P6.数列(高中数学题库V.120521)
(完整版)高二数学数列专题练习题(含答案),推荐文档
高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。
b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
高中数学《数列》练习题(含答案解析)
高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
最全的高中数学数列练习题_附答案与解析
数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列. 18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3…). 求证:数列{nS n }是等比数列. 20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47,∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A (第6题)解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=xx 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nS n 2.故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.。
高中数学数列测试题
高中数学数列测试题题目一:等差数列1.已知等差数列的前三项分别为3, 7, 11,求该等差数列的通项公式,并计算第10项的值。
2.已知等差数列的前五项的和为50,公差为3,求该等差数列的通项公式,并计算第十项的值。
解答:1.设该等差数列的首项为a,公差为d。
由已知条件可得:a + 2d = 7 (1)a + 3d = 11 (2)将(2)式减去(1)式,可得:d = 4 (3)将(3)式的值代入(1)式或(2)式,可得:a + 2 * 4 = 7a = -1 (4)因此,该等差数列的通项公式为:an = -1 + 4n,其中n为项数。
计算第10项的值:a10 = -1 + 4 * 10a10 = 392.设该等差数列的首项为a,公差为d。
由已知条件可得:5a + 10d = 50 (5)d = 3 (6)将(6)式的值代入(5)式,可得:5a + 10 * 3 = 505a = 20a = 4 (7)因此,该等差数列的通项公式为:an = 4 + 3n,其中n为项数。
计算第十项的值:a10 = 4 + 3 * 10a10 = 34题目二:等比数列1.已知等比数列的第一项为2,公比为3/2,求该等比数列的通项公式,并计算第6项的值。
2.已知等比数列的前四项的和为24,公比为2,求该等比数列的通项公式,并计算第七项的值。
解答:1.设该等比数列的首项为a,公比为r。
由已知条件可得:ar^5 = 2 (8)r = 3/2 (9)将(9)式的值代入(8)式,可得:a * (3/2)^5 = 2a * 243/32 = 2a = 64/243 (10)因此,该等比数列的通项公式为:an = (64/243) * (3/2)^n,其中n为项数。
计算第6项的值:a6 = (64/243) * (3/2)^6a6 ≈ 3.162.设该等比数列的首项为a,公比为r。
由已知条件可得:a(1 - r^4)/(1 - r) = 24 (11)r = 2 (12)将(12)式的值代入(11)式,可得:a(1 - 2^4)/(1 - 2) = 24a(1 - 16)/(-1) = 2415a = 24a = 8/5 (13)因此,该等比数列的通项公式为:an = (8/5) * (2)^n,其中n为项数。
高中数学数列多选题知识点及练习题及答案
高中数学数列多选题知识点及练习题及答案一、数列多选题1.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++----------1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.2.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk kS k +=--【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k k S k ++=--结论计算即可.【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2, 则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=, 60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k kk k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.3.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案.【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.4.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】先证明数列1n a 是等差数列得1n a n=,进而得1(1)1n n n b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1n a 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .5.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a aa a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确.故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.已知边长为4的正方形ABCD 的对角线的交点为O ,以O 为圆心,6为半径作圆;若点E 在圆O 上运动,则( )A .72EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅= B .56EA EC EB ED ⋅+⋅= C .144EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅= D .28EA EC EB ED ⋅+⋅=【答案】BC 【分析】以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ,再利用向量坐标的线性运算以及向量数量积的坐标运算即可求解.【详解】作出图形如图所示,以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ; 观察可知,()2,2A --,()2,2B -,()2,2C ,()2,2D -, 设(),E x y ,则2236x y +=,故()2,2EA x y =----,()2,2EB x y =---,()2,2EC x y =--, 故ED =()2,2x y ---,故EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅()()24144EA EC EB ED EO =+⋅+==,56EA EC EB ED ⋅+⋅=.故选:BC10.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 【答案】ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅,则223()||||2a a b a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,2||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒,得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.。
