2011年高考数学(天津卷)
2011年高考天津市数学试卷-理科(含详细答案)
2011年普通高等学校招生全国统一考试天津卷(理科)第Ⅰ卷本卷共8小题,每小题5分,共40分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数13i1i-=-( ). A .2i + B .2i - C .12i -+ D .12i --【解】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选B. 2.设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的( ). A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解】因为2x ≥且2y ≥,则24x ≥且24y ≥,因而224x y +≥,所以“2x ≥且2y ≥”是“224x y +≥”的充分条件,取x y ==224x y +≥, 但不满足2x ≥且2y ≥,所以“2x ≥且2y ≥”不是“224x y +≥”的必要条件.因此“2x ≥且2y ≥”是“224x y +≥”的充分而不必要条件.故选A.3.阅读右边的程序框图,运行相应的程序,则输出i 的值为( ). A .3 B .4 C .5 D .6【解】运算过程依次为:当1i =时,1112a =⨯+=,当2i =时,2215a =⨯+=, 当3i =时,53116a =⨯+=,当4i =时,16416550a =⨯+=>. 所以输出的4i =.故选B. 4.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,n +∈N ,则10S 的值为 ( ).A .110-B .90-C .90D .110【解】因为等差数列的公差为2-,则314a a =-,7112a a =-,9116a a =-,因为7a 是3a 与9a 的等比中项,所以2739a a a =, 即()()()211112416a a a -=--,221111241442064a a a a -+=-+,所以1480a =,120a =.于是()1011091010204521102S a d ⨯=+=⨯+⨯-=.故选D. 5.在62⎛⎫ ⎝的二项展开式中,2x 的系数为( ). A .154- B .154 C .38- D .38【解】()6326166C 1C 22rrr rr r r r T x ---+⎛⎫⎛==-⎪ ⎪⎝⎝⎭, 令32r -=,则1r =.()112262226631C 2168T x x x -=-=-=-. 所以,2x 的系数38-,故选C. 6.如图,在ABC ∆中,D 是边AC 上的点,且AB AD =,2AB =,2BC BD =,则sin C 的值为( ).A.3 B.6 C.3 D.6【解】解法1.取BD 的中点E ,因为AB AD =,所以AE BD ⊥,因为2AB =,AB =.所以cos cos BE ABE ADB AB =∠==∠,于是sin sin 3ADB CDB ∠=∠=. 在BDC ∆中,由正弦定理得sin sin BC BDCDB C=∠,sin BDC =,所以sin 6C =.故选D.CBDAECB DA解法2.设1BD =,由题设2AB AD ==,2BC =. 在ABD ∆中,由余弦定理得222331144cos 32324AB AD BD BAD AB AD +-+-∠===⋅⨯,所以sin BAD ∠=在ABC ∆中,由正弦定理得sin sin BC ABBAD C =∠2sin 3C=,所以sin 6C =.故选D. 7.2log 3.45a =,4log 3.65b =,3log 0.315c ⎛⎫= ⎪⎝⎭,则( ).A .a b c >>B .b a c >>C .a c b >>D .c a b >>【解】解法1.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小.2310lg10lg3.43log 3.4log 3lg 2lg3a c ''-=-=-,因为10lg3.4lg03>>,0lg 2lg3<<,所以11lg 2lg3>, 因此10lglg3.430lg 2lg3a c ''-=->.所以a c ''>,因而a cb '''>>.由于函数5xy =是R 上的增函数,所以a c b >>.故选C.解法2.33310log 0.3log log 0.331555c -⎛⎫=== ⎪⎝⎭,下面比较2log 3.4a '=,4log 3.6b '=和310log 3c '=的大小. 因为1a '>,1c '>,1b '<,则b '最小. 因为3310log log 3.43c '=<, 所以233lg3.4lg3.410log 3.4log 3.4log lg 2lg33a c ''==>>>=,因而a c b '''>>. 由于函数5xy =是R 上的增函数,所以a c b >>.故选C. 解法3.由解法2,3310log log 3.43c '=<, 画出函数2log y x =和3log y x =的图象,比较 3.4x =的纵坐标,可得23log 3.4log 3.4>,于是23310log 3.4log 3.4log 3a c ''=>>=.因而a cb '''>>. 由于函数5xy =是R 上的增函数,所以a c b >>.故选C. 8.对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()()222f x x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .()3,21,2⎛⎫-∞-- ⎪⎝⎭B .(]3,21,4⎛⎫-∞---⎪⎝⎭C .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭【解】由题设()2232,1,23,12x x f x x x x x ⎧--≤≤⎪⎪=⎨⎪-<->⎪⎩或画出函数的图象,函数图象的四个端点(如图)为()1,1A --,31,24D ⎛⎫ ⎪⎝⎭,()1,2B --,33,24C ⎛⎫- ⎪⎝⎭, 从图象中可以看出,直线y c =穿过点C ,点A之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点B 及其下方时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(]3,21,4⎛⎫-∞---⎪⎝⎭.故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 .【解】12.抽取男运动员的人数为2121484812483684⨯=⨯=+(人). 10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为 3m .【解】6π+.几何体是由一个长方体与一个圆锥组合的.体积为213211363V ππ=⨯⨯+⨯⨯⨯=+.11.已知抛物线C 的参数方程为28,8x t y t⎧=⎨=⎩(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆()()22240x y rr -+=>相切,则r = .【解抛物线C 的普通方程为28y x =,其焦点为()2,0F .直线方程为2y x =-. 因为直线与圆()()22240x y rr -+=>相切,则圆心到直线的距离等于半径,即r ==.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE与圆相切,则线段CE 的长为 .俯视图侧视图正视图FDCBA【解】2. 因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =. 由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅, 所以12a =,12BE =,772AE a ==. 因为CE 与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以CE =. 13.已知集合{}349A x x x =∈++-≤R ,()146,0,B x x t t t⎧⎫=∈=+-∈+∞⎨⎬⎩⎭R ,则集合A B = .【解】{}25x x -≤≤.解集合A .当3x <-时,不等式化为349x x --+-≤,解得4x ≥-.所以解为43x -≤<-; 当34x -≤≤时,不等式化为349x x ++-≤,即79≤.所以解为34x -≤≤; 当4x >时,不等式化为349x x ++-≤,解得5x ≤,所以解为45x <≤. 综合以上,{}45A x x =-≤≤. 解集合B .因为0t >,所以1466462x t t =+-≥=-=-, 所以{}2B x x =≥-,因而{}25A B x x =-≤≤ .14.已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.35PA PB += ,x当且仅当34c y =时,等号成立,于是,当34cy =时,3PA PB + 有最小值5.解法2 . 以相互垂直的向量,为基底表示3+,得()533332P A P B D A D P P C C B D AP CD P +=-++=+-. 又P 是腰DC 上的动点,即与共线,于是可设λ=,有)13(253-+=+λ. 所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即[]213(25)13(DP -+=-+=+λλ.由于P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5.解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB 的中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①因为PB PQ PE += ,PB PQ QB -= .则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,于是()22252544PE a b =+-≥ ,于是25PE ≥ ,当且仅当a b =时,等号成立.由式①,325PA PB PE +=≥,FD所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。
2011年天津高考数学试题及答案(理科)
2011年高考理科数学试题及答案(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分.参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+U ()()().P AB P A P B =棱柱的体积公式.V Sh = 圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii --=A .2i +B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .64.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为 {}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在6x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .386.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C 的值为A .33B .36C .6D .67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭。
2011年天津市高考数学试卷(文科)答案与解析
2011年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•天津)i是虚数单位,复数=()A.2﹣i B.2+i C.﹣1﹣2i D.﹣1+2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数=故选A【点评】本题是基础题,考查复数代数形式的乘除运算,注意分母实数化,考查计算能力,常考题型.2.(5分)(2011•天津)设变量x,y满足约束条件则目标函数z=3x﹣y的最大值为()A.﹣4 B.0 C.D.4【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过(2,2)时,z最大.【解答】解:画出不等式表示的平面区域将目标函数变形为y=3x﹣z,作出目标函数对应的直线,当直线过(2,2)时,直线的纵截距最小,z最大最大值为6﹣2=4故选D【点评】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.3.(5分)(2011•天津)阅读如图的程序框图,运行相应的程序,若输入x的值为﹣4,则输出y的值为()A.0.5 B.1 C.2 D.4【考点】程序框图.【专题】算法和程序框图.【分析】根据题意,按照程序框图的顺序进行执行,当x<3时跳出循环,输出结果.【解答】解:当输入x=﹣4时,|x|>3,执行循环,x=|﹣4﹣3|=7|x|=7>3,执行循环,x=|7﹣3|=4,|x|=4>3,执行循环,x=|4﹣3|=1,退出循环,输出的结果为y=21=2.故选C.【点评】本题考查循环结构的程序框图,搞清程序框图的算法功能是解决本题的关键,按照程序框图的顺序进行执行求解,属于基础题.4.(5分)(2011•天津)设集合A={x∈R|x﹣2>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x∈A∪B”是“x∈C”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.即不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;集合的包含关系判断及应用.【专题】简易逻辑.【分析】化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.【解答】解:A={x∈R|x﹣2>0}={x|x>2}A∪B={x|x>2或x<0}C={x∈R|x(x﹣2)>0}={x|x>2或x<0}∴A∪B=C∴“x∈A∪B”是“x∈C”的充要条件故选C【点评】本题考查判断一个命题是另一个命题的什么条件,先化简各个命题.考查充要条件的定义.5.(5分)(2011•天津)已知a=log23.6,b=log43.2,c=log43.6则()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用换底公式可得a=log23.6=log43.62,然后根据对数函数y=log4x在(0,+∞)的单调性可进行比较即可.【解答】解:∵a=log23.6=log43.62∵y=log4x在(0,+∞)单调递增,又∵3.62>3.6>3.2∴log43.62>log43.6>log43.2即a>c>b故选:B【点评】本题考查利用对数函数的单调性比较对数值大小,考查了换底公式的应用,是基础题.6.(5分)(2011•天津)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2 B.2C.4D.4【考点】双曲线的简单性质;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.【点评】本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.7.(5分)(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则()A.f(x)在区间[﹣2π,0]上是增函数B.f(x)在区间[﹣3π,﹣π]上是增函数C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数【考点】正弦函数的单调性;三角函数的周期性及其求法;三角函数的最值.【专题】三角函数的图像与性质.【分析】由函数f(x)的最小正周期为6π,根据周期公式可得ω=,且当x=时,f(x)取得最大值,代入可得,2sin(φ)=2,结合已知﹣π<φ≤π可得φ=可得,分别求出函数的单调增区间和减区间,结合选项验证即可【解答】解:∵函数f(x)的最小正周期为6π,根据周期公式可得ω=,∴f(x)=2sin(φ),∵当x=时,f(x)取得最大值,∴2sin(φ)=2,φ=+2kπ,∵﹣π<φ≤π,∴φ=,∴,由可得函数的单调增区间:,由可得函数的单调减区间:,结合选项可知A正确,故选A.【点评】本题主要考查了利用函数的部分图象求解函数的解析式,还考查了函数y=Asin (ωx+φ)(A>0,ω>0)的单调区间的求解,属于对基础知识的考查.8.(5分)(2011•天津)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2]C.(﹣∞,﹣2)∪(1,2]D.[﹣2,﹣1]【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f (x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.【解答】解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.【点评】本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•天津)已知集合A={x∈R||x﹣1|<2},Z为整数集,则集合A∩Z中所有元素的和等于3.【考点】交集及其运算.【专题】集合.【分析】先根据绝对值不等式求出集合A,然后根据交集的定义求出A∩Z,最后求出集合A∩Z中所有元素的和即可.【解答】解:A={x∈R||x﹣1|<2}={x|﹣1<x<3},而Z为整数集,集合A∩Z={0,1,2},故集合A∩Z中所有元素的和等于0+1+2=3,故答案为3.【点评】本题属于以绝对值不等式为依托,求集合的交集的基础题,同时考查了集合中元素的和.10.(5分)(2011•天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为4m3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由题意可知,一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,下面是一个长为2,高为1,宽为1的长方体,根据所给的长度,求出几何体的体积.【解答】解:由三视图可知,这是一个简单的组合体,上面是一个底面是边长为1的正方形,高是2的四棱柱,体积是1×1×2下面是一个长为2,高为1,宽为1的长方体,体积是1×1×2∴几何体的体积是1×1×2+2×1×1=4m3,故答案为:4【点评】本题考查由三视图还原直观图,根据图形中所给的数据,求出要求的体积,本题是一个考查简单几何体体积的简单题目.11.(5分)(2011•天津)已知{a n}为等差数列,S n为{a n}的前n项和,n∈N*,若a3=16,S20=20,则S10值为110.【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】本题可根据等差数列的前n项和的一上性质{S(k+1)m﹣S km}是以m2d为公差的数列,本题中令m=5,每五项的和也组成一个等差数列,再由数列中项知识求出前五项的和,由此建立方程求出公差,进而可求出S10的值【解答】解:由题意a3=16,故S5=5×a3=80,由数列的性质S10﹣S5=80+25d,S15﹣S10=80+50d,S20﹣S15=80+75d,故S20=20=320+150d,解之得d=﹣2又S10=S5+S10﹣S5=80+80+25d=160﹣50=110故答案为:110【点评】本题考点是等差数列的性质,考查等差数列前n项和的性质,以及数列的中项的运用,本题技巧性较强,属于等差数列的性质运用题,解答本题,要注意从题设条件中分析出应该用那个性质来进行转化.12.(5分)(2011•天津)已知log2a+log2b≥1,则3a+9b的最小值为18.【考点】基本不等式;对数的运算性质.【专题】函数的性质及应用;不等式的解法及应用.【分析】先把已知条件转化为ab≥2,且a>0,b>0;再把所求用基本不等式转化到用ab表示即可.【解答】解:由log2a+log2b≥1得ab≥2,且a>0,b>0.又3a+9b=3a+32b≥2=2,因为a+2b≥2=2≥2=4,所以3a+9b≥2=18.即3a+9b的最小值为18.故答案为18.【点评】本题是对指数的运算性质,对数的运算性质以及基本不等式的综合考查.考查的都是基本知识点,只要课本知识掌握熟练,是道基础题.13.(5分)(2011•天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.【考点】圆的切线方程.【专题】直线与圆.【分析】设出AF=4k,BF=2k,BE=k,由DF•FC=AF•BF求出k的值,利用切割定理求出CE.【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.【点评】本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,常考题型.14.(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0),设P(0,b)(0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共6小题,满分80分)15.(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分15 35 21 28 25 36 18 34运动员编号A9A10A11A12A13A14A15A16得分17 26 25 33 22 12 31 38(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间[10,20)[20,30)[30,40]人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50分的概率.【考点】列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.