第19讲 解析函数的映射性质

合集下载

函数映射知识点归纳总结

函数映射知识点归纳总结

函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。

在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。

1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。

当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。

1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。

函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。

1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。

这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。

二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。

了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。

2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。

2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。

二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。

2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。

解析函数的性质ppt课件

解析函数的性质ppt课件

即存在 f (z) a ib. 于是 w f z z f z a ib z z ( 0,当z 0) (可微)
(a ib)z (1 i2 )z (a ib)(x iy) (1 i 2 )(x iy)
ax by 1x 2y i bx ay 2x 1y ux, y ivx, y
2
1 1 1
2 4 6
8
10
解析函数退化为常数的几个充分条件:(课下练习) (a)函数在区域内解析且导数恒为零; (b)解析函数的实部、虚部、模或辐角中有一个恒为常数; (c)解析函数的共轭在区域内解析。
§2.2 解析函数和调和函数的关系
定义1 实函数u(x, y)为区域D内的调和函数:
u(x, y)在区域D内有二阶连续偏导数,
vx vy
C
R
vy uy
uy vy
1,
得证。
例如 f z z2 x2 y2 i2xy, f z 2z 0z 0.
6810 y
两族分别以直线y=x和坐标轴 u=024
2
为渐近线的等轴双曲线
8 64 1
v=10 8 6 4
x2y2 = c1, 2xy = c2 互相正交。
u v
uxx vxx
uyy vyy
o o
ax by bx ay
1x 2x
2y 1y
u
v
uxx vxx
uyy vyy
o o
ax by bx ay
o o
ux vx
vy u
a,
y b.
f
(z)
ux
ivx
vy
iuy .
即w f (z) u(x, y) iv(x, y)在D内一点x,y解析

复变函数与解析函数

复变函数与解析函数

复变函数与解析函数复变函数是数学中的一个重要概念,它涉及到复数的运算和函数的性质。

解析函数则是复变函数中的一种特殊情况,具有更加丰富的性质和应用。

本文将介绍复变函数和解析函数的概念、性质以及它们在数学和科学领域的应用。

一、复变函数的概念与性质复变函数是将复数集合映射到自身的函数,即函数的自变量和因变量都是复数。

通常用f(z)表示复变函数,其中z为复数。

复变函数可以通过实部和虚部进行表示,即f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)分别为实部和虚部,而x和y分别为实部和虚部的变量。

复变函数的性质与实数函数类似,包括函数的连续性、可导性、积分等。

然而,复变函数有些独特的性质,比如解析性。

二、解析函数的概念与性质解析函数是复变函数的一种特殊情况,它在其定义域内处处可导,即在定义域内的任意一点,函数都存在导数。

解析函数的导数可以通过常规的求导法则得到,与实数函数类似。

解析函数具有一系列重要的性质,包括解析函数的导数仍然是解析函数,解析函数的导数序列收敛于该函数在某一点的幂级数展开式,以及柯西—黎曼方程等。

这些性质为解析函数的研究和应用提供了坚实的数学基础。

三、复变函数与解析函数的应用复变函数和解析函数在数学和科学领域有广泛的应用。

首先,它们在复数的运算和分析中起着重要的作用,比如复数的加减乘除、复数的共轭和模等运算。

复变函数和解析函数还可以用于解决一些实变函数无法解决的问题,比如研究复变函数的奇点和留数等。

此外,复变函数和解析函数在物理学、工程学和金融学等领域也有广泛的应用。

在物理学中,它们可以用于描述电磁场、量子力学和热力学等现象。

在工程学中,它们可以应用于信号处理、电路分析和控制系统等。

在金融学中,它们可以用于描述金融市场的变动和风险评估等。

总结起来,复变函数和解析函数是数学中的重要概念,具有丰富的性质和应用。

它们不仅仅是理论研究的基础,还在实际问题的解决中发挥着关键作用。

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

高中数学的解析掌握函数的性质与像变换

高中数学的解析掌握函数的性质与像变换

高中数学的解析掌握函数的性质与像变换数学作为一门科学,是人类思维和理性的重要表现形式之一。

在高中阶段,数学的学习也更加深入和系统化,其中解析几何是一个重要的分支。

解析几何将代数和几何相结合,通过函数的性质与像变换来研究几何问题。

本文将从解析掌握函数的性质和像变换两个方面展开论述。

一、解析掌握函数的性质函数是数学中最基本的概念之一,在高中数学中占据着重要的地位。

掌握函数的性质是解析几何研究的基础。

首先,我们要了解函数的定义和基本概念。

函数是一种映射关系,将一个自变量映射到一个因变量上。

函数的定义域、值域、单调性、奇偶性等是我们研究的重点。

在解析几何中,函数常常表示为f(x)或y=f(x)的形式,并且图像经常是平面上的曲线。

通过研究函数的图像,我们可以得到很多关于函数性质的信息。

其次,我们要掌握函数的性质及其应用。

对于常见的函数,我们需要熟悉它们的性质。

比如,一次函数、二次函数、指数函数、对数函数等。

通过了解它们的性质,我们可以对函数的图像、变化规律等进行分析。

同时,我们还需要掌握函数的复合、逆函数等运算规则,应用到解析几何的研究中。

最后,我们要掌握函数的极限和导数的概念。

函数的极限是函数研究的重要工具,通过极限的计算,我们可以求得函数图像的切线、曲线的凹凸性、曲线与坐标轴的交点等。

导数则是函数变化快慢的度量,通过导数的计算,我们可以得到函数的最值、函数的单调区间、曲线的弯曲程度等。

二、像变换在解析几何中的应用像变换是解析几何研究的重要方法之一,通过像变换可以更直观地理解函数的性质和图像的变换。

首先,平移是一种常见的像变换。

平移的基本思想是保持图形的形状和大小不变,仅仅改变图形在平面上的位置。

在解析几何中,我们通常用向量来表示平移的量和方向。

通过平移,我们可以将一个函数的图像沿着x轴或y轴平移一定的距离,从而更好地观察函数图像的性质。

其次,缩放是像变换的另一种方式。

缩放能够改变图形的大小,但保持图形的形状不变。

函数映射知识点总结

函数映射知识点总结

函数映射知识点总结一、函数映射的定义函数映射是数学中一个重要的概念,它描述了一个集合到另一个集合的元素之间的对应关系。

在数学中,我们通常将集合A中的元素a通过一个函数f映射到集合B中的元素f(a)上。

函数映射的定义可以形式化地表述为:设A、B为两个非空的集合,如果存在一个映射f,对于A中的每一个元素a,都有对应的B中的元素f(a)与之对应,则称函数f为从A 到B的映射,通常记作f:A→B。