高中数学数列题专项练习
高中数学数列题专项练习在高中数学的学习中,数列是一个重要的知识点,也是考试中经常出现的题型。
数列题不仅考查了我们对数学概念和公式的理解,还锻炼了我们的逻辑思维和运算能力。
下面,我们就来进行一些数列题的专项练习。
一、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,常用字母“d”表示。
例 1:已知等差数列{an}的首项 a1 = 2,公差 d = 3,求数列的第10 项 a10 。
解:根据等差数列的通项公式 an = a1 +(n 1)d ,可得 a10 = 2 +(10 1)×3 = 2 + 27 = 29 。
例 2:在等差数列{an}中,a5 = 10,a12 = 31,求公差 d 和首项a1 。
解:首先,由等差数列的通项公式可得:a5 = a1 + 4d = 10 (1)a12 = a1 + 11d = 31 (2)(2)(1)得:7d = 21 ,解得 d = 3 。
将 d = 3 代入(1)式,可得 a1 =-2 。
二、等比数列等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
这个常数叫做等比数列的公比,常用字母“q”表示。
例 3:已知等比数列{an}的首项 a1 = 1,公比 q = 2,求数列的第5 项 a5 。
解:根据等比数列的通项公式 an = a1×q^(n 1) ,可得 a5 = 1×2^(5 1) = 16 。
例 4:在等比数列{an}中,a3 = 4,a6 = 32,求公比 q 和首项 a1 。
解:由等比数列的通项公式可得:a3 = a1×q^2 = 4 (1)a6 = a1×q^5 = 32 (2)(2)÷(1)得:q^3 = 8 ,解得 q = 2 。
将 q = 2 代入(1)式,可得 a1 = 1 。
三、数列求和数列求和是数列题中的常见题型,包括等差数列求和、等比数列求和以及一些特殊数列的求和方法。
高中数学数列多选题测试试题及答案
高中数学数列多选题测试试题及答案一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.4.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.5.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.6.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误;∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确;【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确.【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,8.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12为首项,12为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=+, 令1nn n Fb -=⎝⎭,则11n n b ++,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.二、平面向量多选题9.下列命题中真命题的是( )A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则3π<θ≤πC .A 、B 、C 、D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向 【答案】BC 【分析】对于A :利用共线定理判断 对于B :利用平面向量的数量积判断 对于C :利用数量积的应用判断 对于D :利用向量的四则运算进行判断 【详解】对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误.对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即12a b ⋅<,又1||2a b a b cos cos θθ⋅=⋅=<,所以3π<θ≤π,即B 正确.对于C :()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,0||BC BD cosB BC BD ⋅=⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所以C 正确.对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误. 故选:BC. 【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.10.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥C .//FG BCD .FG EF ⊥【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.。
数列考试题型及答案高中
数列考试题型及答案高中一、选择题(每题5分,共20分)1. 已知数列{a_n}是等差数列,且a_1=1,a_3=5,求a_5的值。
A. 7B. 9C. 11D. 13答案:C2. 已知数列{a_n}是等比数列,且a_1=2,公比q=3,求a_4的值。
A. 24B. 36C. 48D. 64答案:C3. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_3的值。
A. 5B. 9C. 17D. 33答案:C4. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n,求数列的前三项。
A. 1, 3, 9B. 1, 2, 4C. 1, 3, 6D. 1, 4, 12答案:A二、填空题(每题5分,共20分)5. 已知等差数列的第3项为6,第5项为10,求首项a_1和公差d。
a_1 = ________,d = ________。
答案:a_1 = 2,d = 26. 已知等比数列的第2项为4,第4项为16,求首项a_1和公比q。
a_1 = ________,q = ________。
答案:a_1 = 2,q = 27. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求a_4的值。
a_4 = ________。
答案:a_4 = 178. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n+2,求a_2的值。
a_2 = ________。
答案:a_2 = 5三、解答题(每题10分,共20分)9. 已知数列{a_n}是等差数列,且a_1=3,a_5=15,求数列的通项公式。
答案:a_n = 3 + 2(n-1) = 2n + 110. 已知数列{a_n}是等比数列,且a_1=1,a_3=8,求数列的通项公式。
答案:a_n = 2^{n-1}。
高中数学数列练习题
高中数学数列练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n1)d,其中a1是首项,d是公差,n是项数。
已知等差数列的前5项和为35,第5项为15,求首项a1。
2. 等比数列的通项公式为:an = a1 q^(n1),其中a1是首项,q是公比,n是项数。
已知等比数列的前3项分别为2,6,18,求第6项。
3. 在数列{an}中,若a1 = 1,an+1 = an + 2,则第10项a10 = __。
4. 已知数列{an}的通项公式为an = 3n 2,求前10项和。
5. 等差数列的前5项分别为5,8,11,14,17,求第15项。
