幂的运算(第3课时积的乘方)教案

合集下载

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律

幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。

二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。

2.讲授指数和幂的乘方、积的乘方规律与运用。

2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。

示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。

2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。

示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。

2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。

(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。

八年级数学上册121幂的运算3积的乘方导学案华东师大版

八年级数学上册121幂的运算3积的乘方导学案华东师大版

§12.1幂的运算3.积的乘方学习目标:1、理解、掌握和运用积的乘方的法则;2、通过探索,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得的;3、通过类比,对三个幂的运算法则在应用时进行选择和区别 重点:积的乘方法则的理解和应用 难点:积的乘方法则的推导过程的理解 预习1、口述同底数幂的乘法运算法则;2、口述幂的乘方运算法则;3、根据要求完成下列各小题 (1)若x 3·x a=x 5,则a= ; (2)( )·x 5=x 8; (3)若53=x ,43=y,则yx +3=( );A 、20B 、9C 、54D 、45(4)若a x =2,b x =3,则7x =( ); A 、2a+b B 、a 2b C 、ab 2D 、2ab 感受新知 一、探索(1)(ab)2= (ab) • (ab) = aa • bb = a( )b ( )根据上面的推理过程,请把下面两道题做出来 (2)(ab )3=__________________________ =__________________________ = a( )b( )二、发现 积的乘方 试猜想: (ab )n= ?其中 n 是正整数 ※证明:(ab )n= = = a n b n∴(ab )n= a n b n(n 为正整数) 语言叙述积的乘方法则:推广:1.三个或三个以上的积的乘方等于什么?2.逆运用可进行化简:a n b n= (ab)n(n 为正整数)观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?三、实例 例 计算 (1)(2b )3; (2)(2×a 3)2; (3)(-a )3; (4)(-3x )4解: 练习 1.计算:(1) (ab)8(2) (2m)3(3) (-xy)5(4) (5ab 2)3(5) (2×102)2(6) (-3×103)32.判断下列计算是否正确,并说明理由:(1)(ab 2)3=ab 6( ) (2) (3xy)3=9x 3y 3( ) (3) (-2a 2)2=-4a 4( ) (4) -(-ab 2)2=a 2b 4( )1-)73377337-)5(555=⨯-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛(( )※3.逆 用 法 则 进 行 计 算我们知道 (ab )n= a n b n那么 a n b n=(ab )n例: 24×44×0.1254解:24×44×0.1254=(2×4×0.125)4= 1(1) (-4)2005×(0.25)2005(2)-82000×(-0.125)2001四、巩固 直接写出结果①(5ab)2=②(-xy 2)3=③(-2xy 3)4 = ④(-2×10) 3= ⑤(-3x 3)2-[(2x)2]3= ⑥(-3a 3b 2c)4= ⑦(-a n b n+1)3= ⑧0.52009×22009=⑨ (-0.25)3×26 =⑩ (-0.125) 8×230=1、积的乘方使用范围:底数是积的乘方2、在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式3、要注意运算过程和符号 自我检测1、下列各式中,与x5m+1相等的是( )A 、(x 5)m +1B 、(x m +1)5C 、 x · (x 5)mD 、 x · x 5· x m2、x 14不可以写成( )A 、x 5· (x 3)3B 、 (-x ) · (-x 2) · (-x 3) · (-x 8) C 、(x 7)7D 、x 3· x 4· x 5· x 23、若 ,则m= ;4、若n 是正整数,且m=-1,则122)(+-n n m 的值是 ;5、(1)a 6y 3=( )3;(2)81x 4y 10=( )2; (3)若(a 3y m )2=a