函数与零点练习题

合集下载

函数零点问题-学会解题之高三数学多题一解【原卷版】

函数零点问题-学会解题之高三数学多题一解【原卷版】

函数零点问题【高考地位】函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.其经常与函数的图像、性质等知识交汇命题,多以选择、填空题的形式考查.类型一 零点或零点存在区间的确定万能模板 内 容使用场景 一般函数类型解题模板第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可.例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【变式演练1】(2023·全国·高三专题练习)在下列区间中,函数()23xf x x =--的零点所在的区间为( )A .)(01,B .()12,C .()23,D .()34,【变式演练2】(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【变式演练3】(2022·全国·高一课时练习)已知函数()226xf x x =+-的零点为0x ,不等式06x x ->的最小整数解为k ,则k =( ) A .8B .7C .5D .6类型二 零点的个数的确定方法1:定义法万能模板 内 容使用场景一般函数类型解题模板 第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其 零点;第三步 得出结论.例2.函数x e x f x3)(+=的零点个数是( ) A .0 B .1 C .2 D .3【变式演练4】(2022·重庆·三模)已知函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则函数()()12g x f x =-的零点个数为( )A .0个B .1个C .2个D .3个【变式演练5】(2023·全国·高三专题练习)已知函数|2|1()2x f x -=,()g x 是定义在R 上的奇函数,且满足(2)(2)g x g x +=-,当[0,2]x ∈时,2()log (1)g x x =+.则当[0,2022]x ∈时,方程()()f x g x =实根的个数为_______.【变式演练6】(2022·北京·高三开学考试)已知函数()x af x a x a+=--,给出下列四个结论: ①存在a ,使得函数()f x 可能没有零点; ②存在a ,使得函数()f x 恰好有1个零点; ③存在a ,使得函数()f x 恰好有2个零点; ④存在a ,使得函数()f x 恰好有3个零点. 其中所有正确结论的序号是______.方法2:数形结合法万能模板 内 容使用场景 一般函数类型解题模板第一步 函数()g x 有零点问题转化为方程()()f x m x =有根的问题; 第二步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第三步 观察并判断函数()y f x =和()y m x =的图像的交点个数第四步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论.例3. 方程3()|log |3x x =的解的个数是 ( ) A .3 B .2 C .1 D .0【变式演练7】(2023·全国·高三专题练习)已知函数()f x 是定义在R 上的偶函数,满足()()1f x f x +=-,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5【变式演练8】(2022·河北省曲阳县第一高级中学高三阶段练习)(多选)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()()()1g x f f x =+,则下列说法正确的是( ) A .当0a >时,()g x 有4个零点 B .当0a >时,()g x 有5个零点 C .当0a <时,()g x 有1个零点D .当0a <时,()g x 有2个零点【变式演练9】(2022·湖南师大附中三模)(已知)已知函数()[)[)1,0,1,21,1,2,3x x f x x x ⎧-∈⎪=⎨-∈⎪-⎩对定义域内任意x ,都有()(2)f x f x =-,若函数()()=-g x f x k 在[0,+∞)上的零点从小到大恰好构成一个等差数列,则k 的可能取值为( ) A .0B .1C 2D 21【高考再现】1.【2021年北京市高考数学试题】已知函数,给出下列四个结论: ①若,则有两个零点; ①,使得有一个零点; ①,使得有三个零点; ①,使得有三个零点. 以上正确结论得序号是_______.2.【2021年天津高考数学试题】设,函数,若在区间()lg 2f x x kx =--0k =()f x 0k ∃<()f x 0k ∃<()f x 0k ∃>()f x a ∈R 22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩()f x (0,)+∞内恰有6个零点,则a 的取值范围是( ) A .B .C .D .3.【2020年高考天津卷9】已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞4.【2020年高考上海卷11】已知a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件,①对任意0x R ∈,0()f x 的值为0x 或02x ;②关于x 的方程()f x a =无实数解;则a 的取值范围为 .5. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}6.【2018年全国普通高等学校招生统一考试数学(浙江卷)】已知λ①R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________①7.【2017江苏】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .8.【2018年全国普通高等学校招生统一考试理科数学(天津卷)】已知a >0,函数f(x)={x 2+2ax +a, x ≤0,−x 2+2ax −2a,x >0.若关于x 的方程f(x)=ax 恰有2个互异的实数解,则a 的取值范围是______________.【反馈练习】1.函数的图象与函数的图象交点横坐标所在的区间可能为( )95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭()()=x f x e ()2ln g x x =-A .B .C .D .【来源】重庆市南开中学2022届高三上学期7月考试数学试题2.(2022·河南·高三阶段练习(文))已知直线l 与曲线ln (01)y x x =<<相切于点00(,)M x y ,若OM l ⊥,则0x 所在的取值区间是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭3.(2022·重庆南开中学高三阶段练习)已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,44.(2023·全国·高三专题练习)已知()=ln f x x ,()e x g x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭5.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c <<B .a b c <<C .a c d <<D .b c a <<6.(2022·江西·南昌二中高三开学考试(理))已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1x g x x =++的一个零点,132log 5c =,则( )A .a c b <<B .a b c <<C .b c a <<D .a c b <<或c b a <<7.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .68.(2022·甘肃·兰州市第五十五中学高三开学考试(文))定义域在R 上的奇函数()f x ,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨⎪--≥⎩,则关于x 的函数()()12g x f x =-的所有零点的和是( )A 21B .122C .122-D .129.(2022·河南·高三开学考试(文))已知定义域为R 的偶函数()f x 的图像是连续不间断的曲线,且()0,1()1,2()2,3()3,4(2)()(1)f x f x f ++=,对任意的1x ,20[]2,x -∈,12x x ≠,()()12120f x f x x x ->-恒成立,则()f x 在区间[]100,100-上的零点个数为( ) A .100B .102C .200D .20210.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( ) A .5或6个B .3或9个C .9或10个D .5或9个11.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()e 2x y f x -=--B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+12.(2022·陕西·西安铁一中滨河高级中学高三阶段练习(理))函数()222,0,23,0lnx x x x f x x x x ⎧-+>=⎨--≤⎩的零点个数为( ) A .0B .1C .2D .313.(2022·全国·模拟预测(文))已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是( ) A .2个B .3个C .4个D .6个14.(2023·全国·高三专题练习)(多选)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +>B .120x x <C .12ln 0xe x +=D .12121x x x x -+<15.(2022·福建·上杭一中高三阶段练习)(多选)已知函数()1,0ln ,0kx x f x x x +≤⎧=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数判断正确的是( ) A .当0k <时,有1个零点; B .当0k >时,有4个零点; C .无论k 取何值,均有2个零点;D .无论k 取何值,均有4个零点;16.(2022·全国·高二专题练习)设定义域为(0,)+∞的单调函数()f x ,对任意的,()0x ∈+∞,都有[]3()log 4f f x x -=,若0x 是方程()2()3f x f x '-=的一个解,且*0,(1),N x a a a ∈+∈,则实数a =_____. 17.(2022·重庆·高三阶段练习)函数||21()2x f x x ⎛⎫=- ⎪⎝⎭的零点个数是______.18.(2021·福建·福州市第十中学高三开学考试)已知函数24,1()lg 1,1x x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则((9))f f -=__________,()f x 的零点个数为__________个.19.已知函数有两个不同的零点,则实数k 的取值范围是_________. 【来源】河北省衡水市饶阳中学2021届高三5月数学精编试题20.【陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试文科】已知函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-+->⎪⎩. (1)求斜率为12的曲线()y f x =的切线方程; (2)设()()f x g x m x=-,若()g x 有2个零点,求m 的取值范围.()()112 ()1421x x f x k -=-+-。