二、选择题A. 2, 4, 8, 16B. 3, 6, 9, 12C. 1, 3, 6, 10D. 4, 7, 10, 13A. 2, 4, 6, 8B. 3, 6, 12, 24C. 1, 2, 4, 7D. 5, 10, 15, 203. 数列{an}的通项公式为an = 2^n,则数列{an+1}的通项公式为:A. an+1 = 2^(n+1)B. an+1 = 2^n + 1C. an+1 = 2^n 1D. an+1 = 2^(n1)4. 已知数列{an}的通项公式为an = n^2,则数列{an+1 an}的通项公式为:A. nB. n + 1C. 2nD. 2n + 15. 一个等差数列的前5项和为25,前10项和为100,则这个数列的公差为:A. 2B. 3C. 4D. 5三、解答题1. 已知数列{an}的通项公式为an = 2n + 1,求证数列{an+1 an}是等差数列。
2. 已知等差数列的前5项和为35,第5项为15,求该数列的通项公式。
3. 设数列{an}的通项公式为an = 3n 2,求证数列{an+2 + an}是等差数列。
4. 已知等比数列的前3项分别为2,6,18,求该数列的通项公式。
5. 已知数列{an}的通项公式为an = 2^n,求证数列{an+1 / an}是等比数列。
高中数学数列习题带答案
高中数学数列习题带答案高中数学数列习题带答案数列是高中数学中一个重要的概念,它在各个数学领域中都有广泛的应用。
数列习题是数学学习中的重要部分,通过解答这些习题,可以帮助学生巩固对数列的理解和运用。
本文将为大家提供一些高中数学数列习题,并附上详细的解答。
1. 求下列数列的通项公式:(1) 2, 5, 8, 11, ...(2) 1, 4, 9, 16, ...(3) 3, 6, 12, 24, ...解答:(1) 这是一个等差数列,公差为3。
通项公式为an = 2 + 3(n-1),其中n为项数。
(2) 这是一个平方数列,通项公式为an = n^2,其中n为项数。
(3) 这是一个等比数列,公比为2。
通项公式为an = 3 * 2^(n-1),其中n为项数。
2. 求下列数列的前n项和:(1) 1, 2, 3, 4, ...(2) 1, -2, 4, -8, ...(3) 1, 3, 5, 7, ...解答:(1) 这是一个等差数列,首项为1,公差为1。
前n项和的公式为Sn = (2a1 +(n-1)d)n/2,其中a1为首项,d为公差。
(2) 这是一个等比数列,首项为1,公比为-2。
前n项和的公式为Sn = a1(1 -q^n)/(1 - q),其中a1为首项,q为公比。
(3) 这是一个等差数列,首项为1,公差为2。
前n项和的公式为Sn = (2a1 + (n-1)d)n/2,其中a1为首项,d为公差。
3. 求下列数列的极限:(1) 1/2, 1/4, 1/8, 1/16, ...(2) 1, 1/2, 1/3, 1/4, ...(3) 2, 2.5, 2.75, 2.875, ...解答:(1) 这是一个等比数列,公比为1/2。
根据等比数列的性质,当公比小于1时,数列的极限为0。
所以,该数列的极限为0。
(2) 这是一个倒数数列,数列中的每一项是前一项的倒数。
根据数列的定义,当n趋向于无穷大时,数列的极限为0。
最全面高二数学数列练习题(含答案)(精华版)
高二 《数列 》专题(n 1) S 1 S nS n 求 a n , 应分 n 1 时 a 1; n 2 时 ,1 . S n 与 a n 的关系 : a n, 已知 S n (n 1)1 a n =两步 , 最后考虑 a 1 是否满足后面的 a n .2. 等差等比数列等差数列 等比数列a n a nN *)1 q(n d ( n2 )定义a n a n 1通项a na 1 ( n 1)d , a na m (n m)d ,( n m),如果 a, G,b 成等比数列 , 那么 G 叫做 a 与 a, A, b A 叫做 a 与 b 的 等差中如果 成等差数列 , 那么 a b b 的等比中项 . 项. 中项 A 。
2aq等比中项的设法 : , a , aq等差中项的设法 :前 nn 2n( n 1) 2, S n( a 1a n ) S nna 1d项和 m n p q , 则若 性*a m a na p a q (m, n, p ,q N , m n p q)若2*若 2m q,则有ap a p a q ,( p, q , n , m N )质m2m p q , 则S n 、 S 2nS n 、 S 3 nS 2 n 为等差数列S n 、 S 2 n S n 、 S 3nS 2n 为等比数列函数a 1 qnq nAqa a ndn 2(a 1 d) An B n看数dd 222 a 1a 1 qs nn( a 1) n An Bnq n Aq n(q s A 1)2n1 q 1 列a n N * ) 1( n为一个常数 (1 )定义法 :证明*N ) (n 为一个常数 ; ( 1 ) 定义法 : 证明 a a a n 1n n( 2 ) 中项 : 证 明*( 2 ) 等 差 中 项 : 证 明 2a na n a n 1 (n N ,1 2*ana n a n 1 (n N , n 2)判定1 n 2)n(c , q 均是不为 0 常(3 )通项公式 : a ncq方法*b ( k , b 为常数 ( 3 ) 通项公式 : a n kn )( n N )数) 2*n( A, B 为常数 )( n N ( 4 ) s nAnBn s n AqA )(A,q( 4 )为 常 数 ,0,1 )A 0,q 3. 数列通项公式求法 。
精选高中数学数列分类典型试题及答案(可编辑修改word版)
1 ∴n 由题意可得1 ,解得点拨:(1 1 2)n【典型例题】精选高中数学数列分类典型试题及答案(一)研究等差等比数列的有关性质 1. 研究通项的性质{a n } a = 1, a = 3n -1 + a (n ≥ 2)例题 1. 已知数列 满足 1(1)求 a 2 , a 3 ;3n -1 n n -1 . a n =(2)证明:2 .a = 1,∴a = 3 + 1 = 4, a = 32 + 4 = 13 解:(1) 1 2 3 .(2)证明:由已知 a n - a n -1 = 3n -1 ,故 a = (a n - a n -1 ) + (a n -1 - a n -2 ) + + (a 2 - a 1 ) +a = 3n -1+ 3n -2+ + 3 + 1 =3n -1 2 a n = , 所以证得3n -12 .例题 2. 数列{a n } 的前n 项和记为 S n , a 1 = 1, a n +1 = 2S n + 1(n ≥ 1)(Ⅰ)求{a n } 的通项公式;(Ⅱ)等差数列{b n } 的各项为正,其前n 项和为T n ,且T 3 = 15 ,又a 1 +b 1 , a 2 + b 2 , a 3 + b 3成等比数列,求T n .解:(Ⅰ)由 a n +1 = 2S n + 1 可得 a n = 2S n -1 + 1(n ≥ 2) ,两式相减得: a n +1 - a n = 2a n , a n +1 = 3a n (n ≥ 2) , a = 2S + 1 = 3 a = 3a{a n }又 2 1 a = 3n -1∴ 21 故是首项为 1,公比为 3 的等比数列(Ⅱ)设{b n } 的公比为 d ,由T 3 = 15 得,可得b 1 + b 2 + b 3 = 15 ,可得b 2 = 5故可设b 1 = 5 - d ,b 3 = 5 + d ,又 a 1 = 1, a 2 = 3, a 3 = 9 , (5 - d + 1)(5 + d + 9) = (5 + 3)2 d = 2, d = 10 ∵等差数列{b n } 的各项为正,∴ d > 0 ∴ d = 2 T = 3n + n (n -1) ⨯ 2 = n 2 + 2n∴ n 2{a n }{b n }a + 2a+ 22 a+ ...例题 3. 已知数列 的前三项与数列 的前三项对应相同,且 1 2 3+2n -1 a = 8n* {b - b}n 对任意的 n ∈ N 都成立,数列 n +1 n 是等差数列.