n y 8, 则m= ,n= 6、计算(1)(-2x 2y 3)3(2) (-3a 3b 2c)47、先化简,再求值:)()()(6)5(22232a b ab ab -⋅-⋅+-,其中a=1,b=-1;1022x x x m m =⋅-+12331)()()3(+--⋅n n a a xy xy xy ⋅-23)2()()4(2222)2()2()5(n mn mn ⋅--()2020)211()32(6⋅20082008)75(521()7(⋅-10013000)125.0(2)8(-⨯-(9)2(x 3)2 · x 3-(3x 3)3+(5x)2 ·x 78、如果(a n•b m•b)3=a9b15,求m, n的值9、试比较47,164,85的大小10、试比较3555,4444,5333的大小.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80【答案】C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.2.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.3.用图象法解方程组2424x yx y-=⎧⎨+=⎩时,下图中正确的是()A.B.C.D.【答案】C【解析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【详解】解方程组2424x yx y-=⎧⎨+=⎩的两个方程可以转化为:y=122x-和y=24x-+,只有C符合这两个函数的图象.故选:C.【点睛】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.4.下列各分式中,最简分式是( ) A .()()1215x y x y -+B .22y x x y -+C .2222x y x y xy ++D .222()x y x y -+【答案】C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】()()1215x y x y -+=()()45x y x y -+,不是最简分式;22y x x y -+=y-x ,不是最简分式;2222x y x y xy ++是最简分式;222()x y x y -+=2()()()x y x y x y +-+=x y x y -+,不是最简分式. 故选C. 【点睛】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键. 5.一个三角形的两边长分别为3 cm 和7 cm ,则此三角形的第三边的长可能是( ) A .3 cm B .4 cmC .7 cmD .11 cm【答案】C【解析】试题解析:设第三边长为xcm ,根据三角形的三边关系可得: 7-3<x <7+3, 解得:4<x <10, 故答案为C .考点:三角形三边关系.6.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、图形既不是轴对称图形是中心对称图形, B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.如图点,,A B C 在同一条直线上,,CBE ADC ∆∆都是等边三角形,,AE BD 相交于点O ,且分别与,CD CE 交于点,M N ,连接,M N ,有如下结论:①DCB ACE ∆≅∆;②AM DN =;③CMN ∆为等边三角形;④60︒∠=EOB .其中正确的结论个数是( )A .1个B .2个C .3个D .4个【答案】D【分析】由SAS 即可证明DCB ACE ∆≅∆,则①正确;有∠CAE=∠CDB ,然后证明△ACM ≌△DCN ,则②正确;由CM=CN ,∠MCN=60°,即可得到CMN ∆为等边三角形,则③正确;由AD ∥CE ,则∠DAO=∠NEO=∠CBN ,由外角的性质60EOB OAC CBN ∠=∠+∠=︒,即可得到答案. 【详解】解:∵△DAC 和△EBC 均是等边三角形, ∴AC=CD ,BC=CE ,∠ACD=∠BCE=60°, ∴∠ACD+∠DCE=∠BCE+∠DCE , 即∠ACE=∠BCD , 在△ACE 和△DCB 中,AC CD ACE BCD BC CE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),则①正确; ∴AE=BD ,∠CAE=∠CDB , 在ACM 和△DCN 中,ACD DCE AC CDCAE CDB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACM ≌△DCN (ASA ), ∴CM=CN ,AM DN =;则②正确; ∵∠MCN=60°,∴CMN ∆为等边三角形;则③正确; ∵∠DAC=∠ECB=60°, ∴AD ∥CE ,∴∠DAO=∠NEO=∠CBN ,∴60EOB OAC CBN OAC DAO ∠=∠+∠=∠+∠=︒;则④正确; ∴正确的结论由4个; 故选:D . 【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,平行线的判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.8.