二项式定理(通项公式).
二项式定理通项公式
例3:计算0.99710 的近似值。精确到0.001
解:0.99710 1 0.00310
c100 110 c110 19 0.003 c120 18 0.003 2
根据精确度的要求,从第三项起的各项都可以省去,所以
0.997 10 110 0.003 45 1 0.000009
a b0 1
a b1 1 1
a b2 1 2 1 a b3 1 3 3 1 a b4 1 4 6 4 1 a b5 1 5 10 10 5 1 a b6 1 6 15 20 15 6 1
表中每行两端都是1,而且除1以外的每 一个数都等于它肩上两数的和.
通项公式的应用:Tk+1=Cnkan-kbk
3
(2) 求展开式中含x2 的项。
(3) 求展开式中系数最大的项和系数
最小的项。
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开
3
式各项系数的和;(2) 求展开式中含 x 2的项。 (3) 求展开式中系数最大的项和系数最小的项。
分析:要灵活、正确的应用二项展开 式的 通项公式。 (1) 先根据通项公式得到第五项与第 三项 的系数,再由已知条件求出n的 值。由“赋值法”求各项系数的和。
通项公式:TK+1=Cnkan-kbk
2.二项展开式的特点 (1) 项数: 展开式有共n+1项 (2) 系数 : 都是组合数,
依次为Cn0,Cn1,Cn2,Cn3,…Cnn (3) 指数的特点 :
1) a的指数 由n 0 (降幂) 2) b的指数由0 n (升幂) 3) a和b的指数和为n
3.二项式定理的几个变式:
二项式定理
在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
二项式定理
第二节 二项式定理[最新考纲] 会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *); (2)通项公式:T r +1=C r n an -r b r ,它表示第r +1项; (3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C n n .2.二项式系数的性质(1)0≤r ≤n 时,C r n 与C n -r n 的关系是C r n =C n -r n .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为.3.各二项式系数和(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.一、思考辨析(正确的打“√”,错误的打“×”)(1)C r n a n -r b r是(a +b )n 的展开式中的第r 项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) [答案] (1)× (2)× (3)√ (4)√ 二、教材改编1.(1-2x )4展开式中第3项的二项式系数为( ) A .6 B .-6 C .24 D .-24A [(1-2x )4展开式中第3项的二项式系数为C 24=6.故选A.] 2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( ) A .5 B .-20 C .20 D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5(12x )5-r(-2y )r .根据题意,得⎩⎪⎨⎪⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.]3.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( ) A .1 B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________. 8 [令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]考点1 二项式展开式的通项公式的应用形如(a +b)n 的展开式问题求二项展开式中的项的3种方法求二项展开式的特定项问题,实质是考查通项一般需要建立方程求r ,再将r 的值代回通项求解,注意r 的取值范围(r =0,1,2,…,n ).(1)第m 项:此时r +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.(1)(2018·全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80(2)若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.(3)(2019·浙江高考)在二项式(2+x )9的展开式中,常数项是________;系数为有理数的项的个数是________.(1)C (2)-2 (3)162 5 [(1)T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫2x r =C r 52r x 10-3r,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.(2)⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-52r ,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.(3)由题意,(2+x )9的通项为T r +1=C r 9(2)9-r x r(r =0,1,2…9),当r =0时,可得常数项为T 1=C 09(2)9=162;若展开式的系数为有理数,则r =1,3,5,7,9,有T 2, T 4, T 6, T 8, T 10共5个项.]已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.[教师备选例题]1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87B [1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.]1.在(x 2-4)5的展开式中,含x 6的项为________.160x 6 [因为(x 2-4)5的展开式的第k +1项为T k +1=C k 5(x 2)5-k(-4)k =(-4)k C k 5x10-2k , 令10-2k =6,得k =2,所以含x 6的项为T 3=(-4)2·C 25x 6=160x 6.]2.若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( ) A .±2 B.12 C .-2 D .±12A [⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式的通项为T k +1=C k 6(x 2)6-k ·⎝ ⎛⎭⎪⎫1ax k =C k 6⎝ ⎛⎭⎪⎫1a k x 12-3k, 令12-3k =0,得k =4. 