【专题】概率与统计.【分析】(I)根据已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表,我们易得出得分在对应区间内的人数.(II)(i)根据(I)的结论,我们易列出在区间[20,30)内的运动员中随机抽取2人,所有可能的抽取结果;(ii)列出这2人得分之和大于50分的基本事件的个数,代入古典概型公式即可得到这2人得分之和大于50分的概率.【解答】解:(I)由已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表易得:得分在区间[10,20)上的共4人,在区间[20,30)上的共6人,在区间[30,40]上的共6人,故答案为4,6,6(II)(i)得分在区间[20,30)上的共6人,编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,计为(X,Y),则所有可能的抽取结果有:(A3,A4),(A3,A5),(A3,A10),(A3,A11),(A3,A13),(A4,A5),(A4,A10),(A4,A11),(A4,A13),(A5,A10),(A5,A11),(A5,A13),(A10,A11),(A10,A13),(A11,A13)共15种.(ii)从得分在区间[20,30)内的运动员中随机抽取2人,这2人的得分之和大于50分的基本事件有:(A4,A5),(A4,A10),(A4,A11),(A5,A10),(A10,A11)共5种故这2人得分之和大于50分的概率P==【点评】本题主要考查用列举法计算随机事件所含的基本事件烽、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.16.(13分)(2011•天津)在△ABC中,内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求cosA的值;(Ⅱ)的值.【考点】余弦定理;同角三角函数基本关系的运用;两角和与差的余弦函数;二倍角的余弦.【专题】解三角形.【分析】(I)利用三角形中的等边对等角得到三角形三边的关系;利用三角形的余弦定理求出角A的余弦.(II)利用三角函数的平方关系求出角A的正弦,利用二倍角公式求出角2A的正弦,余弦;利用两个角的和的余弦公式求出的值.【解答】解:(I)由B=C,可得所以cosA==(II)因为所以=【点评】本题考查三角形的余弦定理、考查三角函数的平方关系、考查两角和的余弦公式.17.(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.【考点】直线与平面垂直的判定;直线与平面平行的判定;直线与平面所成的角.【专题】空间位置关系与距离;空间角;立体几何.【分析】(I)由O为AC中点,M为PD中点.结合平行四边形的对角线性质,考虑连接BD,MO,则有PB∥MO,从而可证(II)由∠ADC=45°,且AD=AC=1,易得AD⊥AC,PO⊥AD,根据线面垂直的判定定理可证(III)取DO中点N,由PO⊥平面ABCD,可得MN⊥平面ABCD,从而可得∠MAN是直线AM与平面ABCD所成的角.在Rt△ANM中求解即可【解答】解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为【点评】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力、推理论证能力.18.(13分)(2011•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用|PF2|=|F1F2|,对应的方程整理后即可求椭圆的离心率e;(Ⅱ)先把直线PF2与椭圆方程联立求出A,B两点的坐标以及对应的|AB|两点,进而求出|MN|,再利用弦心距,弦长以及圆心到直线的距离之间的等量关系,即可求椭圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程PF2为y=(x ﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).所以|AB|==c,于是|MN|=|AB|=2c.圆心(﹣1,)到直线PF2的距离d=,因为d2+=42,所以(2+c)2+c2=16,整理得c=﹣(舍)或c=2.所以椭圆方程为+=1.【点评】本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.19.(14分)(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当t≠0时,求f(x)的单调区间;(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.【考点】利用导数研究曲线上某点切线方程;函数的零点;利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程;(II)根据f'(0)=0,解得x=﹣t或x=,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可;(III)根据函数的单调性分两种情况讨论,当≥1与当0<<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论.【解答】解:(I)当t=1时,f(x)=4x3+3x2﹣6x,f(0)=0f'(x)=12x2+6x﹣6,f'(0)=﹣6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣6x.(II)解:f'(x)=12x2+6tx﹣6t2,f'(0)=0,解得x=﹣t或x=∵t≠0,以下分两种情况讨论:(1)若t<0,则<﹣t,∴f(x)的单调增区间是(﹣∞,),(﹣t,+∞);f(x)的单调减区间是(,﹣t)(2)若t>0,则>﹣t,∴f(x)的单调增区间是(﹣∞,﹣t),(,+∞);f(x)的单调减区间是(﹣t,)(III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论:(1)当≥1,即t≥2时,f(x)在(0,1)内单调递减.f(0)=t﹣1>0,f(1)=﹣6t2+4t+3≤﹣13<0所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.(2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增若t∈(0,1],f()=+t﹣1≤<0,f(1)=﹣6t2+4t+3≥﹣2t+3>0所以f(x)在(,1)内存在零点.若t∈(1,2),f()=+t﹣1<+1<0,f(0)=t﹣1>0∴f(x)在(0,)内存在零点.所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.【点评】本题主要考查了导数的几何意义,利用导数研究函数的单调性、曲线的切线方程、函数零点、解不等式等基础知识,考查了计算能力和分类讨论的思想.20.(14分)(2011•天津)已知数列{a n}与{b n}满足b n+1a n+b n a n+1=(﹣2)n+1,b n=,n∈N*,且a1=2.(Ⅰ)求a2,a3的值(Ⅱ)设c n=a2n+1﹣a2n﹣1,n∈N*,证明{c n}是等比数列(Ⅲ)设S n为{a n}的前n项和,证明++…++≤n﹣(n∈N*)【考点】数列与不等式的综合;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)推出b n的表达式,分别当n=1时,求出a2=﹣;当n=2时,解出a3=8;(Ⅱ)设c n=a2n+1﹣a2n﹣1,n∈N*,利用等比数列的定义,证明{c n}是等比数列;(Ⅲ)求出S2n,a2n,S2n﹣1,a2n﹣1,求出+的表达式,然后求出++…++的表达式,利用放缩法证明结果.【解答】(Ⅰ)解:由b n=,(n∈N*)可得b n=又b n+1a n+b n a n+1=(﹣2)n+1,当n=1时,a1+2a2=﹣1,可得由a1=2,a2=﹣;当n=2时,2a2+a3=5可得a3=8;(Ⅱ)证明:对任意n∈N*,a2n﹣1+2a2n=﹣22n﹣1+1…①2a2n+a2n+1=22n+1…②②﹣①,得a2n+1﹣a2n﹣1=3×22n﹣1,即:c n=3×22n﹣1,于是所以{c n}是等比数列.(Ⅲ)证明:a1=2,由(Ⅱ)知,当k∈N*且k≥2时,a2k﹣1=a1+(a3﹣a1)+(a5﹣a3)+(a7﹣a5)+…+(a2k﹣1﹣a2k﹣3)=2+3(2+23+25+…+22k﹣3)=2+3×=22k﹣1,故对任意的k∈N*,a2k﹣1=22k﹣1.由①得22k﹣1+2a2k=﹣22k﹣1+1,所以k∈N*,因此,于是,.故==所以,对任意的n∈N*,++…++=(+)+…+(+)===n﹣≤n﹣﹣=n﹣(n∈N*)【点评】本题考查等比数列的定义,等比数列求和等基础知识,考查计算能力、推理论证能力、综合发现问题解决问题的能力以及分类讨论思想.。
2011年天津高考数学试题及答案(文科)
2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅰ卷参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。
h 表示棱柱的高。
参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分。
1—4 ADCC 5—8 BBAB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分。
9.3 10.4 11.110 12.18 13 14.5 三、解答题(15)本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,满分13分。
(Ⅰ)解:4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。
(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。
所以51().153P B == (16)本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。
(Ⅰ)解:由,2,B C b c b ====可得所以222222331cos .2322a a abc a A bc +-+-===(Ⅱ)解:因为1cos ,(0,)3A A π=∈,所以sin 3A ==27cos 22cos 1.sin 22sin cos 99A A A A A =--=-==故所以7c o4A π⎛⎫+= ⎪⎝⎭(17)本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力。
2011年天津高考理科数学真题及答案
2011年天津高考理科数学真题及答案一、选择题(共8小题,每小题5分,满分40分)1.(5分)i是虚数单位,复数=( )A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i【解答】解:复数===2﹣i故选B.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.3.(5分)阅读程序框图,运行相应的程序,则输出i的值为( )A.3 B.4 C.5 D.6【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B4.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n为{a n}的前n项和,n∈N*,则S10的值为( )A.﹣110B.﹣90 C.90 D.110【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9,∵{a n}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D5.(5分)在的二项展开式中,x2的系数为( )A.B.C. D.【解答】解:展开式的通项为T r+1=(﹣1)r22r﹣6C6r x3﹣r令3﹣r=2得r=1所以项展开式中,x2的系数为﹣故选C6.(5分)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为( )A.B.C.D.【解答】解:设AB=x,由题意可得AD=x,BD=△ABD中,由余弦定理可得∴sinA=△ABD中,由正弦定理可得⇒sin∠ADB=∴△BDC中,由正弦定理可得故选:D.7.(5分)已知,则( )A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.8.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c 的取值范围是( )A.B.C.D.【解答】解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.二、填空题(共6小题,每小题5分,满分30分)9.(5分)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 12 .【解答】解:∵田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是,∵田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.10.(5分)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为 6+π m3.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3,1则V圆锥=•π•3=πV长方体=1×2×3=6则V=6+π故答案为:6+π11.(5分)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r= .【解答】解:∵抛物线C的参数方程为则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2,0)又∵斜率为1的直线经过抛物线C的焦点则直线的方程为y=x﹣2,即经x﹣y﹣2=0由直线与圆(x﹣4)2+y2=r2,则r==故答案为:12.(5分)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为 .【解答】解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE•EA==,∴CE=.13.(5分)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B= {x|﹣2≤x≤5} .【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.14.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为 5 .【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.【考点】正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f(x)的定义域为:f(x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+cosα≠0因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=【点评】本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.16.(13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).【考点】离散型随机变量的期望与方差;互斥事件与对立事件;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(I)(i)甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,事件数是C52C32,摸出3个白球事件数为C32C21C21;由古典概型公式,代入数据得到结果,(ii)获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i)求出摸出2个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II)连在2次游戏中获奖次数X的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)(i)设“在一次游戏中摸出i个白球”为事件A i(i=,0,1,2,3),则P(A3)=,(ii)设“在一次游戏中获奖”为事件B,则B=A2∪A3,又P(A2)=,且A2、A3互斥,所以P(B)=P(A2)+P(A3)=;(Ⅱ)由题意可知X的所有可能取值为0,1,2.P(X=0)=(1﹣)2=,P(X=1)=C21(1﹣)=,P(X=2)=()2=,所以X的分布列是X 0 1 2pX的数学期望E(X)=0×.【点评】此题是个中档题.本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力. 17.(13分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC与A1B1所成角的余弦值;(Ⅱ)利用求出平面AA1C1的法向量,通过求出平面A1B1C1的法向量,然后利用求二面角A﹣A1C1﹣B1的正弦值;(Ⅲ)设N为棱B1C1的中点,设M(a,b,0),利用MN⊥平面A1B1C1,结合求出a,b,然后求线段BM的长.方法二:(I)说明∠C1A1B1是异面直线AC与A1B1所成的角,通过解三角形C1A1B1,利用余弦定理,.求出异面直线AC与A1B1所成角的余弦值为.(II)连接AC1,过点A作AR⊥A1C1于点R,连接B1R,说明∠ARB1为二面角A﹣A1C1﹣B1的平面角.连接AB1,在△ARB1中,通过,求出二面角A﹣A1C1﹣B1的正弦值为.(III)首先说明MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,推出ND⊥A1B1.证明A1B1⊥平面MND,连接MD并延长交A1B1于点E,延长EM交AB于点F,连接NE.连接BM,在Rt△BFM中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(I)解:易得,于是,所以异面直线AC与A1B1所成角的余弦值为.(II)解:易知.设平面AA1C1的法向量=(x,y,z),则即不妨令,可得,同样地,设平面A1B1C1的法向量=(x,y,z),则即不妨令,可得.于是,从而.所以二面角A﹣A1C1﹣B的正弦值为.(III)解:由N为棱B1C1的中点,得.设M(a,b,0),则由MN⊥平面A1B1C1,得即解得故.因此,所以线段BM的长为.方法二:(I)解:由于AC∥A1C1,故∠C1A1B1是异面直线AC与A1B1所成的角.因为C 1H⊥平面AA1B1B,又H为正方形AA1B1B的中心,,可得A1C1=B1C1=3.因此.所以异面直线AC与A1B1所成角的余弦值为.(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,过点A作AR⊥A1C1于点R,连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A﹣A1C1﹣B1的平面角.在Rt△A1RB1中,.连接AB1,在△ARB1中,=,从而.所以二面角A﹣A1C1﹣B1的正弦值为.(III)解:因为MN⊥平面A1B1C1,所以MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND∥C1H且.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,则ME⊥A1B1,故ME∥AA1.由,得,延长EM交AB于点F,可得.连接NE.在Rt△ENM中,ND⊥ME,故ND2=DE•DM.所以.可得.连接BM,在Rt△BFM中,.【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.18.(13分)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M 的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用△F1PF2为等腰三角形得|PF2|=|F1F2|,解其对应的方程即可求椭圆的离心率e;(Ⅱ)先把直线方程与椭圆方程联立,求得A,B两点的坐标,代入,即可求点M的轨迹方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程为y=(x﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).设点M的坐标为(x,y),则=(x﹣c,y﹣c),=(x,y+c)由y=(x﹣c)得c=x﹣y ①,由=﹣2即(x﹣c)x+(y﹣c)(y+c)=﹣2.将①代入化简得18x2﹣16xy﹣15=0,⇒y=代入①化简得c=>0.所以x>0,因此点M的轨迹方程为18x2﹣16xy﹣15=0(x>0).【点评】本题主要考查椭圆的方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力. 19.(14分)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)求f(x)的单调区间;(Ⅱ)当时,证明:存在x0∈(2,+∞),使;(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】(I)求导数fˊ(x);在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II)由(I)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令.利用函数f(x)在(0,2)内单调递增,得到.最后取.从而得到结论;(III)先由f(α)=f(β)及(I)的结论知,从而f(x)在[α,β]上的最小值为f(a).