我们可以根据函数映射的定义,得出函数映射的几个重要性质:1. 一一对应:如果对于A中的每一个元素a,都有对应的B中唯一的元素f(a),且对于B中的每一个元素b,也都有对应的A中唯一的元素f^(-1)(b),则称函数f为A到B的一一对应映射。

2. 到函数:如果对于A中的每一个元素a,都有对应的B中的元素f(a),则称函数f为从A到B的到函数映射。

3. 满函数:如果对于B中的每一个元素b,都有对应的A中的元素a,使得f(a)=b,则称函数f为A到B的满函数映射。

二、函数映射的性质1.函数的合成和反函数在函数映射中,我们可以将两个函数f:A→B和g:B→C进行合成,构成一个新的函数h:A→C。

这个新函数h被称为函数f和g的合成函数,通常记作h=g∘f,它的定义为h(a)=g(f(a)),其中a∈A。

此外,若函数f是一个一一对应映射,那么我们可以定义一个反函数f^(-1),使得对于B中的每一个元素b,都有唯一的f^(-1)(b)与之对应,这个反函数被称为函数f的反函数,满足f^(-1)(f(a))=a,f(f^(-1)(b))=b。

2. 函数的性质函数映射具有一些重要的性质,如可加性、齐性、单调性等,这些性质在函数的分析和应用中具有重要作用。

比如,如果一个函数f同时满足f(x+y)=f(x)+f(y)和f(ax)=af(x),那么我们称这个函数具有可加性和齐性。

另外,如果对于A中的任意两个元素x1和x2,若有x1<x2,则有f(x1)<f(x2),则称函数f具有单调性。

映射的知识点总结

映射的知识点总结

映射的知识点总结一、映射的定义在数学中,映射被定义为一种从一个集合到另一个集合的元素之间的关系。

设A和B是两个集合,如果存在一个规则f,使得对A中的每一个元素a,都有一个唯一确定的元素b∈B与之对应,则称f是从A到B的一个映射,记作f:A→B。

在这里,A称为定义域,B称为值域,f(a)称为元素a的像,b称为元素a的原像。

映射的定义也可以用集合的语言来描述。

即映射是一个集合到另一个集合的元素之间的规则,使得集合中的每一个元素有且只有一个唯一确定的对应元素。

这种描述映射的方式更加直观,容易理解。

二、映射的性质1. 单射如果映射f:A→B的不同元素a1、a2∈A,若f(a1)≠f(a2),则称f是单射。

直观地说,单射表示A中的不同元素映射后得到的像也是不同的,即不会出现多个元素映射到一个元素上。

2. 满射如果映射f:A→B的任意元素b∈B,都存在一个元素a∈A,使得f(a)=b,即值域与B相等,则称f是满射。

满射表示在映射中,值域中的每一个元素都有至少一个原像。

3. 双射如果映射f:A→B既是单射又是满射,则称f是双射。

双射表示映射是一种一一对应的关系,每一个元素都有唯一的对应元素。

4. 逆映射设f:A→B是一个双射,那么存在一个映射f^-1:B→A,使得对于任意元素b∈B,f^-1(b)是唯一与b对应的元素,称f^-1是f的逆映射。

5. 复合映射设f:A→B和g:B→C是两个映射,其中f的值域是g的定义域,那么可以定义f和g的复合映射为g∘f:A→C,它的定义规则是(g∘f)(a)=g(f(a))。

6. 映射的像和原像对于映射f:A→B,其中元素b∈B,称元素b在映射f下的像为f^-1(b)={a∈A|f(a)=b},即元素b对应的所有原像所构成的集合。

而元素a∈A,称元素a在映射f下的原像为f(a)。

三、映射的分类根据映射的性质,可以将映射分为不同的类型。

1. 根据值域的大小,映射可以分为有限映射和无限映射。

第19讲 函数的表示法(解析版)

第19讲 函数的表示法(解析版)