已知实数a 、b 满足等式x=a 2+b 2+20,y=a(2b -a),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y【答案】D【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥,20a ≥,200>,0x y ∴->,x y ∴>,故选:D . 【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.9.如图,△ABE ≌△ACF ,若AB=5,AE=2,则EC 的长度是( )A .2B .3C .4D .5【答案】B【分析】根据△ABE ≌△ACF ,可得三角形对应边相等,由EC=AC-AE 即可求得答案. 【详解】解:∵△ABE ≌△ACF ,AB =5,AE =2, ∴AB =AC =5, ∴EC=AC-AE=5-2=3, 故选:B . 【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键. 10.下列各组图形中,成轴对称的两个图形是( ) A . B . C . D .【答案】D【解析】试题分析:根据轴对称图形的概念求解. 解:A 、不是轴对称图形,故错误; B 、不是轴对称图形,故错误; C 、不是轴对称图形,故错误; D 、是轴对称图形,故正确. 故选D .考点:轴对称图形. 二、填空题1140x +=,则x =______.【分析】根据“0的算术平方根是0”进行计算即可. 【详解】∵40x +=,∴40x +=,∴x=-1.故答案为:-1.【点睛】本题考查算术平方根,属于基础题型,要求会根据算术平方根求原数.12.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D,交AC 于E,若△EBC 的周长为21cm,则BC= cm .【答案】1.【详解】解:∵AB 的垂直平分线交AB 于D ,∴AE=BE又△EBC 的周长为21cm ,即BE+CE+BC=21∴AE+CE+BC=21又AE+CE=AC=13cm所以BC=21-13=1cm .故答案为:1.考点:线段垂直平分线的性质.13.如图,在ABC ∆中,150,20,30A AB AC ∠===则,ABC ∆的面积为__________.【分析】过点B作BD⊥AC,根据∠A=150°,可得∠BAD=30°,再由AB=20cm,可得BD的长,再根据三角形的面积公式求解即可.【详解】如图,过点B作BD⊥AC,∵∠BAC=150°,∴∠BAD=30°,∴BD= 12 AB,∵AB=20,∴BD=10,∵S△ABC= 12AC•BD=12×30×10=150,故答案为150 .【点睛】本题考查含30度角的直角三角形,在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.14.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.【答案】1【解析】过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.【详解】解:如图,过点P作PF⊥OB于点F,∵点P 是∠AOB 的角平分线上一点,PD ⊥OA 于点D ,∴PD=PF ,∠AOP=∠BOP=12∠AOB=15°. ∵CE 垂直平分OP ,∴OE=OP .∴∠POE=∠EPO=15°.∴∠PEF=1∠POE=30°.∴PF=12PE=12OE=1. 则PD=PF=1.故答案是:1.【点睛】考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF 是解决的关键.15.x y +的平方根是±3,2x y +的立方根是22x y -+_______. 【答案】3【分析】先根据平方根和立方根的概念,求出x y +和2x y +的值,联立方程组即可求出x 、y 的值,代入即可求解本题.【详解】解:∵x y +的平方根是±3, ∴x y +=9,①∵2x y +的立方根是2,∴2x y +=8,②②-①得:x=-1,将x=-1代入①式得:y=10, ()()221101223-+=-⨯-+==x y故答案为:23.【点睛】本题考查的是平方根和立方根的概念,解决本题需要掌握平方根和立方根的概念,同时要掌握二元一次方程组的求解.16.如果4,8,m n a b ==那么232m n +=_______________________.(用含,a b 的式子表示)【答案】ab【分析】直接利用同底数幂的乘法运算法则将原式变形进而得出答案.【详解】解:(1)∵4,8,m n a b ==∴232,2m n a b ==,∴232m n +=23m n a a a b ⋅=⋅;故答案为ab.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆运算,正确掌握运算法则是解题的关键.17.某体育馆的入场票上标有几区几排几号,将1排2区3号记作(1、2、3),那么(3、2、6)表示的位置是______.【答案】3排2区6号【分析】根据题目提供的例子,直接写出答案即可.