A)四边相等的四边形是正方形
(B) 四角相等的四边形是正方形
(C) 对角线互相垂直的平行四边形是正方形
(D) 对角线互相垂直平分且相等的四边形是正方形
(3) 下列图形中,为轴对称图形的是
(D) 3
(4)
1
已知
1
4 ,则
1tan30的值等于a122下列判断中正确的是a四边相等的四边形是正方形b四角相等的四边形是正方形c对角线互相垂直的平行四边形是正方形d对角线互相垂直平分且相等的四边形是正方形3下列图形中为轴对称图形的是b32c33d34已知1a6b6c25若0x1则xx2x3的大小关系是axx2x3bxx3x2cx3x2xdx2x3x6如图在梯形abcd中abcd中位线ef与对角线acbd交于mn两点若ef18cmmn8cm则ab的长等于1b4a则2227aaabbbab的值等于15d27天津中考网tjzhongkaocom学习改变命运a10cmb13cmc20cmd26cm7若同一个圆的内角正三角形正方形正六边形的边心距分别为r3r4r6则r3r4r6等于a1
2006 年天津市初中毕业生学业考试数学试卷
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第 1 页至第二页, 第Ⅱ卷第 3 页至第 10 页试卷满分 120 分,考试时间 100 分钟.
第Ⅰ卷(选择题 共 30 分)
一、 选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的 4 个选项中, 只有 1 项是符合题目要求的.

图② (Ⅲ)如图③,当 n 大于 2 的正整数时,若半径 rn 的 n 个等圆⊙O1、⊙O2、…、⊙On

06数学中考试卷及专家分析

06数学中考试卷及专家分析

2006年杭州市各类高中招生考试数学参考答案及评分标准一. 选择题(每小题3分, 共45分)二. 填空题(每小题4分, 共20分) 16. (3x +1)(x + 1 ) 17.3218. 2,3,4 (有一个给2分,少一个扣1分) 19. 6.5; 13 . 20. 1 ; 3– 1三. 解答题(6小题共55分) 21.(本小题满分7分)选对4个数 (不管是否能运算后得到正整数) --- 3分 运算结果正确且符合运算符号要求 --- 4分 (结果正确不符合运算符号要求或符合运算符号要求运算不正确也可得2分)22. (本小题满分8分)(1) 由条件可知四边形HECF 为矩形.HE EH EHF HEC Rt HF EC =⎧⎪∠=∠=∠⇒⎨⎪=⎩HEF EHC ∆≅∆; (2) 由(1)可得 HFE HCB ∠=∠, 又FHE CHB Rt ∠=∠=∠,所以HEF ∆∽HBC ∆. --- (1), (2)各4分(第22题)23. (本小题满分8分) 原题即解不等式 27544232x x -+⋅≤<, --- 1分分别解两个不等式, 解得726x <≤. --- 4分 在数轴上表示如右图. --- 3分24. (本小题满分10分) (1) ∵PA 是圆O 的切线, ∴OA ⊥PA,在Rt △APO 中,tan ∠POA ==3,∴∠POA=60°. --- 3分 (2) 设AB 与PO 相交于点D ,如图,∵点B 与点A 关于直线PO 对称, ∴AB ⊥PO ,且AB = 2AD ,在Rt △ADO 中,AD = OAsin60°=23,∴AB = 2AD= 43. --- 4分 (3) 设阴影部分面积为S ,则S = S △OAP –S 扇形AOC , 而S △OAP = 83, S 扇形AOC = 38π, ∴S =8(3–3π). --- 3分25. (本小题满分10分)(1) 由题意, 1x =时, 2y =; 2x =时, 246y =+=.代入2y ax bx =+, 解得1a b ==, 所以2y x x =+; --- 3分 (2) 纯收益g = 33x – 150 – (x 2 + x ) = – x 2 + 32x – 150; --- 3分 (3) g = – ( x – 16)2 + 106, 即设施开放16个月后, 游乐场的纯收益达到最大; --- 2分第24题OAPA又在016x <≤时, g 随着x 的增大而增大, 当5x ≤时, g< 0; 而当6x =时, g > 0, 所以6个月后能收回投资. --- 2分26. (本小题满分12分)(1) 令1y x =+中0x =, 得点B 坐标为(0,1); 令0y =, 得点A 坐标为,0). 由勾股定理可得||2AB =, 所以ABC S ∆=2; --- 4分 (2) 不论a 取任何实数, △BOP 都可以以1BO =为底, 点P 到y 轴的距离1为高, 所以12BOP S ∆=为常数; --- 4分 (3) 当点P 在第四象限时,因为ABO APO S S ∆∆=,所以2ABP ABO APO BOP ABC S S S S S ∆∆∆∆∆=+-==,122-=, 解得1a =(). --- 2分当点P 在第一象限时,类似上面方法可得a = 1 + 3, --- 2分。