第19讲函数的表示法【学习目标】函数的表示法是八年级数学上学期第十八章内容,主要对函数的三个表示法进行讲解,重点是实际问题的函数表示法,难点是数形结合思想的应用的归纳总结.通过这节课的学习为我们后期学习函数的应用提供依据.【基础知识】1、解析法:用等式来表示一个变量与另一个变量之间函数关系的方法,这个等式称为函数的解析式(或函数关系式).简单明了,能从解析式了解函数与自变量之间的关系,便于理论上的分析与研究,但求对应值时需要逐个计算,且有的函数无法用解析式表示.2、列表法:用表格形式来表示一个变量与另一个变量之间函数关系的方法;从表格中直接找到自变量对应的函数值,查找方便,但无法将自变量与函数值的全部对应值都列出来,且难以看出规律.3、图像法:用图像来表示一个变量与另一个变量之间函数关系的方法;函数与自变量的对应关系、函数的变化情况及趋势能够很直观地显示出来,但从图像上找自变量与函数的对应值一般只能是近似的,且只能反映出变量间关系的一部分而不是全体.4.三种表示法的相互联系与转化:由函数的解析式画函数的图像,一般分为“列表、描点、连线”三个步骤,通常称作描点作图法;同样,函数图像中点的坐标或表格中自变量与函数的对应值,也是函数解析式所表示的方程的一个解.【考点剖析】考点一:解析法例1.已知汽车驶出A站3千米后,以40千米∕小时的速度行驶了40分,请将这段时间内汽车与A站的距离S(km)表示成t(时)的函数.【难度】★【答案】223033S t tæö=+££ç÷èø.【解析】路程=速度×时间,可知汽车行驶路程s与t的关系即为40s t=,由此汽车与A站的距离2333S s t=+=+,本题注意函数自变量取值范围,汽车运动时间为40分,单位换算即为23h,由此可得23t££.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意函数定义域.例2.若某人以每分钟100米速度匀速行走,那么用行走的时间x (分)表示行走的路程y (米)的解析式为______________,这样行走20公里需要__________小时.【难度】★【答案】100y x =,103.【解析】路程=速度×时间,可知行走路程y 与x 的关系即为100y x =,行走20公里,注意单位换算,令100201000x =´,解得200x =,10200min 3h =.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意题目中的单位统一,进行单位换算.例3.已知物体有A 向B 作直线运动,A 与B 之间的距离为20千米,求运动的速度v (千米/时)与所用时间t (小时)的函数解析式.【难度】★【答案】20v t=.【解析】路程=速度×时间,得速度=路程÷时间,即路程一定的情况下,运动速度与运动时间成反比,则运动速度与所用时间关系即为20v t =.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算.例4.两个变量x 、y 满足:(2)(1)3x y -+=,则用变量x 来表示变量y 的解析式为________________.【难度】★★【答案】52xy x -=-.【解析】由(2)(1)3x y -+=,即得312y x +=-,则有35122xy x x -=-=--.【总结】利用等式的性质进行变形即可.例5.若点P (x ,y )在第二、四象限的角平分线上,则用变量x 来表示变量y 的函数解析式为_______________.【难度】★★【答案】y x =-.【解析】点P (x ,y )在二、四象限角平分线上,则角平分线与坐标轴夹角即为45°,过点P向坐标轴作垂线,即可得y x =,点在二、四象限,根据象限内点的正负性可知y x =-.【总结】二、四象限的角平分线表示直线y x =-,一、三象限的角平分线表示直线y x =.例6.一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了4.8小时,求返回的速度.【难度】★★【答案】(1)480vt=;(2)100/km h.【解析】(1)路程=速度×时间,得速度=路程÷时间,即路程一定的情况下,运动速度与运动时间成反比,根据题意可得返回路程与去的行程相同,即为806480km´=,则运动速度与所用时间关系即为480vt =;(2)令 4.8t=,则有480100/4.8v km h ==.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可求出函数关系,根据题意代值计算即可.例7.收割机的油箱里盛油65kg,使用时,平均每小时耗油6kg(1)如果收割机工作了4小时,那么油箱还剩多少千克的油?(2)如果油箱里用掉36千克油,那么使用收割机工作的时间为多少小时?(3)写出油箱里剩下的油y与使用收割机时间t之间的函数关系式?(4)在此函数关系式中,求函数定义域.【难度】★★【答案】(1)41kg;(2)6h;(3)665y t=-+;(4)656t££.【解析】(1)654641kg-´=;(2)3666h¸=;(3)收割机用油量=平均耗油量×工作时间,可知收割机耗油量即为6t,即得剩余油量656y t=-;(4)实际问题中,xy³ìí³î,即得函数定义域为656t££.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意函数定义域.考点二:列表法例1.两个变量之间的依赖关系用列表来表达的,这种表示函数的方法叫做_______.【难度】★【答案】列表法【总结】考查函数的表示法中列表法的概念.例2.一位学生在乘坐磁悬浮列车从龙阳路站到上海浦东国际机场途中,记录了列车运行速度的变化情况,如下表:时间t(分)01 1.52345 5.5678速度v(千米/时)01462173003003003003002811210根据表中提供的信息回答下列问题:(1)在哪一段时间内列车的速度逐渐加快?(2)在哪一段时间内列车是匀速行驶的?在这一段时间内列车走了多少路程?(3)在哪一段时间内列车的速度逐渐减慢?【难度】★【答案】(1)0~2分钟时间段;(2)2~5.5分钟时间段,列车走了17.5千米;(3)5.5~8分钟时间段.【解析】分析图表可知,自变量是表示的时间t,函数表示的速度v,图表表示的是函数v 和自变量t之间的依赖关系,观察表格可知:(1)速度逐渐加快的是0~2分钟时间段;(2)匀速行驶的是2~5.5分钟时间段,注意单位换算,这段时间持续75.52 3.5min120h -==,列车行程即为730017.5120km´=;(3)速度逐渐减慢的是5.5~8分钟时间段.【总结】考查列表法表示函数关系,考查读表能力,注意观察表格中变量和变量之间的联系.例3.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的数量关系如下表:所售豆子数量x(千克)00.51 1.52 2.53 3.54售价y(元)012345678(1)上表反映的变量是_____和____,_______是自变量,________是因变量,_____随_____的变化而变化,_____是______的函数.(2)若出售2.5千克豆子,售价应为_____元.(3)根据你的预测,出售_____千克豆子,可得售价21元(4)请写出售价与所售豆子数量的函数关系式________________.【难度】★【答案】(1)x,y,x,y,y,x,y,x;(2)5;(3)10.5;(4)2y x=.【解析】(1)根据变量和函数的相关定义,即可判定x 和y 是变量,其中x 是自变量,y 是因变量,y 随x 的变化而变化,y 是x 的函数;(2)查看上表可知 2.5x =,5y =;(3)根据上表,可知每1kg 豆子的价格应为2元,21元可购得21210.5kg ¸=豆子;(4)依据上表,可知豆子的单价为2元,根据总价=单价×数量,可知售价与所售豆子关系式为:2y x =.【总结】把握相关定义,根据实际问题等量关系可求出函数解析式作出相应判断.例4.按照我国的税法规定,个人所得税的缴纳方法是:月收入不超过3500元,免缴个人所得税;超过3500元不超过5000元,超出部分需缴纳5%的个人所得税;例如下表:月收入(元)30003200360041004500月缴付个人所得税(元)53050试写出月收入在3500元到5000元之间的个人缴纳的所得税y (元)与月收入x (元)之间的函数解析式,并求出月收入为4800元的职工每月需缴纳的个人所得税.(x 为正整数)【难度】★★【答案】()5%3500y x =-,65元.