再依1≤α≤2≤β≤3建立关于a的不等关系即可证得结论.【解答】解:(I ),令.当x变化时,f'(x),f(x)的变化情况如下表:x (0,)(,+∞)f′(x )+0 ﹣f(x)增极大减值所以,f(x)的单调递增区间是的单调递减区间是.(II)证明:当.由(I)知f(x )在(0,2)内单调递增,在(2,+∞)内单调递减.令.由于f(x)在(0,2)内单调递增,故.取.所以存在x0∈(2,x'),使g(x0)=0,即存在.(说明:x'的取法不唯一,只要满足x'>2,且g(x')<0即可)(III)证明:由f(α)=f(β)及(I)的结论知,从而f(x)在[α,β]上的最小值为f(a).又由β﹣α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故从而.【点评】本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法. 20.(14分)已知数列{a n}与{b n}满足:,n∈N*,且a1=2,a2=4.(Ⅰ)求a3,a4,a5的值;(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.【考点】数列与不等式的综合;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)要求a3,a4,a5的值;通过赋值方法,利用已知条件化简求解即可.(Ⅱ)化简出a2n﹣1+a2n+1,a2n+1+a2n+3的关系,即:c n+1与c n的关系,从而证明{c n}是等比数列;就是利用(Ⅰ)的,用2n﹣1,2n,2n+1,替换中的n,化简出只含“a n”的关系式,就是a2n﹣1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③然后推出a2n+1+a2n+3=﹣(a2n﹣1+a2n+1),得到c n+1=﹣c n(n∈N*),从而证明{c n}是等比数列;(Ⅲ)先研究通项公式a2k,推出S k的表达式,然后计算,结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据a2k﹣1+a2k+1=(﹣1)k,对任意k∈N*且k≥2,列出n个表达式,利用累加法求出a2k=(﹣1)k+1(k+3).化简S2k=(a2+a4)+(a6+a8)+…+(a4k﹣2+a4k)=﹣k,k∈N*,,通过裂项法以及放缩法证明:.【解答】20、满分14分.(I)解:由,可得又b n a n+a n+1+b n+1a n+2=0,(II)证明:对任意n∈N*,a2n﹣1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0,③②﹣③,得a2n=a2n+3.④将④代入①,可得a2n+1+a2n+3=﹣(a2n﹣1+a2n+1)即c n+1=﹣c n(n∈N*)又c1=a1+a3=﹣1,故c n≠0,因此是等比数列.(III)证明:由(II)可得a2k﹣1+a2k+1=(﹣1)k,于是,对任意k∈N*且k≥2,有将以上各式相加,得a1+(﹣1)k a2k﹣1=﹣(k﹣1),即a2k﹣1=(﹣1)k+1(k+1),此式当k=1时也成立.由④式得a2k=(﹣1)k+1(k+3).从而S2k=(a2+a4)+(a6+a8)+…+(a4k﹣2+a4k)=﹣k,S2k﹣1=S2k﹣a4k=k+3.所以,对任意n∈N*,n≥2,====对于n=1,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.赋值法是求数列前几项的常用方法,注意n=1的验证,裂项法和放缩法的应用.。
2011天津数学高考试题及答案
2011年普通高等学校夏季招生全国统一考试数学(天津卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷本卷共8小题,每小题5分,共40分.参考公式:·如果事件A 、B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件A ,B 相互独立,那么P (AB )=P (A )P (B ).·棱柱的体积公式V =Sh .其中S 表示棱柱的底面面积,h 表示棱柱的高.·圆锥的体积公式1.3V Sh =.其中S 表示棱锥的底面面积,h 表示圆锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数1-3i 1-i =( ) A .2+i B .2-i C .-1+2iD .-1-2i 2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的…( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.阅读如图的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .64.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 …( )A .-110B .-90C .90D .110 5.在622x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,x 2的系数为( ) A .154- B . 154 C .38- D . 38 6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===则sin C 的值为( )A .33 B .36C .63D .667.已知324log0.3log 3.4log 3.615,5,,5a b c⎛⎫=== ⎪⎝⎭则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.对实数a和b,定义运算“⊗”:,1,, 1.a a ba bb a b-≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R=-⊗-∈,x∈R.若函数()y f x c=-的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-∞,-2]∪(-1,3 2 )B.(-∞,-2]∪(-1,3 4 -)C.(-1,14)∪(14,+∞)D.(-1,34-)∪[14,+∞)第Ⅱ卷本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m3.11.已知抛物线C的参数方程为28,8.x ty t⎧=⎨=⎩(t为参数).若斜率为1的直线经过抛物线C的焦点,且与圆(x-4)2+y2=r2(r>0)相切,则r=________.12.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且2,::4:2:1DF CF AF FB BE===,若CE与圆相切,则线段CE的长为________.13.已知集合{}|349, A x R x x=∈++-≤1|46,(0,)B x R x t tt⎧⎫=∈=+-∈+∞⎨⎬⎩⎭,则集合A∩B=________.。
2011年天津市高考数学试卷(理科)答案与解析
2011年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011?天津)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】要求两个复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】解:复数===2﹣i故选B.【点评】本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大,解题应用的原理也比较简单,是一个送分题目.2.(5分)(2011?天津)设x,y∈R,则“x≥2且y≥2”是“x 2+y2≥4”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】由“x≥2且y≥2”推出“x2+y2≥4”可证明充分性;由满足“x2+y2≥4”可举出反例推翻“x≥2且y≥2”,则证明不必要性,综合可得答案.【解答】解:若x≥2且y≥2,则x2≥4,y2≥4,所以x2+y2≥8,即x2+y2≥4;若x2+y2≥4,则如(﹣2,﹣2)满足条件,但不满足x≥2且y≥2.所以“x≥2且y≥2”是“x2+y2≥4”的充分而不必要条件.故选A.【点评】本题主要考查充分条件与必要条件的含义.3.(5分)(2011?天津)阅读程序框图,运行相应的程序,则输出i的值为()A .3B .4C .5D .6【考点】程序框图.【专题】算法和程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值.【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4.(5分)(2011?天津)已知{a n }为等差数列,其公差为﹣2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为()A .﹣110B .﹣90C .90D .110【考点】等差数列的前n 项和;等比数列的性质.【专题】等差数列与等比数列.【分析】通过a 7是a 3与a 9的等比中项,公差为﹣2,求出【解答】解:a 7是a 3与a 9的等比中项,公差为﹣2,所以a 72=a 3?a 9,∵{a n }公差为﹣2,∴a 3=a 7﹣4d=a 7+8,a 9=a 7+2d=a 7﹣4,所以a 72=(a 7+8)(a 7﹣4),所以a 7=8,所以a 1=20,所以S 10==110故选D【点评】本题是基础题,考查等差数列的前n 项和,等比数列的应用,考查计算能力,常考题型.5.(5分)(2011?天津)在的二项展开式中,x 2的系数为()A .B .C .D .【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为2,求出展开式中,x 2的系数,即得答案.【解答】解:展开式的通项为T r+1=(﹣1)r 22r ﹣6C 6r x3﹣r令3﹣r=2得r=1 所以项展开式中,x 2的系数为﹣故选C【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.6.(5分)(2011?天津)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.【考点】三角形中的几何计算.【专题】解三角形.【分析】根据题中条件,在△ABD中先由余弦定理求出cosA,利用同角关系可求sinA,利用正弦定理可求sin∠BDC,然后在△BDC中利用正弦定理求解sinC即可【解答】解:设AB=x,由题意可得AD=x,BD=△ABD中,由余弦定理可得∴sinA=△ABD中,由正弦定理可得?sin∠ADB=∴△BDC中,由正弦定理可得故选:D.【点评】本题主要考查了在三角形中,综合运用正弦定理、余弦定理、同角基本关系式等知识解三角形的问题,反复运用正弦定理、余弦定理,要求考生熟练掌握基本知识,并能灵活选择基本工具解决问题.7.(5分)(2011?天津)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】比较大小的方法:找1或者0做中介判断大小,log43.6<1,log23.4>1,利用分数指数幂的运算法则和对数的运算法则对c进行化简,得到>1>b,再借助于中间值log2进行比较大小,从而得到结果.,【解答】解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b而log23.4>log2>log3,∴a>c故a>c>b.故选C.【点评】此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小,以及中介值法,考查学生灵活应用知识分析解决问题的能力.8.(5分)(2011?天津)对实数a与b,定义新运算“?”:.设函数f(x)=(x2﹣2)?(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】根据定义的运算法则化简函数f(x)=(x2﹣2)?(x﹣x2)的解析式,并求出f (x)的取值范围,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.【解答】解:∵,∴函数f(x)=(x2﹣2)?(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.【点评】本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011?天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12.【考点】分层抽样方法.【专题】概率与统计.【分析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.【解答】解:∵田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是,∵田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.【点评】本题考查分层抽样,在抽样过程中每个个体被抽到的概率相等,这是解决这种问题的依据,本题是一个基础题.10.(5分)(2011?天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为6+πm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3,1则V圆锥=?π?3=πV长方体=1×2×3=6则V=6+π故答案为:6+π【点评】本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键.11.(5分)(2011?天津)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.【考点】直线与圆的位置关系;抛物线的简单性质;直线的参数方程.【专题】圆锥曲线的定义、性质与方程;坐标系和参数方程.【分析】由抛物线C的参数方程为我们易求出抛物线的标准方程,进而根据斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,我们根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于r的方程,解方程即可得到答案.【解答】解:∵抛物线C的参数方程为则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2,0)又∵斜率为1的直线经过抛物线C的焦点则直线的方程为y=x﹣2,即经x﹣y﹣2=0由直线与圆(x﹣4)2+y2=r2,则r==故答案为:【点评】本题考查的知识点是直线与的圆位置关系,抛物线的简单性质及抛物线的参数方程,其中根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于r的方程,是解答本题的关键.12.(5分)(2011?天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.【考点】圆的切线方程.【专题】直线与圆.【分析】设出AF=4k,BF=2k,BE=k,由DF?FC=AF?BF求出k的值,利用切割定理求出CE.【解答】解:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=,∴AF=2,BF=1,BE=,AE=,由切割定理得CE2=BE?EA==,∴CE=.【点评】本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,常考题型.13.(5分)(2011?天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.【考点】交集及其运算.【专题】集合.【分析】求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.14.(5分)(2011?天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0),设P(0,b)(0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共6小题,满分80分)15.(13分)(2011?天津)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.【考点】正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由2x+≠+k π,k ∈Z .所以x ≠,k ∈Z .所以f (x )的定义域为:f (x )的最小正周期为:.(Ⅱ)由得tan ()=2cos2α,整理得因为α∈(0,),所以sin α+cos α≠0 因此(cos α﹣sin α)2=即sin2α=因为α∈(0,),所以α=【点评】本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.16.(13分)(2011?天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i )摸出3个白球的概率;(ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).【考点】离散型随机变量的期望与方差;互斥事件与对立事件;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(I )(i )甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,事件数是C 52C 32,摸出3个白球事件数为C 32C 21C 21;由古典概型公式,代入数据得到结果,(ii )获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i )求出摸出2个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II )连在2次游戏中获奖次数X 的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)(i )设“在一次游戏中摸出i 个白球”为事件A i (i=,0,1,2,3),则P (A 3)=,(ii )设“在一次游戏中获奖”为事件B ,则B=A 2∪A 3,又P (A 2)=,且A 2、A 3互斥,所以P (B )=P (A 2)+P (A 3)=;(Ⅱ)由题意可知X 的所有可能取值为0,1,2.P (X=0)=(1﹣)2=,P (X=1)=C 21(1﹣)=,P (X=2)=()2=,所以X 的分布列是X 012pX 的数学期望E (X )=0×.【点评】此题是个中档题.本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.17.(13分)(2011?天津)如图所示,在三棱柱ABC ﹣A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=2,C 1H ⊥平面AA 1B 1B ,且C 1H=.(1)求异面直线AC 与A 1B 1所成角的余弦值;(2)求二面角A ﹣A 1C 1﹣B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC与A1B1所成角的余弦值;(Ⅱ)利用求出平面AA1C1的法向量,通过求出平面A1B1C1的法向量,然后利用求二面角A﹣A1C1﹣B1的正弦值;(Ⅲ)设N为棱B1C1的中点,设M(a,b,0),利用MN⊥平面A1B1C1,结合求出a,b,然后求线段BM的长.方法二:(I)说明∠C1A1B1是异面直线AC与A1B1所成的角,通过解三角形C1A1B1,利用余弦定理,.求出异面直线AC与A1B1所成角的余弦值为.(II)连接AC1,过点A作AR⊥A1C1于点R,连接B1R,说明∠ARB1为二面角A﹣A1C1﹣B1的平面角.连接AB1,在△ARB1中,通过,求出二面角A﹣A1C1﹣B1的正弦值为.(III)首先说明MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,推出ND⊥A1B1.证明A1B1⊥平面MND,连接MD并延长交A1B1于点E,延长EM交AB于点F,连接NE.连接BM,在Rt△BFM中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(I)解:易得,于是,所以异面直线AC与A1B1所成角的余弦值为.(II)解:易知.设平面AA1C1的法向量=(x,y,z),则即不妨令,可得,同样地,设平面A1B1C1的法向量=(x,y,z),则即不妨令,可得.于是,从而.所以二面角A﹣A1C1﹣B的正弦值为.(III)解:由N为棱B1C1的中点,得.设M(a,b,0),则由MN⊥平面A1B1C1,得即解得故.因此,所以线段BM的长为.方法二:(I)解:由于AC∥A1C1,故∠C1A1B1是异面直线AC与A1B1所成的角.因为C1H⊥平面AA1B1B,又H为正方形AA1B1B的中心,,可得A1C1=B1C1=3.因此.所以异面直线AC与A1B1所成角的余弦值为.(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1C1,所以△AC1A1≌△B1C1A1,过点A作AR⊥A1C1于点R,连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A﹣A1C1﹣B1的平面角.在Rt△A1RB1中,.连接AB1,在△ARB1中,=,从而.所以二面角A﹣A1C1﹣B1的正弦值为.(III)解:因为MN⊥平面A1B1C1,所以MN⊥A1B1.取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND∥C1H且.又C1H⊥平面AA1B1B,所以ND⊥平面AA1B1B,故ND⊥A1B1.又MN∩ND=N,所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,则ME⊥A1B1,故ME∥AA1.由,得,延长EM交AB于点F,可得.连接NE.在Rt△ENM中,ND⊥ME,故ND2=DE?DM.所以.可得.连接BM,在Rt△BFM中,.【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.18.(13分)(2011?天津)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用△F1PF2为等腰三角形得|PF2|=|F1F2|,解其对应的方程即可求椭圆的离心率e;(Ⅱ)先把直线方程与椭圆方程联立,求得A,B两点的坐标,代入,即可求点M的轨迹方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0)(c>0).由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=,所以e=.(Ⅱ)由(Ⅰ)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程为y=(x﹣c).A,B的坐标满足方程组,消y并整理得5x2﹣8xc=0,解得x=0,x=,得方程组的解为,,不妨设A(c,c),B(0,﹣c).设点M的坐标为(x,y),则=(x﹣c,y﹣c),=(x,y+c)由y=(x﹣c)得c=x﹣y ①,由=﹣2即(x﹣c)x+(y﹣c)(y+c)=﹣2.将①代入化简得18x2﹣16xy﹣15=0,?y=代入①化简得c=>0.所以x>0,因此点M的轨迹方程为18x2﹣16xy﹣15=0 (x>0).【点评】本题主要考查椭圆的方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.19.(14分)(2011?天津)已知a>0,函数f(x)=lnx﹣ax 2,x>0.(f(x)的图象连续不断)(Ⅰ)求f(x)的单调区间;(Ⅱ)当时,证明:存在x0∈(2,+∞),使;(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.。