故C 46·⎝ ⎛⎭⎪⎫1a 4=1516,即⎝ ⎛⎭⎪⎫1a 4=116,解得a =±2,故选A.]形如(a +b )n (c +d )m 的展开式问题求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n ,m 中一个比较小,可考虑把它展开得到多个,如(a +b )2(c +d )m =(a 2+2ab +b 2)(c +d )m ,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )n ,(c +d )m 的通项公式,综合考虑.(1)(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35(2)(1-x )6(1+x )4的展开式中x 的系数是( ) A .-4 B .-3 C .3 D .4 (1)C (2)B [(1)因为(1+x )6的通项为C r 6x r,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中含x 2的项为1·C 26x 2和1x2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30.故选C.(2)(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3.]求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.1.(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3D [能够使其展开式中出现常数项,由多项式乘法的定义可知需满足:第一个因式取x 2项,第二个因式取1x 2项得x 2×1x 2×C 45(-1)4=5;第一个因式取2,第二个因式取(-1)5得2×(-1)5×C 55=-2,故展开式的常数项是5+(-2)=3,故选D.]2.若(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13B.12 C .1 D .2D [由题意得⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝ ⎛⎭⎪⎫1x k =C k 10x 10-2k,⎝ ⎛⎭⎪⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.]形如(a +b +c )n 的展开式问题求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.(1)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是________.(用数字作答) (3)设(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,则a 1等于________. (1)-160 (2)-120 (3)-240 [(1)⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x )6-k·⎝⎛⎭⎪⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6表示6个因式x 2-2x +y 的乘积,在这6个因式中,有3个因式选y ,其余的3个因式中有2个选x 2,剩下一个选-2x ,即可得到x 3y 3的系数.即x 3y 3的系数是C 36C 23×(-2)=20×3×(-2)=-120.(3)(x 2-3x +2)5=(x -1)5(x -2)5,其展开式中x 的系数a 1=C 45(-1)4×(-2)5+(-1)5C 45(-2)4=-240.]二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.1.(2015·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60C [法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.]2.(x -13x-y )6的展开式中含xy 的项的系数为( )A .30B .60C .90D .120B [展开式中含xy 的项来自C 16(-y )1(x -13x)5,(x -13x)5展开式通项为T r +1=(-1)r C r 5x 5-43r,令5-43r =1⇒r =3,(x -13x)5展开式中x 的系数为(-1)3C 35, 所以(x -13x-y )6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60,故选B.]考点2 二项式系数的和与各项的系数和问题赋值法在求各项系数和中的应用(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)在⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120(2)(2019·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1 [(1)令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n ,所以⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和为4n,又二项式系数和为2n,所以4n 2n =2n=32,解得n =5.二项展开式的通项T r +1=C r 5x 5-r ⎝ ⎛⎭⎪⎫3x r =C r 53r x 5-32r ,令5-32r =2,得r =2, 所以x 2的系数为C 2532=90,故选C.(2)令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m )9·m 9=39, ∴m (2+m )=3, ∴m =-3或m =1.](1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号).(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.1.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A.-960 B.960 C.1120 D.1680C[因为偶数项的二项式系数之和为2n-1=128,所以n-1=7,n=8,则展开式共有9项,中间项为第5项,因为(1-2x)8的展开式的通项T r+1=C r8(-2x)r =C r8(-2)r x r,所以T5=C48(-2)4x4,其系数为C48(-2)4=1120.]2.在(1-x)(1+x)4的展开式中,含x2项的系数是b.若(2-b x)7=a0+a1x+…+a7x7,则a1+a2+…+a7=________.