【解析】月收入在3500元到5000元之间,超过3500元,超过部分即为()3500x -元,这一部分要缴纳5%个人所得税,可知缴税额()5%3500y x =-;令4800x =,即得()5%4800350065y =´-=元.【总结】纳税问题,要弄清楚是哪一部分需要缴税,以及对应的缴税比例,各个部分相加即为所应缴税额.例5.一根弹簧不挂重物时长10厘米,当弹簧挂上质量为xkg 的重物时,其长度用y 表示,测得有关的数据如下表:(1)写出弹簧总长度y (cm )随所挂重物质量x (kg )变化的关系式;所挂重物的质量x (kg )1234……弹簧的长度y (cm )10+0.510+1.010+1.510+2.0……(2)若弹簧所挂重物的质量为10千克,则弹簧的长度是多少?(3)所挂重物的质量为多少千克时,弹簧的长度是18cm?【难度】★★【答案】(1)0.510y x=+;(2)15cm;(3)16kg【解析】(1)根据上表可知弹簧原长,即不挂重物时长度为10cm,随着挂上重物,弹簧伸长的长度与所挂重物质量成正比,重物质量每增加1kg,弹簧长度增加0.5cm,所挂重物质量xkg,弹簧伸长长度为0.5xcm,弹簧总长度y=弹簧原长+弹簧伸长长度0.510x+;(2)令10x=,0.5101015y cm=´+=;(3)令0.51018x=.y x=+=,解得16【总结】弹簧在弹性形变范围内伸长量与所挂重物质量成正比,注意观察表格,分清弹簧原长和伸长量的变化规律.考点三:图像法例1.填空:1、两个变量之间的依赖关系用图像来表达的,这种表示函数的方法叫做____________;2、_____________、_____________、_____________是表示函数的三种常用方法;【难度】★【答案】1、图像法;2、解析法、列表法、图像法.【总结】考查函数的三种表示方法及相关概念.例2.图中是某水池有水Q立方米与排水时间t小时的函数图像.试根据图像,回答下列问题:(1)抽水前,水池内有水________立方米;(2)抽水10小时后,水池剩水________立方米;(3)剩水400立方米时,已抽水_________小时;(4)写出Q与t的函数关系式______________.【难度】★【答案】(1)1000;(2)750;(3)24;(4)()251000040Q t t =-+££【解析】(1)直线与纵轴交点,即0t =时,1000Q =,可知水池有水31000m ;(2)根据函数图像,40h 正好把水排干,可知每小时排水量为310002540m =,则10小时后剩水量为310002510750m -´=;(3)剩水3400m 时,排水时间为10004002425h -=;(4)每小时排水量为325m ,排干为止,由此可知Q 与t 的函数关系式即为251000Q t =-+,其中0t Q ³ìí³î,即得:040t ££.【总结】考查函数倾斜程度的意义,本题中表示每小时排水量,在作图精确的前提下也可根据函数图像确定对应函数值.例3.已知A 城与B 城相距200千米,一列火车以每小时60千米的速度从A 城驶向B 城,求:(1)火车与B 城的距离S (千米)与行驶的时间t (小时)的函数关系式;(2)t (小时)的取值范围;(3)画出函数的图象.【难度】★【答案】(1)20060S t =-;(2)1003t ££;【解析】(1)根据路程=速度×时间,可知火车驶离A 城的距离即为60tkm ,火车与B 城的距离20060S t =-;(2)根据行程和时间的意义,可知0200600t t ³ìí-³î,即得:t 的取值范围为1003t ££;(3)图像只是其中一部分,注意取值范围.【总结】考查利用一般的等量关系来建立函数关系式解决问题,即把题目中的各个相关量分别列清楚然后进行相应计算.例4.如图是甲、乙两人的行程函数图,根据图像回答:(1)谁走的快?(2)求甲、乙两个函数解析式,并写出自变量的取值范围.(3)当4t =时,甲、乙两人行程差多少?【难度】★【答案】(1)甲;(2)甲:5s t =,乙:103s t =;(3)203km .【解析】(1)根据甲、乙行程函数图像,可知甲2h 走10km ,乙3h 走10km ,可知105/2v km h ==甲,10/3v km h =乙,可知甲走的快;(2)根据路程=速度×时间,即可知甲的函数解析式为5s t =,乙函数解析式为103s t =,其中自变量取值范围均为0t ³;(3)4t =时,5420s km =´=甲,1040433s km =´=甲,即得甲乙行程差为:40202033km -=.【总结】考查函数倾斜程度的意义,本题中表示速度.例5.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时,上、下坡的速度不变,则小明从学校骑车回家用的时间是多少?【难度】★★【答案】37.2min .【解析】由图像可知小明上坡速度为3.60.2/min 18km =,下坡速度为9.6 3.60.5/min 3018km -=-,返回时,先走上坡路,上坡时间为9.6 3.630min 0.2-=,后走下坡路,下坡时间为3.67.2min 0.5=,即所用总时间为307.237.2min +=.【总结】考查函数倾斜程度的意义,本题中表示速度,注意返程时上坡变下坡,下坡变上坡.例6.为缓解用电紧张的矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (单位:千瓦时)与应付电费y (单位:元)的关系如图所示.(1)根据图像,请求出当050x ££时,y 与x 的函数关系式.(2)请回答:①若每月用电量不超过50千瓦时,收费标准是多少?②若每月用电量超过50千瓦时,收费标准是多少?【难度】★★【答案】(1)0.5y x =;(2)①0.5元/千瓦时;②0.9元/千瓦时.【解析】(1)050x ££时,y 与x 是正比例关系,过点()5025,,由此可得:0.5y x =;(2)①用电不超过50千瓦时,收费标准为250.550=元/千瓦时;②用电超过50千瓦时,收费标准为70250.910050-=-元/千瓦时.【总结】考查分段计费函数中直线倾斜程度的意义,本题中表示电费单价.例7.甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程S(千米)关于时间t(分钟)的函数图像如图所示;乙慢跑所行的路程S(千米)关于时间t(分钟)的函数解析式为1(060)12S t t=££.(1)在图中画出乙慢跑所行的路程关于时间的函数图像;(2)甲修车后行驶的速度是每分钟_________千米;(3)甲、乙两人在出发后,中途_________分钟时相遇.【难度】★★【答案】(1)虚线图像即为所求;(2)320;(3)24.【解析】(1)函数图像是一条经过原点的直线,终点与甲相同,即如图所示虚线图像;(2)甲修车后20min行驶523km-=,即得甲速度为3/min 20km;(3)由图像可知甲骑自行车速度较快,甲乙在甲修车期间相遇,即此时乙的行程为2km,令2s=,即得24t=.【总结】考查解读函数图像的能力,同时考查函数倾斜程度的意义,本题中表示速度,倾斜程度变化即速度发生变化.例8.汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?【难度】★★【答案】(1)4h,30/km h;(2)30km;(3)103h.【解析】(1)由图像可知汽车4h行驶120km,即到达北京,汽车速度为120430/km h¸=;(2)汽车速度为30/km h,即得行程与时间函数关系式为30s t=,令1t=,得30s=;(3)距北京20km,即行程为12020100km-=,令100s=,解得103t=.【总结】考查函数图像倾斜程度的意义,本题表示汽车速度.例9.一农民带了若干千克土豆进城销售,为了方便他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数x与手中持有的钱数y(含备用零钱)的关系式如下图所示,结合图像解答下列问题:(1)农民自带的零钱是多少?(2)降价前每千克土豆的出售价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手里的钱(含备用零钱)是26元,问他一共带了多少千克土豆?【难度】★★【答案】(1)5元;(2)0.5/kg 元;(3)45kg .【解析】(1)由函数图像可知,未售出土豆时,农民身上有5元钱,即自带了5元零钱;(2)降价前,农民卖出30千克土豆,身上的钱增加到20元,即卖得20515-=元,由此可得土豆单价为1530¸=0.5/kg 元;(3)最终农民身上有26元,即可得降价后土豆卖得26206-=元,则降价的土豆数量为60.415kg ¸=,则农民带的土豆总量为301545kg +=.