2011年高考数学天津理详解详析word纯净版[1]
2011年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,150分。
考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至6页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码,答卷时,考生务必将答案涂在答题卡上,答在试卷上的无效,考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利第Ⅰ卷注意事项:1.每小题选出答案后,并用铅笔将答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A,B 互斥, 如果事件A,B 是相互独立, 那么()()()P A B P A P B =+ 那么()()()P AB P A P B = 棱柱的体积公式V Sh = 圆锥的体积公式13V Sh =其中S 表示棱柱的底面面积, 其中S 表示圆锥的底面面积,h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数131i i-=-(A )2i + (B )2i - (C )12i -- (D )12i -【答案】B 【命题立意】本题主要考查了复数的除法运算,可以通过分子分母同乘以分母得共轭复数把除法运算转化为乘法运算解答。
【解析】13(13)(1)4221(1)(1)2i i i i i ii i --+-===---+(2)设,x y R ∈,则“2x ≥且2y ≥”时“224x y +≥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分而也不必要条件 【答案】A【命题立意】本小题主要考查了充分必要条件的概念以及判断。
【解析】若2x ≥且2y ≥,则一定有224x y +≥成立;反过来则不一定,所以选择A 。
(3)阅读右边的程序框图,运行相应的程序,则输出i 的值为 (A )3 (B )4 (C )5 (D )6 【答案】B【命题立意】本题考查了程序框图中的基本运算和循环结构。
2011年数学人教版天津卷
2011年数学人教版天津卷一、选择题1、(天津文6)设5log 4a =,()25log 3b =,4log 5c =,则( ).A.a c b << B.b c a << C.a b c << D.b a c <<2、(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3、(天津文10)设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞,C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U4、(天津文4)函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1D.()1,25、(天津理8)设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ).A.()()1001,,U - B.()()11,,-∞-+∞UC.()()101,,-+∞U D.()()101,,-∞-U6、(天津理2)函数()23x f x x=+的零点所在的一个区间是( ).A.()2,1--B.()1,0-C.()0,1D.()1,2二、填空题7、(天津理16)设函数()21f x x =-.对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭, ()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 .三、解答题8、(天津理21)已知函数()e x f x x -=()x ∈R .(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称.证明当1x >时,()()f xg x >.(Ⅲ)如果12x x ≠,且()()12f x f x =,证明122x x +>.四、选择题9、天津理已知双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是y =,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为( ).A.22136108x y -= B.221927x y -= C.22110836x y -= D.221279x y -=五、填空题10、已知圆C 的圆心是直线,1x t y t=⎧⎨=+⎩(t 为参数)与x 轴的交点,且圆C 与直线30x y ++=相切,则圆C 的方程为 .11、天津文已知双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是y ,它的一个焦点与抛物线216y x =的焦点相同,则双曲线的方程为 .12、已知圆C 的圆心是直线10x y -+=与x 轴的交点,且圆C 与直线30x y ++=相切,则圆C 的方程为 .六、解答题13、(本小题满分12分)已知椭圆22221x y a b +=()0a b >>的离心率e =菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点,A B .已知点A 的坐标为(),0a -,点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=u u r u u u r.求0y 的值.14、(本小题满分14分)已知椭圆22221x y a b +=()0a b >>的离心率e =4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点,A B .已知点A 的坐标为(),0a -.(ⅰ) 若AB =,求直线l 的倾斜角; (ⅱ)点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=u u r u u u r.求0y 的值.七、填空题 15、(天津理10)一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m八、解答题16、(天津理17) 如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,1AA=1C H ⊥平面11AA B B,且1C H = (Ⅰ)求异面直线AC 与A1B1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.九、选择题 17、(天津理3)阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .6十、填空题 18、(天津理9)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________十一、选择题19、天津文(本小题满分12分)有编号为1210,,,A A A L 的10个零件,测量其直径(单位:cm ),得到其中直径在区间[]1.48,1.52内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率. (Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率20、天津理如图,B CFEDA用四种不同的颜色给图中的,,,,,A B C D E F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有( ).A.288种 B.264种 C.240种 D.168种21、甲、乙两人在10天中每天加工的零件的个数用茎叶图表示如下图.中间一列的数字表示零件个数的十位数,两边的数字零件个数的个位数,则这10天中甲、乙两人日加工零件的平均数分别为和.22、(本小题满分12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中的概率.(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率.(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.23、(天津理6)如图,在△ABC中,D是边AC 上的点,且,2,2AB CD AB BC BD===,则sin C的值为A.B.C.D.十二、解答题24、(天津理15)已知函数()tan(2),4 f x xπ=+(Ⅰ)求()f x的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分.十三、填空题25、(天津理14)已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB+ 的最小值为____________.十四、选择题26、(天津理4)已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .11027、设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ).A.()()1001,,U - B.()()11,,-∞-+∞U C.()()101,,-+∞U D.()()101,,-∞-U28、函数()23x f x x =+的零点所在的一个区间是( ).A.()2,1-- B.()1,0- C.()0,1 D.()1,229、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞,C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U30、设5log 4a =,()25log 3b =,4log 5c =,则( ).A.a c b << B.b c a << C.a b c << D.b a c <<31、函数()e 2x f x x =+-的零点所在的一个区间是( ).A.()2,1-- B.()1,0- C.()0,1 D.()1,2十五、填空题32、设函数()21f x x =-.对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 .33、设函数()1f x x x=-.对任意[)1,x ∈+∞,()()0f mx mf x +<恒成立,则实数m 的取值范围是 .34、已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.35、如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则 线段CE 的长为__________.36、已知集合{}1|349,|46,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.以下是答案 一、选择题 1、D【解析】因为44log 5log 41c c =>==,50log 41a <=<,50log 31a <=<,所以()25555log 3log 3log 4log 4b a=<⋅<=,所以b a c <<,故选D.2、A3、D【解析】解()22x g x x <=-得220x x -->,则1x <-或2x >.因此()22x g x x ≥=-的解为:12x -≤≤.于是()222,12,2,12,x x x x f x x x x ⎧++<->=⎨---≤≤⎩或当1x <-或2x >时,()2f x >.当12x -≤≤时,2219224x x x ⎛⎫--=-- ⎪⎝⎭,则()94f x ≥-, 又当1x =-和2x =时,220x x --=,所以()904f x -≤≤.由以上,可得()2f x >或()904f x -≤≤,因此()f x 的值域是()9,02,4⎡⎤-+∞⎢⎥⎣⎦U .故选D.4、C【解析】因为()11e 120f --=--<,()00e 0210f =+-=-<,()11e 12e 10f =+-=->,所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C.5、C【解析】若0a >,则212log log a a>,即22log 0a >,所以1a >,若0a <则()()122log log a a ->-,即()22log 0a -<,所以01a <-<,10a -<<。
2011年天津市高考数学试卷(理科)答案与解析
2011年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1 一1. --------------------------------------------------------------------- (5分)(2011?天津)i是虚数单位,复数-------------------------------------------------- =()1_1A . 2+i B. 2 - i C.- 1+2i D . - 1 - 2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】要求两个复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】解:复数= -::'=2 - i1-i (1-i)(1+i) 2故选B .【点评】本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大,解题应用的原理也比较简单,是一个送分题目.2 22. (5分)(2011?天津)设x, y€R,贝U X丝且y多堤x +y台”的()A •充分而不必要条件B •必要而不充分条件C.充分必要条件D •既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.2 2 2 2【分析】由X支且y多”推出X +y台”可证明充分性;由满足X +y台”可举出反例推翻X多且y 支”,则证明不必要性,综合可得答案.【解答】解:若X》且y呈,则x2台,y2呂,所以x2+y2%,即x2+y2呂;2 2 右x +y台,则如(-2,- 2)满足条件,但不满足x支且y支.2 2 所以X呈且y支”是X +y绍”的充分而不必要条件.故选A .【点评】本题主要考查充分条件与必要条件的含义.3. (5分)(2011?天津)阅读程序框图,运行相应的程序,则输出i的值为()£7 = J X CT*1/输出]L/A . 3B . 4C . 5D . 6【考点】程序框图. 【专题】算法和程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值. 【解答】解:该程序框图是循环结构 经第一次循环得到 i=1 , a=2; 经第二次循环得到 i=2, a=5;经第三次循环得到 i=3, a=16;经第四次循环得到 i=4, a=65满足判断框的条件,执行是,输出4故选B【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4. ( 5分)(2011?天津)已知{a n }为等差数列,其公差为- 2,且a 是a s 与a 9的等比中项, S n 为{an }的前n 项和,n€N ,则S io 的值为( )A . - 110B . - 90C . 90D . 110【考点】等差数列的前n 项和;等比数列的性质. 【专题】等差数列与等比数列.【分析】 通过a 7是a 3与a 9的等比中项,公差为-2,求出【解答】解:a 7是a 3与a 9的等比中项,公差为-2,所以a 72=a 3?a 9,T {a n }公差为-2,二 a 3=a 7- 4d=a 7+8, a 9=a 7+2d=a 7 - 4,所以 a 7 = (a 7+8) (a 7 - 4),所以 a 7=8,所以 a 1 =20, 所以 S 10=「「二亠八 ' 「-=110故选D【点评】本题是基础题,考查等差数列的前 n 项和,等比数列的应用,考查计算能力,常考题型.故选C【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.【考点】二项式定理. 【专题】二项式定理.【分析】利用二项展开式的通项公式求出展开式的通项,令 x 2的系数,即得答案.【解答】解:展开式的通项为 T r+1= (- 1) r 22r -6C 6r x 3-rx 的指数为2,求出展开式中,令 3 - r=2 得 r=1所以项展开式中,x 2的系数为-..\ '-° O5. ( 5分)(2011?天津)在x 2的系数为(2V5 r V6BD _ BC * c _ 3V6sinC sin-ZBDC 4逅兀 3故选:D .【点评】本题主要考查了在三角形中,综合运用正弦定理、余弦定理、 识解三角形的问题, 反复运用正弦定理、 余弦定理,要求考生熟练掌握基本知识, 选择基本工具解决问题.7. ( 5 分) (2011?天津)已知二:r 丄. 八]则( )5A . a > b > cB . b > a > cC . a > c >bD . c > a > b 【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.6. (5分)(2011?天津)如图,在 △ ABC 中,D 是边AC 上的点,且 AB=AD , 2AB= ■:BD ,BC=2BD ,则sinC 的值为( A .匚3【考点】【专题】【分析】B .亘C .丄D .6 3三角形中的几何计算.解三角形.根据题中条件,在 △ ABD 中先由余弦定理求出 cosA ,利用同角关系可求 sinA ,利 用正弦定理可求 sin /BDC ,然后在△ BDC 中利用正弦定理求解 sinC 即可 【解答】解:设AB=x ,由题意可得 AD=x , BD=—■,.-V3 <3△ ABD 中,由余弦定理可得cosA=2 _ 4 X 2AB 2 + AD 2- BD 2 2x ~~_1••• sinA = _△ ABD 中,由正弦定理可得AB1? sin / ADB=sin^ADB sinA霁in 么孟X 竽暮V3BC △ BDC 中,由正弦定理可得同角基本关系式等知 并能灵活【分析】比较大小的方法:找1或者0做中介判断大小,指数幕的运算法则和对数的运算法则对 c 进行化简,得到b ,再借助于中间值log 2丄进行比较大小,从而得到结果.,3【解答】解:••Tog 23.4 > 1, Iog 43.6v 1, 又y=5x 是增函数,••• a > b ,沁)W5103T Y二5影>5】呃昇二51=5"隔4〉5"阴"归b而 ge |og J >IogJ',• a > c故 a >c >b . 故选C .【点评】此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小, 以及中介值法,考查学生灵活应用知识分析解决问题的能力.自,a - b^l.设函数fb, a - bJ>l2 2(x ) = (x - 2) ? (X - x ), x €R .若函数y=f (x )- c 的图象与x 轴恰有两个公共点,则 实数c 的取值范围是()A .| 一 •; 1. " 1 B. ' 一. . 二2 4C .-二「「D.'-卩:■-4444【考点】函数与方程的综合运用. 【专题】函数的性质及应用.【分析】根据定义的运算法则化简函数f (x ) = (x 2- 2) ? (x - x 2)的解析式,并求出 f(x )的取值范围,函数 y=f (x ) - c 的图象与x 轴恰有两个公共点转化为 y=f (x ), y=c 图 象的交点问题,结合图象求得实数c 的取值范围.£ a - b<l【解答】解:•••已毗二J|、■.,b, a ~ b^>l.X.由图可知,当 函数f (x )与y=c 的图象有两个公共点, ••• c 的取值范围是 -,{•函数 f ( x ) = (x 2- 2)(x - x 2)Iog 43.6v 1, Iog 23.4> 1,利用分数- K £4【点评】本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.二、填空题(共6小题,每小题5分,满分30分)9. (5分)(2011?天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12 . 【考点】分层抽样方法.【专题】概率与统计.【分析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.