【详解】解:∵1排2区3号记作(1,2,3),∴(3,2,6)表示的位置是3排2区6号,故答案为:3排2区6号.【点睛】本题考查了坐标表示位置的知识,解题的关键是能够了解题目提供的例子,难度不大.三、解答题18.已知:如图,等腰三角形ABC 中,90ACB ∠=︒,等腰三角形DCE 中,90DCE ∠=︒,点D 在AB 上,连接AE .求证:EA AB ⊥.【答案】证明见解析【分析】根据等腰三角形的性质证明BCD ACE ∆∆≌即可求解.【详解】由题意:BC AC =,DC EC =,45B BAC ∠=∠=︒,又ACB DCE ∠=∠,∴BCD ACE ∠=∠,∴BCD ACE ∆∆≌,45CAE B ∠=∠=︒,∴90BAE ∠=︒,即EA AB ⊥.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质、全等三角形的判定与性质. 19.计算与化简:2019|2|(1)--;②()()()42234457632x x x x x x x +⋅+⋅+⋅;③已知2270x x --=,求2(2)(3)(3)x x x -++-的值. ④222211*********n ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(利用因式分解计算) 【答案】(1)0;(2)125x ;(3)9;(4)12n n+. 【分析】(1)根据二次根式的性质,绝对值的性质,正整数指数幂和开立方运算进行计算即可; (2)按照幂的乘方,同底数幂的乘方和合并同类项计算即可;(3)先对原代数式进行化简,然后通过对已知变形得出22414x x -=,然后整体代入即可求出答案; (4)按照平方差公式22()()a b a b a b -=+-展开,然后发现中间项可以约分,最后只剩首尾两项,再进行计算即可.【详解】(1)原式2231=+-- 0=.(2)原式124812662x x x x x x =+⋅++⋅121212122x x x x =+++125x =.(3)227x x -=,22414x x -=∴2(2)(3)(3)x x x -++-∴22449x x x =-++-2245x x =--145=-9=.(4)原式1111111111112233n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+- ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111112233n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324112233n n n n-+=⨯⨯⨯⨯⨯⨯ 12n n+= 【点睛】 本题主要考查实数的混合运算,整式的乘法和加法混合运算,代数式求值和因式分解,掌握实数的混合运算法则,整式的乘法和加法混合运算顺序和法则,整体代入法和因式分解是解题的关键.20.先化简代数式22213(1)42a a a a -+÷--+,再从2,2,1,1,--四个数中选择一个你喜欢的数代入求值. 【答案】(1)12a a --;(2)23【分析】根据分式的混合运算的法则把原式进行化简,再由化简后的式子选择使原式子有意义的数代入计算即可.【详解】原式2(1)23(2)(2)2a a a a a -+-=÷+-+ 2(1)1(2)(2)2a a a a a --=÷+-+ 2(1)2(2)(2)1a a a a a -+=⨯+-- 12a a -=- , 由题意知,2,1a ≠±,所以取1a =-代入可得原式1112--=--23=, 故答案为:(1)12a a --;(2)23. 【点睛】考查了分式的化简,利用平方差公式,因式分解的方法化成简单的形式,然后代入数值求解,注意代入数时,要使所取数使得原分式有意义的才行.21.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.【答案】(1)①EAB DAC ∠=∠; ② 平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据EAD BAC ∠=∠,两角有公共角BAD ∠,可证EAB DAC ∠=∠;②连接EB ,证明△EAB ≌△DAC ,可得,ABE ACD EB CD ∠=∠=,再结合平行线的性质和等腰三角形的判定定理可得EF=DC ,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形CDEF 为平行四边形.(2)根据60BAC ∠=︒,可证明△AED 和△ABC 为等边三角形,再根据ED ∥FC 结合等边三角形的性质,得出∠AFC=∠BDA ,求证△ABD ≌△CAF ,得出ED=CF ,进而求证四边形EDCF 是平行四边形.