【总结】考查函数图像倾斜程度的意义,本题表示土豆单价,同时考查分段函数的计算.【过关检测】一、单选题1.(2020·上海市静安区实验中学八年级课时练习)函数1y k x =和2k y x=(120k k <且12k k <)的图象大致是( )A .B .C .D .【答案】B【分析】根据反比例函数图象、正比例函数图象分析解答.【详解】由条件12120k k k k <<、可知,12 0,0k k <>,当1 0k <时1y k x =的图像经过第二、四象限,当20k >时2k y x=的图像经过第一、三象限,故选B .【点睛】本题考查反比例函数图象、正比例函数图象的特征,熟记图象与比例系数k 的关系.2.(2020·上海市静安区实验中学八年级课时练习)一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩余的水量Q(m 3)与放水时间t(时)的函数关系用图象表示为( )A .(A )B .(B )C .(C )D .(D )【答案】D 【分析】由生活经验可知:水池里的水,打开阀门后,会随着时间的延续,而随着减少.池内剩下的水的立方数Q (m 3)与放水时间t (时)都应该是非负数.由此即可解答.【详解】选项A ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而增长,选项A 错误;选项B ,图象显示,打开阀门后池内剩下的水的立方数Q 的量不变,选项B 错误;选项C ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而减少,但是,池中原有的蓄水量超出了20 m 3,选项C 错误;选项D ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而减少,选项D 正确.故选D .【点睛】本题主要考查了一次函数图象,根据实际情况确定图象是解题的基本思路.3.(2020·上海市静安区实验中学八年级课时练习)某次物理实验中,测得变量V 和m 的对应数据如下表,则这两个变量之间的关系最接近下列函数中的( )m 123456V2.41 4.910.3317.2125.9337.02A .21V m =+B .2V m =C .31V m =-D .2V m=.【答案】A 【分析】观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.【详解】解:有四组数据可找出规律,2.41-1=1.41,接近12;4.9-1=3.9,接近22;10.33-1=9.33,接近32;17.21-1=16.21,接近42;25.93-1=24.93,接近52;37.02-1=36.02,接近62;故m与v之间的关系最接近于v=m2+1.故选:A.【点睛】本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.二、填空题4.(2018·上海八年级期末)已知函数f(x)=,那么f(0)=_____.【答案】﹣.【分析】把x=0代入函数解析式进行计算即可得解.【详解】f(0)==﹣故答案为:﹣.【点睛】本题考查了函数值的知识,将自变量的取值代入函数解析式即可求得答案.5.(2017·上海市青浦区金泽中学八年级期末)如果f(x)=2x2﹣1,那么f_____.【答案】9.【分析】把自变量【详解】将x代入f(x)=2x2﹣1得:f2×5﹣1=9,故答案为:9.【点睛】本题考查函数值,二次根式的化简求值.6.(2019·上海八年级课时练习)把2x﹣y=3写成y是x的函数的形式为 _________ .【答案】y=2x﹣3【分析】通过移项即可将其变为y是x的函数的形式.【详解】解:2x﹣y=3,移项得y=2x﹣3.故答案为:y=2x﹣3.【点睛】本题主要考查函数的一般形式.y=kx+b (k≠0)是一次函数的解析式,图像是一条直线,斜率是k ,截距是b.7.(2018·上海市闵行区上虹中学)已知常值函数f(x)=3.那么f(7)=_____.【答案】3.【分析】根据常值函数的意义,即可得到答案.【详解】解:∵f(x)是常值函数,且f(x)=3,∴f(7)=3;故答案为:3.【点睛】本题考查了常值函数的意义,解题的关键是掌握常值函数的意义,无论x 取何值,函数值都是3.8.(2020·上海市静安区实验中学八年级课时练习)如图,某港湾某日受台风“默沙”的影响,其风力变化记录如图,根据图像完成下列各题.(1)风力持续增强了______小时.(2)风力最高达到_______ 级.(3)风力从_______点开始明显减弱.【答案】20 12 20【分析】根据图象进行解答即可.【详解】由图象可知,从0点到20点图象呈上升趋势,在20点达到最高,然后图象开始下降,∴风力持续增强了20小时,最高达到12级,从20点开始明显下降.故答案为:20;12;20.【点睛】本题考查了变量之间的关系-图象法,读懂图象是解题的关键.9.(2017·上海)当x_________有意义.【答案】≤1【解析】∴10x -³,解得,1x £.故答案为:≤1.10.(2020·上海市格致初级中学八年级期中)已知函数f (x )=1x x -,则f)=_____.【答案】【分析】将x =【详解】解:∵f (x )=1x x -,∴f,故答案为:.【点睛】本题考查求函数值,及分母有理化,理解求函数值的方法及分母有理化是解题关键.11.(2020·上海市静安区实验中学八年级课时练习)函数2y ax =的部分对应值如下表:x…1-012…y …202b…根据表格回答:(1)a =_________,b = ________;(2)函数的解析式为 _________,定义域是 ________;(3)请再举一些对应值,猜测该函数的图像关于________轴对称.【答案】2 8 22y x = 一切实数 y【分析】(1)把x=-1,y=2代入2y ax =,得a=2,可得22y x =,把x=2,y=b 代入22y x =中,得b=8;(2)由(1)可得函数解析式,定义域是一切实数;(3)当x=-2,x=-3,x=3时,分别计算出对应的y 值,然后观察数据即可得到结论.【详解】(1)把x=-1,y=2代入2y ax =,得a=2,∴函数解析式为:22y x =,把x=2,y=b 代入22y x =中,得b=8,故答案为:a=2,b=8.(2)函数的解析式为22y x =,定义域是一切实数,故答案为:22y x =,一切实数.(3)当x=-2时,y=8;当x=-3时,y=18;当x=3时,y=18;可得该函数的图像关于y 轴对称.故答案为:y .【点睛】本题主要考查了二次函数2y ax =的图象和性质,熟练掌握其图象和性质是解题的关键.三、解答题12.(2020·上海市静安区实验中学八年级课时练习)“十一”黄金周的某一天,小王全家上午8时自驾小汽车从家里出发,到“番茄农庄”游玩,小汽车离家的距离s (千米)与小汽车离家后时间t (时)的关系可以用图中的折线表示,根据图像提供的有关信息,解答下列问题:(1)“番茄农庄”离家________千米;(2)小王全家在“番茄农庄”游玩了________小时;(3)去时小汽车的平均速度是________千米/小时;(4)回家时小汽车的平均速度是________千米/小时.【答案】(1)180;(2)4;(3)90;(4)60【分析】(1)根据s 轴上的最高点即可确定答案;(2)根据s 轴上不变的时间即可解答;(3)根据去时路程除以去的时间即得答案;(4)根据图象上14-15时所走的路程解答即可.【详解】解:(1)由图可知:“番茄农庄”离家180千米;(2)14-10=4小时,所以小王全家在“番茄农庄”游玩了4小时;(3)()18010890¸-=千米/小时,所以去时小汽车的平均速度是90千米/小时;(4)由图象可得:14-15时,汽车行驶了(180-120)=60千米,所以回家时小汽车的平均速度是60千米/小时.故答案为:180;4;90;60.【点睛】本题考查了函数的图象,读懂图象提供的信息、正确理解横、纵坐标的含义是解题的关键.13.(2018·上海市西南模范中学八年级月考)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【答案】(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得1504560k b b +=ìí=î,解得:11060k b ì=-ïíï=î,∴该一次函数解析式为y=﹣110x+60;(2)当y=﹣110x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.。