-128[在(1-x)(1+x)4的展开式中,含x2项的系数是b,则b=C24-C14=2.在(2-2x)7=a0+a1x+…+a7x7中,令x=0得a0=27,令x=1,得a0+a1+a2+…+a7=0.∴a1+a2+…+a7=0-27=-128.]3.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.3[设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,令x=1,得16(a+1)=a0+a1+a2+a3+a4+a5,①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②,得16(a+1)=2(a1+a3+a5),即展开式中x的奇数次幂项的系数之和为a1+a3+a5=8(a+1),所以8(a+1)=32,解得a = 3.]考点3 二项式系数的性质二项式系数的最值问题求二项式系数的最大值,则依据(a +b)n 中n 的奇偶及二次项系数的性质求解.1.二项式⎝⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7D [根据⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x n 的展开式的通项为T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎪⎫13x r=(3)20-r·C r 20·x20-4r 3,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.]2.(2019·南昌模拟)设m 为正整数,()x +y 2m展开式的二项式系数的最大值为a ,()x +y 2m +1展开式的二项式系数的最大值为b ,若15a =8b ,则m =________.7 [()x +y2m 展开式中二项式系数的最大值为a =C m 2m,()x +y 2m +1展开式中二项式系数的最大值为b =C m +12m +1,因为15a =8b ,所以15C m 2m =8C m +12m +1,即15(2m )!m !m !=8(2m +1)!m !(m +1)!,解得m =7.] 3.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.C 715(3x )7和C 815(3x )8 [由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.]二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.项的系数的最值问题二项展开式系数最大项的求法如求(a +b x )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1 从而解出k 来,即得.已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,二项式系数最大的项为________,系数的绝对值最大的项为________.-8 064 -15 360x 4 [由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n=32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x )5⎝ ⎛⎭⎪⎫-1x 5=-8 064. 设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x )10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , 令⎩⎪⎨⎪⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1, 得⎩⎪⎨⎪⎧C k 10≥2C k -110,2C k 10≥C k +110,即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k解得83≤k ≤113. ∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.]展开式中项的系数一般不同于二项式系数,求解时务必分清.[教师备选例题]已知(x 23+3x 2)n 的展开式中第3项与第4项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[解] (1)易知n =5,故展开式共有6项,其中二项式系数最大的项为第三、第四两项.所以T 3=C 25(x 23)3·(3x 2)2=90x 6, T 4=C 35(x 23)2·(3x 2)3=270x 223. (2)设展开式中第r +1项的系数最大.T r +1=C r 5(x 23)5-r ·(3x 2)r =C r 5·3r ·x 10 + 4r 3, 故有⎩⎪⎨⎪⎧C r 5·3r ≥C r -15·3r -1,C r 5·3r ≥C r +15·3r +1,即⎩⎨⎧3r ≥16-r .15-r ≥3r +1.解得72≤r ≤92.因为r ∈N ,所以r =4,即展开式中第5项的系数最大.T 5=C 45·x 23·(3x 2)4=405x 263.若⎝ ⎛⎭⎪⎫x 3+1x 2n 的展开式中第6项系数最大,则不含x 的项为( ) A .210 B .10 C .462 D .252A [∵第6项系数最大,且项的系数为二项式系数,∴n 的值可能是9,10,11.设常数项为T r +1=C r n x 3(n -r )x -2r =C r n x3n -5r , 则3n -5r =0,其中n =9,10,11,r ∈N ,∴n =10,r =6,故不含x 的项为T 7=C 610=210.]。
二项式定理
二项式定理1.二项式定理2.(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)C r n an -r b r 是二项展开式的第r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.(×)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.(√) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.(×)(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n .(×)(9)(1+2x )5的展开式中含x 的项的系数为5.(×)(10)n x x )12(3 的展开式中不可能有常数项.(×)考点一 二项展开式的通项及应用[例1] (1)(2016·高考全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:T r +1=C r 5(2x )5-r ·(x )r =25-r C r 5·,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4.