【解答】解::•田径队有男运动员48人,女运动员36人,•••这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,•每个个体被抽到的概率是——84 4•••田径队有男运动员48人,•••男运动员要抽取48X =12人,4故答案为:12.【点评】本题考查分层抽样,在抽样过程中每个个体被抽到的概率相等,这是解决这种问题的依据,本题是一个基础题.10. (5分)(2011?天津)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为6+ n m3.正视圏犒视圏【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为3,下部的长方体长、宽高分别为:2,3, 1贝U V圆锥=* ? n?= nV长方体=1 >2X3=6则V=6+ n故答案为:6+ n【点评】本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键.11. (5分)(2011?天津)已知抛物线C的参数方程为X=St(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x-4)2+y2=r2(r> 0)相切,则r=_ . :_ .【考点】直线与圆的位置关系;抛物线的简单性质;直线的参数方程.【专题】圆锥曲线的定义、性质与方程;坐标系和参数方程.f 2【分析】由抛物线C的参数方程为X"St我们易求出抛物线的标准方程,进而根据斜率L y=8t为1的直线经过抛物线C的焦点,且与圆(x- 4)2+y2=r2(r>0)相切,我们根据直线与圆相切,贝U 圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于r的方程,解方程即可得到答案.【解答】解:•••抛物线C的参数方程为,x=St则抛物线的标准方程为:y2=8x则抛物线C的焦点的坐标为(2, 0)又•••斜率为1的直线经过抛物线C的焦点则直线的方程为 y=x - 2,即经x - y - 2=0 由直线与圆(x - 4) 2+y 2=r 2,则故答案为:-其中根据直线与圆相切, 则圆心到直线的距离等于半径, 求出直线方程后,代入点到直线距离公式,构造关于r 的方程,是解答本题的关键.12. ( 5分)(2011?天津)如图,已知圆中两条弦 AB 与CD 相交于点F , E 是AB 延长线上 一点,且 DF=CF= 二 AF : FB : BE=4 : 2: 1.若CE 与圆相切,则 CE 的长为.【考点】圆的切线方程. 【专题】直线与圆.【分析】 设出AF=4k , BF=2k , BE=k ,由DF?FC=AF?BF 求出k 的值,禾U 用切割定理求出 CE .2 1【解答】 解:设 AF=4k , BF=2k , BE=k ,由 DF?FC=AF ?BF ,得 2=8k ,即 k=,2••• AF=2 , BF=1 , BE= , AE=,2 22 17 7由切割定理得CE =BE?EA= =—,2 2 4• CE ==.2【点评】 本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况, 常考题型.13. ( 5 分)(2011?天津)已知集合 A={x €R||x+3|+|x - 4|电}, B= . T _ I : — - |I ' ,则集合 A QB= _【考点】交集及其运算. 【专题】集合.【分析】 求出集合A ,求出集合B ,然后利用集合的运算法则求出 A AB .【解答】 解:集合A={x €R||x+3|+|x - 40},所以A={x| - 4纟老}; 集合-.■' -'. ■ . ; .•-,--_ -■■■■. '| _ _ - - - ■-- ,当且仅当t=〔时取等号,所以 B={x|x A 2},2所以 A AB={x| - 4$W5} A{x|x A 2}={x| - 2$老}, 故答案为:{x| - 2<x<5}.r=4-2【点评】本题考查的知识点是直线与的圆位置关系,抛物线的简单性质及抛物线的参数方程,【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.14. (5 分)(2011?天津)已知直角梯形ABCD 中,AD // BC,/ ADC=90 ° AD=2 , BC=1 ,P是腰DC上的动点,则|的最小值为 5 .【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA , DC分别为x, y轴建立平面直角坐标系,则A (2, 0), B (1 , a) , C (0 , a) , D (0 , 0),设P (0 , b) (0电弟),求出包+3瓦,根据向量模的计算公式,即可求得_ J : :■.<■' | ,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA, DC分别为x , y轴建立平面直角坐标系,则A (2 , 0), B (1 , a) , C ( 0 , a) , D (0 , 0)设P ( 0 , b) ( 04)毛)则」■■= (2 , - b), -1= (1, a- b),•••「'd「用=(5 , 3a- 4b)••• C「二* 「一二;l.. .「为.故答案为5.【点评】此题是个基础题•考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共6小题,满分80分)15. (13 分)(2011?天津)已知函数f (x) =tan (2x+——),(1 )求f (x)的定义域与最小正周期;(2)设a€ ( 0,——),若f (二)=2cos2 a ,求a 的大小.4 2【考点】正切函数的周期性;同角三角函数基本关系的运用; 二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(I)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(n)通过f (2) -2cos2Cl ,化简表达式,结合 a€ ( 0,丄L ),求出a 的大小.241解答,解:⑴由吩 即n 迪.所以x 专呼,k 厘.所以f (x )的定义域/. f (x )的最小正周期为:sin ( a +令)---------- 二2 (co s 2a - si cos ( □ +—)4整理得—L' ] 1 J _ 二 i -二二: cos a 一 sin Cl(cos a+sind )因为 a€ (0,匹),所 4以 sin a +cos a 0 因此(COS a — sin a) 即 sin2 a —因为 a€ (0,二_),2 4所以a_—12【点评】本题考查两角和的正弦函数、余弦函数、 式,二倍角公式等基本知识,考查基本运算能力.16. (13分)(2011?天津)学校游园活动有这样一个游戏项目:甲箱子里装有 3个白球、2 个黑球,乙箱子里装有 1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个 箱子里各随机摸出 2个球,若摸出的白球不少于 2个,则获奖.(每次游戏结束后将球放回原箱)(I)求在1次游戏中,(i) 摸出3个白球的概率; (ii) 获奖的概率;(n)求在2次游戏中获奖次数 X 的分布列及数学期望 E (X ).【考点】离散型随机变量的期望与方差; 互斥事件与对立事件; 古典概型及其概率计算公式;离散型随机变量及其分布列. 【专题】概率与统计.【分析】(1)( i )甲箱子里装有3个白球、2个黑球,乙箱子里装有 1个白球、2个黑球, 这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出 2个球,事件数是 C 52C 32,摸出3个白球事件数为C 32C 21C 21;由古典概型公式,代入数据得到结果,(ii )获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据(i )求出摸出2个白球的概率,再相加即可求得结果,注意运算为:2_丄=:正切函数公式,同角三角函数的基本关系 - ■-.-:=:'得 tan (=2cos2 a,要正确,因为第二问要用本问的结果.(II )连在2次游戏中获奖次数 X 的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【点评】此题是个中档题. 本题考查古典概型及共概率计算公式, 离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.17. (13分)(2011?天津)如图所示,在三棱柱 ABC - A 1B 1C 1中,H 是正方形AA 伯伯 的 中心,AA 仁2*:「,C 1H 丄平面 AA 1B 1B ,且 C 1H=".(1) 求异面直线 AC 与A 1B 1所成角的余弦值; (2) 求二面角 A - A 1C 1 - B 1的正弦值;(3) 设N 为棱B 1C 1的中点,点 M 在平面AA 1B 1B 内,且MN 丄平面A 1B 1C 1,求线段BM【考点】 二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质. 【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【解答】解:(I) (i )设 在一次游戏中摸出i 个白球”为事件A i (i= , 0, 1, 2, 3),则2 1 C3 c 21P (A 3).(ii )设 在一次游戏中获奖2 2 11 C 电 C 9C C nP (A 2)=厂 丁- - - ■ c 5 c 3 c 5”为事件B , 1.一-3则 B=A 2U A 3,又且 A 2、A 3 互斥,所以 P ( B ) =P (A 2)(H)由题意可知 X 的所有可能取值为+P ( A 3)=:」] 0, 1, 2.P (X=0 )==(1 - \ 2=,10 100P (X=2 )==(')「,10 10012.p910021 50 49 100X 的数学期望E (X ) =0X " . ■ 一100 50100^5P (X =1)"吒(1 甘疇,所以X 的分布列是【分析】方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.(I)求出心中的有关向量,然后求出异面直线 AC 与A 1B 1所成角的余弦值;□二0T(H)利用,「: 求出平面AA i C i 的法向量IT ,通过*AA [二 0 的法向量」然后利用MN-AiBi=O(川)设N 为棱B i C i 的中点,设M ( a, b, 0),利用MN 丄平面A i B i C i,结合[一 fHN-A^^O求出a , b ,然后求线段BM 的长.方法二:(I )说明/ C i A i B i 是异面直线AC 与A i B i 所成的角,通过解三角形 C i A i B i ,利 用余弦定理, cosZC l A l B l- 2A 1C 1-A 1B 1-3求出异面直线 AC 与A i B i 所成角的余弦值为士I3(II )连接AC i ,过点A 作AR 丄A i C i 于点R ,连接B i R ,说明/ ARB i 为二面角A - A i C iA "+E E - AB !-B i 的平面角.连接 AB i ,在厶ARB i 中,通过「 • •,1ZAK* D j K求出二面角A -A i C i - B i 的正弦值为 -7(III )首先说明MN 丄A i B i .取HB i 中点D ,连接ND ,由于N 是棱B i C i 中点,推出ND 丄A i B i .证明A i B i 丄平面MND ,连接MD 并延长交A i B i 于点E ,延长EM 交AB 于点F,_连接NE .连接BM ,在Rt △ BFM 中,求出【解答】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点. 依题意得A (2^2. 0, 0) ,B (0, 0, 0),C (近,-伍,真)A t (2A /2 * 2^2* 0),B ] (CL 2品 0) , Cj (V2 * V2 * Vs )cos 疋,盘磴[B ;〉二,一.’, ----- .,1 1|人1匚1二Q求出平面 A I B I C I i 二0[一求二面角A - A i C i - B i 的正弦值;(I )解:易得-- 冷「 —.:—► -------►AC p A 1B 14 V?是, 所以异面直线AC 与A 1B1所成角的余弦值为匚.(H )解:易知.I .... ■--: =匸设平面AA 1C 1的法向量 =(x , y , z ),不妨令」二,可得.. - ■ 同样地,设平面 A i B i C i 的法向量-i=(x , y , z ),n p A t C t =0( -^/2x - V23^V5Z ~0、 厂则* f ______ * 即《 不妨令尸,n-A^^O l - 2V2K =0.可得-厂•「 ■■: 1所以二面角A - A 1C 1 - B 的正弦值为in* Ai Ci=O则-丄即(■后-品*12727=0.从而:j(III )解:由N 为棱B i C i 的中点,方法二:(I )解:由于AC // A 1C 1,故/ C i A i B i 是异面直线AC 与A I B I 所成的角. 因为CiH 丄平面AAlBlB ,又H 为正方形AAlBlB 的中心, 「.二-C . H--可得 A i C 仁B i C i =3 .因此-M--G 曲厶n 1 2打所以异面直线AC 与A i B i 所成角的余弦值为 1.3(II )解:连接 AC i ,易知 AC I =B I C I , 又由于 AA I =B I A I , A i C i =A i C i ,所以△ AC i A i ^A B i C i A i ,过点A 作AR 丄A i C i 于点R ,连接B i R ,于是B i R 丄A i C i ,故/ ARB i 为二面角A - A i C i - B i 的平面角.由MN 丄平面A I B I C I ,得、MN-B!=0连接 AB I ,在△ ARB I 中,上 「门-一 A7.:.-AR 2+B 1R 2 - ABj 2祁•石百=°c在Rt △ A IRBI中,•-…..-(I)求椭圆的离心率 e ;【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质. 【专题】圆锥曲线的定义、性质与方程.所以二面角A - A i C i - B i 的正弦值为-7(III )解:因为 MN 丄平面A i B i C l ,所以MN 丄A i B i . 取HB i 中点D ,连接ND ,由于N 是棱B i C i 中点, 所以 ND // C i H 且、一-厂--.2 2又C i H 丄平面AA i B i B , 所以ND 丄平面AA i B i B ,故ND 丄A i B i . 又 MN AND=N ,所以A i B i 丄平面MND ,连接MD 并延长交A i B i 于点E , 则 ME 丄A iB i ,故 ME // AA i .得---:--,延长EM 交AB 于点F ,2可得-_ :)2在 Rt △ ENM 中,ND 丄 ME ,故 ND 2=DE?DMD 厝晋 F 闻所以可得BM ,在 Rt △ BFM 中,:丫_ y 二];一 . 【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.连接 i8. (i3分)(20ii?天津)在平面直角坐标系2 2F2分别为椭圆1的左、右焦点.已知a 2b 2xOy 中,点 P (a , b ) (a > b > 0)为动点,△ F i PF 2为等腰三角形.F i ,(H)设直线PF 2与椭圆相交于 A , B 两点,M 是直线PF 2上的点,满足f ;:,.连接NE .点M 的轨迹方程.【分析】(I)直接利用△ F 1PF 2为等腰三角形得 离心率e ;将① 代入化简得18x 2- 16 7y - 15=0, ? y='代入① 化简得c=丄」>0.所1&V3X16x以 x >0 , 因此点M 的轨迹方程为18x 2- 16 ■:xy - 15=0 (x >0). 【点评】本题主要考查椭圆的方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.219. (14分)(2011?天津)已知a >0,函数f (x ) =lnx - ax , x >0. (f (x )的图象连续不 断)(I)求f (x )的单调区间;(n)当 手g 时,证明:存在Xo € (2, + 8),使f (耳)=f (冷);(川)若存在均属于区间[1,3]的a 且B- a 丰,使(a)=f( B),证明 — ■ ■-:一匚一5 3|PF 2|=|F 1F 2|,解其对应的方程即可求椭圆的 (n)先把直线方程与椭圆方程联立,求得A ,B 两点的坐标, 代入二,即可求点M 的轨迹方程.【解答】解:(I)设 F i (- c , 0) , F 2 (c , 0)(C >0).由题得 |PF 2|=|F i F 2|,即:'=2c ,整理得 2a2+ :-仁0,得:=-1 (舍),或=,a 2所以e=.2(n)由(I)知a=2c , b= 7c ,可得椭圆方程为y 2=12c 2 Cx-d '消y 并整理得5x 2- 8xc=0 ,3x 2+4y 2=12c 2,直线方程为 y= '; (x - c ).解得x =0, x鲁得方程组的解为x=08c5v=—■—c不妨设 A ( c 二一c ), B (0, - 7 c )5 5*p设点M 的坐标为(x , y ),则AH = (x - — c , 5y -— c ) , M= (x , y+■:c )5由.「,丫 * f'= - 2 即(x -x+ (y --C) 5(y+* ?c ) =- 2.A ,B 的坐标满足方程组①,由 Y =W (x - c ) 得 c=x -【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】(I)求导数f/(x);在函数的定义域内解不等式f/(x)> 0和f/(x)v 0确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II )由(I)知f (x)在(0, 2)内单调递增,在(2, +8)内单调递减•令-二.■' I I .利用函数f (x)在(0, 2)内单调递增,得到2.■- ■ .- 「•最后取I:「「一「从而得到结论;(III )先由f (a) =f (份及( :1)的结论知P,从而f (x )在[a, 3上的最小值为f (a).再依1Wa2<B3建立关于a的不等关系即可证得结论.2【解答】解: (I) : :. - ・■X X令-:< ■.-11^ /'.za当x变化时,f (x), f (X)的变化情况如下表:x(0, ^^)2a 7 2刁2a(V^, + 8)2af' (x) +0—f ( x) 增极大值减所以,f( x)的单调递增区间是I I, --1 . ,:的单调递减区间是2a(II )证明:当-厂"「一丄' :, •s y由(I)知f (x)在(0, 2)内单调递增,在(2, + 8)内单调递减.令H ;■一•'':.由于f (x)在(0, 2)内单调递增,故..取:,'■■■■ ■' : - -J- -'r- 1.1所以存在x°€ (2, x'),使g (xo) =0,即存在- . . ' : 1■, -1 ,.(说明:x'的取法不唯一,只要满足x'> 2,且g (x')v 0即可)(Ill )证明:由f (a) =f (B)及(I )的结论知,, 2a 从而f (x )在[a B 上的最小值为f (a ). 又由 a 1 a, ^€[1 , 3],知 1 Wa 2^B 3.,,ff (2) Af ( Ct ) >f (1) An fln2 -- af (2) CP) C3) . ^In2 - 4a^ln3 - 9a.【点评】本小题主要考查导数的运算、禾U 用导数研究函数的单调性、解不等式、函数的零点 等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.20. (14分)(2011?天津)已知数列{a n }与{b n }满足:(I)求 a 3, a 4, a 5 的值;(n)设 C n =a 2n -1+a 2n+1, n €N ,证明:{c n }是等比数列;(川)设 S k =a 2+a 4+ --+a 2k , k€N ,证明:【考点】数列与不等式的综合;等比关系的确定. 【专题】等差数列与等比数列.【分析】(I)要求a 3, a 4, a 5的值;通过赋值方法,利用已知条件化简求解即可.(n)化简出a 2n - 1+a 2n+1, a 2n+1+a 2n+3的关系,即:C n+1与C n 的关系,从而证明{C n }是等比 数列;就是利用(I)的 b 二'1" 吟覚豎,用2n — 1, 2n , 2n+1 ,替换n匕且为偶数1,.r -———中的n ,化简出只含a n'的关系式,就是a 2n-1+a 2n +2a 2n+1=0,① 2a 2n +a 2n+1+a 2n+2=0,② a 2n+1+a 2n+2+2a 2n+3=0,③ 然后推出 a 2n+1+a 2n+3= —(a 2n - 1+a 2n+1),得到5+1= — C n ( n €N ),从而证明{C n }是等比数列; (川)先研究通项公式a 2k ,推出S k 的表达式,然后计算 ',结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据a 2k -1+a 2k+1= (— 1) k ,对任意k+1k€N 且k 多,列出n 个表达式,利用累加法求出 a 2k = (— 1) (k+3).化简S 2k = ( a 2+a 4)、 / x . . <KI * 3 兀 JJ r 场m-3 ^4jn-2 1 】皿计+ (a 6+a 8)+ ••+ ( a 4k -2+a 4k ) = — k , k €N ,二k=l a k m=l两皿-?屯1 対皿加 S T , 7通过裂项法以及放缩法证明:::\'k=i a k 6【解答】20、满分14 分.b n a n +an+l + b n +l a n+2=°7''■',n €N *,且 a 1=2,a 2=4.% Si, 7可得b =(lf n?Sn u,ii为偶数又b n a n+a n+1+b n+1a n+2=0,当n=l时,a1-l-a2+2a3=:0i由31~2, a2=4s可得a3= - 3;当口二£时,2a2 + a3+a4=0* 可得a4= - 5i当HF3时,&3+a4+2a5=0* 可得屯=4.(II)证明:对任意n€N , a2n-i+a2n+2a2n+仁0,①2a2n+a2n+1+a2n+2=0, ②a2n+l+a2n+2+2a2n+3=0,③②-③,得a2n=a2n+3-④将④ 代入①,可得a2n+1+a2n+3=-( a2n- 1+a2n+1)即C n+1= - c n ( n€N )又c1 =a1+a3= - 1,故C n M D,因此:. ■ ■I是等比数列.c n n(III )证明:由(II)可得a2k- 1+a2k+1= (- 1), 于是,对任意k €N*且k逖有aj + a^ - l t-(巧+叫)二巧+ a亍~1,(-1 ) k ( a2t-3+ a2k - 1^ = _ 1-将以上各式相加,得a1+ (- 1) k a2k-1= -( k - 1),即a2k-1= (- 1) k+1(k+1),k+1此式当k=1时也成立.由④ 式得a2k= (- 1) ( k+3).从而S2k= (a2+a4) + (a6+a8) + ••+ ( a4k-2+a4k) = - k, S2k-仁S2k- a4k=k+3.所以,对任意n €N*, n老芒( 3如「3 | S如_2 ] $仏「打5-机)(2nH~2 _ 加- 1 _ 2nrh3 十2m)k=l a k Jii=l 为m-3 ^-2 1 m=l 加2时2 2^1 2nr+3「: =... . =—(——+____________________ 3 _______ )2*3 ±2 加(2nri-l) (2时2) (2时3). =3急(2m-l) (2^1) (2^2) (2时3)孚订(1-1) + (1-1) +…+] ——-2 ------------- —3 2 3 5 5 7 2n- 1 2n+l (2n+2) (2n+3)^5.5 ] 3 _______飞陀2*2n+l (2n+2) (2n+3)对于n=1,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法. 赋值法是求数列前几项的常用方法,注意n=1的验证,裂项法和放缩法的应用.。