⑴求数列{a n } 与{b n }的通项公式;⑵是否存在 k ∈ N *,使得b k - a k ∈(0,1) ,请说明理由.a + 2a + 22a + ... + 2n -1a n = 8n 左边相当于是数列{2n -1a }前 n 项和的形式,可以联想到已知 S n 求 a n 的方法,当 n ≥ 2 时, S n - S n -1 = a n .nb n +1b n +2 b n +1 b n b n +2 2 2 a = a = 28 a = b b ②22 (2)把b k - a k 看作一个函数,利用函数的思想方法来研究b k - a k 的取值情况.a + 2a + 22 a + +2n -1 a = 8n (n∈ N * 解:(1)已知 12 3 … n )① n ≥ 2a + 2a + 22 a + +2n -2 a = 8(n -1) (n ∈ N * 时, 1 2 3 … n -1 )②n -1 4-n①-②得,n ,求得 n , 在①中令n = 1 ,可得得 a 1 = 8 = 24-1 , 所以a n = 24-n (n ∈N*). 由题意b 1 = 8 , b 2 = 4 , b 3 = 2 ,所以b 2 - b 1 = -4 , b 3 - b 2 = -2 , ∴数列{b n +1 - b n } 的公差为- 2 - (-4) = 2 ,∴b n +1 - b n = - 4 + (n - 1) ⨯ 2 = 2n - 6 , b n = b 1 + (b 2 - b 1 ) + (b 3 - b 2 ) + + (b n - b n -1 )= (-4) + (-2) + + (2n - 8) = n 2 - 7n + 14 (n ∈ N * ).(2)b k - a k = k 2- 7k + 14 - 24-k , f (k ) = (k - 7 )2 + 7-当 k ≥ 4 时, 2 4 24-k 单调递增,且 f (4) = 1 ,所以 k ≥ 4 时, f (k ) = k 2 - 7k + 14 - 24-k≥ 1 ,又 f(1) = f (2) = f (3) = 0 , 所以,不存在 k ∈ N * ,使得b k - a k ∈(0,1) .例题 4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1 成等差数列,b n 、a n+1、b n+1成等比数列,且 a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项 a n ,b n解: 依题意得: 2b n+1 = a n+1 + a n+2① 2 n+1 n n+1∵ a n 、b n 为正数, 由②得 a n +1 =b n b n +1 , a n +2 = ,代入①并同除以 得: 2 = + ,∴{ b n }为等差数列a 2 =b b,则b = 9 ∵ b 1 = 2 , a 2 2 1 2 = 3 ,, 2 (n + 1)2= + (n - 1)( ∴- 2) = 2 (n + 1),∴ b n =2 , a n = ∴当 n ≥2 时,=n (n + 1)2 ,又 a 1 a n = 1,当 n = 1 时成立, ∴=n (n + 1) 22. 研究前 n 项和的性质例题 5.已知等比数列{a n }的前n 项和为 S n = a ⋅ 2n + b,且 a 1 = 3 . b n +1 b n 92 b n b n -1= a =4 nlg a = 4 - n {lg a }(1) 求a 、b 的值及数列{a n }的通项公式;b n (2) 设=n a n ,求数列 {b n }的前n 项和T n .解:(1)n ≥ 2 时, a n = S n - S n -1 = 2n -1⋅ a .而{a n }为等比数列,得 a 1 = 21-1 ⋅ a = a , 又 a 1 = 3 ,得 a = 3 ,从而 a n = 3 ⋅ 2n -1.又 a 1 = 2a + b = 3,∴b = -3 . b = n = n1 2 3 n na 3 ⋅ 2n -1 T n = (1 + + 2 ++ n -1 ) (2) n ,3 2 2 2 1T = 1 ( 1 + 2 +3 + + n -1 + n 1 T = 1 (1 + 1 + 1 + + 1 - n ) 2 n 3 2 22 23 2n -1 2n ) ,得 2 n 3 2 222n -1 2n , 2 1⋅ (1 - T [ 1 ) 2n - n ] = 4 (1 - 1 - n ) n 3 1 - 12 2n3 2n 2n +1 .1例题 6. 数列{a n } 是首项为 1000,公比为10 的等比数列,数列{b n } 满足b = 1(lg a + lg a + + lg a ) k k 12 k(k ∈ N *) , (1)求数列{b n } 的前n 项和的最大值;(2)求数列{|b n |}的前n 项和 S n '.- 解:(1)由题意: n,∴n,∴数列n是首项为 3,公差为-1的等差数列,lg a + lg a + + lg a = 3k - k (k -1) b = 1 [3n - n (n -1)] = 7 - n ∴ 1 2 k ⎧b n ≥ 0 ⎨ 2 ,∴ n n 2 2S 6 = S 7 = 由⎩b n +1 ≤ 0 ,得6 ≤ n ≤ 7 ,∴数列{b n } 的前n 项和的最大值为2 . (2)由(1)当 n ≤ 7 时, b n ≥ 0 ,当 n > 7 时, b n < 0 ,3 + 7 - n S ' = b + b + + b = ( 2 )n = - 1 n 2 + 13 n ∴当 n ≤ 7 时, n 1 2 当 n > 7 时,n 2 4 4S ' = b + b + + b - b - b - - b = 2S - (b + b + + b ) = 1 n 2 - 13n + 21n12789n712n4 4⎧- 1 n 2 + 13n (n ≤ 7) S ' = ⎪ 4 4 n ⎨ 1 13⎪ n 2 - n + 21 (n > 7) ∴ ⎪⎩ 4 4 .例题 7. 已知递增的等比数列{ a n }满足 a 2 + a 3 + a 4 = 28 ,且 a 3 + 2 是a 2 , a 4 的等差中项.(1)求{ a n }的通项公式a n ;(2)若b n = a n log 1 a n , S n = b 1 + b 2 + + b n 求使 221n ∴ ∴a = 3 .(II 3 n 3 n 3)∵, ,S + n ⋅ 2n +1> 30 成立的n 的最小值. 解:(1)设等比数列的公比为 q (q >1),由1a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2 或 a 1=32,q = 2 (舍) ∴a n =2·2(n -1)=2nb = a log a = -n ⋅ 2nnn1 n(2) ∵2 ,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2,若 S n +n ·2n +1>30 成立,则 2n +1>32,故 n >4,∴n 的最小值为 5.例题 8. 已知数列 f (x ) = log 3 x .{a n } 的前 n 项和为 S n ,且 -1, S n , a n +1 成等差数列, n ∈ N *, a = 1 . 函数 (I ) 求数列{a n }的通项公式;(II ) 设数列b n {b n } 满足 = 1(n + 3)[ f (a n ) + 2],记数列 {b n }的前 n 项和为 T n ,试比较 T 与 5- 2n + 5 n12 312 的大小.解:(I ) -1, S n , a n +1 成等差数列,∴2S n = a n +1 -1 ① 当n ≥ 2 时, 2S n -1 = a n -1 ②. ∴ an +1 = 3.①-②得:2(S n - S n -1 ) = a n +1 - a n ,∴ 3a n = a n +1 , a n∴a = 3,∴ a2 = 3,∴2S = 2a = a -1 a = 1, 2a 当 n =1 时,由①得 1 1 2 , 又 11 n -1n 是以 1 为首项 3 为公比的等比数列, n f (x ) = log x ∴ f (a ) = log a = log 3n -1= n -1 b = 1 = 1 = 1 ( 1 - 1 )(n + 3)[ f (a n ) + 2] (n + 1)(n + 3) 2 n + 1 n + 3 , ∴T = 1 ( 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + + 1 - 1 + 1 - 1 ) n2 2 43 54 65 7n n + 2 n + 1 n + 3 = 1 ( 1 + 1 - 1 - 1 ) =5 - 2n + 5 , 2 2 3 n + 2 n + 3 12 2(n + 2)(n + 3)T 与 5- 2n + 5比较 n12 312 的大小,只需比较2(n + 2)(n + 3) 与 312 的大小即可.