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

4.5.1函数的零点与方程的解一、单选题1.以下函数在区间(0,12)上必有零点的是( ) A .y =12xB .y =143x -C .y =ln (x +45)D .y =2x +12.若曲线224,43,x x ay x x x a ⎧->=⎨-+≤⎩与x 轴有且只有2个交点,则实数a 的取值范围是( )A .12a ≤≤B .3a ≥C .12a ≤≤或3a ≥D .12a ≤<或3a ≥3.函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若f (a )=f (b )=f (c )且a ,b ,c 互不相等,则abc 的取值范围是( )A .(1,10)B .(10,12)C .(5,6)D .(20,24)4.设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1)B .(1,2)C .(2,e )D .(e ,3)5.定义在R 上的奇函数()f x 满足:当0x >时,()20212021log xf x x =+,则在R 上方程()0f x =的实根个数为( ) A .1B .3C .2D .2021二、多选题 6.在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是( ) A .y =﹣2xB .y =x ﹣6C .y =3xD .y =x 2﹣3x +47.已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x <D.1223+≥+x x 8.已知函数2ln ,0,()=4,0.x x f x x x x >⎧⎨--≤⎩关于x 的方程()0f x t -=的实数解个数,下列说法正确的是( )A .当0t ≤时,方程有两个实数解B .当4t >时,方程无实数解C .当04t <<时,方程有三个实数解D .当4t =时,方程有两个实数解 三、填空题9.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.10.已知函数()y f x =在区间[]16,上的图像是一段连续的曲线,且有如下的对应值表:设函数y f x =在区间16,上零点的个数为,则的最小值为________. 11.方程22x x +=的根为a ,方程2log 2x x +=的根为b ,则a b +=__________四、解答题12.已知函数()|1|||f x x x a =+-+.若方程()f x x =有三个不同的解,求实数a 的取值范围.13.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.14.若函数()221,1log ,1x x f x x x ⎧-+≤=⎨>⎩.(1)在所给的坐标系内画出函数()f x 图像;(2)求方程()f x m =恰有三个不同实根时的实数m 的取值范围.参考答案1.C 【分析】根据题意,依次分析选项中函数在区间(0,12)上有没有零点,综合即可得答案. 【详解】根据题意,依次分析选项:对于A :,y =12x 0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符对于B ,y =143x -x 0,12)单调递增,且有y >0恒成立,在区间(0,12)上没有零点,不符合题意;对于C ,y =ln (x +45),当x =15时,y =ln1=0,区间(0,12)上有零点,符合题意;对于D ,y =2x +1,在区间(0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符合题意. 故选:C . 2.D 【分析】作出函数24x y =-与243y x x =-+的图象,对参数分类讨论,得出结论.【详解】作出函数24x y =-与243y xx =-+的图象,令240x y =-=,即2x =,故()2,0B ,令2430y x x =-+=,即1x =或3x =,故1,0A 或()3,0C ,当1a <时,只有B 一个零点;当12a ≤<时,有A ,B 两个零点;当23a ≤<时, 有A 一个零点;当3a ≥时,有A,C 两个零点;综上,实数a 的取值范围是:12a ≤<或3a ≥, 故选:D.【分析】先画出分段函数的图象,根据图象确定字母a 、b 、c 的取值范围,再利用函数解析式证明ab =1,最后数形结合写出其取值范围即可 【详解】解:函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩的图象如图:∵f (a )=f (b )=f (c )且a ,b ,c 互不相等 ∵a ∵(0,1),b ∵(1,10),c ∵(10,12)∵由f (a )=f (b )得|lg a |=|lg b |,即﹣lg a =lg b ,即ab =1 ∵abc =c由函数图象得abc 的取值范围是(10,12) 故选:B .4.A 【分析】通过等价转化,把函数的零点转化为函数y =f (x )与y =g (x )图象交点的横坐标,然后画出函数的图象,通过图象即可判断出零点所在的区间. 【详解】函数h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象交点的横坐标, 画出函数y =f (x )与y =g (x )的图象,从图象可知它们仅有一个交点A ,且交点横坐标的范围为()0,1.故选:A.【分析】当0x >时,作出函数2021x y =,2021log y x =-的示意图,由图象交点个数得到方程根的个数,再根据奇函数图象的对称性以及(0)0f =,即可求出方程所有根的个数. 【详解】①当0x >时,令()0f x =,即20212021log xx =-,在同一坐标系中作出函数12021xy =,22021log y x =-的示意图,如下图:函数12021xy =为单调增函数,22021log y x =-为单调减函数,可知两个图象有且只有一个交点P ,横坐标记为0x . 即0x >时方程()0f x =有且只有一个实根0x , ②因为函数()f x 是定义在R 上的奇函数, 所以当0x <时,方程()0f x =也有一个实根0x -,③又∵()f x 是R 上的奇函数,(0)0f =,∵即0也是方程()0f x =的根, 综上所述,方程()0f x =有3个实根. 故选:B. 6.AC 【分析】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,依次计算即可. 【详解】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,对于A,2y x y x =⎧⎨=-⎩,解得00x y =⎧⎨=⎩,即存在完美点()0,0,对于B,6y x y x =⎧⎨=-⎩,无解,即不存在完美点,对于C,3y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩,(对于D,234y x y x x =⎧⎨=-+⎩, 24x x x -+=,即2240x x -+=,解得2(2)44120∆=--⨯=-<,即不存在完美点, 故选:AC. 7.ABD 【分析】函数2()log (1)(0)=-->f x x m m 即为函数函数2log (1)y x =-,y m =,交点的横坐标,作出函数图像,根据图像,易判断A ;根据()12()0f x f x ==,化简整理即可判断B ; 结合基本不等式将和化为积的形式即可判断C ; 利用整体代换结合基本不等式即可判断D. 【详解】解:令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=, 令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标,作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=, 所以12(1)(1)1x x --=,即()12120x x x x -+=, 所以12111x x +=,故B 正确;因为12x x +≥,所以()121212x x x x x x -+≤-120x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误; ()21121212122112233x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=当且仅当21122x x x x =,即21x 时,取等号,故D 正确. 故选:ABD. 8.CD 【分析】方程()0f x t -=即()f x t =,作出函数()f x 的简图,数形结合可得结果. 【详解】方程()0f x t -=即()f x t =,作出函数()f x 的简图,由图可知:当0t <时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解;当0t =时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故A 错误;当4t >时,函数()y f x =的图象与直线y t =有1个交点,即方程()0f x t -=有1个实数解,故B 错误; 当04t <<时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故C 正确; 当4t =时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解,故D 正确. 故选:CD.9.102,3⎡⎫⎪⎢⎣⎭【分析】通过参变分离,转化为1a x x =+在1(,3)2上有解,转化为求函数t =x +1x ,x ∵1(,3)2的值域. 【详解】由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∵1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.故答案为:102,3⎡⎫⎪⎢⎣⎭.10.3 【分析】根据函数零点存在定理,判断函数值的符号,即可判断函数零点个数. 【详解】解:由题意,因为()()230f f <,()()450f f <,()()560f f <,所以根据函数零点存在性定理,在区间(2,3)和(4,5)及(5,6)内至少有一个零点,故函数()y f x =在区间[]16,上的零点至少有3个,即n 的最小值为3, 故答案为:3. 11.2 【分析】利用方程的根于函数图象的交点之间的关系,结合指数函数和对数函数互为反函数的关系,作出图象即可求解【详解】a 是方程22x x +=的根,就是2x y =和2y x =-图象交点的横坐标;b 是方程2log 2x x +=的根,就是2log y x =和2y x =-图象交点的横坐标;在同一坐标系中画出函数2x y =,2log y x =,2y x =-的图象,如图所示:由图可知,a 是2x y =和2y x =-图象交点A 的横坐标,b 是2log y x =和2y x =-图象交点B 的横坐标,因为2x y =与2log y x =互为反函数, 所以图象关于直线y x =对称, 故点A ,B 也关于直线y x =对称, 所以点A ,B 为(),A a b ,(),B b a , 而点A ,B 又在2y x =-上, 所以2b a =-,2a b =-, 即2a b +=, 所以2a b +=, 故答案为:2 12.10a -<<. 【分析】用分离参数法变形方程为1a x x x =-++,引入函数()1g x x x x =-++,作出函数()g x 的图象,由图象与直线y a =有三个交点可得结论. 【详解】方程()f x x =可化为1a x x x =-++,设()1g x x x x =-++,则1,0()1,101,1x x g x x x x x -≥⎧⎪=---≤<⎨⎪+<-⎩,函数图象如下:由图象知()y g x =的图象与直线y a =有三个交点时,10a -<<. 13.(1)(0,2);(2)1. 【分析】(1)根据真数大于0即可. (2)令()0f x =即可. 【详解】(1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2).(2)()()()212log 20,2f x x x x =-+∈,,由()0f x =得221x x -+=,即2210x x -+=,解得1x =, ()f x ∴的零点是1.14.(1)图象见解析;(2)01m <<. 【分析】(1)结合二次函数的图象与性质,对数函数的图象与性质利用描点法作函数的图象,(2)观察()f x 图象,根据()y f x =的图象与y m =的图象有三个交点确定m 的范围.【详解】 (1)作图如下:11(2)方程()f x m =有3个解等价于函数()y f x =的图象与y m =的图象有三个交点, 观察图象可得01m <<.。

专题10函数零点(原卷版)

专题10函数零点(原卷版)