答案:A(3)(2017·河北唐山一模)322)21(-+xx 展开式中的常数项为( ) A .-8 B .-12 C .-20 D .20解析:∵322)21(-+x x =6)1(xx -,∴T r +1=C r 6x 6-r rx )1(-=C r 6(-1)r x 6-2r ,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(4)(2015·高考课标全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 解析:法一:利用二项展开式的通项公式求解.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.答案:C[方法引航] 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,含字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.1.在本例(1)中,求展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·,第r 项的系数为26-r C r -15第r +2项的系数为24-r C r +15∴⎩⎨⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2当r =1时,T 2= 当r =2时,T 3=故系数最大的项为T 2或T 3.2.在本例(2)中,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r可知,当r =6时. 常数项为T 7=C 66·i 6=-1. 3.在本例(4)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.考点二 二项展开式的系数和问题[例2] 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解:设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510,∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102; x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.[方法引航] (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.5)12)((x x x a x -+的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 解析:选D.令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此5)12)(1(x x x x -+展开式中的常数项即为5)12(xx -展开式中1x 的系数与x 的系数的和.5)12(xx -展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k·(-1)k .令5-2k =1,得2k =4,即k =2,因此5)12(xx -展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此5)12(x x -展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以5)12)(1(x x x x -+展开式中的常数项为80-40=40.2.(2017·广西来宾一中检测)(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为________.解析:设f (x )=(1-x +x 2)3(1-2x 2)4.令x 分别取1,-1,f (1)=a 0+a 1+a 2+…+a 13+a 14=1,f (-1)=a 0-a 1+a 2-…-a 13+a 14=27,∴a 1+a 3+a 5+…+a 13=f (1)-f (-1)2=1-272=-13.答案:-13考点三 二项式定理的综合应用[例3] (1)若S =C 127+C 227+…+C 2727,求S 除以9的余数. 解:S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.(2)求1.025的近似值.(精确到两位小数)解:1.025=(1+0.02)5=1+C 15×0.02+C 25×0.022+…+C 55×0.025≈1+5×0.02=1.10.[方法引航] (1)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx . (2)利用二项式定理证明整除问题或求余数问题:在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都有除式的因式,要注意变形的技巧.1.将本例(1)变为S =1+2+22+…+25n -1.求证:S 能被31整除. 证明:∵1+2+22+…+25n -1=25n -12-1=25n-1=32n -1=(31+1)n -1 =C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.2.将本例(2)改为:求1.028的近似值.(精确到小数点后三位)解:1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.[易错警示]多次应用二项展开式通项公式搭配不全[典例] (x 2+2)52)11(-x的展开式的常数项是( ) A .-3 B .-2 C .2 D .3 [正解] 二项式52)11(-x展开式的通项为: T r +1=C r 5r x-52)1(·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. [答案] D [易误] (x 2+2)与52)11(-x的各因式的积为常数项,不只是2与(-1)的积,还有x 2与x -2的积也为常数.[警示] 求几个二项式积的展开式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时要抓住一个二项式逐项分类,分析其它二项式应满足的条件,然后再求解结果.[高考真题体验]1.(2015·高考课标全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.解析:(1+x )4的展开式通项为C r 4x r ,其中r 可取0,1,2,3,4. x 的所有奇数次幂为a C 14x ,a C 34x 3,C 04x ,C 24x 3,C 44x 5,∴系数和为8a +8=32,∴a =3. 答案:32.