函数的定义与基本性质总结

函数的定义与基本性质总结

函数的定义与基本性质总结在数学中,函数是一种特殊关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数的定义和基本性质是数学学习的重要基础知识之一。

本文将重点总结函数的定义、函数的性质以及函数的常见类型。

一、函数的定义函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的唯一元素。

通常用f(x)表示函数,其中f表示函数名,x表示自变量,f(x)表示函数的值或因变量。

函数的定义通常包括定义域、值域和映射规则三个方面。

1. 定义域:函数的定义域是所有自变量可能取值的集合。

它决定了函数的输入范围。

2. 值域:函数的值域是函数映射到的所有可能的因变量值的集合。

它决定了函数的输出范围。

3. 映射规则:函数的映射规则描述了自变量和因变量之间的对应关系,即函数在定义域内的计算规则。

二、函数的性质函数具有一些基本性质,包括单调性、奇偶性、周期性和有界性等。

1. 单调性:函数可以是单调增加的,也可以是单调减少的。

如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为单调增加的。

当x1>x2时,有f(x1)>f(x2),则函数为单调减少的。

2. 奇偶性:函数可以是奇函数或偶函数。

如果对于定义域内的任意x,有f(-x)=-f(x),则函数为奇函数。

如果对于定义域内的任意x,有f(-x)=f(x),则函数为偶函数。

3. 周期性:函数可以具有周期性,即在一定范围内具有相同的函数值。

对于函数f(x),如果存在正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则称函数的周期为T。

4. 有界性:函数可以是有界的,即在定义域内存在上界和下界。

如果存在常数M,使得对于定义域内的任意x,有|f(x)|≤M,则函数为有界函数。

三、函数的常见类型在数学中,常见的函数类型有多项式函数、指数函数、对数函数、三角函数等。

1. 多项式函数:多项式函数是由常数和自变量的幂次幂相加或相乘而得到的函数。

高考数学知识点解析映射与函数的关系

高考数学知识点解析映射与函数的关系

高考数学知识点解析映射与函数的关系高考数学知识点解析:映射与函数的关系在高考数学中,映射与函数是非常重要的概念,理解它们之间的关系对于解决相关问题至关重要。

首先,咱们来聊聊什么是映射。

映射就像是一个“对应规则”,它把一个集合中的元素与另一个集合中的元素对应起来。

比如说,有集合A 和集合 B,通过某种规则,集合 A 中的每一个元素都能在集合B 中找到唯一对应的元素,这就是映射。

那函数又是什么呢?函数其实是一种特殊的映射。

它特殊在哪里呢?函数要求集合 A(通常称为定义域)中的每一个元素,在集合 B(通常称为值域)中都有唯一确定的元素与之对应。

为了更清楚地理解,咱们来看几个例子。

假设集合A ={1, 2, 3},集合 B ={4, 5, 6}。

如果我们规定映射规则是:1 对应 4,2 对应 5,3 对应 6,那么这就是一个映射。

但如果规定 1 对应4 和 5,那就不是函数了,因为 1 对应的元素不唯一。

再比如,我们有一个函数 f(x) = 2x,当 x 取 1 时,f(1) = 2;当 x取 2 时,f(2) = 4。

对于定义域中的每一个 x,都有唯一确定的 f(x)与之对应,这就是函数的特点。

从定义上看,函数是映射的一种,但映射不一定是函数。

可以说函数是“规矩”的映射,必须满足每一个输入都有唯一的输出。

映射和函数在数学中的应用非常广泛。

在解决实际问题时,我们常常需要建立映射或函数关系来描述事物之间的联系。

比如在物理学中,路程和时间的关系可以用函数 s = vt 来表示(其中 s 表示路程,v 表示速度,t 表示时间)。

通过这个函数,我们可以根据给定的速度和时间计算出路程,或者已知路程和时间求出速度。

在经济学中,成本和产量之间的关系、收益和销售量之间的关系等也常常可以用函数来描述。

对于高考来说,掌握映射与函数的关系,能够帮助我们更好地解决各种类型的题目。

比如在求函数的定义域和值域时,就需要清楚函数的定义和映射的规则。

函数性质知识点总结

函数性质知识点总结

函数性质知识点总结函数是数学中的常见概念,它是描述变量之间关系的一种数学工具。

函数性质是指函数在定义域上所具备的特征和特点。

在学习函数性质时,我们经常需要了解函数的定义和图像,以及它们在数轴上的位置和形状。

这篇文章将总结函数性质的几个重要知识点。

1.定义域和值域:函数的定义域是指函数中所有自变量可能取值的集合,即可以使函数有意义的自变量的范围。

函数的值域是指函数所有可能取值的集合,即函数的输出值的范围。

在研究函数性质时,我们经常需要确定函数的定义域和值域,以便分析函数的特点。

2.单调性:函数的单调性是指函数在定义域上取值的变化趋势。

函数可以是递增的,即随着自变量的增大,函数的值也增大;也可以是递减的,即随着自变量的增大,函数的值减小。

我们可以通过函数的导数或斜率来判断函数的单调性。

3.奇偶性:函数的奇偶性是指函数关于坐标原点的对称性。

如果对任意x,都有f(x)=f(-x),则函数是偶函数;如果对任意x,都有f(x)=-f(-x),则函数是奇函数;如果既不满足偶函数的条件,也不满足奇函数的条件,则函数既不是偶函数也不是奇函数。