《函数零点》专项突破 高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难. 考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理 题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-练(2022·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( ) A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)例1-2.(2022·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定类型二、区间零点存在性定理例2-1.(2022·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4练.(2022·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2022·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个 B .2个 C .3个 D .0个练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( ) A .ln 3,92e e ⎡⎫⎪⎢⎣⎭ B .ln 20,4e ⎛⎫ ⎪⎝⎭ C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e ⎡⎫⎪⎢⎣⎭例3-2(一个曲线一个直线)(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.例3-3【一个曲线和一个倾斜直线】【2022福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.例3-4(两个曲线)(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________.(两个曲线)(2022·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3 B .72C .4D .92(两个曲线)【2022河北省武邑中学高三】若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时, ()f x x =,则函数()3log y f x x =-的零点个数是( )A . 6个B . 4个C . 3个D . 2个例3-5(直接解出零点)(2022·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12 B .14 C .16 D .18类型三、利用周期性判断零点个数例3-1.(2022·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( ) A .404 B .804C .806D .402例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( ) A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24例4-2(2022·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36类型五、等高线的使用例5-1.(2022·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________.例5-2(2022·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( )A .109,32⎛⎫ ⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭例5-3(2022·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( )①()0,1m ∈;①()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ①函数()y f x x m =--恰有三个零点. A .①① B .①① C .①① D .①①①例5-4.(2022·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1 B .2 C .3 D .4类型六、嵌套函数零点例6-1.(2022·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个例6-2.(2022·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x =-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________.例6-3(2022·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________.例6-4. 已知函数f(x)={e |x−1|,x >0−x 2−2x +1,x ≤0 ,若关于x 的方程f 2(x)−3f(x)+a =0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A . (0,14) B . (13,3) C . (1,2) D . (2,94)类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x x ax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3 B .(]1,3 C .[]1,3 D .[)3,+∞例7-2已知函数()ln()(0)x af x ex a a -=-+>.(1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.类型八、隐零点之极值点偏离类型一、目标与极值点相关思想:偏离−−→−转化对称 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数类型二、目标与极值点不相关 步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2022·江苏高三开学考试)已知函数()ln af x x x=+(a ∈R )有两个零点.(1)证明:10ea <<. (2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (①)求()f x 的单调区间;(①)证明:当12()()f x f x = 12()x x ≠时,120x x +<练、已知函数f(x)=xe -x .(1)求函数f(x)的单调区间和极值; (2)若x 1≠x 2且f(x 1)=f(x 2),求证:x 1+x 2>2.练、已知函数f(x)=xln x 的图象与直线y =m 交于不同的两点A(x 1,y 1),B(x 2,y 2).求证:x 1x 2<1e 2.练(2022·沙坪坝区·重庆八中)已知函数()222ln f x x ax x =-+(0a >).(1)讨论函数()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点1x ,2x (12x x <)恰为函数()g x 的两个零点,且()12122x x y x x g '+⎛⎫=- ⎪⎝⎭的取值范围是[)ln31,-+∞,求实数a 的取值范围.练.已知2()4ln f x x x a x =-+.已知函数()f x 有两个极值点12x x ,(12x x <),若123()20f x mx ->恒成立,试求m 的取值范围.。

考点12 零点定理(练习)(原卷版)

考点12 零点定理(练习)(原卷版)

考点12:零点定理【题组一求零点】1.函数f (x )2120810x x log x x ⎧-≤⎪=⎨⎪-+⎩(),()(>)的零点为_____.2.若函数()()2log a f x x =+的零点为2-,则a =________.3.设函数[)()222,1,()2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,则函数()y f x =的零点是________________.【题组二零点区间】1.函数3()log (2)1f x x x =++-的零点所在的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.已知函数()26log 21f x x x =--+.在下列区间中,包含()f x 零点的区间是()A .()0,1B .()1,3C .()3,5D .()5,73.函数1()sin 2f x x x =-在下列哪个区间必有零点()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【题组三零点个数】1.函数()231xf x log x =-的零点个数为.2.函数()22xf x e x =+-在区间()21-,内零点的个数为.3.函数f (x )=cosπx ﹣(12)x+1在区间[﹣1,2]上的零点个数为.4.函数()2ln f x x x =+的零点个数是.5.函数()3f x x =-,则()f x 的零点个数为________.6.定义在R 上的偶函数()f x 满足()(4)f x f x =-,且当[0,2]x ∈时,()cos f x x =,则()()lg g x f x x =-的零点个数为____________.7.函数25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭的零点个数为_______________.8.f(x)是R 上的偶函数,f(x +2)=f(x),当0≤x≤1时,f(x)=x 2,则函数y =f(x)-|log 5x|的零点个数为.9.若偶函数()f x 的图像关于32x =对称,当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()20log g x f x x =-在[]20,20-上的零点个数是.10.定义在R 上的奇函数()f x 满足()()22f x f x -=-+,且在区间[)2,4上,()2,234,34x x f x x x -≤<⎧=⎨-≤<⎩,则函数()3log y f x x =-的零点的个数为______.11.函数()f x 对于任意实数x ,都()()f x f x -=与(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是.12.已知定义在R 上,且最小正周期为4的函数()f x ,满足()()f x f x -=-,则在区间()10,10-内函数()y f x =的零点个数的最小值是______【题组四根据零点求参数】1.方程24(2)50x m x m +-+-=的一根在区间()1,0-内,另一根在区间()02,内,则m 的取值范围是.2.已知函数()()2log 13f x x x m =+++的零点在区间(]0,1上,则m 的取值范围为.3.若函数()3()1x f x x a =--在(﹣∞,0)上有零点,则实数a 的取值范围为.4.若函数2()log ()f x x x k k z =+-∈在区间(2,3)上有零点,则k =.5.函数1()lg1f x x m x =-++在区间()0,9上有零点,则实数m 的取值范围为____________.6.已知函数()ln f x x m =-的零点位于区间()1,e 内,则实数m 的取值范围是________.7.设函数f (x )=log 32x x+-a 在区间(1,2)内有零点,则实数a 的取值范围是________.8.若函数()()21xf x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是.9.已知函数22log (),0()3,0x a x f x x ax a x +≤⎧=⎨-+>⎩有三个不同的零点,则实数a 的取值范围是________.10.已知函数()226f x x ax =+--,若存在a R ∈,使得()f x 在[]2,b 上恰有两个零点,则实数b 的最小值是______.11.函数f (x)=∣4x -x 2∣-a 的零点的个数为3,则a =.12.设(0,1)m ∈,若函数2log ,02()(4),24x m x f x f x x ⎧-<≤=⎨-<<⎩有4个不同的零点1234,,,x x x x ,且1234x x x x <<<,则22341225x x x x +-+的取值范围是.13.已知直线y mx =与函数()211,0212,03xx x f x x ⎧+>⎪⎪=⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩的图象恰好有3个不同的公共点,则实数m 的取值范围是.14.已知m R ∈,函数221,1()log (1),1x x f x x x ⎧+<=⎨->⎩,2()221g x x x m =-+-,若函数[()]y f g x m =-有6个零点,则实数m 的取值范围是.15.已知定义在R 上的偶函数()f x ,且0x ≥时,()31,0153,13x x x f x x -⎧+≤≤⎪=⎨+>⎪⎩,方程()f x m =恰好有4个实数根,则实数m 的取值范围是.【题组四二分法】1.已知函数 uli m l l ⺁ 的零点用二分法计算,附近的函数值参考数据如下表所示:则方程l l ⺁ m 的近似解可取为(精确度 鎀ၹ).2.下列函数中,不能用二分法求函数零点的是()A .()21f x x =-B .()221f x x x =-+C .()2log f x x=D .()2xf x e =-3.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x12 1.5 1.625 1.75 1.875 1.8125()f x -63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为4.用二分法研究函数()321f x x x =--的零点时,若零点所在的初始区间为()12,,则下一个有解区间为()A .()12,B .()1.752,C .()1.52,D .()11.5,5.若函数()3222f x x x x =+--的—个正数零点附近的函数值用二分法逐次计算,参考数据如下表:()12f =-()1.50.625f =()1.250.984f =-()1.3750.260f =-()1.4380.165f =()1.40650.052f =-那么方程32220x x x +--=的一个近似根(精确度为0.05)为.6.已知函数f (x )的图象如图,其中零点的个数与可以用二分法求解的个数分别为.A .4,4B .3,4C .5,4D .4,37.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:x 23 2.5 2.75 2.625 2.5625()f x 1.3069- 1.09860.084-0.5120.2150.066则方程ln 260x x +-=的近似解(精确度0.1)可取为()A .2.52B .2.625C .2.47D .2.758.用“二分法”求26y x =-的零点时,初始区间可取()A .()0,1B .()1,2C .()2,3D .()3,4。