【详解】解:(1)①EAB DAC ∠=∠,理由如下:∵EAD BAC ∠=∠,EAD EAB BAD ∠=∠+∠,BAC BAD DAC ∠=∠+∠,∴EAB BAD BAD DAC ∠+∠=∠+∠,∴EAB DAC ∠=∠;②证明:如下图,连接EB,在△EAB 和△DAC 中∵AE ADEAB DAC AB AC=⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△DAC (SAS )∴,ABE ACD EB CD ∠=∠=,∵AB AC =,∴ABC ACD ∠=∠,∴ABE ABC ∠=∠,∵//EF DC ,∴EFB ABC ∠=∠,∴ABE EFB ∠=∠,∴EB EF =,∴DC EF =∴四边形CDEF 为平行四边形;(2)成立;理由如下:理由如下:∵60BAC ∠=︒,∴=60EAD BAC ∠=∠︒,∵AE=AD ,AB=AC ,∴△AED 和△ABC 为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED ∥FC ,∴∠EDB=∠FCB ,∵∠AFC=∠B+∠BCF=60°+∠BCF ,∠BDA=∠ADE+∠EDB=60°+∠EDB , ∴∠AFC=∠BDA ,在△ABD 和△CAF 中,60BDA AFC B BAC AB CA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABD ≌△CAF (AAS ),∴AD=FC ,∵AD=ED ,∴ED=CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.22.如图,P 为正方形ABCD 的边BC 的延长线上一动点,以DP 为一边做正方形DPEM ,以E 为一顶点作正方形EFGH ,且FG 在BC 的延长线上(提示:正方形四条边相等,且四个内角为90︒)(1)若正方形ABCD 、DPEM 的面积分别为a ,b ,则正方形EFGH的面积为 (直接写结果). (2)过点P 做BC 的垂线交PDC ∠的平分线于点Q ,连接QE ,试探求在点P 运动过程中,DQE ∠的大小是否发生变化,并说明理由.【答案】(1)b a -;(2)DQE ∠的大小不会发生变化,理由见解析.【分析】(1)先通过全等,得到EF=CP ,通过勾股定理求222CP DP CD =-=b a -,则正方形EFGH 的面积=2EF =2CP =b a -(2)先通过证明PD PQ =,再通过正方形的性质得到PQ PE =,再通过证明得到1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠=45°,所以DQE ∠的大小不会发生变化. 【详解】(1) ∵四边形ABCD 、四边形EFGH 、四边形DPEM 是正方形∴DP=PE,∠DPE=90°,∠BCD=90°,∠EFG=90°∴∠PCD=∠EFP=90°,∠DPC+∠PDC=90°, ∠EPF+∠DPC=90°,∴∠PDC= ∠EPF∴△CDP ≌△FEP∴EF=CP∵在Rt △CDP 中,222CP DP CD =-,正方形ABCD 的面积=2CD =a ,正方形DPEM 的面积=2DP =b ∴正方形EFGH 的面积=2EF =222CP DP CD =-=b a -(2)DQE ∠的大小不会发生变化,理由如下,,,DC BC DQ BC EF BC ⊥⊥⊥//,//DC QP QP EF ∴CDQ PQD ∴∠=∠ DQ 平分CDP ∠CDQ QDP PQD ∴∠=∠=∠PD PQ ∴=在正方形DPEM 中,DP PE =PQ PE ∴=PQE PEQ ∴∠=∠//PQ EFPQE FEQ ∴∠=∠12PQE PEF ∴∠=∠1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠90,90CDP CPD CPD EPF ∠+∠=︒∠+∠=︒CDP EPF ∴∠=∠ 90CDP PEF ∴∠+∠=︒1()2DQE CDP PEF ∠=∠+∠190452DQE ∴∠=⨯︒=︒∴DQE ∠的大小不会发生变化.【点睛】本题考查的正方形与全等的综合性题目,灵活运用正方形的特征是解答此题的关键. 23.如图是由边长为1个单位长度的小正方形组成的网格,ABC ∆的三个顶点都在格点上. (1)作出ABC ∆关于y 轴对称的A B C '''∆,并写出点C '的坐标: . (2)求出A B C '''∆的面积.【答案】(1)见解析 (2)5【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案; (2)直接利用△A′B′C′所在矩形面积减去周围三角形的面积进而得出答案. 【详解】解:(1)如图所示,A B C '''∆为所作三角形, 点C '的坐标:(-1,2);(2)11134132413222A B C S '''∆=⨯-⨯⨯-⨯⨯-⨯⨯=5. 【点睛】本题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.已知:如图,OM 是∠AOB 的平分线,C 是OM 上一点,且CD ⊥OA 于D ,CE ⊥OB 于E ,AD=EB .求证:AC=CB .【答案】详见解析.【分析】先由角平分线的性质得出CD=CE ,再由SAS 证明△ADC ≌△BEC ,得出对应边相等即可. 【详解】证明:∵OM 是∠AOB 的平分线,C 是OM 上一点, 且CD ⊥OA 于D ,CE ⊥OB 于E , ∴CD=CE ,∠ADC=∠BEC=90°, 在△ACD 和△BCE 中,AD EBADC BEC DC CE ⎧⎪∠∠⎨⎪⎩=== ∴△ADC ≌△BEC (SAS ), ∴AC=CB . 