4.周期性:函数的周期性是指函数具有以一些常数T为周期的特点。

如果对任意x,都有f(x+T)=f(x),则函数是周期函数,而T是函数的周期。

例如,正弦函数和余弦函数就是周期函数,它们的周期是2π。

5.极值点和极值:函数的极值点是指函数在定义域上取得的最大值或最小值的点。

函数的极值是指函数的最大值或最小值。

我们可以通过求解函数的导数等于0的方程来找到极值点。

极大值是函数的局部最大值,极小值是函数的局部最小值。

6.零点和方程:函数的零点是指使函数等于零的自变量的值。

我们可以通过解函数的方程来找到函数的零点。

函数的方程是指使函数等于一个常数的方程。

例如,如果我们要找出一个多项式函数的零点,我们就需要解多项式方程。

7.渐近线:函数的渐近线是指函数图像在一些特定位置或方向上的趋势。

常见的渐近线有水平渐近线、垂直渐近线和斜渐近线。

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质

复变函数理论与解析函数的性质复变函数理论是数学中的一个重要分支,它研究的是具有复变量的函数。

复变函数与实变函数有着明显的区别,它们的性质和行为也有很大的不同。

本文将探讨复变函数理论的一些基本概念和解析函数的性质。

一、复变函数的定义和基本性质复变函数是指定义在复数域上的函数。

复数可以表示为实部与虚部的和,即z = x + iy,其中x和y分别是实数部分和虚数部分。

一个复变函数可以表示为f(z) = u(x, y) + iv(x, y),其中u和v分别是实部和虚部的函数。

复变函数的定义域是复平面上的一个开集。

复变函数的基本性质包括解析性、连续性和可微性。

解析性是指函数在其定义域内处处可导,即函数的导数存在。

连续性是指函数在其定义域内连续。

可微性是指函数在某一点处可导。

对于复变函数来说,解析性和可微性是等价的,即函数在某一点处可导当且仅当函数在该点处解析。

二、解析函数的性质解析函数是复变函数中的一类特殊函数,它具有许多重要的性质。

首先,解析函数是无穷可微的,即它的导数、二阶导数、三阶导数等都存在。

这个性质使得解析函数在数学和物理中有广泛的应用,例如在电磁场的分析和量子力学中的波函数描述等。

其次,解析函数满足柯西-黎曼方程,即它的实部和虚部满足柯西-黎曼方程的偏导数条件。

这个方程表明解析函数的实部和虚部是相互独立的,它们的变化是相互约束的。

柯西-黎曼方程的满足使得解析函数具有一定的几何性质,例如保角性和共形映射等。

此外,解析函数还具有唯一性定理和辐角原理等重要性质。

唯一性定理指出,如果两个解析函数在某个区域内的实部和虚部都相等,那么它们在该区域内是相等的。

辐角原理是指解析函数的辐角的变化是连续的,且在某个区域内的辐角变化总和为零。

三、解析函数的应用解析函数在数学和物理中有广泛的应用。

在数学中,解析函数常用于复积分、级数和变换等问题的求解。

在物理学中,解析函数常用于电磁场的分析、流体力学中的势函数描述等。

映射 函数的概念

映射 函数的概念

映射函数的概念映射是数学中的一个重要概念,是将一个集合的元素通过某种规则对应到另一个集合的元素的过程。

在数学中,映射一般用函数的概念来表示。

函数是映射的一种特殊形式,它表示了一个集合的元素与另一个集合的元素之间的对应关系。

具体来说,函数是一种将每个输入值(自变量)映射为一个输出值(因变量)的规则。

函数可以看作是一个机器,它接受一个输入并返回一个输出。

函数的定义包括一个定义域和一个值域。

定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

函数通过将定义域中的元素映射到值域中的元素来表达这种对应关系。

因此,函数可以用符号表示为f: A →B,其中A 是定义域,B 是值域。

对于给定的函数,定义域中的每个元素都必须有且仅有一个对应的值域中的元素。

这种一对一的映射关系确保了函数的唯一性。

如果定义域中的一个元素有多个对应值域中的元素,那么这个函数被称为多值函数,而不是映射。

函数的定义可以通过几种方式进行,其中最常见的是通过公式或规则进行。

例如,我们可以定义一个简单的函数f(x) = x^2,该函数将输入值x 的平方作为对应的输出值。

通过将不同的x 值代入函数,我们可以得到相应的输出值。

函数可以具有不同的性质和特征。

其中一些重要的特征包括:1. 定义域和值域:函数的定义域和值域决定了函数接受的输入值和可能的输出值的范围。

2. 单调性:函数可以是递增的(即随着输入增加而增加)、递减的(随着输入增加而减少)或保持不变的。

3. 奇偶性:如果函数满足f(-x) = -f(x) 对于所有x 属于定义域,则函数是奇函数。

如果函数满足f(-x) = f(x) 对于所有x 属于定义域,则函数是偶函数。

4. 周期性:具有周期性的函数在某个特定的间隔内重复固定的模式。

函数在数学和科学中有广泛的应用。

它们用于描述和分析各种现象,从物理学中的运动和力学到经济学中的供求关系。

函数还被用于建模和解决问题,例如通过数学函数来预测商品销量或疾病传播。

高等数学映射与函数笔记

高等数学映射与函数笔记

高等数学映射与函数笔记一、引言高等数学是理工科学生的一门重要基础课程,其中映射与函数是其中的重要组成部分。

本笔记旨在帮助读者梳理映射与函数的基本概念、性质、应用以及常见问题,为进一步学习高等数学打下坚实的基础。

二、映射的基本概念1. 映射的定义:给定两个集合A和B,如果存在一个从A到B的函数f,则称f为从A到B的映射。

2. 映射的性质:映射具有像集和原像集等基本性质,同时映射还可以进行复合、逆映射等操作。

三、函数的定义与性质1. 函数的定义:给定一个数集A,以及一个集合B上的运算,如果这个运算满足函数的基本性质,那么这个运算就可以被称为A到B的函数。

2. 函数的性质:函数具有单调性、奇偶性、周期性、有界性等基本性质,这些性质在解决函数问题时非常重要。

四、常见函数类型1. 一次函数:形如y=kx+b(k≠0)的函数,其中k为一次项系数,b为常数项。

2. 二次函数:形如y=ax²+bx+c(a≠0)的函数,其中a为二次项系数,b、c为常数项。

3. 指数函数:形如y=a^x(a>0且a≠1)的函数。

4. 对数函数:形如y=log(a) x(a>0且a≠1)的函数。