与 2(n + 2)(n + 3) - 312 = 2(n 2 + 5n + 6 -156) = 2(n 2 + 5n -150) = 2(n + 15)(n -10)2(n + 2)(n + 3) < 312,与 T < 5- 2n + 5 ;∵ n ∈ N *, ∴当1 ≤ n ≤ 9与n ∈ N * 时, n 12 312 2(n + 2)(n + 3) = 312,与 T = 5- 2n + 5 ;当n = 10 时, n12 312 2(n + 2)(n + 3) > 312,与 T > 5- 2n + 5当 n > 10与 n ∈ N * 时, n 12 312 .3. 研究生成数列的性质1 na{c }c n = 2n + 3n{c- pc } p例题 9. (I ) 已知数列n,其中,且数列 n +1 n 为等比数列,求常数 ;(II ) 设{a n }、{b n }是公比不相等的两个等比数列, c n = a n + b n ,证明数列{c n }不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1),将 c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],1整理得 6 (2-p )(3-p )·2n ·3n =0,解得 p =2 或 p =3.(Ⅱ)设{a n }、{b n }的公比分别为 p 、q ,p ≠q ,c n =a n +b n .c2为证{c n }不是等比数列只需证 2 ≠c 1·c 3.c 2 2a 2 2b 2 2 事实上, 2 =(a 1p +b 1q ) =1 p + 1 q +2a 1b 1pq , 22 a 2 2 b22 22c 1·c 3=(a 1+b 1)(a 1 p +b 1q )= 1 p + 1 q +a 1b 1(p +q ).由于 p ≠q ,p 2+q 2>2pq ,又 a 1、b 1 不为零, c 2 ≠因此 2c 1·c 3,故{c n }不是等比数列.例题 10. n 2( n ≥4)个正数排成 n 行 n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知 a=1, a 42 = 1 , a = 3 8 43 1624求 S=a 11 + a 22 + a 33 + … + a nn解: 设数列{ a 1k }的公差为 d , 数列{ a ik }(i=1,2,3,…,n )的公比为 q 则a 1k = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1⎧⎪a 24 = (a 11 + 3d )q = 1 ⎪ ⎪ ⎨ 42 ⎪= (a 11+ d )q 3= 1 8 ⎪a 依题意得: ⎩ 43= (a 11 + 2d )q 3 =3 16 ,解得:a 11 1= d = q = ± 2 又 n 2 个数都是正数,1 k ∴a 11 = d = q =2 , ∴a kk = 2kS = 1 2 + 2 ⨯ 1 22 + 3 ⨯ 1 23 + + n ⨯ 12 n ,1 S = 1 +2 ⨯1 + 3 ⨯ 1 + + n ⨯ 12 2223 24 2n +1 ,2n +1 n n -两式相减得: S = 2 -1 n2n -12n例 题 11. 已 知 函 数 a = 3 f (n ) , n ∈ N *.f (x ) = log 3 (ax + b ) 的 图 象 经 过 点 A (2,1) 和 B (5,2) , 记(1) 求数列{a n }的通项公式;b = an ,T = b + b + + bn(2) 设2n n12n,若T n < m (m ∈ Z ) ,求m 的最小值;(1+1)(1+1) (1+1) ≥ p(3) 求使不等式a 1 a 2a n实数 p .对一切 n ∈ N * 均成立的最大⎧log 3 (2a + b ) = 1 ⎨ ⎧a = 2 ⎨解:(1)由题意得⎩log 3(5a + b ) = 2 ,解得⎩b = -1,∴ f (x ) = log 3 (2x -1) a = 3log 3 (2n -1)= 2n -1, n ∈ N * b = 2n -1 ∴T = 1+ 3 + 5 + + 2n - 3 + 2n -1 n ( 2) 由 ( 1) 得①2n, n 21 22 23 2n -1 2n 1 T = 1 + 3 + + 2n - 5 + 2n - 3 + 2n -1 2 n22 23 2n -1 2n 2n +1② ①-②得1 T = 1 +2 + 2 + + 2 + 2 - 2n - 1 = 1 + ( 1 + 1 + + 1 + 1 ) 2 n 21 22 23 2n -1 2n 2n +1 21 21 22 2n -22n -1- 2n - 1 = 3 - 1 - 2n - 1 ∴T = 3 - 1- 2n - 1 = 3 - 2n + 3 2n +1 2 2n -1 2n +1 .n2n -2 2n 2n , f (n ) =2n + 3 , n ∈ N * 设2n 2n + 5,则由 f (n +1) = 2n +1 = 2n + 5 = 1 +1 ≤ 1 + 1< 1f (n )2n + 3 2n 2(2n + 3) 2 2n + 3 2 5 f (n ) = 2n + 3 , n ∈ N * 得2n随n 的增大而减小 ∴当n → +∞ 时, T n → 3 又T n < m (m ∈ Z ) 恒成立,∴ m min = 3p ≤ 1 (1+ 1 )(1+ 1 ) (1+ 1 )对n ∈ N *(3)由题意得 a 1 a 2 a n 恒成立F (n ) = 1 (1+ 1 )(1+ 1 ) (1+ 1 )记 a 1 a 2 a n , 则 2n +12n +15 n 5 5 n ⎪n 3F(n + 1) = 12n + 3 (1 +1 )(1 +a 1 1 ) (1 +a 2 1)(1 + a n1 )a n +1 F(n) 1 2n + 1 (1 +1 )(1 + a 1 1 ) (1 + 1 ) a2 a n=2n + 2= 2(n + 1) > 2(n + 1) = 12(n + 1) F (n ) > 0,∴ F (n +1) > F (n ),即F (n ) 是随n 的增大而增大 F (1) = 2 3 ∴ p ≤ 2 3 p = 2 3F (n ) 的最小值为 3 , 3 max,即 .(二)证明等差与等比数列 1. 转化为等差等比数列.例题 12. 数列{a n } 中, a 1 = 8, a 4 = 2 且满足 a n +2 = 2a n +1 - a n , n ∈ N *. ⑴求数列{a n } 的通项公式;⑵设 S n =| a 1 | + | a 2 | + + | a n | ,求 S n ;1b n n (12 - a ) (n ∈ N * ),T = b + b + + b (n ∈ N * ) m⑶ 设 = n n 1 2 n m,是否存在最大的整数 ,使得对任意 n ∈ N *,均有T n > 32 成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意, a n +2 - a n +1 = a n +1 - a n ,∴{a n } 为等差数列,设公差为 d , 由题意得2 = 8 + 3d ⇒ d = -2 ,∴a n = 8 - 2(n -1) = 10 - 2n .(2)若10 - 2n ≥ 0则n ≤ 5 , n ≤ 5时, S n =| a 1 | + | a 2 | + + | a n |= a + a + + a = 8 + 10 - 2n⨯ n = 9n - n 2 , 1 2 n2n ≥ 6 时, S n = a 1 + a 2 + + a 5 - a 6 - a 7 - a n= S - (S - S ) = 2S - S = n 2- 9n + 40⎧⎪9n - n 2 n ≤ 5 S n = ⎨故⎩ 2 - 9n + 40 n ≥ 6 1 1 1 1 1 b n =n (12 - a ) = 2n (n + 1) = ( - + 1)(3) n 2 n n ,= 1 [(1 - 1 ) + ( 1 - 1) + (1 - 1 ) + + ( 1 - 1 ) + ( 1 - 1 )]= n.