【点睛】本题考查了全等三角形的判定与性质、角平分线的性质;证明三角形全等得出对应边相等是解决问题的关键.25.问题探究:小明根据学习函数的经验,对函数3y x =-+的图象与性质进行了探究. 下面是小明的探究过程,请你解决相关问题:()1在函数3y x =-+中,自变量x 可以是任意实数; ()2如表y 与x 的几组对应值:x ⋯ 4- 3-2-1-0 1 2 3 4⋯ y⋯1-12321a1-⋯a =①______;②若(),7A b -,()10,7B -为该函数图象上不同的两点,则b =______;()3如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:①该函数有______(填“最大值”或“最小值”);并写出这个值为______; ②求出函数图象与坐标轴在第二象限内所围成的图形的面积; ③观察函数3y x =-+的图象,写出该图象的两条性质.【答案】 (2)①0;10-②;(3)①最大值,3;②92;③函数图象为轴对称图形,对称轴为y 轴;当x 0<时,y 随x 的增大而增大,当x 0>时,y 随x 增大而减小. 【解析】()2①将x 3=代入函数解析式即可求得a ;②当y 7=-时,根据函数解析式可求得b ;()3根据题意画出函数图象,根据图象特征即可求得题目所求.【详解】解:()2①当x 3=时,求得a 0=;②由题意,当y 7=-时,得x 37-+=-,解得:x 10=或10-,所以b 10=-.()3函数图象如下图所示:①由图知,该函数有最大值3;②由图知,函数图象与x 轴负半轴的交点为()3,0-,与y 轴正半轴的交点为()0,3,因此函数图象在第二象限内所围成的图形的面积为:193322⨯⨯=, ③由图象知可知函数y x 3=-+有如下性质:函数图象为轴对称图形,对称轴为y 轴;当x 0<时,y 随x 的增大而增大,当x 0>时,y 随x 增大而减小.故答案为(2)①0;10-②;(3)①最大值,3;②92;③函数图象为轴对称图形,对称轴为y 轴;当x 0<时,y 随x 的增大而增大,当x 0>时,y 随x 增大而减小. 【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图象,并研究和总结函数的性质;另外本题还考查了对绝对值的理解.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在一个三角形的纸片(ABC ∆)中, 90C ∠=︒,将这个纸片沿直线DE 剪去一个角后变成一个四边形ABED ,则图中12∠+∠的度数为( )A .180°B .90C .270°D .315°【答案】C【分析】根据直角三角形与邻补角的性质即可求解. 【详解】∵90C ∠=︒ ∴90EDC DEC ∠+∠=︒∴12∠+∠=180180EDC DEC ︒-∠+︒-∠=()360EDC DEC ︒-∠+∠=36090270︒-︒=︒ 故选C. 【点睛】此题主要考查三角形的求解求解,解题的关键是熟知直角三角形与邻补角的性质.2.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC ②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④【答案】D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确; 【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确; ∵ BD 平分∠ABC ,BD=BC ,BE=BA , ∴ ∠BCD=∠BDC=∠BAE=∠BEA , ∵△ABD ≌△EBC , ∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°, 故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE , ∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE , ∴△ACE 是等腰三角形, ∴AE=EC , ∵△ABD ≌△EBC , ∴AD=EC , ∴AD=AE=EC , 故③正确;作EG ⊥BC ,垂足为G ,如图所示: ∵ E 是BD 上的点,∴EF=EG , 在△BEG 和△BEF 中BE BEEF EG=⎧⎨=⎩∴ △BEG ≌△BEF , ∴BG=BF ,在△CEG 和△AFE 中EF EGAE CE =⎧⎨=⎩∴△CEG ≌△AFE , ∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF , 故④正确; 故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;3.如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是( )A.AC=AD B.BC=BD C.∠C=∠D D.