5. 三角函数:包括正弦函数、余弦函数、正切函数等,是描述周期性现象的重要工具。

五、映射与函数的应用1. 函数在数学建模中的应用:在解决实际问题时,常常需要建立数学模型,而函数是建模的重要工具之一。

例如,在物理中的速度与时间的关系,就可以用一次函数或二次函数来表示。

2. 映射在算法中的应用:在计算机科学中,映射可以用于实现数据结构(如映射表和哈希表)以及算法(如最短路径算法和排序算法)等。

3. 映射与函数在经济学中的应用:在经济学中,函数被用于描述经济变量之间的关系,如生产函数、消费函数等;而映射可以用于实现数据库和数据挖掘等应用。

六、常见问题与解答1. 问:什么是映射?答:给定两个集合A和B,如果存在一个从A到B的函数f,则称f为从A到B的映射。

高中数学函数映射教案

高中数学函数映射教案

高中数学函数映射教案
主题:函数映射
目标:学生能够理解函数映射的概念,掌握函数映射的基本性质和运算规则,并能够通过实际问题应用函数映射的方法解决问题。

教学步骤:
一、导入
1. 引入函数映射的概念,并与学生分享函数映射在现实生活中的应用。

2. 回顾前几节课的知识,使学生能够更好地理解函数映射的概念。

二、讲解
1. 讲解函数映射的定义和符号表示。

2. 介绍函数映射的基本性质,如定义域、值域、图象和象集等。

3. 解释函数映射的运算规则,包括函数的加减乘除等基本运算。

4. 给出几个例题,帮助学生理解函数映射的应用和求解方法。

三、练习
1. 设置多种不同难度的练习题,让学生通过练习加深对函数映射的理解。

2. 鼓励学生在小组中合作讨论问题,提高解题效率。

四、应用
1. 提供一些实际问题,要求学生运用所学的函数映射知识解决问题。

2. 引导学生思考函数映射在日常生活中的应用场景,进一步理解函数映射的重要性。

五、总结
1. 总结本节课的知识点和重点,强调函数映射的定义、性质和运算规则。

2. 鼓励学生勤于练习,加深对函数映射的理解和应用能力。

六、作业
布置作业,要求学生完成练习册上关于函数映射的相关题目,巩固所学知识。

七、拓展
可以引导学生通过互联网等多种途径,了解更多函数映射的应用和相关知识,提升学生的学习兴趣和认知水平。

这份高中数学函数映射教案范本仅作参考,教师们可根据实际情况灵活调整教学内容和方法,更好地帮助学生掌握函数映射的知识。

愿学生们在数学学习道路上越走越远!。

映射的概念和性质

映射的概念和性质
例4、已知A={a,b},B={e,f},由集合A到集合B可以构 造多少个不同的映射、一一映射?
例5、已知A={1,2,3,k},B={,4,7,a4,a2+3a}, 求a,k的值
谢谢观看
上海九院整形科 上海九院整形科 http:// 上海九院隆鼻价格 上海九院双眼皮价格2017 http:// 上海九院双眼皮价格 上海九院隆胸价格 上海九院整形科双眼皮 上海九院整形科隆鼻 上海九院整形科隆胸 重庆网站建设公司 网站建设 网页设计 重庆APP开发 北京八大处整形外科医院 北京八大处整形外科医院好不好 北京八大处整形外科医院怎么样 八大处整形外科医院 八大处整形医院 八大处双眼皮 八大处预约挂号 上海九院最新文章 /zxwz/ 上海九院最新动态 /zxdt/ 八大处整形项目 /zxxm 八大处整形案例 /zxal 汎戾駊
映射的概念
设A,B是两个集合,如果按照某种对应关系f,对于集合A中的任 何一个元素,在集合B中都有唯一的元素和它对应,那么,这样 的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做 集合A到集合B的映射,记作f:A →B
函数的概念 设A、B是非空的数集,如果按照某个对应关系f,使对于集合A中 的任意一个数x,在集合B中有唯一确定的数f(x)和它对应,那么 就称f:A→B为集合A到集合B的一个函数。记作y=f(x),x∈A
注:(1)”f:A→B”表示A到集合B的映射。
(2)映射的三要素:A,B,对应关系
(3)集合的有顺序性:A→B与B→A是不同的映射
(4)强调“任何”,“唯一”(存在)。
例1、判断下列对应f是不是从A到B的映射。
P50页 判断标准:按照定义,是否满足任意性和唯一性。

初一数学函数与像知识点总结函数性质与应用解析

初一数学函数与像知识点总结函数性质与应用解析

初一数学函数与像知识点总结函数性质与应用解析初一数学函数与像知识点总结:函数性质与应用解析函数是数学中的重要概念,它在数学中具有广泛的应用。

在初一学年,我们学习了函数与像的知识。

本文将对初一数学中有关函数性质与应用解析方面的重要知识点进行总结与分析。

1. 函数的定义及性质函数是一种对应关系,它将一个数集中的每个元素映射到另一个数集中的唯一元素。

函数通常记作y = f(x),其中x为自变量,y为因变量。

函数的性质包括:- 定义域与值域:定义域是自变量的取值范围,值域是函数的所有可能输出值的集合。

- 单调性:函数根据自变量的增减关系可以分为增函数、减函数和常函数。

- 奇偶性:奇函数和偶函数分别满足f(-x) = -f(x)和f(-x) = f(x)。

- 对称轴:函数图像关于某一直线对称。

- 最大值与最小值:函数图像在定义域内的最大值和最小值。

2. 基本函数类型初一数学中常见的函数类型包括:- 线性函数:y = kx + b,其中k为斜率,b为截距。

- 平方函数:y = ax^2,其中a为常数。

- 反比例函数:y = k/x,其中k为常数。

- 开平方函数:y = √x,定义域为非负实数。

- 绝对值函数:y = |x|,其中x的取值范围为实数。

3. 函数的应用解析函数在实际问题中有着广泛的应用,包括以下几个方面:- 等差数列与等差数列的性质:等差数列可以表示成线性函数的形式,我们可以通过构造等差数列的递推公式来解决一些实际问题。

- 函数的图像与实际问题:我们可以通过绘制函数的图像来研究函数的性质,进而解决与函数相关的实际问题。

- 函数的增减性与极值点:通过研究函数的单调性,我们可以判断函数在定义域内的增减行为,并找到函数的最大值和最小值。

- 利用函数解决实际问题:实际问题中的数据往往可以用函数来表示,通过构造函数方程,我们可以解决与实际问题相关的数学问题。

4. 解析几何中的函数应用解析几何是数学中与函数相关的一个重要分支。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档