∴ T n 2 2 2 3 3 4 n -1 n n n + 1 2(n + 1) T > mn > m 若n32 对任意 n ∈ N * 成立,即 n + 1 16 对任意 n ∈ N * 成立, n (n ∈ N * ) n + 1 1 的最小值是 2 , ∴ m < 1 , 16 2 ∴ m 的最大整数值是 7.T > m .即存在最大整数m = 7, 使对任意 n ∈ N * ,均有 n 32例题 13. 已知等比数列{b } 与数列{a } 满足b = 3a n , n ∈N *.nnn(2n + 1)(2n + 3) 4(n + 1) 2 - (n + 1)a = a q 1 2 3 … 1 2 202n -1 2n -3 12n (1) 判断{a n } 是何种数列,并给出证明;(2)若 a 8 + a 13 = m ,与 b 1b 2 b 20 .解:(1)设{b } 的公比为 q ,∵ b = 3a n ,∴ 3a 1 ⋅ q n -1 = 3a n ⇒ a = a + (n - 1)log q 。
高一数学《数列》经典练习题-附答案
强力推荐人教版数学高中必修5习题第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D .83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1B .-1C .2D .219.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4A .21 B .-21 C .-21或21 D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题 11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 .14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 . 15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证ac b +,b a c +,c b a +也成等差数列.18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3…). 求证:数列{nS n}是等比数列.第二章 数列参考答案一、选择题 1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699. 2.C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21, 即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7. 解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. 3.B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8. 4.C 解析: 解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4, ∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n . 由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3, ∴S 4=3-13-35=2240=120.6.B 解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6. 8.A解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A .9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4, ∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,(第6题)而a n =1212--n S n ,即2n -1=238=19,∴n =10. 二、填空题 11.23. 解析:∵f (x )=221+x ,∴f (1-x )=2211+-x =x x 2222⋅+=x x22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x222211+⋅+=x x 22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6), 则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62, ∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32. 12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q q S S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32. 13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10, ∴6(a 4+a 10)=24,a 4+a 10=4, ∴S 13=2+13131)(a a =2+13104)(a a =2413 =26.15.-49.解析:∵d =a 6-a 5=-5, ∴a 4+a 5+…+a 10=2+7104)(a a =25++-755)(d a d a=7(a 5+2d ) =-49. 16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5, f (5)=f (4)+4=2+3+4=9, ……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5, n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*), ∴数列{a n }成等差数列且a 1=1,公差为6. (2)∵a 1,b 1,c1成等差数列,∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·b c a +,∴a cb +,b ac +,cba +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q , ∵a 1≠0,∴2q 2-q -1=0, ∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2nn .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n . 19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nSn 2. 故{nS n}是以2为公比的等比数列.。
高中数学数列专题练习(精编版)
则由等比数列的通项公式 an a1q n 1 得 a3 a1q 3 1, q 2 8 4, 2
又 an 0, q 2L L 2分
(1) 求常数 C 和数列的通项公式;
(2) 设 T20 | a1 | | a2 |
| a20 |,
(3) Tn | a1 | | a2 |
| an | , n N
2n , n为奇数;
3.
已知数列 an =
2n-1,
, n为偶数;
求 S2n
1
4 . 已知数列 an 的相邻两项 an , an 1 是关于 x 的方程 x 2 2 n x bn 0 (n N* ) 的 两根 , 且
高中数学数列专题练习(精编版)
1. 已知数列 an n N 是等比数列 , 且 an 0, a1 2, a3 8.