考点12零点定理(练习)(解析版)

考点12零点定理(练习)(解析版)

考点12:零点定理【题组一求零点】1.函数/(X)=,T——(x<0),8 的零点为. -/c?g2(x+l)(x>0)【答案】-3【解析】当工<0时,/(x)=2x--=0,/.x=-3;8"'庶>0时,/(x)=-log2(x+l)=0,.\x=0t不满足,排除;故函数零点为一3故答案为:—3 2.若函数/(x)=log2(x+n)的零点为一2,则"=【答案】3【解析】根据题意,若函数/(x)=log2(x+a)的零点为・2,则,(・2)=log2(Z7-2)=0,即〃・2=1,解可得〃=3・故答案为33.设函数fW= <2x-2,x e[l.+oo)-V? -2a-,xe(-co,1)则函数y=f(x)的零点是【答案】o或1岸、f x>\x<\【解析顷对=°等价干值-2=。

或卜-2i=。

’解得M或1=0,所以,函数y=f(x)的零点是。

或1.故答案为:o或1.【题组二零点区间】1.函数/«=log3(x+2)+x-l的零点所在的一个区间是()A.(0,1)B.(L2)C.(2,3)D.(3.4)【答案】A【解析】f(0)=log32-l<0./⑴=log3(l+2)+l-l=l>0.所以/(0)/(1)<0,根据零点存任性定理.../⑴=logQ+2)+x—1的零点所在的•个区间是(0,1)・故选:A.2.已知函数/(工)=1理2*-土-2.在下列区间中,包含/(幻零点的区间是()■4I1A.(0,1)B.(1.3)C.(3.5)D.(5,7)【答案】D【解析】函数/(x) = log 2x —-^--2,在其定义域</(5) = log 25-3 = log 2|<0, f(7) = log 27^-2 = log 2^L>0, 故函数f(x)的? 间(5,7) |故逸:D3.函^f(x) = -x-sinx 在下列哪个区间必有零点((3.' c - g 土A.71B - 2-' D.3n2【答案】B【解析】V/(0) = 0-sin0 = 0. = /(汗)=?>0・<0.任区间;刁内必有零点故选:B【题组三零点个数】1.函数/⑴=3啊/|一1的零点个数为【答案】2【解析】函数f(x) = y\log 2x\-\的琴点,即方程y\log 2j]-i = 0的解,「|/心|=转化为函数)>=|/华2乂与的交点,在同一平而直角坐标系出函数ytpogiM 勺,=(!)的现象,如卜所示:x-l=O«两个实数根.即保f(x)=y\iog2x\-i^两个零点.2.函数f(x)=e x+x2-2/±区间(一2,1)内零点的个数为一【答案】2【T"I]令N+X2-2=0,b=-x2 +2.M*1*y=r\y=一『+2的图象如下图所示.由图可知,图象有两个3.函数f(x)=cosnx-<->X+1任区间[•1,2]上的零点个数为【答案】3【解析】根可知•函数/3)=cosg—(y+1在"•矶—1.2]上的等吊勺个数,即为》.、=cos/rx的图象,j函数、=(二)'一1的图象在[乂间[—1,2]1-1门在同一坐标系中画出两个函数图象如图所示:可以发现有三个公尹M ,所以函数/(x)=cos^-(|r+l 在区间[T2] |-.{J 个34.函数f(x) = \nx+x 2的零点个数是一【解析】因为y = lnx 与y = F 均在0,+oo 上为析".・所以函^ f(x) = \nx+x 2至多1)2=-1/e)乂 /[■!■] = ln 』+<0, /(l) = lnl + l = l>0. /|lj /(l)<0. EP 函数/'(x)在-J | I 行个5.函数f(x) = x-^-3,则/(司的零点个数为【答案】1【解析】函数/(犬)定义域为[O.+8)x — JF —3 = O = x — 3 =,=jv_3q\=JL 则以刀)的省点的个敖 撤y,=x — 3,»=J7・ XWp*。

高中数学考点12 零点定理(练习)(解析版)知识点解析

高中数学考点12 零点定理(练习)(解析版)知识点解析

2.若函数 f x log2 x a 的零点为 2 ,则 a ________.
【答案】3
【解析】根据题意,若函数 f(x)=log2(x+a)的零点为﹣2,
则 f(﹣2)=log2(a﹣2)=0,即 a﹣2=1,解可得 a=3,故答案为 3
3.设函数
f
(x)
2x 2, x 1,
x2
交点,故原函数有 2 个零点.
3.函数 f(x)=cosπx﹣( 1 )x+1 在区间[﹣1,2]上的零点个数为
.
2
【答案】3
【解析】根据题意可知,函数 f (x) cos x ( 1 )x 1在区间[1, 2] 上的零点的个数, 2
即为函数 y cos x 的图象与函数 y (1)x 1的图象在区间[1, 2] 上的交点的个数, 2
如上图所示,则 f x 的零点个数为1.故答案为:1
6.定义在 R 上的偶函数 f (x) 满足 f (x) f (4 x),且当 x [0, 2]时, f (x) cos x ,则 g( x) f ( x) lg x 的
零点个数为____________. 【答案】10
【解析】由于定义在 R 上的偶函数 y f x 满足 f ( x) f 4 x , 所以 y f x 的图象关于直线 x 2 对称, 画出 x [0, ) 时, y f x 部分的图象如图,在同一坐标系中画出 y lg x 的图象,
在同一坐标系中画出两个函数图象如图所示:
可以发现有三个公共点,所以函数 f (x) cos x ( 1 )x 1在区间[1, 2] 上有三个零点, 2
4.函数 f x ln x x2 的零点个数是
.
( ) 【解析】因为 y ln x 与 y = x2 均在 0, +¥ 上为增函数,所以函数 f x ln x x2 至多一个零点

函数的零点二分法练习题精选

函数的零点二分法练习题精选

函数的零点二分法练习题精选一、填空题1.设f (x )的图象在区间(a ,b )上不间断,且f (a )·f (b )<0,取x 0=a +b 2,若f (a )·f (x 0)<0,则用二分法求相应方程的根时取有根区间为________.答案:(a ,a +b 2)2.一块电路板的AB 线路之间有64个串联的焊接点,如果电路不通的原因是因为焊口脱落造成的,要想用二分法检测出哪一处焊口脱落,至多需要检测________次.解析:由二分法可选AB 中点C ,然后判断出焊口脱落点所在的线路为AC ,还是BC .然后依次循环上述过程即可很快检测出焊口脱落点的位置,至多需要检测6次.答案:63.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间是解析:设f (x )=e x -x -2,由图表可知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,f (3)>0.所以f (1)·f (2)<0,所以根在(1,2)内.答案:(1,2)4函数f (x )在区间(1,6)内的零点至少有________个.解析:在区间(2,3),(3,4),(5,6)内至少各有一个.答案:35.设f (x )=3x +3x -8,由二分法求方程3x +3x -8=0在(1,2)内近似解的过程中,得f (1)<0,f (1.5)>0,f (1.25)<0,则方程根所在的大致区间是________.解析:虽然f (1)·f (1.5)<0,f (1.5)·f (1.25)<0,但(1.25,1.5)比(1,1.5)更精确.答案:(1.25,1.5)6.下列方程在区间(0,1)内存在实数解的有________.①x 2+x -3=0;②1x +1=0;③12x +ln x =0;④x 2-lg x =0.解析:0<x <1时,x 2+x -3<0,1x+1>0,x 2-lg x >0. 答案:③7.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是________(填写序号).①(0,1) ②(1,2) ③(2,3) ④(3,4)解析:令g (x )=x 3-22-x ,可求得g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0.易知函数g (x )的零点所在区间为(1,2).答案:②8.函数f (x )=|x 2-2x |-a 有三个零点,则实数a 的取值范围是________.解析:数形结合可知.答案:a =19.下列函数中能用二分法求零点的是________.解析:由二分法应用条件知只有③符合题意.答案:③10.下面关于二分法的叙述,正确的是________.①二分法可求函数所有零点的近似值②利用二分法求方程的近似解时,可以精确到小数点后任一位有效数字③二分法无规律可循,无法在计算机上实施④只在求函数零点时,才可用二分法答案:②11.方程log3x+x=3的解所在区间是________.解析:构造f(x)=log3x+x-3,∵f(2)<0,f(3)>0,∴x0∈(2,3).答案:(2,3)12.方程0.9x-221x=0的实数解的个数是________.解析:令f(x)=0.9x-221x,f(x)为R上的减函数且f(10)<0,f(5)>0,所以f(x)在(5,10)内有一个根.答案:113.方程x3-lg x=0在区间(0,10)的实数解的个数是________.解析:0<x<10时,f(x)=x3-lg x>0.答案:014.方程x2-x-1=0的一个解所在的区间为________.解析:f(x)=x2-x-1,f(-1)>0,f(0)<0,f(2)>0.答案:(-1,0)或(0,2)15.用计算器求方程ln x+x-3=0在(2,3)内的近似解为________(精确到0.1).解析:令f(x)=ln x+x-3,因为f(2)=ln2-1<0,f(3)=ln3>0,所以取(2,3)为初始区间.答案:2.2二、解答题1.已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有惟一零点,如果用“二分法”求这个零点的近似值(精确到0.001),求将区间(a,b)等分的次数.解:每等分一次区间长度变为原来的一半,n次等分后区间长度变为原来的12n,即12n·0.1,要精确到0.001,必有12n·0.1<0.001,即2n>100,从而最小的n为7.即将区间(a,b)至少等分7次.2.用二分法求方程x3+5=0的近似解.(精确到0.1)解:令f(x)=x3+5,由于f(-2)=-3<0,f(-1)=4>0,故取区间[-2,-1]所以函数的零点的近似值为-1.7,故原方程的近似解为-1.7.3.求两曲线y=2x与y=-x+4的交点的横坐标(精确到0.1).(用计算器操作)4.(1)求证:方程(x+1)(x-2)(x-3)=1在区间(-1,0)上有解;(2)能否判断方程(x+1)(x-2)(x-3)=1其他解的区间.解:(1)证明:设f(x)=(x+1)(x-2)(x-3)-1,f(-1)=-1<0且f(0)=5>0,所以方程(x+1)(x-2)(x-3)=1在区间(-1,0)上有解.(2)∵f(1)=3>0,f(2)=-1<0,故方程(x+1)(x-2)(x-3)=1在区间(1,2)上有解,∵f(3)=-1<0,f(4)=9>0,故方程(x+1)(x-2)(x-3)=1在区间(3,4)上有解.综上,方程在区间(1,2),(3,4)上有解.5.利用函数的图象特征,判断方程2x3-5x+1=0是否存在实数根.解:设f(x)=2x3-5x+1,则f(x)在R上的图象是一条连续不断的曲线.又f(0)=1>0,f(-3)=-38<0.∴f(0)·f(-3)<0,∴在[-3,0]内必存在一点x0,使f(x0)=0,∴x0是方程2x3-5x+1=0的一个实数根.∴方程2x3-5x+1=0存在实数根.巩固练习题:1.若二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是________.解析:由Δ=m2-4(m+3)>0可得m2-4m-12>0,所以m<-2或m >6.答案:{m |m <-2或m >6}2.若二次函数y =-2x 2-3x +a 的图象与x 轴没有公共点,则实数a 的取值范围是________.解析:Δ=9+8a <0,所以a <-98.答案:a <-983.函数y =x 2-3x +k 的一个零点为-1,则k =________,函数的另一个零点为________.解析:x =-1时y =1+3+k =0,所以k =-4,即y =x 2-3x -4=(x +1)(x -4),所以另一个零点为4. 答案:-4 44.方程log 2(x +4)=2x 的根有________个.解析:作函数y =log 2(x +4),y =2x 的图象如图所示,两图象有两个交点,且交点横坐标一正一负,∴方程有一正根和一负根.答案:25.函数f (x )=ln x -1x -1的零点个数是________个.解析:如图可知y =ln x 与y =1x -1的图象有两个交点.答案:26.观察如图所示的函数y =f (x )的图象.(1)在区间[a ,b]上 (有/无)零点;f(a)·f(b) 0(填“<”或“>”).(2)在区间[b ,c]上 (有/无)零点;f(b)·f(c) 0(填“<”或“>”).(3)在区间[c ,d]上 (有/无)零点;f(c)·f(d) 0(填“<”或“>”).答案:(1)有,< (2)有,< (3)有,<。