2011年普通高等学校招生全国统一考试数学卷(天津_文)含详解
2011天津文第Ⅰ卷本卷共8小题,每小题5分,共40分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(同理1)i 是虚数单位,复数13i1i-=-( ). 啊.2i - 不.2i + 才.12i -- D .12i -+【解】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选A . 2.设变量,x y ,满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为( ).A .4-B .0C .43的.4 【解】画出可行域为图中的ABC ∆的区域,直线3y x z =-经过()2,2A 时,4z =最大.故选D .3.阅读右边的程序框图,运行相对应的程序,若输入x 的值为4-,则输出y 的值为( ).A .0.5B .1C .2D .4【解】运算过程依次为:输入4x =-43⇒->437x ⇒=--= 73⇒>734x =-=43⇒>431x ⇒=-=13⇒<122y ⇒==⇒输出2. 故选C.4.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈”是“x C ∈”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解】{}02AB x x x =∈<>R 或,(){}{}2002C x x x x x x =∈->∈<>R R 或所以A B C =.所以“x A B ∈”是“x C ∈”的充分必要条件.故选C. 5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ). A .a b c >> B .a c b >> C .b a c >> D .c a b >>【解】因为224log 3.6log 3.6a ==,而23.6 3.6 3.2>>,又函数4log y x =是()0,+∞上的增函数,则2444log 3.6log 3.6log 3.2>>.所以a c b >>.故选B.6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .【解】因为双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则22p-=-,所以4p =.又因为双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,则42pa +=,所以2a =. 因为点()2,1--在双曲线的一条渐近线上,则()12ba-=-,即2a b =,所以1,b c ==,焦距2c =7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,ππϕ-<≤.若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数 C .()f x 在区间[]3π,5π上是减函数D .()f x 在区间[]4π,6π上是减函数【解】由题设得ππ,222π6π,ωϕω⎧⋅+=⎪⎪⎨⎪=⎪⎩解得13ω=,π3ϕ=.所以已知函数为()π2sin 33x f x ⎛⎫=+ ⎪⎝⎭. 其增区间满足π222332x k k ππππ-+≤+≤+,k ∈Z . 解得5π6ππ6π2k x k -+≤≤+,k ∈Z . 取0k =得5ππ2x -≤≤,所以5π,π2⎡⎤-⎢⎥⎣⎦为一个增区间,因为[]5π2π,0,π2⎡⎤-⊆-⎢⎥⎣⎦, 所以()f x 在区间[]2π,0-上是增函数.故选A.8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞ B .(](]2,11,2-- C .()(],21,2-∞- D .[]2,1--【解】由题设()22,12,1,12x x f x x x x ⎧--≤≤=⎨-<->⎩或画出函数的图象,函数图象的四个端点(如图)为()2,1A ,,()2,2B ,()1,1C --,()1,2D --. 从图象中能够看出,直线y c =穿过点B ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点C ,点D 时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(](]2,11,2--.故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分. 9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .【解】3.解集合A 得13x -<<,则{}0,1,2A=Z ,所有元素的和等于0123++=.10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为3m .【解】4.几何体是由两个长方体组合的.体积为 1211124V =⨯⨯+⨯⨯=.11.已知{}n a 是等差数列,n S 为其前n 项和,n +∈N .若316a =,2020S =,则10S 的值为 .【解】110.设公差为d ,由题设31201216,2019020.a a d S a d =+=⎧⎨=+=⎩解得2d =-,120a =.()10110451020452110S a d =+=⨯+⨯-=.12.已知22log log 1a b +≥,则39ab+的最小值为 . 【解】18.因为22log log 1a b +≥,则2log 1ab ≥,2ab ≥,24a b ⋅≥22243923923232318a b a b a b a b+⋅+≥⋅=≥≥=,当且仅当39,2,a b a b ⎧=⎨=⎩即2a b =时,等号成立,所以39a b+的最小值为18.13.(同理12)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2DF CF ==,::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .【解】72.因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =. 由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以CE = 14.(同理14) 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =-,()1,PB c y =-. ()35,34PA PB c y +=-.2355PA PB +=,当且仅当34c y =时,等号成立,于是,当34cy =时,3PA PB +有最小值5. 解法2 . 以相互垂直的向量DP ,DA 为基底表示PB PA 3+,得 ()533332PA PB DA DP PC CB DA PC DP +=-++=+-. 又P 是腰DC 上的动点,即PC 与DP 共线,于是可设DP PC λ=,有DP DA PB PA )13(253-+=+λ. 所以2222553(31)(31)42PA PBDA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即 []213(25)13(DP -+=-+=+λλ. 因为P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5.解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB的FD中点,则12QE BF PB ==, 32PA PB PA PF PE +=+=, ①因为PB PQ PE +=,PB PQ QB -=. 则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+. ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+,2294PQ b =+,()2214QB a b =++,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭,于是()22252544PE a b =+-≥,于是25PE ≥,当且仅当a b =时,等号成立. 由式①,325PA PB PE +=≥, 所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。
2011年天津市高考数学试卷(理科)答案与解析
2011 年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共 8 小题,每小题 5 分,满分 40 分) 1.( 5 分)( 2011?天津) i 是虚数单位,复数 =( )A . 2+iB . 2﹣ iC .﹣ 1+2iD .﹣ 1﹣ 2i【考点】 复数代数形式的乘除运算.【专题】 数系的扩充和复数.【分析】 要求两个复数的除法运算, 分子和分母同乘以分母的共轭复数, 分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.【解答】 解:复数 = ==2 ﹣ i故选 B .【点评】 本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大, 解题应用的原理也比较简单,是一个送分题目.2 2)2.( 5 分)( 2011?天津)设 x , y ∈R ,则 “x ≥2 且 y ≥2”是 “x +y ≥4”的( A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【考点】 必要条件、充分条件与充要条件的判断.【专题】 简易逻辑.2222【分析】 由“x ≥2 且 y ≥2”推出 “x +y ≥4”可证明充分性;由满足 “x +y ≥4”可举出反例推翻 “x ≥2且 y ≥2”,则证明不必要性,综合可得答案.2 2【解答】 解:若 x ≥2 且 y ≥2,则 x ≥4, y ≥4,所以若 x 2 +y 2≥4,则如(﹣ 2,﹣ 2)满足条件,但不满足所以 “x ≥2 且 y ≥2”是 “x 22+y ≥4”的充分而不必要条件. 故选 A .【点评】 本题主要考查充分条件与必要条件的含义.2 2 2 2≥4;x +y ≥8,即 x +yx ≥2 且 y ≥2.3.( 5 分)( 2011?天津)阅读程序框图,运行相应的程序,则输出 i 的值为( )A .3B .4C .5D .6【考点】 程序框图.【专题】 算法和程序框图.【分析】 通过程序框图的要求,写出前四次循环的结果得到输出的值. 【解答】 解:该程序框图是循环结构 经第一次循环得到 i=1 , a=2; 经第二次循环得到 i=2 , a=5; 经第三次循环得到 i=3 , a=16;经第四次循环得到 i=4 , a=65 满足判断框的条件,执行是,输出4故选 B【点评】 本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4.( 5 分)( 2011?天津)已知 n7 是 a 3 与 a 9 的等比中项,S n 为 {a n } 的前 n 项和, n ∈N *,则 S 10 的值为()A .﹣ 110B .﹣ 90C .90D .110【考点】 等差数列的前 n 项和;等比数列的性质.【专题】 等差数列与等比数列.【分析】 通过 a 7 是 a 3 与 a 9 的等比中项,公差为﹣ 2,求出【解答】 解: a 7 是 a 3 与 a 9 的等比中项,公差为﹣ 2,所以 a 72=a 3?a 9, ∵{a n } 公差为﹣ 2,∴a 3=a 7﹣ 4d=a 7+8, a 9=a 7+2d=a 7﹣4,2所以 a 7 =( a 7+8)( a 7﹣ 4),所以 a 7=8,所以 a 1=20,所以 S 10= =110故选 D【点评】 本题是基础题,考查等差数列的前n 项和,等比数列的应用,考查计算能力,常考题型.5.( 5 分)( 2011?天津)在的二项展开式中, x2的系数为()A .B .C .D .【考点】 二项式定理.【专题】 二项式定理.【分析】 利用二项展开式的通项公式求出展开式的通项,令 x 的指数为 2,求出展开式中,x 2的系数,即得答案.r 2r ﹣6 r 3﹣ r【解答】 解:展开式的通项为T r+1=(﹣ 1) 2 C 6 x令 3﹣ r=2 得 r=1所以项展开式中, x 2的系数为﹣故选 C【点评】 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.6.(5 分)( 2011?天津)如图,在△ABC 中, D 是边 AC 上的点,且AB=AD ,2AB=BD ,BC=2BD ,则 sinC 的值为()A.B.C.D.【考点】三角形中的几何计算.【专题】解三角形.【分析】根据题中条件,在△ABD 中先由余弦定理求出 cosA ,利用同角关系可求 sinA ,利用正弦定理可求 sin∠ BDC ,然后在△ BDC 中利用正弦定理求解 sinC 即可【解答】解:设 AB=x ,由题意可得AD=x , BD=△ABD 中,由余弦定理可得∴s inA=△ABD 中,由正弦定理可得? sin∠ ADB=∴△BDC 中,由正弦定理可得故选: D.【点评】本题主要考查了在三角形中,综合运用正弦定理、余弦定理、同角基本关系式等知识解三角形的问题,反复运用正弦定理、余弦定理,要求考生熟练掌握基本知识,并能灵活选择基本工具解决问题.7.( 5 分)( 2011?天津)已知,则()A . a> b> cB .b> a> c C. a> c>b D .c> a> b【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】 比较大小的方法:找 1 或者 0 做中介判断大小, log 43.6< 1,log 23.4> 1,利用分数指数幂的运算法则和对数的运算法则对 c 进行化简,得到 > 1>b ,再借助于中间值 log 2 进行比较大小,从而得到结果. ,【解答】 解:∵ log 23.4>1, log 43.6< 1,又 y=5 x是增函数,∴a > b ,>= =b而 log 23.4> log 2 > log 3 ,∴a > c故 a > c > b . 故选 C .【点评】 此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小, 以及中介值法,考查学生灵活应用知识分析解决问题的能力.8.( 5 分)( 2011?天津)对实数 a 与 b ,定义新运算“? ”: .设函数 f(x )=(x 2﹣ 2)? ( x ﹣ x 2),x ∈R .若函数 y=f (x )﹣ c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是( )A .B .C .D .【考点】 函数与方程的综合运用.【专题】 函数的性质及应用.f ( x ) =( x 2﹣2) ? (x ﹣ x 2)的解析式,并求出 f【分析】 根据定义的运算法则化简函数(x )的取值范围,函数 y=f ( x )﹣ c 的图象与 x 轴恰有两个公共点转化为 y=f ( x ),y=c 图象的交点问题,结合图象求得实数 c 的取值范围.【解答】 解:∵,∴函数 f ( x )=( x 2﹣ 2)? ( x ﹣ x 2) =,由图可知,当 c ∈∴c 的取值范围是,故选 B .【点评】 本题考查二次函数的图象特征、 函数与方程的综合运用,及数形结合的思想. 属于基础题.二、填空题(共 6 小题,每小题 5 分,满分 30 分)9.( 5 分)(2011?天津)一支田径队有男运动员 48 人,女运动员 36 人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为 21 的样本,则抽取男运动员的人数为12 .【考点】 分层抽样方法. 【专题】 概率与统计.【分析】 根据田径队的男女运动员数目和用分层抽样要抽取的数目, 得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果. 【解答】 解:∵田径队有男运动员 48 人,女运动员36 人,∴这支田径队共有48+36=84 人,用分层抽样的方法从该队的全体运动员中抽取一个容量为 21 的样本,∴每个个体被抽到的概率是 ,∵田径队有男运动员 48 人,∴男运动员要抽取48× =12 人,故答案为: 12.【点评】 本题考查分层抽样, 在抽样过程中每个个体被抽到的概率相等, 这是解决这种问题的依据,本题是一个基础题.10.( 5 分)( 2011?天津)一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为 6+π m 3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中的三视图,我们易判断已知中几何体的形状,然后根据已知的三视图分析出几何体的相关几何量,代入体积公式,即可求出该几何体的体积.【解答】解:由已知可得已知的几何体是一个圆锥和长方体的组合体其中上部的圆锥的底面直径为2,高为 3,下部的长方体长、宽高分别为:2,3,1则 V 圆锥 =?π?3= πV 长方体 =1 ×2×3=6则 V=6+ π故答案为: 6+π【点评】本题考查的知识是由三视图求体积,其中根据已知中的三视图分析几何体的形状是解答本题的关键.11.(5 分)( 2011?天津)已知抛物线C 的参数方程为( t 为参数),若斜率为 1 的直线经过抛物线 C 的焦点,且与圆(222( r> 0)相切,则 r=.x﹣ 4)+y =r【考点】直线与圆的位置关系;抛物线的简单性质;直线的参数方程.【专题】圆锥曲线的定义、性质与方程;坐标系和参数方程.【分析】由抛物线 C 的参数方程为我们易求出抛物线的标准方程,进而根据斜率222为 1 的直线经过抛物线 C 的焦点,且与圆( x﹣ 4)+y =r ( r>0)相切,我们根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于 r 的方程,解方程即可得到答案.【解答】解:∵抛物线 C 的参数方程为2则抛物线的标准方程为:y =8x则抛物线 C 的焦点的坐标为(2, 0)又∵斜率为 1 的直线经过抛物线 C 的焦点则直线的方程为y=x﹣ 2,即经 x﹣ y﹣2=02 2 2由直线与圆( x﹣ 4) +y =r ,则r==故答案为:【点评】本题考查的知识点是直线与的圆位置关系,抛物线的简单性质及抛物线的参数方程,其中根据直线与圆相切,则圆心到直线的距离等于半径,求出直线方程后,代入点到直线距离公式,构造关于 r 的方程,是解答本题的关键.12.( 5 分)( 2011?天津)如图,已知圆中两条弦AB 与 CD 相交于点F,E 是 AB 延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE 的长为.【考点】圆的切线方程.【专题】直线与圆.【分析】设出 AF=4k , BF=2k , BE=k ,由 DF ?FC=AF ?BF 求出 k 的值,利用切割定理求出CE.【解答】解:设 AF=4k ,BF=2k , BE=k ,由 DF?FC=AF ?BF,得 2=8k 2,即 k=,∴AF=2 , BF=1 , BE= , AE=,2= ,由切割定理得 CE =BE ?EA=∴CE=.【点评】本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,常考题型.13.( 5 分)( 2011?天津)已知集合A={x ∈R||x+3|+|x ﹣ 4|≤9} ,B=,则集合 A ∩B= {x| ﹣ 2≤x≤5}.【考点】交集及其运算.【专题】集合.【分析】求出集合 A ,求出集合B,然后利用集合的运算法则求出 A ∩B .【解答】解:集合 A={x ∈R||x+3|+|x ﹣4|≤9} ,所以 A={x| ﹣4≤x≤5} ;集合,,当且仅当t=时取等号,所以B={x|x ≥﹣ 2} ,所以 A ∩B={x| ﹣ 4≤x≤5} ∩{x|x ≥﹣ 2}={x| ﹣ 2≤x≤5} ,故答案为: {x| ﹣ 2≤x≤5} .【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.14.( 5 分)( 2011?天津)已知直角梯形ABCD 中, AD ∥ BC,∠ ADC=90 °,AD=2 ,BC=1 ,P 是腰 DC 上的动点,则的最小值为5.【考点】向量的模.【专题】平面向量及应用.