(1) 求数列 an 的通项公式 ;
(2) 求证 : 1 1 1 a1 a 2 a3
1 1; an
(3) 设 bn 2 log 2 an 1, 求数列 bn 的前 100 项和 .
2. 数列 {a n} 中, a1 8, a4 2 ,且满足 an 2 an 1 常数 C
( 2)若 a2 8,,从数列 an 中,依次取出第二项、第四项、第八项,……, 第 2 n 项,按原来的顺序组成一个新的数列 cn ,求数列 cn 的前 n 项和 Sn .
11. 已知曲线 C : y ex (其中 e为自然对数的底数)在点 P 1,e 处的切线与 x 轴
交于点 Q1 ,过点 Q1 作 x 轴的垂线交曲线 C 于点 P1 ,曲线 C 在点 P1 处的切线与 x 轴 交于点 Q2 ,过点 Q2 作 x 轴的垂线交曲线 C 于点 P2 ,……,依次下去得到一系列 点 P1 、 P2 、……、 Pn,设点 Pn 的坐标为 xn , yn ( n N* ).
高中数学数列试题及答案
高中数学数列试题及答案数列在高中数学的学习中占据着重要的地位,它是数学中最基础、最重要的内容之一。
下面将为大家提供一些高中数学数列的试题及答案,希望能帮助大家更好地理解和掌握数列的概念和应用。
1. 等差数列的试题及答案:试题:已知等差数列的首项为a,公差为d,若前n项和为Sn,则求第n项的表达式。
答案:第n项的表达式为an = a + (n-1)d.2. 等比数列的试题及答案:试题:已知等比数列的首项为a,公比为r,若前n项和为Sn,则求第n项的表达式。
答案:第n项的表达式为an = a * (r^(n-1)).3. 递推公式的试题及答案:试题:已知等差数列的递推关系为an = an-1 + d,其中a1 = a,求第n项的表达式。
答案:第n项的表达式为an = a + (n-1)d.4. 数列求和的试题及答案:试题:已知等差数列的首项为a,公差为d,若前n项和为Sn,则求Sn的表达式。
答案:前n项和的表达式为Sn = (n/2)(2a + (n-1)d).5. 数列相关性质的试题及答案:试题:已知等差数列的首项为a,公差为d,若an和an+1的和为S,则求a1、S和n的关系。
答案:a1 = (2S - n(d+1))/(2n).以上是一些高中数学数列的常见试题及答案,我们可以通过解答这些问题来加深对数列的理解和运用。
希望同学们在复习和应用数列知识时多加练习,提高数学水平。
总结:数列是高中数学中重要的内容,掌握数列的概念、性质和应用是学好高中数学的基础。
在解决数列相关问题时,需要熟练掌握等差数列、等比数列的递归关系、通项公式以及数列求和公式等内容。
通过大量的练习和应用,相信大家一定能够掌握数列的知识,并在数学学习中更上一层楼。
加油!。
(2021年整理)高中数列经典习题(含答案)
(完整版)高中数列经典习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中数列经典习题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中数列经典习题(含答案)的全部内容。
(完整版)高中数列经典习题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)高中数列经典习题(含答案) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高中数列经典习题(含答案)〉这篇文档的全部内容。
1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除。
2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0。
(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由。
3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d ;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值。
4、设数列{n a }的前n 项和n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3
�
.
参考答案:10 解析:因为 {an } 是等差数列,所以, am −1 + am +1 = 2am ,由 am −1 + am +1 − am = 0 ,得:2 a m - a m =0, 所 以, a m =2,又 S 2 m −1 = 38 ,即
1 a11 的值是 3 1 3
�
.
1 3
1 1 2 = ( a9 + a7 + a11 − a11 ) = ( a9 + a7 ) = a8 = 16 3 3 3
23. 已 知 函 数 f ( x ) = 2 , 等 差 数 列 {ax } 的 公 差 为 2 . 若 f ( a2 + a4 + a6 + a8 + a10 ) = 4 , 则
log 2 a1 + log 2 a3 + L + log 2 a2 n −1 =
参考答案: n 2
�
.
第 1 页 共 4 页
解析:由 a5 ⋅ a2 n−5 = 22n (n ≥ 3) 得 a n = 2
2
2n
, a n > 0 ,则 a n = 2 ,
n
log 2 a1 + log 2 a3 + ⋅ ⋅ ⋅ + log 2 a 2 n −1 = 1 + 3 + ⋅ ⋅ ⋅ + (2n − 1) = n 2
2
nπ nπ − sin 2 ) ,其前 n 项和为 S n ,则 S30 为 3 3
�
.
nπ nπ − sin 2 } 以 3 为周期,故 3 3
S30 = ( −
10
12 + 2 2 4 2 + 52 282 + 29 2 + 32 ) + ( − + 62 ) + L + ( − + 30 2 ) 2 2 2
S9 = S5
�
.
20.设 S n 是等差数列 {an } 的前 n 项和,已知 a2 = 3 , a6 = 11 ,则 S7 等于 参考答案:49 解析: S7 = 或由 ⎨
�
.
7(a1 + a7 ) 7(a2 + a6 ) 7(3 + 11) = = = 49. 2 2 2
⎧a2 = a1 + d = 3 ⎧a = 1 7(a1 + a7 ) 7(1 + 13) , a7 = 1 + 6 × 2 = 13. 所以 S7 = ⇒⎨ 1 = = 49. 2 2 ⎩a6 = a1 + 5d = 11 ⎩d = 2
x
log 2 [ f (a1 ) ⋅ f (a2 ) f ( a3 ) ⋅L ⋅ f ( a10 )] =
参考答案:-6 24.设等差数列 参考答案:4
�
.
{an } 的前 n 项和为 Sn ,若 S4 ≥ 10, S5 ≤ 15 ,则 a4 的最大值为
�
.