考点12 零点定理(练习)(解析版)

考点12 零点定理(练习)(解析版)


f
(0)
m
5
0
,解得 7 m 5 ,
f (2) 16 2(m 2) m 5 0
3
∴m
的取值范围是
7 3
,
5
.
2.已知函数 f x log2 x 1 3x m 的零点在区间 0,1 上,则 m 的取值范围为 .
【答案】[4, 0)
【解析】由题意,函数 f (x) log2 (x 1) 3x m 是定义域上的单调递增函数,
如上图所示,则 f x 的零点个数为1.故答案为:1
6.定义在 R 上的偶函数 f (x) 满足 f (x) f (4 x) ,且当 x [0, 2] 时, f (x) cos x ,则 g( x) f ( x) lg x 的
零点个数为____________. 【答案】10
【解析】由于定义在 R 上的偶函数 y f x 满足 f ( x) f 4 x , 所以 y f x 的图象关于直线 x 2 对称, 画出 x [0, ) 时, y f x 部分的图象如图,在同一坐标系中画出 y lg x 的图象,
是.
【答案】
7 3
,
5
【解析】∵方程 4x2 (m 2)x m 5 0 的一根在区间(−1,0)内,另一根在区间(0,2)内,
∴函数 f x 4x2 (m 2)x m 5 的两个零点一个在区间(−1,0)内,另一个在区间(0,2)内,
f (1) 4 (m 2) m 5 0
π 2
,
π
内必有零点.故选:B.
【题组三 零点个数】
1.函数 f x 3x log2x 1的零点个数为
.
【答案】2
【解析】函数 f x 3x log2x 1的零点,即方程 3x log2x 1 0 的解,

零点问题练习测试题

零点问题练习测试题

零点问题练习题(A )1.若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( )A .a <1B .a >1C .a ≤1D .a ≥12.下列函数不存在零点的是( )A .y =x -B .y =C .y =?x ≤0?,x -1 ?x >0?))D .y =?x ≥0?,x -1 ?x <0?))3、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是()6.(10 9.函数f (B.有一个或两个C.有且只有一个D.一个也没有10.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是()A .()6,2-B .[]6,2-C .{}6,2-D .()(),26,-∞-+∞11.直线3y =与函数26y x x =-的图象的交点个数为()A .4个B .3个C .2个D .1个有实数解的区间是 .(1)(-1,0) (2)(0,1)(3)(1,2) (4)(2,3)13.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________.14.函数f(x)=x 2-ax -b 的两个零点是2和3,则函数g(x)=bx 2-ax -1的零点为。

15.已知函数)(x f y =是R上的奇函数,其零点1x ,2x ……2007x ,则200721x x x +++ =。

有1,的取值范19、关于x 22007x ,3.1x ,46、若函数a x a x f x --=)((0>a 且1≠a )有两个零点,则实数a 的取值范围是.7.(11北京)已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______8.函数m x m x x f -+-+=5)2()(2有两个零点,且都大于2,求m 的取值范围9、已知函数)(x f y =和)(x g y =在]2,2[-的图象如下所示:给出下列四个命题:①方程0(xg有且仅有3)]f[=f有且仅有6个根②方程0)][=(xg个根③方程0[=(g有且仅有4个根,中正确)]gx()]f有且仅有5个根④方程0[=xf的命题是.(将所有正确的命题序号填在横线上).11.若方程x2-2ax+a=0在(0,1)恰有一个解,求a的取值范围.12、已知A={}0-+|2<axxx+a-x32|2<3x,B={}0x+(1)、若BA⊆,求a的取值范围,(2)若AB⊆,求a的取值范围。

函数零点练习题

函数零点练习题

函数零点练习题一、选择题1. 函数f(x)=x²-1在区间[-1,1]上有几个零点?A. 0个B. 1个C. 2个D. 3个2. 若函数f(x)=2x³-x在(-∞,+∞)上恰有一个零点,则f'(x)=0的解有几个?A. 0个B. 1个C. 2个D. 3个3. 函数g(x)=x³-3x²+2在区间[1,2]上零点的个数是?A. 0个B. 1个C. 2个D. 3个4. 函数h(x)=x³+2x²-4x-8的零点个数为?A. 0个B. 1个C. 2个D. 4个5. 函数y=x³-6x²+11x-6的零点一定在哪个区间内?A. (1,2)B. (2,3)C. (3,4)D. (4,5)二、填空题6. 若函数f(x)=x³-6x²+11x-6的零点在区间[1,2]内,求f'(x)=______。

7. 函数y=x³-8x+4的导数为y'=______。

8. 函数f(x)=x³-3x²+2在区间[1,2]上有一个零点,求f(x)在x=1处的导数值为______。

9. 若函数g(x)=x³-3x²+2在区间[1,2]上的零点为x₀,则g'(x₀)=______。

10. 若函数h(x)=x³+2x²-4x-8在区间[-2,2]上恰有两个零点,求h'(x)=______。

三、解答题11. 已知函数f(x)=x³-6x²+11x-6,求证其在区间[1,2]内恰有一个零点。

12. 函数y=x³-8x+4在区间[-1,1]上有几个零点?请给出证明。

13. 设函数g(x)=x³-3x²+2,求其在区间[1,2]上的零点,并证明其唯一性。

14. 函数h(x)=x³+2x²-4x-8的导数为h'(x),求h(x)在区间[-2,2]上的零点个数,并给出证明。

高中数学函数及函数的零点专题练习题试卷(含答案)

高中数学函数及函数的零点专题练习题试卷(含答案)

高中数学函数及函数的零点专题练习题试卷姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每题3分,共48分)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.8.函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.5111.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.015.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)第Ⅱ卷(非选择题)二.填空题(共52分)17.(3分)若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.18.(3分)令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.19.(5分)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.20、(5分)某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.21、的零点的个数为______.22.(4分)函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.23.(4分)方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.24.(4分)有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?25.(4分)已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.26.(6分)对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.27.(5分)若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.29.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.30.(4分)函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.参考答案一.单选题(共__小题)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a答案:B解析:解:如右图为函数f(x)=的图象,函数g(x)=f(x)+a有三个零点可转化为方程f(x)=-a有三个不同的根,则由图象可知,a=-1,则x1,x2,x3分别为0,1,2;故x12+x22+x32=5,故选B.2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个答案:D解析:解:函数f(x)=1-|2x-1|=当x∈[0,]时,f1(x)=2x=x,解得x=0,当x∈(,1]时,f1(x)=2-2x=x,解得x=,∴f的1阶周期点的个数为2当x∈[0,]时,f1(x)=2x,f2(x)=4x=x,解得x=0当x∈(,]时,f1(x)=2x,f2(x)=2-4x=x,解得x=,当x∈(,]时,f1(x)=2-2x,f2(x)=4x-2=x,解得x=当x∈(,1]时,f1(x)=2-2x,f2(x)=4-4x=x,解得x=,∴f的2阶周期点的个数为22,依此类推:∴f的n阶周期点的个数为2n3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)答案:D解析:解:令f(x)=lgx+x-5,由于f(4)=lg4-1<0,f(5)=lg5>0,即f(4)•f(5)<0,且f(x)是连续函数,在(0,+∞)上单调递增,故函数f(x)在(4,5)上有唯一零点.若x0是方程lgx+x=5的解,则x0是函数f(x)的零点,故x0∈(4,5),故选D.4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米答案:D解析:解:∵汽车在时刻t的速度为v(t)=t米/秒∴a==1M/S由此判断为匀加速运动再设人于x秒追上汽车,有6x-25=①∵x无解,因此不能追上汽车①为一元二次方程,求出最近距离为7米故选D5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元答案:C解析:解:由题意,每千件商品售价为50万元;设该厂生产了x千件商品并全部售完,则所获得的利润为y万元;则当x<80时,y=50x-(x2+10x)-250=-x2+40x-250,则当x=60时,y max=950万元;当x≥80时,y=50x-(51x+-1450)-250=-(x+)+1200≤1000;(当且仅当x=100时,等号成立);故该厂在这一商品的生产中所获年利润的最大值是1000万元;故选C.6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)答案:B解析:解:设f(x)=lnx+x-4,由于x0是方程lnx+x=4的解,则x0是函数f(x)的零点.再由f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0,可得x0属于区间(2,3),故选B.7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.答案:A解析:解:关于x的方程asinx•cosx+sin2x-3=0,化为a==2tanx+,因为,所以a≥2=2,当且仅当tanx=时a取得最小值,当x=时,a=3,x=时,a=5,又35,所以a∈,此时方程在时方程恒有解.故选A.8.(2015秋•包头校级期末)函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:B解析:解:∵f(x)=x3+3x-1∴f(-1)f(0)=(-1-3-1)(-1)>0,排除A.f(1)f(2)=(1+3-1)(8+6-1)>0,排除C.f(0)f(1)=(-1)(1+3-1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km答案:C解析:解:设陈先生的行程为xkm根据题意可得,陈先生要付的车费为y=6+(x-2)×1.8+11.5×1.8=17∴x=6.19故选C.10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.51答案:B解析:解析:依题意,可设甲销售x辆,则乙销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(x≥0).∴当x=10.2时,S取最大值又x必须是整数,故x=10,此时S max=45.6(万元).故选B.11.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:D解析:解:由题意,知当x=-1,0,1,2,3时,y的值是-1,-3,-5,-1,15由零点判定定理知,f(x)=x3-3x-3有零点的区间是(2,3)故选D12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]答案:B解析:解:函数f(x)的图象如图:使得函数g(x)=f(x)-m有3个零点⇔f(x)-m=0有3个解,即函数y=f(x)与函数y=m有3个交点,故有0<m<1,故选B.13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)答案:D解析:解:若函数f(x)=-(a>0)没有零点,则方程=(a>0)没有实数根,即方程a-x2=2(a>0)没有实数根,即方程x2=a-2(a>0)没有实数根,故a-2<0且a>0,故a的取值范围为(0,2),故选:D14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.0答案:C解析:解:令函数y=1+=0,可得x=-1,故选:C.15.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)答案:A解析:解:由x2-2x-3=0,解得x=3,或-1.∵方程x2-2x-3=0在区间[0,m]上只有一个根3,因此3∈[0,m].∴m≥3.∴m的取值范围是[3,+∞).故选A.16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)答案:B解析:解:令f(x)=x+lnx=0,可得lnx=-x,再令g(x)=lnx,h(x)=-x,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(0,1),从而函数f(x)的零点在(0,1),故选B.二.填空题(共__小题)17.若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.答案:(2,+∞)解析:解:不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,令f(x)=x2-bx+1,则有f(1)=2-b<0,b>2,故答案为(2,+∞).18.令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.答案:②④解析:解:由f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1),可得f n()=--+1=->0,故①不正确.根据f n()=--+1≥--+1>0,f n(1)=-1-2+1=-2<0,可得f n()f n(1)<0,故f n(x)在区间(,1)一定存在唯一零点,故②正确.③若x n是f n(x)在(,1)上的零点,则f n(x n)=0,即--2x n+1=0,即+2x n-1=0,同取导数可得n+2=0,即=,∴是增函数,故③不正确且④正确,故答案为:②④.19.稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.答案:2800解析:解:由题意,设这个人应得稿费(扣税前)为x元,则280=(x-800)×20%×(1-30%)所以x=2800,故答案为:2800.20、某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.答案:10解析:解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.21、的零点的个数为______.答案:3解析:解:的零点的个数,即函数y=x2的图象和y=|x-|=的图象的交点的个数,如图所示:显然,函数y=x2的图象和射线y=-x+(x<)有2个交点.再由可得x2-x+=0.由于判别式△=1-1=0,故y=x2y=x-(x≥)只有一个交点.综上可得,函数y=x2的图象和y=|x-|的图象的交点的个为3,故答案为:3.22.函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.答案:k≥1或k≤-1解析:解:由题意知k≠0,∴f(x)是单调函数,又在闭区间[-2,2]上存在零点,∴f(-2)f(2)≤0,即(-2k+2)(2k+2)≤0,解得k≤-1或k≥1.故答案为:k≥1或k≤-1.23.方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.答案:2解析:解:∵lg2x+x-2=0的解在(k-1,k)内,∴函数f(x)=lg2x+x-2在(k-1,k)内有零点.又函数f(x)在(k-1,k)内单调递增,又f(1)=lg2-1<0,f(2)=lg4>0,故f(1)f(2)<0,故函数在(1,2)内有唯一的零点,∴k=2,故答案为2.24.有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?答案:50-解析:解:设甲在A处,乙在D处,供水站C,总的水管费用为y元,CB=x,BD=40,AC=50-x,∴DC=依题意有:y=500(50-x)+700(0<x<50)得y′=-500+,令y′=0,解得x=y在(0,)单调递减,在(,50)单调递增上,函数在x=(km)处取得最小值,此时AC=50-(km)故答案为:50-.25.已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.答案:解析:解:函数f(x)=x2+a|x|+a2-3(a∈R)是一个偶函数,又函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个所以函数的零点一定是x=0,(若不是零,则至少有两个,此可由偶函数的对称性得)故有f(0)=a2-3=0,解得a=±当a=-时,验证知函数有三个零点,不合题意舍∴a=故答案为26.对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.答案:4解析:解:若[t]=1,则t∈[1,2),若[t2]=2,则t∈[,)(因为题目需要同时成立,则负区间舍去),若[t3]=3,则t∈[,),若[t4]=4,则t∈[,),若[t5]=5,则t∈[,),其中≈1.732,≈1.587,≈1.495,≈1.431<1.495,通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)上,但当t=5时,无法找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)∩[,)上,∴正整数n的最大值4.故答案为:4.27.若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.答案:4解析:解:∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),∴满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=2x-1,故当x∈[-1,0]时,f(x)=-2x-1.函数y=f(x)-log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,故答案为:4.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.答案:14解析:解:假设商品的价格为x元/个,由题意可得获得利润f(x)=(x-8)[100-10(x-10)]=-10x2+280x-1600=-10(x-14)2+360,可知:当且仅当x=14时,获得最大利润360元.故答案为14.29.甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.答案:60解析:解:设从出发到上午11时行了s公里,则从出发到现在的平均速度为公里/分钟,则,解得s=190公里,此时小袁距乙地还有250-190=60公里.故答案为:60.30.函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.答案:-1解析:解:因为f(0)=1>0,f(-1)=-1+=-<0,由函数零点的存在性定理,函数f(x)=x+2x的零点所在的区间为(-1,0),∴n=-1.故答案为:-1.。