(2014·高考课标全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x -y )(x +y )8=x (x +y )8-y (x +y )8,故展开式中x 2y 7的系数为C 78-C 68=8-28=-20.答案:-203.(2014·高考课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:∵(x +a )10展开式的通项为T r +1=C r 10x10-r a r (r =0,1,…,10), ∴(x +a )10的展开式中x 7的系数为C 310a 3=15,得a =12. 答案:124.(2013·高考课标全国卷Ⅰ)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A .5 B .6 C .7 D .8解析:选B.由题意可知a =C m 2m ,b =C m +12m +1,又13a =7b ,即13C m 2m =7C m 2m +1,解得m =6.课时规范训练 A 组 基础演练1.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10解析:选B.T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40.2.532)2(x x -展开式中的常数项为( )A .80B .-80C .40D .-40解析:选C.T k +1=C k 5(x 2)5-k kx )2(3-=C k 5(-2)k x 10-5k,令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.3.(x -2y )8的展开式中,x 6y 2项的系数是( )A .56B .-56C .28D .-28解析:选A.二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.4.已知8)(x a x -展开式中常数项为1 120,其中a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28解析:选C.由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式中各项系数的和为(1-a )8=1或38.5.如果nx x )12(2+的展开式中含有常数项,则正整数n 的最小值为( ) A .3 B .5 C .6 D .10解析:选B.n xx )12(2+的展开式的通项为T r +1=C r n ·(2x )n -r rx )1(2=∵n ,r ∈N ,且r ≤n ,∴n =5r ∈N ,即n 的最小值为5.6.在n x x )12(3-的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) A .-7 B .7 C .-28 D .28解析:选B.由题意有n =8,T k +1=C k 8k -8)21((-1)kx 8-43k ,k =6时为常数项,常数项为7. 7.已知C 0n +2C 1n +22C 2n +22C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A.逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.8.若n x x )1(2-的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .-10 B .10 C .-45 D .45解析:选D.因为展开式的通项公式为T r +1=C r n (x 2)n -r·=C r n (-1)r,所以C 2nC 4n=314,解得n =10,所以T r +1=C r 10·(-1)r ·,令20-5r 2=0,则r =8.所以常数项为T 9=C 810=C 210=45.9.在52)12(x x -的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40解析:选D.因为T k +1=C k 5(2x 2)5-k kx )1(-=C k 525-k x 10-2k (-1)k x -k =C k 525-k(-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 10.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( ) A .6 B .7 C .8 D .9解析:选B.(1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.B 组 能力突破1.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20解析:选C.设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx=C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15. 2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1)B.34(3n -2)C.32(3n -2)D.32(3n -1) 解析:选D.在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n-1).3.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=C 1021-C 1121=0.答案:04.(2016·高考山东卷)若52)1(xax +的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=rrrx C a 251055--,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.答案:-25.(2016·高考天津卷)82)1(xx -的展开式中x 7的系数为________.(用数字作答)解析:T r +1=C r 8x 16-2r (-1)r x -r =(-1)r ·C r 8x 16-3r,令16-3r =7,得r =3,所以x 7的系数为(-1)3C 38=-56.答案:-566.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n=121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8. 答案:T 8=C 715(3x )7和T 9=C 815(3x )8。
二项式的通项公式
二项式的通项公式二项式的通项公式,又称二项定理或二项展开式,是代数学中的一条重要公式,用于展开一个二项式的幂。
它是形如(a+b)ⁿ的二项式的展开结果。
二项式的通项公式可以用有序对的方法、二项式系数的方法或二项式定理的方法进行推导和解释。
首先我们来介绍一下二项式系数的方法。