2006年中考数学试卷与答案

2006年中考数学试卷与答案

广州市2006年初中毕业生学业考试数 学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市某日的气温是一2℃~6℃,则该日的温差是( ). (A)8℃ (B)6℃ (C)4℃ (D)一2℃2.如图1,AB //CD ,若∠2=135°,则么∠l 的度数是( ). (A)30° (B)45° (C)60° (D)75°3在实数范围内有意义,则X 的取值范围为( ). (A)x>0 (B)x≥0 (C)X≠0 (D)x≥0且X≠14.图2是一个物体的三视图,则该物体的形状是( ) (A)圆锥 (B)圆柱 (C)三棱锥 (D)三棱柱5.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3 (C)X 1=-1,X 2=3 (D)X I =-1, X 2=-3数学试卷第1页(共4页)6.抛物线Y=X 2-1的顶点坐标是( ).(A)(0,1) (B)(0,一1) (C)(1,0) (D)(一1,0)7.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ). (A)l ,2,3 (B)2,5,8 (C)3,4,5 (D)4,5,108.下列图象中,表示直线y=x-1的是( ).9.一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是( ). 58581016(A) (B)(c)(D)ππππππ或或10.如图3一①,将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的 实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图3一② 的图案,则图3一②中阴影部分的面积是整个图案面积的( ).1411(c) (D) 78第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.) 11.计算:5a ÷3a = .12.计算:21x xx -=- . 13.若反比例函数ky x=的图象经过点(1,一1),则k 的值是 .14.已知A=12n -, B=2(n 为正整数).当n ≤5时,有A<B ;请用计算器计算当 n ≥6时,A 、B 的若干个值,并由此归纳出当以n ≥6时,A 、B 问的大小关系为 ·15.在某时刻的阳光照耀下,身高160cm 的阿美的影长为80cm ,她身旁的旗杆影长10m , 则旗杆高为 m .学试卷第2页(共4页)16.如图4,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积为三、解答题(本大题共9小题,共102 分.解答应写出文字说明、 证明过程或演算步骤) 17.(本小题满分9分) 解不等式组30210x x +-19.(本小题满分lO 分)广州市某中学高一(6)班共54名学生,经调查其中40名学生患有不同程度的近视眼 病,初患近视眼病的各个年龄段频数分布如下:(注:表中2岁~5岁的意义为大于等于2岁并且小于5岁,其它类似) (1)求a 的值,并把下面的频数分布直方图补充画完整;(2)从上研的直方图中你能得出什么结论(只限写出一个结论)?你认为此结论反映了教育与社会的什么问题?20.(本小题满分10分)如图6,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次、小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性肚分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.数学试卷第3页(共4页)21.(本小题满分12分)目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).(1)求目前广州市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?22.(本小题满分12分)如图7⊙0的半径为1,过点A(2,0)的直线切⊙0于点B,交y轴于点C.(1)求线段AB的长;(2)求以直线AC为图象的一次函数的解析式.23.(本小题满分12分)图8是某区部分街道示意图,其中CE垂直平分AF,AB//DC,BC//DF.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B---D---A---E,路线2是B---C---F---E,请比较两条路线路程的长短,并给出证明.24.(本小题满分14分)在 ABC中,AB=BC,将 ABC绕点A沿顺时针方向旋转得 A1B1C1,使点C l落在直线BC上(点C l与点C不重合),(1)如图9一①,当∠C>60°时,写出边AB l与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB l与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在图9一②中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立?并说明理由.25.(本小题满分14分)已知抛物线Y=x2+mx一2m2(m≠0).(1)求证:该抛物线与X轴有两个不同的交点;(2)过点P(0,n)作Y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.广州市2006年初中毕业生学业考试答案一、选择题:二、填空题:11.2a 12.x 13.1- 14.A B > 15.20 16.2ab π三、解答题:17.解:303x x +>⇒>-12102x x -<⇒<取其公共部分,得132x -<<∴原不等式组的解集为132x -<<18.说明:开放题,结论不唯一,下面只给出一种情况,并加以证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年中考数学试题汇编及解析---动态几何型综合纵观近5年全国各地的中考数学试卷,动态几何型综合题常常出现在一张试卷的压轴题位置,估计这一趋势在今后几年的中考中会越来越明显,这类试题往往综合性较强,往往涉及到函数、直线型、圆等初中数学的重点考察对象中的好几个,应加大训练的力度。