【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则 A ( 2,0),B( 1,a),C( 0, a), D(0, 0),设 P( 0, b)( 0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.【解答】解:如图,以直线DA , DC 分别为 x, y 轴建立平面直角坐标系,则A ( 2, 0), B( 1,a), C( 0, a), D( 0,0)设 P( 0, b)( 0≤b≤a)则=(2,﹣ b),=( 1, a﹣ b),∴=( 5,3a﹣ 4b)∴=≥5.故答案为5.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.三、解答题(共 6 小题,满分80 分)15.( 13 分)( 2011?天津)已知函数f( x) =tan( 2x+),(1)求 f( x)的定义域与最小正周期;(2)设α∈( 0,),若f()=2cos2α,求α的大小.【考点】正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.【专题】解三角形.【分析】(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.【解答】解:(Ⅰ)由 2x+≠+k π, k∈Z.所以 x≠,k∈Z.所以f(x)的定义域为: f (x)的最小正周期为:.(Ⅱ)由得 tan()=2cos2α,整理得因为α∈( 0,),所以sinα+cosα≠0 因此( cosα﹣ sinα)2 =即 sin2α= 因为α∈( 0,),所以α=【点评】本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.16.( 13 分)( 2011?天津)学校游园活动有这样一个游戏项目:甲箱子里装有 3 个白球、 2个黑球,乙箱子里装有 1 个白球、 2 个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出 2 个球,若摸出的白球不少于 2 个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在 1 次游戏中,(i )摸出 3个白球的概率;(ii)获奖的概率;(Ⅱ)求在 2 次游戏中获奖次数 X 的分布列及数学期望 E( X ).【考点】离散型随机变量的期望与方差;互斥事件与对立事件;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】( I )( i )甲箱子里装有 3 个白球、 2 个黑球,乙箱子里装有 1 个白球、 2 个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出22 2 个球,事件数是 C5 C3,摸出 3 个白球事件数为211( ii )获奖包含摸出 2 个白球和摸出 3 个C3 C2 C2;由古典概型公式,代入数据得到结果,白球,且它们互斥,根据(i)求出摸出 2 个白球的概率,再相加即可求得结果,注意运算要正确,因为第二问要用本问的结果.(II)连在 2次游戏中获奖次数 X 的取值是0、 1、 2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望.【解答】解:(Ⅰ)( i)设“在一次游戏中摸出i 个白球”为事件 A i( i= , 0,1, 2, 3),则P(A 3)=,(ii )设“在一次游戏中获奖”为事件 B,则 B=A 2∪A 3,又P(A 2)=,且 A 2、A 3互斥,所以 P( B )=P( A 2) +P( A3)=;(Ⅱ)由题意可知X 的所有可能取值为 0, 1, 2.P( X=0 ) =( 1﹣)2=,1(1﹣) = ,P( X=1 ) =C2P( X=2 ) =(2,) =所以 X 的分布列是X012pX 的数学期望 E( X ) =0×.【点评】此题是个中档题.本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力.17.( 13 分)( 2011?天津)如图所示,在三棱柱ABC ﹣ A 1B 1C1中, H 是正方形 AA 1B1B 的中心, AA 1=21111., C H⊥平面 AA B B,且 C H=(1)求异面直线 AC 与 A 1 B1所成角的余弦值;(2)求二面角 A ﹣ A 1C1﹣ B1的正弦值;(3)设 N 为棱 B 1C1的中点,点 M 在平面 AA 1B 1B 内,且 MN ⊥平面 A 1B1C1,求线段 BM 的长.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点.(Ⅰ)求出中的有关向量,然后求出异面直线AC 与 A1B1所成角的余弦值;(Ⅱ)利用求出平面AA 1C1的法向量,通过求出平面 A 1B1C1的法向量,然后利用求二面角 A ﹣A 1C1﹣ B1的正弦值;(Ⅲ)设 N 为棱 B 1C1的中点,设 M( a,b,0),利用 MN ⊥平面 A 1B1C1,结合求出 a, b,然后求线段 BM 的长.方法二:( I )说明∠ C1A 1B1是异面直线 AC 与 A 1B1所成的角,通过解三角形C1A 1B1,利用余弦定理,.求出异面直线 AC 与 A 1B1所成角的余弦值为.(II )连接 AC 1,过点 A 作 AR ⊥ A 1C1于点 R,连接 B1R,说明∠ ARB 1为二面角 A ﹣A 1C1﹣B 1的平面角.连接 AB 1,在△ARB 1中,通过,求出二面角 A ﹣A 1C1﹣ B1的正弦值为.(III )首先说明MN ⊥ A1B 1.取 HB 1中点 D,连接 ND ,由于 N 是棱 B1C1中点,推出ND ⊥ A 1B1.证明 A 1B 1⊥平面 MND ,连接 MD 并延长交 A 1B1于点 E,延长 EM 交 AB 于点F,连接 NE.连接 BM ,在 Rt △ BFM 中,求出.【解答】方法一:如图所示,建立空间直角坐标系,点 B 为坐标原点.依题意得(I )解:易得,于是,所以异面直线AC 与 A 1B1所成角的余弦值为.(II )解:易知.设平面 AA 1C1的法向量 =( x, y, z),则即不妨令,可得,同样地,设平面A1B 1C1的法向量 =( x, y,z),则即不妨令,可得.于是,从而.所以二面角 A ﹣A 1C1﹣ B 的正弦值为.(III )解:由 N 为棱 B1C1的中点,得.设 M ( a, b, 0),则由MN ⊥平面 A 1B1C1,得即解得故.因此,所以线段BM 的长为.方法二:(I)解:由于AC ∥ A1C1,故∠ C1A 1B1是异面直线AC 与 A 1B 1所成的角.因为 C1H⊥平面 AA 1B1B ,又 H 为正方形 AA 1B 1B 的中心,,可得 A 1C1=B 1C1=3 .因此.所以异面直线AC 与 A 1B1所成角的余弦值为.(I I )解:连接 AC 1,易知 AC 1=B1C1,又由于 AA 1=B 1A 1, A 1C1=A 1C1,所以△ AC 1A 1≌△ B1C1A 1,过点 A 作 AR ⊥ A 1C1于点 R,连接 B 1R,于是 B1R⊥ A1C1,故∠ ARB 1为二面角 A ﹣ A 1C1﹣ B 1的平面角.在 Rt△ A 1RB 1中,.连接 AB 1,在△ARB 1中,=,从而.所以二面角 A ﹣A 1C1﹣ B1的正弦值为.(I II )解:因为 MN ⊥平面 A 1B1C1,所以 MN ⊥ A1B 1.取HB 1中点 D,连接 ND ,由于 N 是棱 B1C1中点,所以 ND ∥C1H 且.又C1H⊥平面 AA 1B1B,所以 ND ⊥平面 AA 1B1B,故 ND ⊥ A 1B 1.又MN ∩ND=N ,所以 A 1B 1⊥平面 MND ,连接 MD 并延长交 A 1B1于点 E,则ME ⊥ A1B1,故 ME ∥AA 1.由,得,延长 EM 交 AB 于点 F,可得.连接 NE .在 Rt△ ENM 中, ND ⊥ ME ,故2ND =DE ?DM .所以.可得.连接 BM ,在 Rt△ BFM 中,.【点评】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.18.( 13 分)(2011?天津)在平面直角坐标系xOy 中,点 P(a,b)( a> b> 0)为动点, F1,F2分别为椭圆的左、右焦点.已知△ F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A, B 两点, M 是直线 PF2上的点,满足,求点 M 的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)直接利用 △ F 1PF 2 为等腰三角形得 |PF 2|=|F 1F 2 |,解其对应的方程即可求椭圆的离心率 e ;(Ⅱ)先把直线方程与椭圆方程联立,求得A ,B 两点的坐标,代入 ,即可求点 M 的轨迹方程.【解答】 解:(Ⅰ)设 F 1(﹣ c ,0), F 2( c , 0)( c >0).由题得 |PF 2 |=|F 1F 2|,即=2c ,整理得 2 + ﹣ 1=0 ,得 =﹣ 1(舍),或 = ,所以 e= .(Ⅱ)由(Ⅰ) 知 a=2c ,b= c ,可得椭圆方程为3x 2+4y 2 =12c 2,直线方程为 y=(x ﹣ c ).A ,B 的坐标满足方程组,消 y 并整理得 5x 2﹣ 8xc=0 ,解得 x=0 ,x=,得方程组的解为 , ,不妨设 A ( c ,c ), B ( 0,﹣c ).设点 M 的坐标为( x ,y ),则=( x ﹣ c , y ﹣ c ), =(x , y+ c )由 y=( x ﹣ c )得 c=x ﹣y① ,由=﹣ 2 即( x ﹣ c ) x+ (y ﹣ c )( y+ c )=﹣ 2.将① 代入化简得 18x 2﹣16xy ﹣ 15=0 ,? y= 代入 ① 化简得 c=> 0.所以 x > 0,因此点 M 的轨迹方程为 18x 2﹣ 16xy ﹣15=0( x > 0).【点评】 本题主要考查椭圆的方程和几何性质,直线的方程, 平面向量等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.19.( 14 分)( 2011?天津)已知 a >0,函数 f (x ) =lnx ﹣ ax 2,x > 0.( f ( x )的图象连续不断)(Ⅰ)求 f ( x )的单调区间;(Ⅱ)当时,证明:存在 x 0∈( 2,+∞),使 ;(Ⅲ)若存在均属于区间 [1,3]的 α,β,且 β﹣ α≥1,使 (f α)=f (β),证明.【考点】利用导数研究函数的单调性;函数的零点;不等式的证明.【专题】导数的综合应用.【分析】( I )求导数 fˊ( x);在函数的定义域内解不等式 fˊ(x)> 0 和 f ˊ( x)< 0 确定函数的单调区间,若在函数式中含字母系数,往往要分类讨论.(II )由( I)知 f( x)在( 0, 2)内单调递增,在(2, +∞)内单调递减.令.利用函数f( x)在( 0, 2)内单调递增,得到.最后取.从而得到结论;(III )先由 f (α) =f (β)及( I)的结论知,从而f(x)在[α,β]上的最小值为 f( a).再依 1≤α≤2≤β≤3建立关于 a 的不等关系即可证得结论.【解答】解:( I),令.当 x 变化时, f' ( x), f ( x)的变化情况如下表:x(0,)(,+∞)f ′( x) +0﹣f ( x)增极大值减所以,(f x)的单调递增区间是的单调递减区间是.(II )证明:当.由( I)知 f( x)在( 0, 2)内单调递增,在( 2, +∞)内单调递减.令.由于 f( x)在( 0, 2)内单调递增,故.取.所以存在x0∈( 2, x'),使 g( x0) =0,即存在.(说明: x'的取法不唯一,只要满足x'> 2,且 g( x' )< 0 即可)(III )证明:由 f ( α)=f (β)及( I )的结论知,从而 f ( x )在 [ α,β]上的最小值为f ( a ).又由 β﹣ α≥1, α,β∈[1,3] ,知 1≤α≤2≤β≤3.故从而.【点评】 本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.20.( 14 分)( 2011?天津)已知数列{a n } 与 {b n } 满足:, n ∈N *,且 a 1=2, a 2=4 .(Ⅰ)求 a 3,a 4, a 5 的值;(Ⅱ)设 c n2n ﹣1 2n+1, n ∈N *,证明: {c n=a+a} 是等比数列;(Ⅲ)设 S k =a 2+a 4+⋯+a 2k , k ∈N *,证明:.【考点】 数列与不等式的综合;等比关系的确定.【专题】 等差数列与等比数列. 【分析】(Ⅰ)要求 a 3, a 4, a 5 的值;通过赋值方法,利用已知条件化简求解即可.(Ⅱ)化简出a 2n ﹣ 1+a 2n+1, a 2n+1+a 2n+3的关系,即: c n+1 与 c n 的关系,从而证明 {c n } 是等比数列;就是利用(Ⅰ)的,用 2n ﹣ 1, 2n , 2n+1,替换中的 n ,化简出只含 “a n ”的关系式, 就是 a 2n﹣ 1+a 2n +2a 2n+1=0,① 2a 2n +a 2n+1+a 2n+2=0,② a 2n+1+a 2n+2+2a 2n+3=0,③ 然后推出 a 2n+1+a 2n+3=﹣( a 2n ﹣ 1+a 2n+1),得到 c n+1=﹣c n ( n ∈N *),从而证明 {c n } 是等比数列;(Ⅲ)先研究通项公式a 2k ,推出 S k 的表达式,然后计算,结合证明的表达式,利用表达式的特征,通过裂项法以及放缩法证明即可;就是:根据 a 2k ﹣1+a 2k+1=(﹣ 1) k,对任意k ∈N * 且 k ≥2,列出 n 个表达式,利用累加法求出 a 2k =(﹣ 1) k+1( k+3 ).化简 S 2k =( a 2+a 4)+(a 6+a 8)+⋯+( a 4k ﹣ 2+a 4k )=﹣ k ,k ∈N * ,,通过裂项法以及放缩法证明:.【解答】 20、满分 14 分.(I )解:由,可得又 b n a n +a n+1+b n+1a n+2=0,( I I )证明:对任意 n ∈N *, a 2n ﹣1+a 2n +2a 2n+1=0, ①2a 2n +a 2n+1+a 2n+2=0, ② a 2n+1+a 2n+2+2a 2n+3=0, ③ ② ﹣③ ,得 a 2n =a 2n+3. ④将④ 代入 ① ,可得 a 2n+1+a 2n+3=﹣( a 2n ﹣ 1+a 2n+1)即 c n+1=﹣ c n ( n ∈N *) 又 c 1=a 1+a 3=﹣ 1,故 c n ≠0,因此是等比数列.( I II )证明:由( II )可得 a 2k ﹣ 1+a 2k+1=(﹣ 1) k,于是,对任意 k ∈N *且 k ≥2,有将以上各式相加,得 a 1+(﹣ 1)ka 2k ﹣ 1=﹣( k ﹣1),即 a 2k ﹣ 1=(﹣ 1)k+1( k+1),此式当 k=1 时也成立.由 ④ 式得 a 2k =(﹣ 1) k+1( k+3).从而 S 2k =( a 2+a 4) +( a 6+a 8)+⋯+( a 4k ﹣ 2+a 4k )=﹣ k , S 2k ﹣1=S 2k ﹣ a 4k =k+3 .*所以,对任意 n ∈N , n ≥2,== ==对于 n=1 ,不等式显然成立.【点评】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.赋值法是求数列前几项的常用方法,注意n=1 的验证,裂项法和放缩法的应用.。
2011年普通高等学校招生全国统一考试(天津卷)
2011年普通高等学校招生全国统一考试(天津卷)2011年普通高等学校招生全国统一考试(天津卷)语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间150分钟,第Ⅰ卷1页至5页,第Ⅱ卷6页至10页。
答卷前,考生务必将自己的姓名,准考号填写在答题卡上,并在规定位置粘贴考试用条形码,答卷时,考生务必将答案涂写在答题卡上,答在试卷上无效,考试结束后,将本是卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共12小题,每小题3分,36分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
一、(15分)1.下列词语中加点安的读音,全都正确的一组是A.浸渍(zì)蓓蕾(lěi)剖(pōu)析追本朔(shuò)源B.庇(bì)护载(zěi)体友谊(yì)莘(xān)莘学子C.殷(yīn)红翘(qiáo)首刹(shà)那少不更(gēng)事D.低劣(liè)广袤(mào)婆娑(suā)卓(zhuó)有成效2.下列词语中没有错别字的一组是A. 坐落松弛协赛曲融会贯通B. 扫描诙谐天然气振耳欲聋C. 博弈巨挚殊不知毋容置疑D. 竞标临摹吓马威门庭若市3.下列语段横线上填入的词语,最恰当的一组是作为“梅兰竹菊”四君子之首,梅为历代文人雅士所。
此刻,寺院周围庄承的红墙,是我们镜头画面中的中国红;的雪花,是飘舞在空中的精灵;而晶莹如黄玉般的腊梅,暗香,遗世独立的佳人。
A.钟爱洋洋洒洒浮动好像B.喜爱纷纷扬扬浮动犹如C.钟爱纷纷扬扬飘动好像D.喜爱洋洋洒洒飘动犹如4. 下列各句中没有语病且句意明确的一句是A.旺盛的国内需求正在成为跨国巨头获取暴力的重要市场,尤其是针对中国的石油、铁矿石以及基础能源等方面表现得异常突出。
(完整版)2011年高考数学天津卷(理科)
2011年天津市高考数学(理科)试题一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131i i --= A .2i + B .2i - C .12i -+ D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.阅读右边的程序框图,运行相应的程序,则输出i 的值为A .3B .4C .5D .64.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在62x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为 A .154- B .154C .38-D .38 6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===, 则sin C 的值为A .3B .3C .6D .6 7.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则 A .a b c >> B .b a c >> C .a c b >> D .c a b >>8.对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =--∈若函数()y f xc =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________10.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________3m 11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数),若斜率为1的直线经过抛物线C 的的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________12.如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且 2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为__________13.已知集合{}1|349,|4,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +u u u r u u u r 的最小值为____________三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()tan(2),4f x x π=+, (Ⅰ)求()f x 的定义域与最小正周期; (Ⅱ)设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在一次游戏中,(i )摸出3个白球的概率;(ii )获奖的概率;(Ⅱ)求在两次游戏中获奖次数X 的分布列及数学期望()E X17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线与所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-u u u u r u u u u r ,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断) (Ⅰ)求()f x 的单调区间; (Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足: 1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==. (Ⅰ)求345,,a a a 的值; (Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列; (Ⅲ)设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6n k k k S n N a =<∈∑.。
2011年高考天津市数学试卷-文科(含详细答案)