在二项式(a+b)ⁿ中,每一项的系数都可以用二项系数来表示,记作C(n,k),其中n表示指数的次数,k表示每一项中b的幂的次数。
二项系数C(n,k)的计算方法如下所示:1.当k等于0或k等于n时,C(n,k)等于12.当k小于0或k大于n时,C(n,k)等于0。
3.当k大于0且k小于n时,C(n,k)等于C(n-1,k-1)+C(n-1,k)。
通过上述计算规则,我们可以得到二项式的通项公式 (a + b)ⁿ =C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... + C(n, n-1)abⁿ⁻¹+ C(n, n)a⁰bⁿ。
另一种解释二项式的通项公式的方法是使用二项式定理。
二项式定理指的是(a+b)ⁿ的展开公式,其中n是一个非负整数。
二项式定理的表达式如下所示:(a + b)ⁿ = C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... +C(n, n-1)abⁿ⁻¹ + C(n, n)a⁰bⁿ这个公式可以通过数学归纳法来证明。
当n等于1时,左边为(a + b)¹ = a + b,右边为C(1, 0)a¹b⁰ + C(1, 1)a⁰b¹ = a + b,两边相等。
假设当n=k时,公式成立,即(a + b)ᵏ = C(k, 0)aᵏb⁰ + C(k, 1)aᵏ⁻¹b¹ +C(k, 2)aᵏ⁻²b² + ... + C(k, k-1)abᵏ⁻¹ + C(k, k)a⁰bᵏ。
二项式定理(2)
9r
r
9
展开式中的有理项
r r 9
27 r 6
27 r 3 r 令 Z 即4 Z (r 0,19) 6 6
r 3或r 9
27 r 3 3 4 4 r 3 4 T4 (1) C9 x 84 x 6 27 r 9 9 3 3 r 9 3 T10 (1) C9 x x 6 3 4 原式的有理项为:T4 84 x T10 x
二项式定理(2)
复习回顾
1、二项式定理:
1 (a b) n Cn0 a n Cn a n1b Cn2 a n2b 2 Cnr a nr b r Cnnb n
注:展开式共有n+1项
2、通项:
Tr 1 C a b
r nr r n
注:区分二项式系数和项的系数
的通项是
16 r 2 s 2
C C (1) 2
s 5 r 6 s
5 s
x
由题意知:
16 r 2 s 2
6
r 2s 4 (r 06, s 05)
解得
r 0 s 2
2 3
1 5
r 2 s 1
2 6 4
r 4 s 0
所以 x 6 . 的系数为:
2
5
15 6 1 8 1 (2) T21 C ( x ) 15 x 2 x , 2x 4x 4 15 故第3项的系数为 . 4
例1
在
2 1 x 2x
9
的展开式中,求:
(1)第6项 (2)第3项的系数(3)含x9的项(4)常数项
0 4 C5 C6 (1)0 25 640 C C (1) 2 C C (1)2
二项式定理所有公式
二项式定理所有公式二项式定理啊,这可是高中数学里挺重要的一部分呢!咱们先来说说二项式定理到底是啥。
二项式定理就是指$(a+b)^n$ 展开后的式子。
这里面就有一系列的公式。
比如说,$(a+b)^2 = a^2 + 2ab + b^2$,$(a+b)^3 = a^3 + 3a^2b +3ab^2 + b^3$ 。
那如果是更高次幂呢,像$(a+b)^4$ 、$(a+b)^5$ 等等,展开就会更复杂一些。
咱们来具体看看二项式定理的通项公式:$T_{r+1} = C_{n}^r a^{n-r}b^r$ 。
这里的 $C_{n}^r$ 叫做二项式系数,计算方法是 $C_{n}^r =\frac{n!}{r!(n-r)!}$ 。
给大家讲个我之前遇到的事儿吧。
有一次我在课堂上讲二项式定理,有个学生就特别迷糊,怎么都弄不明白这个系数是怎么来的。
我就给他举了个例子,说假如咱们要从 5 个不同的苹果里选 2 个,有多少种选法?这其实就和二项式系数的计算是一个道理。
咱们先算5 的阶乘,就是 5×4×3×2×1,然后 2 的阶乘是 2×1,3 的阶乘是 3×2×1,用 5 的阶乘除以 2 的阶乘和 3 的阶乘的乘积,就能得到从 5 个里选 2 个的组合数,这就和二项式系数的计算是一样的思路。
这学生听了之后,恍然大悟,后来做这类题就很少出错啦。
再来说说二项式定理的性质。
二项式系数具有对称性,就是说$C_{n}^r = C_{n}^{n-r}$ 。
而且二项式系数的和是 $2^n$ ,也就是当$a = b = 1$ 时,$(1 + 1)^n = 2^n$ 。
在解题的时候,二项式定理用处可大啦。
比如求展开式中的特定项,或者求系数之和等等。
咱们拿个具体的题目来看看。
比如说求 $(2x - 1)^6$ 展开式中$x^3$ 的系数。
那咱们先根据通项公式,$T_{r+1} = C_{6}^r (2x)^{6-r} (-1)^r$ ,要得到 $x^3$ ,那 $6 - r = 3$ ,所以 $r = 3$ 。
二项式定理公式大全
二项式定理公式大全一、二项式定理基本公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。
- 例如,当n = 3时,(a +b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3。
- 计算各项系数:- C_3^0=(3!)/(0!(3 - 0)!)=1- C_3^1=(3!)/(1!(3 - 1)!)=(3!)/(1!2!)=3- C_3^2=(3!)/(2!(3 - 2)!)=(3!)/(2!1!)=3- C_3^3=(3!)/(3!(3 - 3)!)=1- 所以(a + b)^3=a^3+3a^2b + 3ab^2+b^3。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。
- 例如,在(x + 2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5 - 22^2。
- 计算C_5^2=(5!)/(2!(5 - 2)!)=(5×4)/(2×1)=10- 所以T_3=10x^3×4 = 40x^3二、二项式系数的性质。
1. 对称性。
- 在二项式(a + b)^n的展开式中,与首末两端“等距离”的两项的二项式系数相等,即C_n^k=C_n^n - k。
- 例如,在(a + b)^5的展开式中,C_5^1=C_5^4,C_5^2=C_5^3。
- 计算C_5^1=(5!)/(1!(5 - 1)!)=5,C_5^4=(5!)/(4!(5 - 4)!)=5;C_5^2=(5!)/(2!(5 - 2)!)=10,C_5^3=(5!)/(3!(5 - 3)!)=10。
二项式定理