1、(2006山东青岛)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A与点E 重合),已知AC =8cm ,BC =6cm ,∠C =90°,EG =4cm ,∠EGF =90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交 AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).(1)当x 为何值时,OP ∥AC ?(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围.(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)[解析] (1)∵Rt △EFG ∽Rt △ABC ,∴BC FG AC EG =,684FG=. ∴FG =864⨯=3cm .∵当P 为FG 的中点时,OP ∥EG ,EG ∥AC , ∴OP ∥AC .∴ x =121FG=21×3=1.5(s ). ∴当x 为1.5s 时,OP ∥AC .(2)在Rt △EFG 中,由勾股定理得:EF =5cm . ∵EG ∥AH ,∴△EFG ∽△AFH .∴FH FGAF EF AH EG ==. ∴FHx AH 3554=+=. ∴ AH =54( x +5),FH =53(x +5).过点O 作OD ⊥FP ,垂足为 D .∵点O 为EF 中点, ∴OD =21EG =2cm . ∵FP =3-x ,∴S 四边形OAHP =S △AFH -S △OFP=21·AH ·FH -21·OD ·FP =21·54(x +5)·53(x +5)-21×2×(3-x ) =256x 2+517x +3 (0<x <3).(3)假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13∶24.则S 四边形OAHP =2413×S △ABC ∴256x 2+517x +3=2413×21×6×8 ∴6x 2+85x -250=0 解得 x 1=25, x 2= -350(舍去). ∵0<x <3, ∴当x =25(s )时,四边形OAHP 面积与△ABC 面积的比为13∶24. 2、(2006河北)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.[解析] (1)由题意知 CQ =4t ,PC =12-3t ,∴S △PCQ =t t CQ PC 246212+-=⋅.∵△PCQ 与△PDQ 关于直线PQ 对称, ∴y=2S △PCQ t t 48122+-=. (2)当CQCP CA CB=时,有PQ ∥AB ,而AP 与BQ 不平行,这时四边形PQBA 是梯形,∵CA =12,CB =16,CQ =4t , CP =12-3t ,∴16412312tt =-,解得t =2. ∴当t =2秒时,四边形PQBA 是梯形.(3)设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如下图,若PD ∥AB ,则∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC ,从而ACQDAB QM =,PP∵QD =CQ =4t ,AC =12, AB=20, ∴QM =203t . 若PD ∥AB ,则CP CMCA CB=,得20412331216t t t +-=, 解得t =1211. ∴当t =1211秒时,PD ∥AB .(4)存在时刻t ,使得PD ⊥AB .时间段为:2<t ≤3.3、(2006重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想; (2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.[解析](1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠.又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠CB D A 图1122图3C 2D 2C 1BD 1A 图2P所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以555h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在. 当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.4、(2006山东济南)如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . (1)求点1B 的坐标与线段1B C 的长;(2)将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停止.设点P 运动的距离为x ,矩形222PA B C 与原矩形OABC 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你思考如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.C3C[解析](1)如图1,因为15OB OB ===,所以点1B 的坐标为(05),.11541B C OB OC =-=-=.(2)在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC 的边BC 上时,求得P 点移动的距离115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△,得1334x CM +=,此时,2221113334(1)224B A P B CM xy S S x +=-=⨯⨯-⨯+△△. 即23(1)68y x =-++(或23345848y x x =--+).当自变量x 的取值范围为1145x ≤≤时,求得122(4)3PCM y S x '==-△(或221632333y x x =-+).(3)部分参考答案:①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度. ③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.5、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠= ,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P .(1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相切..,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解析](1) 在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tan AE ABE AB ∴∠===60ABE ∴∠= . 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,r的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R的变化范围为105R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R的变化范围为1510R <<+ 6、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式; (2)若S 梯形OBCD=3,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.[解析] (1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3.CD图1图2∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30°过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433). 方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.图14-7D ∴33x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 7、(2006河北课改)图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.(3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.[解析] (1)相应的图形如图2-1,2-2.当x =2时,y =3;图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5 D当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0; 当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0; 当x =21时,y 取得最大值36.③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0; 当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4D 图2-5D P图2-6 DP 图2-3DQP 图2-2D 图2-1D QP。

相关文档
最新文档