2023届新高考数学复习:专项(函数零点问题之分段分析法模型)经典题提分练习(附答案)

2023届新高考数学复习:专项(函数零点问题之分段分析法模型)经典题提分练习(附答案)

2023届新高考数学复习:专项(函数零点问题之分段分析法模型)经典题提分练习一、单选题1.(2023ꞏ浙江宁波ꞏ高三统考期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭2.(2023ꞏ黑龙江ꞏ高三大庆市东风中学校考期中)设函数21()2nxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是 A .21(0]e e,-B .21(0]e e+,C .21[)e e -+∞, D .21(]e e-∞+,3.(2023ꞏ湖北ꞏ高三校联考期中)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是( ) A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .210,e e ⎛⎫+ ⎪⎝⎭C .210,e e ⎛⎤+ ⎝⎦D .21,e e ⎛⎤-∞+ ⎥⎝⎦4.(2023ꞏ福建厦门ꞏ厦门外国语学校校考一模)若至少存在一个x ,使得方程2ln (2)x mx x x ex -=-成立.则实数m 的取值范围为( ) A .21m e e≥+B .21m e e≤+C .1m e e ≥+D .1m e e≤+5.(2023ꞏ湖南长沙ꞏ高三长沙一中校考阶段练习)设函数()22xxf x x x a e =--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1e+B .1(0,e e +C .1[,)e e ++∞D .1(,1]e-∞+6.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln ()2xf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是( )A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .21,e e ⎛⎤-∞+ ⎥⎝⎦C .21,e e ⎡⎫-+∞⎪⎢⎣⎭D .21,e e ⎛⎫-+∞ ⎪⎝⎭7.(2023ꞏ全国ꞏ高三校联考专题练习)已知函数1()24e xf x x =-+的图象上存在三个不同点,且这三个点关于原点的对称点在函数2()(2)e x g x x x a =--+的图象上,其中e 为自然对数的底数,则实数a 的取值范围为( )A .(,3)-∞B .(3,2e 2)-C .(2e 2,)-+∞D .(3,)+∞8.(2023ꞏ全国ꞏ高三假期作业)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,C .3(0]2e ,D .3[)2e+∞, 9.(2023ꞏ全国ꞏ高三专题练习)若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e为自然对数的底数,则a 的取值范围为( )A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭二、填空题10.(2023ꞏ全国ꞏ模拟预测)若函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点,则实数a 的取值范围为______.11.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e ln xf x x a x x =-+(e 为自然对数的底数)有两个不同零点,则实数a 的取值范围是___________.12.(2023ꞏ全国ꞏ高三专题练习)已知函数()24eln eln x f x x mx x x =-+-存在4个零点,则实数m 的取值范围是__________.13.(2023ꞏ全国ꞏ高三专题练习)设函数()322e ln ,f x x x mx x =-+- 记()(),f x g x x=若函数()g x 至少存在一个零点,则实数m 的取值范围是________________________.参考答案一、单选题1.(2023ꞏ浙江宁波ꞏ高三统考期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭【答案】A【答案解析】因为函数322ln ()x ex mx xf x x -+-=至少存在一个零点所以322ln 0x ex mx x x-+-=有解即2ln 2xm x ex x=-++有解 令()22ln h x x e xx x=+-+, 则()21ln 22xh x x e x -'=-++()()34244432ln 1ln 32ln 322ln 222x x x x x x x x x x x x h x x e x x x x '-----+--+⎛⎫''=-++=-+== ⎪⎝⎭因为0x >,且由图象可知3ln x x >,所以()0h x ''<所以()h x '在()0,∞+上单调递减,令()0h x '=得x e = 当0<<x e 时()0h x '>,()h x 单调递增 当>x e 时()0h x '<,()h x 单调递减 所以()()2max 1h x h e e e==+且当x →+∞时()h x →-∞所以m 的取值范围为函数()h x 的值域,即21,e e ⎛⎤-∞+ ⎥⎝⎦故选:A2.(2023ꞏ黑龙江ꞏ高三大庆市东风中学校考期中)设函数21()2nxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是 A .21(0]e e,-B .21(0]e e+,C .21[)e e -+∞, D .21(]e e-∞+,【答案】D【答案解析】令()2ln 20x f x x ex a x =--+=,则2ln 2(0)x a x ex x x =-++>,设()2ln 2x h x x ex x=-++,令()212h x x ex =-+, ()2ln x h x x =,则()'221ln x h x x -=,发现函数()()12,h x h x 在()0,e 上都是单调递增,在[),e +∞上都是单调递减,故函数()2ln 2xh x x ex x=-++在()0,e 上单调递增,在[),e +∞上单调递减,故当x e =时,得()2max 1h x e e=+,所以函数()f x 至少存在一个零点需满足()max a h x ≤,即21a e e ≤+.应选答案D .3.(2023ꞏ湖北ꞏ高三校联考期中)设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .210,e e ⎛⎫+ ⎪⎝⎭C .210,e e ⎛⎤+ ⎝⎦D .21,e e ⎛⎤-∞+ ⎥⎝⎦【答案】D【答案解析】由题意得函数()f x 的定义域为(0,)+∞. 又2()ln ()2f x xg x x ex m x x==-+-, ∵函数()g x 至少存在一个零点,∴方程2ln 20xx ex m x-+-=有解, 即2ln 2xm x ex x=-++有解. 令2ln ()2,0xx x ex x xϕ=-++>, 则221ln 1ln ()222()x xx x e e x x x ϕ--'=-++=-+, ∴当(0,)x e ∈时,()0,()x x ϕϕ'>单调递增;当(,)x e ∈+∞时,()0,()x x ϕϕ'<单调递减. ∴2max 1()()x e e eϕϕ==+.又当0x →时,()x ϕ→-∞;当x →+∞时,()x ϕ→-∞.要使方程2ln 2x m x ex x=-++有解,则需满足21m e e ≤+,∴实数m 的取值范围是21(,e e -∞+.故选D .4.(2023ꞏ福建厦门ꞏ厦门外国语学校校考一模)若至少存在一个x ,使得方程2ln (2)x mx x x ex -=-成立.则实数m 的取值范围为 A .21m e e≥+B .21m e e≤+C .1m e e ≥+D .1m e e≤+【答案】B【答案解析】原方程化简得:2ln 2,(0)xm x ex x x=-+>有解,令2ln ()2,(0)x f x x ex x x =-+>,21ln ()2()xf x e x x -=+'-,当>x e 时,()0f x '<,所以f(x)在(,)e +∞单调递减,当x<e 时, ()0f x '>,所以f(x)在(,)o e 单调递增.2max 1()()f x f e e e==+.所以21m e e ≤+.选B.5.(2023ꞏ湖南长沙ꞏ高三长沙一中校考阶段练习)设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1e+B .1(0,e e +C .1[,)e e ++∞D .1(,1]e-∞+【答案】D【答案解析】依题意得,函数()f x 至少存在一个零点,且()22x xf x x x a e=--+, 可构造函数22y x x =-和xx y e =-, 因为22y x x =-,开口向上,对称轴为1x =,所以(),1∞-为单调递减,()1,+∞为单调递增; 而x x y e=-,则1x x y e -'=,由于e 0x >,所以(),1∞-为单调递减,()1,+∞为单调递增; 可知函数22y x x =-及xxy e =-均在1x =处取最小值,所以()f x 在1x =处取最小值, 又因为函数()f x 至少存在一个零点,只需()10f ≤即可,即:()11120f a e=--+≤解得:11a e ≤+.故选:D.6.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln ()2xf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是( )A .21,e e ⎛⎫-∞+ ⎪⎝⎭B .21,e e ⎛⎤-∞+ ⎥⎝⎦C .21,e e ⎡⎫-+∞⎪⎢⎣⎭D .21,e e ⎛⎫-+∞ ⎪⎝⎭【答案】B【答案解析】令2ln ()20x f x x ex a x=-+-=,即2ln 2xx ex a x =-+ 令ln ()xg x x=,2()2h x x ex a =-+ 则函数ln ()xg x x=与函数2()2h x x ex a =-+的图象至少有一个交点 易知,函数2()2h x x ex a =-+表示开口向上,对称轴为x e =的二次函数221ln 1ln ()x xx x g x x x ⋅--'== ()00g x x e '>⇒<<,()0g x x e '<⇒>∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,max 1()()g x g e e ==作出函数()g x 与函数()h x 的草图,如下图所示由图可知,要使得函数()g x 与函数()h x 的图象至少有一个交点只需min max ()()h x g x …,即2212e e a e-+…解得:21a e e +…故选:B7.(2023ꞏ全国ꞏ高三校联考专题练习)已知函数1()24e xf x x =-+的图象上存在三个不同点,且这三个点关于原点的对称点在函数2()(2)e x g x x x a =--+的图象上,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .(,3)-∞B .(3,2e 2)-C .(2e 2,)-+∞D .(3,)+∞【答案】B【答案解析】令()()()()2222e e x x x x a h x g x x x a ---⎡⎤=--=-----+=⎣⎦,则由题意可得函数()f x 的图象与函数()h x 的图象有三个交点,即方程()()f x h x =有三个不同的实数根.由()()f x h x =可得21224e e x xx x a x ---+=,即()2224e 1x a x x x =----,令()()2224e 1xp x x x x =----,则直线y a =与函数()p x 的图象有三个交点,易得()()()211e xp x x =--',当0x <或1x >时()0p x '<,当01x <<时()0p x '>,所以函数()p x 在(),0-∞上单调递减,在()0,1上单调递增,在()1,+∞上单调递减,所以函数()p x 的极小值为()03p =,极大值为()12e 2p =-.又()()6121p p e-=+>,()()210p p =-<,所以当32e 2a <<-时,直线y a =与函数()p x 的图象有三个交点,故实数a 的取值范围为()3,2e 2-.故选B .8.(2023ꞏ全国ꞏ高三假期作业)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞, C .3(0]2e ,D .3[)2e+∞, 【答案】B【答案解析】由3(24)(ln ln )0x a y ex y x +--=得32(2)ln 0y ya e x x +-=,设y t x =,0t >,则3(24)ln 0a t e t +-=,则3(2)ln 2t e t a-=-有解,设()(2)ln g t t e t =-, 2()ln 1e g t t t =+-'为增函数,2()ln 10eg e e e+-'==, 当t e >时()0g t '>,()g t 递增,当0t e <<时()0g t '<,()g t 递减,所以当t e =时函数()g t 取极小值,()(2)ln g e e e e e =-=-,即()()g t g e e ≥=-, 若3(2)ln 2t e t a-=-有解,则32e a -≥-,即32e a ≤, 所以a<0或32a e≥, 故选:B .9.(2023ꞏ全国ꞏ高三专题练习)若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e为自然对数的底数,则a 的取值范围为( )A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭【答案】D【答案解析】依题意存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,243e ln 0y y a x x ⎛⎫+-⋅= ⎪⎝⎭,当0a =时,40=,不符合题意,所以0a ≠ 令0yt x=>,()243e ln 0a t t +-⋅=,()243e ln t t a -=-⋅,构造函数()()23e ln ,0f t t t t =-⋅>,()22'3e 3e ln ln 1t f t t t t t-=+=-+,()2213e 0f t t t =+>",所以()'f t 在()0,∞+上递增,()2'2223e e ln e 10ef =-+=,所以在区间()()()2'0,e ,0,f x f x <递减;在区间()()()2'e ,,0,f x f x +∞>递增.所以()f t 的最小值为()()22222e e 3e ln e 4ef =-⋅=-.要使()243e ln t ta-=-⋅有解, 则22414e ,e a a-≥-≤①,当a<0时,①成立, 当0a >时,21e a ≥. 所以a 的取值范围是()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭.故选:D 二、填空题10.(2023ꞏ全国ꞏ模拟预测)若函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点,则实数a 的取值范围为______. 【答案】20,π⎛⎤⎥⎝⎦【答案解析】函数()11sin πx x f x e ea x --+=-+(x ∈R ,e 是自然对数的底数,0a >)存在唯一的零点等价于函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像只有一个交点.∵()10ϕ=,()10g =,∴函数()sin πx a x ϕ=与函数()11xx g x ee --=-的图像的唯一交点为()1,0.又∵()11xx g x e e --'=--,且10x e ->,10x e ->,∴()11xx g x ee --'=--在R 上恒小于零,即()11x x g x e e --=-在R 上为单调递减函数.又∵()1112xxg x ee--'=--≤-,当且仅当111x xe e--=,即1x =时等号成立,且()()sin π0x a x a ϕ=>是最小正周期为2.最大值为a 的正弦型函数, ∴可得函数()sin πx a x ϕ=与函数()11xx g x ee --=-的大致图像如图所示.∴要使函数()sin πx a x ϕ=与函数()11xx g x e e --=-的图像只有唯一一个交点,则()()11g ϕ''≥.∵()πcos π1πa a ϕ'==-,()21g '=-, ∴π2a -≥-,解得2πa ≤. 对∵0a >,∴实数a 的取值范围为20,π⎛⎤⎥⎝⎦.故答案为:20,π⎛⎤⎥⎝⎦.11.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e ln xf x x a x x =-+(e 为自然对数的底数)有两个不同零点,则实数a 的取值范围是___________. 【答案】(,)e +∞【答案解析】由()e (ln )xf x x a x x =-+,得()()()11(1)1x xxe a f x x e a x x x-'=+-+=+⋅,且0x >由0x >,则100x x xe +>>,若0a ≤,则0x xe a ->,此时()0f x ¢>,()f x 在()0,∞+上单调递增,至多有一个零点,不满足题意.若0a >,设()x h x xe a =-,则()()10xh x x e '=+>,所以()h x 在()0,∞+上单调递增由()00h =,所以x xe a =有唯一实数根,设为0x ,即00x x ea =则当00x x <<时,x xe a <,()0f x '<,则()f x 在()00x ,单调递减,当0x x >时,x xe a >,()0f x ¢>,则()f x 在()0x +∞,单调递增, 所以当0x x =时,()()()00000min ln xf x f x x e a x x ==-+由00x x ea =可得()00ln ln x x e a =,即00ln ln ln x x e a +=,即00ln ln x x a +=所以()()0min ln f x f x a a a ==-,()0a > 又当0x →时,()f x →+∞,当x →+∞,指数函数增加的速度比对数函数增加的速度快得多,可得()f x →+∞ 所以函数()e (ln )x f x x a x x =-+有两个不同零点,则()()0min ln 0f x f x a a a ==-< 设()ln g x x x x =-,则()ln g x x '=-当()0,1x ∈时,有()0g x '>,则()g x 在()0,1上单调递增. 当()1,x ∈+∞时,有()0g x '<,则()g x 在()1,+∞上单调递减. 又当0x →时,()0g x →,()0g e =所以当0<<x e 时,()0g x >,当>x e 时,()0g x <, 所以ln 0a a a -<的解集为a e > 故答案为:(,)e +∞12.(2023ꞏ全国ꞏ高三专题练习)已知函数()24eln eln x f x x mx x x =-+-存在4个零点,则实数m 的取值范围是__________. 【答案】(0,1)【答案解析】转化为()24eln =0eln x f x x mx x x =-+-有四个解,即24eln =0eln x x mx x x -+-在0x >范围内有四个解,即eln 4=0eln x xm x x x-+-在0x >范围内有四个解, 即eln 4=eln x xm x x x--在0x >范围内有四个解,即1eln 4=eln 1xmx x x--在0x >范围内有四个解,令eln ()x g x x =, 则2e(1ln )()x g x x -'=, 令()0g x '=得e x =,所以当0e x <<时,()0g x '>,当e x >时,()0g x '<, 所以eln ()x g x x=在(0,e)单调递增,在(e,+)∞单调递减, 所以max ()(e)1g x g ==,做出()g x 大致图像如下:令eln ()x t g x x==, 则原方程转化为14=(1)1t m t t -<-, 令1()41h t t t =--, ()21()41h t t '=--,令()0h t '=得1=2t , 当12t <时,()0h t '<,当112t <<时,()0h t '>, 所以()h t 在1(,2-∞递减,在1(1)2,递增, 做出()h x 大致图像如下:所以(0,1)m ∈时,对应解出两个t 值,从而对应解出四个x 值,故答案为:(0,1)m ∈.13.(2023ꞏ全国ꞏ高三专题练习)设函数()322e ln ,f x x x mx x =-+- 记()(),f x g x x =若函数()g x 至少存在一个零点,则实数m 的取值范围是________________________. 【答案】21,e e ⎛⎤-∞+ ⎥⎝⎦ 【答案解析】依题意,令()2ln 2e 0x g x x x m x =-+-=,即()2ln 2e 0x m x x x x=-++>, 设2ln ()2e x h x x x x =-++,求导得21ln ()22e x h x x x -'=-++, 当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上递增,在[e,)+∞上递减,因此当e x =时,2max 1()e eh x =+,因当0e x <≤时,22e y x x =-+的取值集合为2(0,e ],ln x y x =的取值集合为1(,]e-∞, 则当0e x <≤时,()h x 的取值集合为21(,e ]e-∞+,当e x ≥时,22e y x x =-+的取值集合为2(,e ]-∞, ln x y x =的取值集合为1(0,]e,即当e x ≥时,()h x 的取值集合为21(,e ]e -∞+, 所以函数()g x 至少存在一个零点,实数m 的取值范围是21,e e ⎛⎤-∞+ ⎥⎝⎦. 故答案为:21,e e ⎛⎤-∞+ ⎥⎝⎦.。