二项式定理[考纲传真]会用二项式定理解决与二项展开式有关的简单问题.【知识通关】1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质1.C0n+C1n+C2n+…+C n n=2n.2.C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.()(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.()(4)通项T k+1=C k n a n-k b k中的a和b不能互换.()[答案](1)×(2)×(3)√(4)√2.(1-2x)4展开式中第3项的二项式系数为()A.6B.-6C.24 D.-24A3.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( ) A .5B .-20C .20D .-5A4.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( ) A .1B .2C .2 019D .2 019×2 020B 5.(1+x )n 的二项展开式中,仅第6项的系数最大,则n =________.10【题型突破】二项展开式的有关问题【例1】 (1)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( ) A .-3B .-2C .2D .3 (2)(2018·广州二模)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是________.(用数字作答) (1)D (2)-120[方法总结] 求二项展开式中的特定项的方法,求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.,特定项的系数问题及相关参数值的求解等都可依据上述方法求解.,(4)求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦.(1)若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( )A .±2B .12C .-2 D .±12(2)已知在⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项,则展开式中所有的有理项分别是________.(1)A (2)454x 2,-638,45256x -2二项式系数的性质及应用►考法1 二项式系数的和【例2】 (1)在⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120 (2)(2019·汕头质检)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1►考法2 二项式系数的性质【例3】 设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8 B [方法总结] (1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)若⎝ ⎛⎭⎪⎫x 2-1x n的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(2)已知⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的二项式系数和为32,⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的各项系数的和为2,则该展开式中的常数项为________.(1)255 (2)40【真题链接】1.(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35C2.(2015·全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2项的系数为() A .10 B .20C .30D .60C。
二项式定理(通项公式)(完整资料).doc
【最新整理,下载后即可编辑】二项式定理二项式知识回顾 1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k k n nn n n n x C C x C x C x +=+++++ ①0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n ;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=.(2)二项式系数k n C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的.当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC +相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1)⑶a0+a2+a4+a6……=2)1 ()1(-+ff⑷a1+a3+a5+a7……=2)1 ()1(--ff经典例题1、“n ba)(+展开式:例1.求4)13(xx+的展开式;【练习1】求4)13(xx-的展开式2.求展开式中的项例2.已知在n的展开式中,第6项为常数项.(1)求n;(2)求含2x的项的系数;(3)求展开式中所有的有理项.【练习2】若n展开式中前三项系数成等差数列.求:(1)展开式中含x的一次幂的项;(2)展开式中所有x的有理项.3.二项展开式中的系数例3.已知22x的展开式的二项式系数和比(31)n)nx-的展开式的二项式系数和大992,求21-的展开式中:(1)二项式系数最(2)nxx大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-,则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx 展开式中9x 的系数是 ;。
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
二项式定理(通项公式).(优选.)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改。
二项式定理通项公式-二项定理通项公式
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
3.二项式定理
例讲三:多项式的展开式问题
1.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11 的展开式中,x2 项的系数是 2.(1+2x2)(1+x)4 的展开式中 x3 的系数为 3.已知(x-1)(ax+1)6 的展开式中含 x2 项的系数为 0,则正实数 a=________. 4.(x2-x+1)10 的展开式中 x3 项的系数为 5.(x2+x+y)5 的展开式中 x5y2 的系数为
二项式定理
一.二项式定理及性质
1.定理:(a+b)n=C 0n an+C 1nan -1b+…+C knan-k bk+…+C nn bn(n ∈N*).
2.通项:第 k+1 项为 Tk+1=Cknan-kbk. 3.二项式系数:二项展开式中各项的二项式系数为:Ckn (k=0,1,2,…,n).