∠3=∠4【答案】B【解析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【详解】A、∵∠1=∠2,AB为公共边,若AC=AD,则△ABC≌△ABD(SAS),故本选项错误;B、∵∠1=∠2,AB为公共边,若BC=BD,则不一定能使△ABC≌△ABD,故本选项正确;C、∵∠1=∠2,AB为公共边,若∠C=∠D,则△ABC≌△ABD(AAS),故本选项错误;D、∵∠1=∠2,AB为公共边,若∠3=∠4,则△ABC≌△ABD(ASA),故本选项错误;故选B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•110°+360°=1440°,n﹣2=6,n=1.故这个多边形的边数为1.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.5.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A 方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【答案】D【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:253055120k b k b +⎧⎨+⎩==,解得:345k b ⎧⎨-⎩==, ∴y A =3x-45(x≥25),当x=35时,y A =3x-45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确; D 、设当x≥50时,y B =mx+n ,将(50,50)、(55,65)代入y B =mx+n ,得:50505565m n m n +⎧⎨+⎩== , 解得:3100m n ==⎧⎨-⎩,∴y B =3x-100(x≥50),当x=70时,y B =3x-100=110<120, ∴结论D 错误. 故选D . 【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键. 6.下列图案是轴对称图形的是( ).A .B .C .D .【答案】D【分析】根据轴对称图形的概念求解.【详解】轴对称图形是图形两部分沿对称轴折叠后可重合.A,B,C 图都不满足条件,只有D 沿某条直线(对称轴)折叠后,图形两部分能重合, 故选D .7.如图,已知OA =OB ,OC =OD ,AD 和BC 相交于点E ,则图中共有全等三角形的对数( )A.2对B.3对C.4对D.5对【答案】C【分析】由条件可证△AOD≌△BOC,可得∠A=∠B,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【详解】解:在△AOD和△BOC中OA OBAOD BOCOD OC=⎧⎪∠=∠⎨⎪=⎩∴△AOD≌△BOC(SAS),∴∠A=∠B,∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BDE(AAS),∴AE=BE,在△AOE和△BOE中OA OBA B AE BE=⎧⎪∠=∠⎨⎪=⎩∴△AOE≌△BOE(SAS),∴∠COE=∠DOE ,在△COE 和△DOE 中OC OD COE DOE OE OE =⎧⎪∠=∠⎨⎪=⎩∴△COE ≌△DOE (SAS ),故全等的三角形有4对,故选C .【点睛】本题主要考查全等三角形的性质和判定,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .8.下列各式中,从左到右的变形是因式分解的是( )A .24814(2)1x x x x +-=+-B .2(3)(3)9x x x +-=-C .221(1)x x x -+=-D .256(1)(6)x x x x --=+-【答案】D【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判断即可.【详解】A 选项化成的不是乘积的形式,故本选项不符合题意;B 选项是整式的乘法,不是因式分解,故本选项不符合题意;C . 221(1)x x x -+≠-,故本选项不符合题意;D . 256(1)(6)x x x x --=+-,是因式分解,故本选项符合题意.故选D .【点睛】此题考查的是因式分解的判断,掌握因式分解的定义是解决此题的关键.9.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是( )A .SASB .ASAC .SSSD .HL【答案】B【分析】根据题中信息,得出角或边的关系,选择正确的证明三角形全等的判定定理,即可.【详解】由题意知:AB ⊥BF ,DE ⊥BF ,CD=BC ,∴∠ABC=∠EDC在△EDC 和△ABC 中(ABC EDCBC CD ACB ECD 对顶角)∴△EDC ≌△ABC (ASA ).故选B .【点睛】本题主要考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.10.一个多边形的每个内角都是108°,那么这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】A【分析】根据题意,计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A .【点睛】本题考查了多边形外角和是360°这一知识点,根据题意求出,每个外角的度数是解决本题的关键。