必修培优(四)函数及函数的零点专题练习

必修培优(四)函数及函数的零点专题练习

函数的零点练习一.单选题(每题3分,共48分)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.8.函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.5111.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.015.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)二.填空题(共52分)17.(3分)若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.18.(3分)令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.19.(5分)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.20、(5分)某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.21、的零点的个数为______.22.(4分)函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.23.(4分)方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.24.(4分)有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?25.(4分)已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.26.(6分)对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.27.(5分)若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.29.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.30.(4分)函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.参考答案一.单选题(共__小题)1.设函数f(x)=,若函数g(x)=f(x)+a有三个零点x1,x2,x3,则x12+x22+x32=()A.13B.5C.a2D.2a答案:B解析:解:如右图为函数f(x)=的图象,函数g(x)=f(x)+a有三个零点可转化为方程f(x)=-a有三个不同的根,则由图象可知,a=-1,则x1,x2,x3分别为0,1,2;故x12+x22+x32=5,故选B.2.已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n (x)=f(f n-1(x)),n=2,3,4,…满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点.则f(x)的n阶不动点的个数是()A.2n个B.2n2个C.2(2n-1)个D.2n个答案:D解析:解:函数f(x)=1-|2x-1|=当x∈[0,]时,f1(x)=2x=x,解得x=0,当x∈(,1]时,f1(x)=2-2x=x,解得x=,∴f的1阶周期点的个数为2当x∈[0,]时,f1(x)=2x,f2(x)=4x=x,解得x=0当x∈(,]时,f1(x)=2x,f2(x)=2-4x=x,解得x=,当x∈(,]时,f1(x)=2-2x,f2(x)=4x-2=x,解得x=当x∈(,1]时,f1(x)=2-2x,f2(x)=4-4x=x,解得x=,∴f的2阶周期点的个数为22,依此类推:∴f的n阶周期点的个数为2n3.若x0是方程lgx+x=5的解,则x0属于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,5)答案:D解析:解:令f(x)=lgx+x-5,由于f(4)=lg4-1<0,f(5)=lg5>0,即f(4)•f(5)<0,且f(x)是连续函数,在(0,+∞)上单调递增,故函数f(x)在(4,5)上有唯一零点.若x0是方程lgx+x=5的解,则x0是函数f(x)的零点,故x0∈(4,5),故选D.4.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米答案:D解析:解:∵汽车在时刻t的速度为v(t)=t米/秒∴a==1M/S由此判断为匀加速运动再设人于x秒追上汽车,有6x-25=①∵x无解,因此不能追上汽车①为一元二次方程,求出最近距离为7米故选D5.某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,G(x)=x2+10x(万元).当年产量不小于80千件时,G(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是()A.900万元B.950万元C.1000万元D.1150万元答案:C解析:解:由题意,每千件商品售价为50万元;设该厂生产了x千件商品并全部售完,则所获得的利润为y万元;则当x<80时,y=50x-(x2+10x)-250=-x2+40x-250,则当x=60时,y max=950万元;当x≥80时,y=50x-(51x+-1450)-250=-(x+)+1200≤1000;(当且仅当x=100时,等号成立);故该厂在这一商品的生产中所获年利润的最大值是1000万元;故选C.6.设x0是方程lnx+x=4的解,则x0属于区间()A.(3,4)B.(2,3)C.(1,2)D.(0,1)答案:B解析:解:设f(x)=lnx+x-4,由于x0是方程lnx+x=4的解,则x0是函数f(x)的零点.再由f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0,可得x0属于区间(2,3),故选B.7.若关于x的方程asinx•cosx+sin2x-3=0在恒有解,则实数a的取值范围是()A.B.C.D.答案:A解析:解:关于x的方程asinx•cosx+sin2x-3=0,化为a==2tanx+,因为,所以a≥2=2,当且仅当tanx=时a取得最小值,当x=时,a=3,x=时,a=5,又35,所以a∈,此时方程在时方程恒有解.故选A.8.(2015秋•包头校级期末)函数f(x)=x3+3x-1在以下哪个区间一定有零点()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:B解析:解:∵f(x)=x3+3x-1∴f(-1)f(0)=(-1-3-1)(-1)>0,排除A.f(1)f(2)=(1+3-1)(8+6-1)>0,排除C.f(0)f(1)=(-1)(1+3-1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.9.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()A.7~9km B.9~11km C.5~7km D.3~5km答案:C解析:解:设陈先生的行程为xkm根据题意可得,陈先生要付的车费为y=6+(x-2)×1.8+11.5×1.8=17∴x=6.19故选C.10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606B.45.6C.45.56D.45.51答案:B解析:解析:依题意,可设甲销售x辆,则乙销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(x≥0).∴当x=10.2时,S取最大值又x必须是整数,故x=10,此时S max=45.6(万元).故选B.11.f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:D解析:解:由题意,知当x=-1,0,1,2,3时,y的值是-1,-3,-5,-1,15由零点判定定理知,f(x)=x3-3x-3有零点的区间是(2,3)故选D12.已知函数若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是()A.(0,1]B.(0,1)C.[0,1)D.[0,1]答案:B解析:解:函数f(x)的图象如图:使得函数g(x)=f(x)-m有3个零点⇔f(x)-m=0有3个解,即函数y=f(x)与函数y=m有3个交点,故有0<m<1,故选B.13.如果函数f(x)=-(a>0)没有零点,则a的取值范围为()A.(0,1)B.(,+∞)C.(2,+∞)D.(0,2)答案:D解析:解:若函数f(x)=-(a>0)没有零点,则方程=(a>0)没有实数根,即方程a-x2=2(a>0)没有实数根,即方程x2=a-2(a>0)没有实数根,故a-2<0且a>0,故a的取值范围为(0,2),故选:D14.函数y=1+的零点是()A.(-1,0)B.1C.-1D.0答案:C解析:解:令函数y=1+=0,可得x=-1,故选:C.15.已知方程x2-2x-3=0在区间[0,m]上只有一个根3,则m的取值范围是()A.[3,+∞)B.(0,3)C.(-∞,-1]D.[-1,3)答案:A解析:解:由x2-2x-3=0,解得x=3,或-1.∵方程x2-2x-3=0在区间[0,m]上只有一个根3,因此3∈[0,m].∴m≥3.∴m的取值范围是[3,+∞).故选A.16.函数f(x)=x+lnx的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(1,e)答案:B解析:解:令f(x)=x+lnx=0,可得lnx=-x,再令g(x)=lnx,h(x)=-x,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(0,1),从而函数f(x)的零点在(0,1),故选B.二.填空题(共__小题)17.若不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,则b的取值范围是______.答案:(2,+∞)解析:解:不等式x2-bx+1>0的解为x<x1或x>x2,且x1<1,x2>1,令f(x)=x2-bx+1,则有f(1)=2-b<0,b>2,故答案为(2,+∞).18.令f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1)则下列命题正确的有______.①f n()<0;②f n(x)在区间(,1)一定存在唯一零点;③若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递减;④若x n是f n(x)在(,1)上的零点,则数列{x n}(n≥2,n∈N)单调递增;⑤以上③④两种情况都有可能.答案:②④解析:解:由f n(x)=-x n-2x+1(n≥2,n∈N),x∈(,1),可得f n()=--+1=->0,故①不正确.根据f n()=--+1≥--+1>0,f n(1)=-1-2+1=-2<0,可得f n()f n(1)<0,故f n(x)在区间(,1)一定存在唯一零点,故②正确.③若x n是f n(x)在(,1)上的零点,则f n(x n)=0,即--2x n+1=0,即+2x n-1=0,同取导数可得n+2=0,即=,∴是增函数,故③不正确且④正确,故答案为:②④.19.稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为______元.答案:2800解析:解:由题意,设这个人应得稿费(扣税前)为x元,则280=(x-800)×20%×(1-30%)所以x=2800,故答案为:2800.20、某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差______元.答案:10解析:解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.21、的零点的个数为______.答案:3解析:解:的零点的个数,即函数y=x2的图象和y=|x-|=的图象的交点的个数,如图所示:显然,函数y=x2的图象和射线y=-x+(x<)有2个交点.再由可得x2-x+=0.由于判别式△=1-1=0,故y=x2y=x-(x≥)只有一个交点.综上可得,函数y=x2的图象和y=|x-|的图象的交点的个为3,故答案为:3.22.函数f(x)=kx+2在区间[-2,2]上存在零点,则实数k的取值范围______.答案:k≥1或k≤-1解析:解:由题意知k≠0,∴f(x)是单调函数,又在闭区间[-2,2]上存在零点,∴f(-2)f(2)≤0,即(-2k+2)(2k+2)≤0,解得k≤-1或k≥1.故答案为:k≥1或k≤-1.23.方程lg2x+x-2=0的解在(k-1,k)内,则整数k的值为______.答案:2解析:解:∵lg2x+x-2=0的解在(k-1,k)内,∴函数f(x)=lg2x+x-2在(k-1,k)内有零点.又函数f(x)在(k-1,k)内单调递增,又f(1)=lg2-1<0,f(2)=lg4>0,故f(1)f(2)<0,故函数在(1,2)内有唯一的零点,∴k=2,故答案为2.24.有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为______千米,才能使水管费用最省?答案:50-解析:解:设甲在A处,乙在D处,供水站C,总的水管费用为y元,CB=x,BD=40,AC=50-x,∴DC=依题意有:y=500(50-x)+700(0<x<50)得y′=-500+,令y′=0,解得x=y在(0,)单调递减,在(,50)单调递增上,函数在x=(km)处取得最小值,此时AC=50-(km)故答案为:50-.25.已知函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个,则a=______.答案:解析:解:函数f(x)=x2+a|x|+a2-3(a∈R)是一个偶函数,又函数f(x)=x2+a|x|+a2-3(a∈R)的零点有且只有一个所以函数的零点一定是x=0,(若不是零,则至少有两个,此可由偶函数的对称性得)故有f(0)=a2-3=0,解得a=±当a=-时,验证知函数有三个零点,不合题意舍∴a=故答案为26.对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[t t]=n同时成立,则正整数n的最大值为______.答案:4解析:解:若[t]=1,则t∈[1,2),若[t2]=2,则t∈[,)(因为题目需要同时成立,则负区间舍去),若[t3]=3,则t∈[,),若[t4]=4,则t∈[,),若[t5]=5,则t∈[,),其中≈1.732,≈1.587,≈1.495,≈1.431<1.495,通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)上,但当t=5时,无法找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)∩[,)上,∴正整数n的最大值4.故答案为:4.27.若定义在R上的偶函数f(x)满足f(x+1)=-f(x),并且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-log3|x|的零点个数是______.答案:4解析:解:∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),∴满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=2x-1,故当x∈[-1,0]时,f(x)=-2x-1.函数y=f(x)-log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,故答案为:4.28.将进货单价为8元的商品按单价10元销售,每天可卖出100个.若该商品的单价每涨1元,则每天销售量就减少10个.要使利润最大,商品的销售单价为______.答案:14解析:解:假设商品的价格为x元/个,由题意可得获得利润f(x)=(x-8)[100-10(x-10)]=-10x2+280x-1600=-10(x-14)2+360,可知:当且仅当x=14时,获得最大利润360元.故答案为14.29.甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有______公里.答案:60解析:解:设从出发到上午11时行了s公里,则从出发到现在的平均速度为公里/分钟,则,解得s=190公里,此时小袁距乙地还有250-190=60公里.故答案为:60.30.函数f(x)=x+2x的零点所在区间为(n,n+1),n∈z,则n=______.答案:-1解析:解:因为f(0)=1>0,f(-1)=-1+=-<0,由函数零点的存在性定理,函数f(x)=x+2x的零点所在的区间为(-1,0),∴n=-1.故答案为:-1.。

考点12 零点定理(练习)(解析版)

考点12 零点定理(练习)(解析版)