第 4 页 共 4 页
6.将正偶数集合 {2,4,6, … } 从小到大按第 n 组有 2 n 个偶数进行分组如下: 第一组 第二组 第三组 …………{2,来自}{6,8,10,12}
�
2
{14,16,18,20,22,24,26,28} …………
组.
2
则 2010 位于第 参考答案:9 组
7.数列 {an } 的通项 an = n (cos 参考答案: 470 解析:由于 {cos
的最大值为 1 参考答案: 5 � .
a 2 S 2 解析:a1=0 时, 不等式恒成立,当 a1≠0 时, λ≤ n 2+ 2 n 2,将 an=a1+(n-1)d, a1 n a1
( n-1) d 6 + 2 1 1 1 5 + ,∴λ≤ ,∴λmax= . a1 5 5 5 � .
n( n-1) d 5 Sn=na1+ 代入上式,并化简得:λ≤ 4 2
120521) V.120521 高中数学题库(版本 V. P6.数列(B5 [2]) B5[2]
1.设 a1 = 2 , an+1 = 参考答案: 2n +1
2 a +2 , bn = n , n ∈ N * ,则数列 {bn } 的通项公式 bn = an + 1 an − 1
�
.
2 +2 an +1 + 2 an +1 a +2 解析: 由条件得 bn +1 = = =2 n = 2bn 且 b1 = 4 所以数列 {bn } 是首项为 4,公比为 2 2 an +1 − 1 a − 1 n −1 an+1
第 2 页 共 4 页
∗
�
; a2014 =
�
.
解析:依题意,得 a2009 = a4×503−3 = 1 , a2014 = a2×1007 = a1007 = a4×252 −1 = 0 . ∴应填 1,0.
.
Sn d } 为等差数列,公差为 .类似地,若各项 n 2 n 均为正数的等比数列 {bn } 的公比为 q ,前 n 项的积为 Tn ,则数列 { Tn } 为等比数列,公比为 � .
a 2 − a1 = b2
∴ a2 + a4 + a9 = (a2 + a9 ) + a4 = (a5 + a6 ) + a4 = 3a5 = 24 .
S2 n 2 16.设 Sn 为数列{an}的前 n 项之和,若不等式 a2 n+ ≥λa 1对任何等差数列{an}及任何正整数 n 恒成立,则λ n2
14.已知-7, a1 , a 2 , -1 四个实数成等差数列, -4, b1 , b2 , b3 , -1 五个实数成等比数列, 则 � . 参考答案:-1 15.设等差数列 {an } 的前 n 项和为 Sn ,若 S9 = 72 ,则 a2 + a4 + a9 = 参考答案:24 解析:Q{an } 是等差数列,由 S9 = 72 ,得∴ S9 = 9a5 , a5 = 8 � .
解析: (1)若 a1 = m 为偶数,则 a2 = 9.已知 f (3 ) = 4 x log 2 3 + 233 ,则 f (2) + f (4) + f (8) + L + f (2 ) 的值等于
8
x
�
.
参考答案:2008 10.已知数列 {an } 满足: a4 n−3 = 1, a4 n−1 = 0, a2 n = an , n ∈ N , 则 a2009 = 参考答案:1,0
2 2
( 2m − 1)(a1 + a 2 m−1 ) =38,即(2m-1)×2=38,解得 m=10 2
4. 公 差 不 为 零 的 等 差 数 列 {an } 的 前 n 项 和 为 S n . 若 a4 是 a3与a7 的 等 比 中 项 , S8 = 32 , 则 S10 等 于 � . 参考答案:60 解析:由 a4 = a3a7 得 ( a1 + 3d ) = (a1 + 2d )(a1 + 6d ) 得 2a1 + 3d = 0 , 再由 S8 = 8a1 +
S15 的值是 S5
�
.
解析: 由 a1 + a3 + a5 =105 得 3a3 = 105, 即 a3 = 35 , 由 a2 + a4 + a6 =99 得 3a4 = 99 即 a4 = 33 , ∴ d = −2 ,
⎧a ≥ 0 得 n = 20 an = a4 + ( n − 4) × (−2) = 41 − 2n ,由 ⎨ n ⎩an +1 < 0
11.若等差数列 {an } 的公差为 d ,前 n 项的和为 Sn ,则数列 { 参考答案: q 12.若等差数列{an}的前 n 项和为 Sn,a8=2a3,则 参考答案:6 13.已知 {an } 为等差数列, a1 + a3 + a5 =105, a2 + a4 + a6 =99,以 Sn 表示 {an } 的前 n 项和,则使得 S n 达到 最大值的 n 是 参考答案:20 � .
的取值为 � . 参考答案:4 5 32
a1 m m a m = , a2 = a3 = 2 = 2 2 2 2 4 m m m m ①当 仍为偶数时, a4 = ⋅⋅⋅⋅⋅⋅a6 = 故 = 1 ⇒ m = 32 4 8 32 32 3 3 m +1 m +1 m 3 ②当 为奇数时, a4 = 3a3 + 1 = m + 1 ⋅⋅⋅⋅⋅⋅ a6 = 4 ,故 4 = 1 得 m=4. 4 4 4 4 3m + 1 (2)若 a1 = m 为奇数,则 a2 = 3a1 + 1 = 3m + 1 为偶数,故 a3 = 必为偶数 2 3m + 1 3m + 1 ⋅⋅⋅⋅⋅⋅ a6 = ,所以 =1 可得 m=5 16 16
� .
21. 等比数列 {an } 中, a1 = 2 , a8 = 4 ,函数 f ( x ) = x ( x − a1 )( x − a2 )L ( x − a8 ) , 则 f ′(0) = 参考答案: 212 22.等差数列 {an }中, 若a4 + a6 + a8 + a10 + a12 = 120, 则a9 − 参考答案:16 解析:依题意,由 a4 + a6 + a8 + a10 + a12 = 120 ,得 a8 = 24 ,所以 a9 − a11 = (3a9 − a11 )