64∶1,则
x3
的系数为
2.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=
【解析】 (1)由题意知42nn=64,得 n=6,展开式的通项为 Tr+1=Cr6x6-r 3xr=3rCr6x6-32r, 令 6-32r=3,得 r=2,则 x3 的系数为 32C26=135.故选 C. (2)令 x=0,得 a0=1,令 x=-1,得|a1|+|a2|+|a3|+…+|a9|=[1-(-1)]9-1=29-1= 511.
2.若
x+1 x
n展开式的二项式系数之和为
64,则展开式的常数项为_系数为 C25-122=52.
(2)ax2+
1x5的展开式的通项
Tr+1=C5r (ax2)5-r×
1xr=Cr5a5-rx10-52r,令
10-52r=0,得
r=4,所以 C45a5-4=-10,解得 a=-2.
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理
二项式知识回顾
1. 二项式定理
0111
()n n n k n k k
n n
n n n n a b C a C a b C a b C b --+=++
++
+,
以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k
k n T C a b -+=叫做二项展开式的通项.
(请同学完成下列二项展开式)
0111
()(1)(1)n n n k k n k k
n n n n n n n a b C a C a b C a b C b ---=-++-+
+-,1(1)k k n k k
k n T C a b -+=-
01(1)n k k
n n
n n n n x C C x C x C x +=++
+++ ① 01
11
(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++
++
+
1110n n n k n n n k a x a x a x a x a ----=++++
+ ②
① 式中分别令x=1和x=-1,则可以得到 01
2n n n n n C C C ++
+=,即二项式系数和等于2n
;
偶数项二项式系数和等于奇数项二项式系数和,即0213
12n n n n n C C C C -++
=++
=
② 式中令x=1则可以得到二项展开式的各项系数和.
2. 二项式系数的性质
(1)对称性:与首末两端等距离的两个二项式系数相等,即m n m
n n C C -=.
(2)二项式系数k
n C 增减性与最大值: 当12n k +<
时,二项式系数是递增的;当1
2
n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n
n
C 取得最大值.当n 是奇数时,中间两项12n n
C -和12n n
C
+相等,且同
时取得最大值.
3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n
⑴ a 0+a 1+a 2+a 3……+a n =f(1)
⑵ a 0-a 1+a 2-a 3……+(-1)n
a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)
1()1(-+f f
⑷ a 1+a 3+a 5+a 7……=
2
)
1()1(--f f
经典例题
1、“n b a )(+展开式:
例1.求4)13(x
x +的展开式;
【练习1】求4)13(x
x -的展开式
2.求展开式中的项
例2.已知在
n 的展开式中,第6项为常数项.
(1) 求n ; (2)求含2
x 的项的系数;(3)求展开式中所有的有理项.
【练习2】若
n 展开式中前三项系数成等差数列.求:
(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.
3.二项展开式中的系数
例3.已知22)n x 的展开式的二项式系数和比(31)n
x -的展开式的二项式系数和大
992,求21(2)n
x x
-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项
[练习3]已知*22)()n n N x
∈的展开式中的第五项的系数与第三项的系数之比是10:1.
(1)求展开式中含32
x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.
4、求两个二项式乘积的展开式指定幂的系数
例4.
7
2)2)(1-+x x (的展开式中,3x 项的系数是 ;
5、求可化为二项式的三项展开式中指定幂的系数
例5(04安徽改编)3)21
(-+
x
x 的展开式中,常数项是 ;
6、求中间项
例6求(103
)1
x
x -
的展开式的中间项;
例7 103
)1
(x
x -的展开式中有理项共有 项;
8、求系数最大或最小项
(1) 特殊的系数最大或最小问题
例8(00上海)在二项式11
)1(-x 的展开式中,系数最小的项的系数是 ;
(2) 一般的系数最大或最小问题 例9求84)21(x
x +
展开式中系数最大的项;
(3) 系数绝对值最大的项
例10在(7)y x -的展开式中,系数绝对值最大项是 ;
9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和
例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;
【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;
【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;
【练习3】9
2
)21(x
x -展开式中9x 的系数是 ;。