考点12:零点定理【题组一求零点】1.函数f (x )2120810x x log x x ⎧-≤⎪=⎨⎪-+⎩(),()(>)的零点为_____.【答案】﹣3【解析】当0x ≤时,()120,38xf x x =-=∴=-;当0x >时,()()2log 10,0f x x x =-+=∴=,不满足,排除;故函数零点为3-故答案为:3-2.若函数()()2log a f x x =+的零点为2-,则a =________.【答案】3【解析】根据题意,若函数f (x )=log 2(x +a )的零点为﹣2,则f (﹣2)=log 2(a ﹣2)=0,即a ﹣2=1,解可得a =3,故答案为33.设函数[)()222,1,()2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,则函数()y f x =的零点是________________.【答案】0或1【解析】()0f x =等价于1220x x ≥⎧⎨-=⎩或2120x x x <⎧⎨-=⎩,解得1x =或0x =,所以,函数()y f x =的零点是0或1.故答案为:0或1.【题组二零点区间】1.函数3()log (2)1f x x x =++-的零点所在的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)【答案】A【解析】3(0)log 210f =-<,3(1)log (12)1110f =++-=>,所以(0)(1)0f f <,根据零点存在性定理,函数3()log (2)1f x x x =++-的零点所在的一个区间是(0,1),故选:A.2.已知函数()26log 21f x x x =--+.在下列区间中,包含()f x 零点的区间是()A .()0,1B .()1,3C .()3,5D .()5,7【答案】D【解析】函数()26log 21f x x x =--+,在其定义域上连续,又()2255log 53log 08f =-=<,()2237log 72log 04f =--=>,故函数()f x 的零点在区间()5,7上.故选:D.3.函数1()sin 2f x x x =-在下列哪个区间必有零点()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【答案】B【解析】∵(0)0sin 00f =-=,1024f ππ⎛⎫=-<⎪⎝⎭,()02f ππ=>,∴()02f f ππ⎛⎫⋅<⎪⎝⎭,∴在区间,2ππ⎛⎫ ⎪⎝⎭内必有零点.故选:B .【题组三零点个数】1.函数()231xf x log x =-的零点个数为.【答案】2【解析】函数()231xf x log x =-的零点,即方程2310xlog x -=的解,即213xlog x ⎛⎫= ⎪⎝⎭,转化为函数2y log x =与13xy ⎛⎫= ⎪⎝⎭的交点,在同一平面直角坐标系上作出函数2y log x =与13xy ⎛⎫= ⎪⎝⎭的图象,如下所示:从函数图象可知,2y log x =与13xy ⎛⎫= ⎪⎝⎭有两个交点,即方程2310x log x -=有两个实数根,即函数()231x f x log x =-有两个零点.2.函数()22xf x e x =+-在区间()21-,内零点的个数为.【答案】2【解析】令22e 20,2x x x e x +-==-+,画出2,2x y e y x ==-+的图象如下图所示,由图可知,图象有两个交点,故原函数有2个零点.3.函数f (x )=cosπx ﹣(12)x+1在区间[﹣1,2]上的零点个数为.【答案】3【解析】根据题意可知,函数1()cos (12xf x x π=-+在区间[1,2]-上的零点的个数,即为函数cos y x π=的图象与函数1()12xy =-的图象在区间[1,2]-上的交点的个数,在同一坐标系中画出两个函数图象如图所示:可以发现有三个公共点,所以函数1()cos ()12xf x x π=-+在区间[1,2]-上有三个零点,4.函数()2ln f x x x =+的零点个数是.【解析】因为ln y x =与2y x =均在()0,+¥上为增函数,所以函数()2ln f x x x=+至多一个零点又221111ln 10f e e e e ⎛⎫⎛⎫⎛⎫=+=-+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()1ln1110f =+=>,()110f f e ⎛⎫⋅< ⎪⎝⎭,即函数()f x 在1,1e ⎛⎫⎪⎝⎭上有一个零点.5.函数()3f x x =-,则()f x 的零点个数为________.【答案】1【解析】函数()f x 定义域为[)0,+∞303x x =⇔-=令123,y x y =-=,则()f x 的零点的个数就是函数123,y x y =-=,[)0,x ∈+∞的交点个数如上图所示,则()f x 的零点个数为1.故答案为:16.定义在R 上的偶函数()f x 满足()(4)f x f x =-,且当[0,2]x ∈时,()cos f x x =,则()()lg g x f x x =-的零点个数为____________.【答案】10【解析】由于定义在R 上的偶函数()y f x =满足()4()f x f x =-,所以()y f x =的图象关于直线2x =对称,画出[0,)x ∈+∞时,()y f x =部分的图象如图,在同一坐标系中画出lg y x =的图象,由图可知:当(0,)x ∈+∞时,有5个交点,又lg y x =和()y f x =都是偶函数,所以在(,0)x ∈-∞上也是有5个交点,所以()()lg g x f x x =-的零点个数是10,故答案为:10.7.函数25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭的零点个数为_______________.【答案】6【解析】函数25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭的零点,即方程25sin log ||022x x π⎛⎫-=⎪⎝⎭的解,令()5sin 22g x x π⎛⎫=⎪⎝⎭,()2log ||h x x =也就是函数()5sin 22g x x π⎛⎫=⎪⎝⎭与()2log ||h x x =的交点,在同一平面直角坐标系中画出()5sin 22g x x π⎛⎫=⎪⎝⎭与()2log ||h x x =的图象如下所示,由图可知()5sin 22g x x π⎛⎫= ⎪⎝⎭与()2log ||h x x =有6个交点,即25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭有6个零点.故答案为:68.f(x)是R 上的偶函数,f(x +2)=f(x),当0≤x≤1时,f(x)=x 2,则函数y =f(x)-|log 5x|的零点个数为.【答案】5【解析】∵f(x +2)=f(x),∴函数()f x 的周期为2.由题意可得()5f x log x =,在同一坐标系内画出函数()y f x =和5y log x =的图象,如下图,由图象得,两函数图象有5个交点,所以函数y =f(x)-|log 5x|共有5个零点.9.若偶函数()f x 的图像关于32x =对称,当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()20log g x f x x =-在[]20,20-上的零点个数是.【答案】26【解析】令()20log h x x =,定义域为非零的实数集,()()2020log log h x x x h x -=-==,所以该函数为偶函数,又()f x 是偶函数()g x ∴是偶函数,且0x ≠,由()()20log 0g x f x x =-=得()20log f x x=当0x >时有()20log f x x= 偶函数()f x 的图象关于32x =对称,()()f x f x ∴-=且()()3f x f x =-,()()()()333f x f x f x f x ∴+=-+=-=⎡⎤⎣⎦,()f x ∴是3T =的周期函数,32kx ∴=,k Z ∈为()f x 的对称轴 当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x=∴()()()()()2021111120f f f f h =-=-===当(]0,20x ∈,()f x ,()h x 在同一坐标系中的图象如下可知()f x 与()h x 在(]0,20上有13个交点即()g x 在(]0,20上有13个零点()g x 是偶函数()g x ∴在[]20,20-上共有26个零点.10.定义在R 上的奇函数()f x 满足()()22f x f x -=-+,且在区间[)2,4上,()2,234,34x x f x x x -≤<⎧=⎨-≤<⎩,则函数()3log y f x x =-的零点的个数为______.【答案】5【解析】由题,因为()f x 满足()()22f x f x -=-+,所以()f x 关于()2,0中心对称,又因为()f x 是奇函数,所以()()()222f x f x f x -=--=-+,所以()()22f x f x -=+,即()f x 的周期为4,画出()y f x =与3log y x =的图像,如图所示,则交点有5个,故函数()3log y f x x =-的零点有5个,故答案为:511.函数()f x 对于任意实数x ,都()()f x f x -=与(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是.【答案】2020【解析】对任意实数x 都有f (x +2)=f [1+(1+x )]=f [1﹣(1+x )]=f (﹣x ),由于f (x )为偶函数,f (﹣x )=f (x )∴f (x +2)=f (x )∴函数f (x )是以2为周期的周期函数,且值域为[]0,1.方程()02019x f x -=的根的个数即函数()f x 图象与直线y 2019x=的交点个数,当2019x =时,y 12019x ==,当x 2019>时,函数()f x 图象与直线y 2019x=无交点,由图像可得二者的交点个数为2020个12.已知定义在R 上,且最小正周期为4的函数()f x ,满足()()f x f x -=-,则在区间()10,10-内函数()y f x =的零点个数的最小值是______【答案】9【解析】函数()f x 是奇函数,则(0)0f =,又周期为4,则(2)(2)f f -=,又(2)(2)f f -=-,所以(2)(2)0f f -==,所以(2)0,f k k Z =∈.在(10,10)-上有9个偶数,因此函数至少有9个零点.故答案为:9.【题组四根据零点求参数】1.方程24(2)50x m x m +-+-=的一根在区间()1,0-内,另一根在区间()02,内,则m 的取值范围是.【答案】7,53⎛⎫-⎪⎝⎭【解析】∵方程24(2)50x m x m +-+-=的一根在区间(−1,0)内,另一根在区间(0,2)内,∴函数()24(2)5x m x f x m +-=+-的两个零点一个在区间(−1,0)内,另一个在区间(0,2)内,则(1)4(2)50(0)50(2)162(2)50f m m f m f m m -=--+->⎧⎪=-<⎨⎪=+-+->⎩,解得753m -<<,∴m 的取值范围是7,53⎛⎫-⎪⎝⎭.2.已知函数()()2log 13f x x x m =+++的零点在区间(]0,1上,则m 的取值范围为.【答案】[4,0-)【解析】由题意,函数2()log (1)3f x x x m =+++是定义域上的单调递增函数,又由函数()f x 在区间(0,1]上存在零点,则满足()()0010f f ⎧<⎪⎨≥⎪⎩,即22log (01)300log (11)310m m ++⨯+<⎧⎨++⨯+≥⎩,解得40m -≤<,即实数m 的取值范围为[4,0)-。

陕西省石泉县高中数学第二章函数零点练习题北师大版必修1

陕西省石泉县高中数学第二章函数零点练习题北师大版必修1

函数的零点1.函数21y x =-的零点是变式:函数y =-的一个零点是( ) 3x 1x2A .-1 B .1 C .(-1,0) D .(1,0)变式:函数f (x )=+a 的零点为1,则实数a 的值为______. 23x +12.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,C .0,-D .2,- 121212变式:若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( )A .-1和B .1和- C.和 D .-和- 1616121312133、若函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,则x 1+x 2+x 3的值为( )A .-1B .0C .3D .不确定变式:定义在R 上的偶函数()x f y =在(-∞,0]上递增,函数()x f 的一个零点为-,则满足120log 41≥⎪⎪⎭⎫ ⎝⎛x f 的x 的取值集合4、函数()x x f x 32+=的零点所在的一个区间为A. ()1,2--B.()0,1-C. ()1,0D. ()2,1变式:(2010·天津)函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 变式:函数3log )(3-+=x x f x 零点所在大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数f (x )=Error!的零点个数为( )A .3B .2C .1D .0变式:函数f (x )=的零点有( ) (x -1)ln(x -2)x -3A .0个B .1个C .2个D .3个 6、函数()62ln -+=x x x f 有_____个零点变式:(08湖北)方程223x x -+=的实数解的个数为 .变式:(11陕西)函数—cosx 在[0,+∞)内 ( )A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点7、方程m x x =+-|34|2有三个根,则m 的取值范围变式:(10全国)直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.若 ,有可能不存在实数 使得 ;
2.已知 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的是
()
A.函数 在(1,2)或[2,3]内有零点
B.函数 在(3,5)内无零点
C.函数 在(2,5)内有零点
D.函数 在(2,4)内不一定有零点
3.关于“二分法”求方程的近似解,说法正确的是()
A. B. C. D.
5.求 零点的个数为()
A.1B.2C.3D.4
6.已知函数 有反函数,则方程 ()
A.有且仅有一个根B.至多有一个根
C.至少有一个根D.以上结论都不对
7.对于“二分法”求得的近似解,精确度 说法正确的是()
A. 越大,零点的精确度越高B. 越大,零点的精确度越低
C.重复计算次数就是 D.重复计算次数与 无关
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
变式:若 是方程式 的解,则 属于区间( D )
A.(0,1). B.(1,1.25). C.(1.25,1.75) D.(1.75,2)
4.函数 在定义域内的零点的个数为( C )
A.0B.1C.2D.3
变式:1.已知函数 ,当 时,函数 的零点 ,则 的值为( B )
A.“二分法”求方程的近似解一定可将 在[a,b]内的所有零点得到
B.“二分法”求方程的近似解有可能得不到 在[a,b]内的零点
C.应用“二分法”求方程的近似解, 在[a,b]内有可能无零点
D.“二分法”求方程的近似解可能得到 在[a,b]内的精确解
4.通过下列函数的图象,判断不能用“二分法”求其零点的是()
A.1 B.2 C.3 D.4
2.已知x是函数f(x)=2x+ 的一个零点.若 ∈(1, ), ∈( ,+ ),则( B )
A.f( )<0,f( )<0 B.f( )<0,f( )>0C.f( )>0,f( )<0 D.f( )>0,f( )>0
3.若定义在R上的偶函数 满足 ,且当 时, ,则函数 的零点个数是(B )
函数与零点
基础回顾:
零点、根、交点的区别
零点存在性定理:f(x)是连续函数;f(a)f(b)<0
二分法思想:零点存在性定理
一、基础知识—零点问题
1.若函数 在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是()
A.若 ,不存在实数 使得 ;
B.若 ,存在且只存在一个实数 使得 ;
C.若 ,有可能存在实数 使得 ;
-1
-0.5
0
0.5
1
1.5
2
f(x)
-3.51
1.02
2.37
1.56
-0.38
1.23
2.77
3.45
4.89
二、利用图象法解零点问题
1. 函数 的零点个数为 ( C )
A.0B.1C.2D.3
2.设 是定义在R上的奇函数,当 时, ,则 的零点个数是3个.
变式1:设偶函数 满足 ,且当 ∈[0,1]时, ,则关于 的方程 在区间[0,3]上解的个数有3.
A.5 B.4 C.3 D.2
4.已知函数 ,若函数 有三个零点,则实数 的取值范围是(0,1).
5.若定义在R上的偶函数 满足 ,且当 时, ,则函数 的零点个数是(B )
A.5 B.4 C.3 D.2
8.设函数 的图象在[a,b]上连续,若满足,方程 在[a,b]上有实根.
9.用“二分法”求方程 在区间[2,3]内的实根,取区间中点为 ,那么下一个有根的区间是.
10.举出一个方程,但不能用“二分法”求出它的近似解.
11.已知函数 图象是连续的,有如下表格,判断函数在那几个区间上有零点.
x
-2
-1.5
A.没有零点B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点
变式:函数 在区间 内的零点个数是( B )
A.0 B.1 C.2 D.3
2.函数f(x)= 的零点所在的一个区间是( C )
A.(-2,-1) B. (-1,0) C. (0,1) D. (1,2)
3.函数f(x)= 的零点所在的一个区间是( B )
2:方程 的根的个数是1.
3:已知 ,函数 的零点个数为2.
4.已知 是方程lgx+3的解, 是 的解,求 ()
A. B. C.3D.
5.方程 根的个数()
A.无穷多B.3C.1D.0
6.函数 ,若函数 有3个零点,则实数a的值为(C)
A.-2B.-4C.2D.不存在
三、解方程法——数型结合
1.函数f(x)= —cosx在[0,+∞)内 ( B )
相关文档
最新文档