2011年普通高等学校招生全国统一考试天津卷(文科)第Ⅰ卷本卷共8小题,每小题5分,共40分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(同理1)i 是虚数单位,复数13i1i-=-( ). 啊.2i - 不.2i + 才.12i -- D .12i -+【解】()()()()13i 1i 13i 42i 2i 1i 1i 1i 2-+--===---+.故选A .2.设变量,x y ,满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为( ).A .4-B .0C .43的.4 【解】画出可行域为图中的ABC ∆的区域,直线3y x z =-经过()2,2A 时,4z =最大.故选D .3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4-,则输出y 的值为( ).A .0.5B .1C .2D .4【解】运算过程依次为:输入4x =-43⇒->437x ⇒=--= 73⇒>734x =-=43⇒> 431x ⇒=-=13⇒<122y ⇒==⇒输出2.故选C.4.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈ ”是“x C ∈”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解】{}02A B x x x =∈<>R 或,(){}{}2002C x x x x x x =∈->∈<>R R 或所以A B C = .所以“x A B ∈ ”是“x C ∈”的充分必要条件.故选C. 5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ). A .a b c >> B .a c b >> C .b a c >> D .c a b >>【解】因为224log 3.6log 3.6a ==,而23.6 3.6 3.2>>,又函数4log y x =是()0,+∞上的增函数,则2444log 3.6log 3.6log 3.2>>. 所以a c b >>.故选B.6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .【解】因为双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则22p-=-, 所以4p =.又因为双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,则42pa +=,所以2a =. 因为点()2,1--在双曲线的一条渐近线上,则()12ba-=-,即2a b =,所以1,b c ==2c =7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,ππϕ-<≤.若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数C .()f x 在区间[]3π,5π上是减函数D .()f x 在区间[]4π,6π上是减函数【解】由题设得ππ,222π6π,ωϕω⎧⋅+=⎪⎪⎨⎪=⎪⎩解得13ω=,π3ϕ=.所以已知函数为()π2sin 33x f x ⎛⎫=+ ⎪⎝⎭. 其增区间满足π222332x k k ππππ-+≤+≤+,k ∈Z . 解得5π6ππ6π2k x k -+≤≤+,k ∈Z . 取0k =得5ππ2x -≤≤,所以5π,π2⎡⎤-⎢⎥⎣⎦为一个增区间,因为[]5π2π,0,π2⎡⎤-⊆-⎢⎥⎣⎦, 所以()f x 在区间[]2π,0-上是增函数.故选A.8.对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1--【解】由题设()22,12,1,12x x f x x x x ⎧--≤≤=⎨-<->⎩或画出函数的图象,函数图象的四个端点(如图)为()2,1A ,,(),2B ,()1,1C --,()1,2D --.从图象中可以看出,直线y c =穿过点B ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点C ,点D 时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(](]2,11,2-- .故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分.9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .【解】3.解集合A 得13x -<<,则{}0,1,2A =Z ,所有元素的和等于0123++=. 10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为3m .【解】4.几何体是由两个长方体组合的.体积为 1211124V =⨯⨯+⨯⨯=.11.已知{}n a 是等差数列,n S 为其前n 项和,n +∈N .若316a =,2020S =,则10S 的值为 .【解】110.设公差为d ,由题设31201216,2019020.a a d S a d =+=⎧⎨=+=⎩解得2d =-,120a =.()10110451020452110S a d =+=⨯+⨯-=.12.已知22log log 1a b +≥,则39ab+的最小值为 . 【解】18.因为22log log 1a b +≥,则2log 1ab ≥,2ab ≥,24a b ⋅≥3918a b +≥=≥,当且仅当39,2,a b a b ⎧=⎨=⎩即2a b =时,等号成立,所以39a b+的最小值为18.13.(同理12)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .【解】2. 因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =. 由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以CE =. 14.(同理14) 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.35PA PB += ,当且仅当34c y =时,等号成立,于是,当34cy =时,3PA PB + 有最小值5.解法2 . 以相互垂直的向量DP ,DA 为基底表示PB PA 3+,得()533332P A P BD A D P P C C B D A P C D P+=-++=+-. 又P 是腰DC 上的动点,即与共线,于是可设λ=,有)13(253-+=+λ. 所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即 []213(25)13(-+=-+=+λλ. 由于P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5.解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB 的中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①因为PB PQ PE += ,PB PQ QB -=.则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,于是()22252544PE a b =+-≥ ,于是25PE ≥ ,当且仅当a b =时,等号成立. 由式①,325PA PB PE +=≥,所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(天津卷)数学理科本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟. 答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并 交回.第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件A ,B 互斥,那么 如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()().P AB P A P B =棱柱的体积公式.V Sh =圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积 h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--= A .2i + B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 3.阅读右边的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 4.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在62⎛⎫ ⎝的二项展开式中,2x 的系数为 A .154- B .154 C .38- D .386.如图,在△ABC 中,D 是边AC上的点,且,2,2AB CD AB BC BD ===,则sin C的值为A.3B.6C .3D .67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭第II 卷二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法 从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人 数为___________10.一个几何体的三视图如右图所示(单位:m ),则该几何体 的体积为__________3m11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线段CE 的长为__________.13.已知集合{}1|349,|46,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB + 的最小值为____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X .17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,1AA =1C H ⊥平面11AA B B,且1C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断) (Ⅰ)求()f x 的单调区间; (Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =;(Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足:1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且 122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;(III )设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分. BABDCDCB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分. 9.12 10.6π+ 1112.213.{|25}x x -≤≤ 14.5 三、解答题15.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分. (I )解:由2,42x k k Z πππ+≠+∈,得,82k x k Z ππ≠+∈. 所以()f x 的定义域为{|,}82k x R x k Z ππ∈≠+∈ ()f x 的最小正周期为.2π (II )解:由()2cos 2,2a f a =得tan()2cos 2,4a a π+=22sin()42(cos sin ),cos()4a a a a ππ+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin a a a a a a a a+=+--因为(0,)4a π∈,所以sin cos 0.a a +≠因此211(cos sin ),sin 2.22a a a -==即由(0,)4a π∈,得2(0,)2a π∈. 所以2,.612a a ππ==即16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分. (I )(i )解:设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i ==则2132322531().5C C P A C C =⋅=(ii )解:设“在1次游戏中获奖”为事件B ,则23B A A = ,又22111322222222253531(),2C C C C C P A C C C C =⋅+⋅= 且A 2,A 3互斥,所以23117()()().2510P B P A P A =+=+= (II )解:由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-====所以X 的分布列是 X 012P9100 2150 49100X 的数学期望921497()012.100501005E X =⨯+⨯+⨯=17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得(0,0,0),A B C11(2,0),,22,2,5)A B C (I)解:易得11((AC A B ==-,于是111111cos ,3||||AC A B AC A B AC A B ⋅===⋅所以异面直线AC 与A 1B 1所成角的余弦值为3(II)解:易知111(0,(AA AC ==设平面AA 1C 1的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨=⎪⎩不妨令x =可得m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =,则11110,0.n AC n A B ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨-=⎪⎩不妨令y =可得n =于是2cos ,,||||7m n m n m n ⋅===⋅从而sin ,m n =所以二面角A —A 1C 1—B的正弦值为7(III )解:由N 为棱B 1C 1的中点,得(22N 设M (a ,b ,0),则MN a b = 由MN ⊥平面A 1B 1C 1,得11110,0.MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩即)(0,2)(()(0.222a ab ⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅+=⎪⎩解得24a b ⎧=⎪⎪⎨⎪=⎪⎩故(,24M因此(24BM = ,所以线段BM的长为||4BM = 方法二:(I )解:由于AC//A 1C 1,故111C A B ∠是异面直线AC 与A 1B 1所成的角. 因为1C H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,11AA C H ==可得1111 3.AC B C ==因此2221111111111111cos 23AC A B B C C A B AC A B +-∠==⋅ 所以异面直线AC 与A 1B 1所成角的余弦值为3(II )解:连接AC 1,易知AC 1=B 1C 1,又由于AA 1=B 1A 1,A 1C 1=A 1=C 1,所以11AC A ∆≌11B C A ∆,过点A 作11AR AC ⊥于点R ,连接B 1R ,于是111B R AC ⊥,故1ARB ∠为二面角A —A 1C 1—B 1的平面角.在11Rt A RB ∆中,11111sin 3B R A B RA B =⋅∠== 连接AB 1,在1ARB ∆中,2221111114,,cos 2AR B R AB AB AR B R ARB AR B R +-==∠=⋅27=-,从而1sin ARB ∠=所以二面角A —A 1C 1—B 1的正弦值为7(III )解:因为MN ⊥平面A 1B 1C 1,所以11.MN A B ⊥取HB 1中点D ,连接ND ,由于N 是棱B 1C 1中点, 所以ND//C 1H且1122ND C H ==. 又1C H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B ,故11.ND A B ⊥ 又,MN ND N =所以11A B ⊥平面MND ,连接MD 并延长交A 1B 1于点E , 则111,//.ME A B ME AA ⊥故 由1111111,4B E B D DE AA B A B A ===得1DE B E ==,延长EM 交AB 于点F ,可得12BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM ⊥=⋅故所以24ND DM DE ==可得4FM =连接BM ,在Rt BFM ∆中,4BM ==18.本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I )解:设12(,0),(,0)(0)F c F c c -> 由题意,可得212||||,PF F F =2.c =整理得22()10,1cc caa a+-==-得(舍), 或1.2c a =所以1.2e = (II )解:由(I)知2,,a c b == 可得椭圆方程为2223412,x y c += 直线PF 2方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -= 解得1280,.5x x c ==得方程组的解21128,0,5,.5x c x y y c ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A c B 设点M的坐标为8(,),(,),(,)55x y AM x c y BM x y =--=则,由),.3y x c c x y =-=-得于是38(,),15555AM y x y x =--().BM x = 由2,AM BM ⋅=-即38()()215555y x x y x -⋅+-=-,化简得218150.x --=将22105,0.16x y c x y c x +==-=>得所以0.x >因此,点M的轨迹方程是218150(0).x x --=>19.本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力和运用函数思想分析解决问题的能力及分类讨论的思想方法.满分14分.(I )解:2112'()2,(0,)2ax f x ax x x -=-=∈+∞,令'()0,2f x a=解得x=当x 变化时,'(),()f x f x 的变化情况如下表:x(0,2a2a()2a+∞ '()f x +0 - ()f x极大值所以,()f x的单调递增区间是()f x的单调递减区间是).+∞ (II )证明:当211,()ln .88a f x x x ==-时 由(I )知()f x 在(0,2)内单调递增, 在(2,)+∞内单调递减.令3()()().2g x f x f =-由于()f x 在(0,2)内单调递增, 故3(2)(),2f f >即g(2)>0.取23419'2,(')0.232e x e g x -=>=<则 所以存在00(2,'),()0,x x g x ∈=使即存在003(2,),()().2x f x f ∈+∞=使(说明:'x 的取法不唯一,只要满足'2,(')0x g x ><且即可)(III )证明:由()()f f αβ=及(I)的结论知αβ<<, 从而()[,]f x αβ在上的最小值为().f a又由1βα-≥,,[1,3],αβ∈知12 3.αβ≤≤≤≤故(2)()(1),ln 24,(2)()(3).ln 24ln 39.f f f a a f f f a a αβ≥≥-≥-⎧⎧⎨⎨≥≥-≥-⎩⎩即从而ln 3ln 2ln 2.53a -≤≤20.本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(I )解:由*3(1),,2nn b n N +-=∈可得1,n n b ⎧=⎨⎩为奇数2,n 为偶数又1120,n n n n n b a a b a +++++=123123234434543;5;4.=-=-=当n=1时,a +a +2a =0,由a =2,a =4,可得a 当n=2时,2a +a +a =0,可得a 当n=3时,a +a +2a =0,可得a(II )证明:对任意*,n N ∈2122120,n n n a a a -+++= ① 2212220,n n n a a a ++++= ② 21222320,n n n a a a +++++=③ ②—③,得223.n n a a +=④将④代入①,可得21232121()n n n n a a a a ++-++=-+ 即*1()n n c c n N +=-∈又1131,0,n c a a =+=-≠故c 因此11,{}n n nc c c +=-所以是等比数列. (III )证明:由(II )可得2121(1)kk k a a -++=-, 于是,对任意*2k N k ∈≥且,有133********,()1,1,(1)() 1.k k k a a a a a a a a --+=--+=-+=--+=-将以上各式相加,得121(1)(1),kk a a k -+-=-- 即121(1)(1)k k a k +-=-+,此式当k=1时也成立.由④式得12(1)(3).k k a k +=-+从而22468424()()(),k k k S a a a a a a k -=++++++=-2124 3.k k k S S a k -=-=+所以,对任意*,2n N n ∈≥,44342414114342414()nnk m m m mk m k m m m m S S S S S a a a a a ---==---=+++∑∑ 12221232()2222123nm m m m mm m m m =+-+=--++++∑ 123()2(21)(22)(22)nm m m m m ==++++∑2253232(21)(22)(23)nm m m n n ==++⨯+++∑ 21533(21)(21)(22)(23)n m m m n n =<++-+++∑ 151111113[()()()]3235572121(22)(23)n n n n =+⋅-+-++-+-+++1551336221(22)(23)7.6n n n =+-⋅++++<对于n=1,不等式显然成立. 所以,对任意*,n N ∈2121212212n n n n S S S S a a a a --++++ 32121241234212()()()n n n nS S S S S S a a a a a a --=++++++ 22211121(1)(1)(1)41244(41)4(41)n nn =--+--++----- 22211121()()()41244(41)44(41)n n n n n =-+-+--+--111().4123n n ≤-+=-。