【说课稿】 积的乘方

【说课稿】 积的乘方

积的乘方我本节课说课的内容是沪科版初中数学七年级下册第8章《整式的乘除》第1节《幂的运算》的第3课时《积的乘方》。

我将尝试运用新课标的理念指导本节课的教学。

新课标指出,学生是教学的主体,教师的教学应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

下面我将以此为基础从说教材,说教法,说学法,说教学程序这四个方面加以说明。

一、说教材1、教材的地位和作用本节课《积的乘方》是学生在学习了同底数幂的乘法,幂的乘方两种幂的运算性质之后紧接着的第三种运算性质,是幂指数运算不可或缺的一部分。

并为整式的运算打下基础和提供依据。

这节课的内容无论从其内容还是所处的地位来说都是十分重要的,是后继学习整式乘除与因式分解的桥梁。

2、教学目标:在探索积的乘方的运算性质的过程中,发展推理能力和有条理的表达能力;学习积的乘方的运算性质,提高解决问题的能力并体会转化与划归、整体的数学思想方法。

2、教学重点和难点积的乘方是幂的第三种运算性质,也是本章后继学习的基础,所以我把理解并正确熟练运用积的乘方的运算性质作为本节课的重点。

同时,学生在学习幂的运算性质的时候很可能死记硬背这些性质的结论,以至于混淆运算性质,所以在教学过程中我将积的乘方的运算性质的探索过程及其应用方法作为本节课的难点。

通过让学生动手,动口,动脑进行讨论来增强对已学三种幂的运算性质的理解,并运用对比的方法强化训练以达到准确地区分,从而掌握重点,化解难点。

二、说教法遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课我采用“温故而知新—自学新知—自我测评”的教学方法,并采用多媒体,为学生提供丰富、生动、直观的观察材料,激发学生的学习积极性和主动性。

通过教师在教学过程中的点拨,启发学生通过主动自学,主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

三、说学法《数学课程标准》强调,从学生的生活经验和已有知识背景出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识、数学思想和数学方法,同时获得广泛的数学活动经验。

《幂的乘方与积的乘方》教案 (公开课)2022年 (2)

《幂的乘方与积的乘方》教案 (公开课)2022年 (2)

4.幂的乘方与积的乘方〔二〕一、 学生起点分析:学生知识技能根底:学生通过对七年级上册数学课本的学习,已经掌握了用字母表示数的技能,并且了解了有关乘方的知识,根据幂的意义知道了式子:n an a a a a =⨯⨯⨯个的成立,而通过对前一节课的学习,对于幂的运算中“同底数幂的乘法〞与“幂的乘方〞法那么已非常熟悉,而与之有关的延伸题及变形题都有一定的涉及。

学生活动经验根底:在探讨“积的乘方〞的关系式中,学生仍可根据幂的意义的有关计算,经历从特殊到一般的研究过程,感受到知识之间的内在联系,能从具体情境中抽象出数量之间的变化规律,并且能够用字母表达式表达展示这一规律。

同时在学习过程中,给学生足够的合作交流空间,加深对法那么的探索过程及对算理的理解。

二、教学任务分析:教科书通过一组算式的计算入手,深入浅出地把新知识一点一滴的落实下来。

通过前期的数学学习,学生对探讨幂的运算方式方法已经具有一定的体会,由前期工作的铺垫学生对新知识的接受没有太大的疑惑。

在教学中,教师注意引导学生对积的乘方一般规律的探索和表达,鼓励学生通过独立思考与讨论发现关系,给学生留下充分探索和交流的空间。

为此,本节课的教学目标是:1. 经历探索积的乘方运算性质的过程,进一步体会幂的意义,开展推理能力和有条理的表达能力。

2. 了解积的乘方的运算性质,并能解决一些实际问题。

三、 教学设计分析:本节课设计了七个教学环节:复习回忆、探索交流、知识扩充、稳固新知、公式逆用、课堂小结、布置作业。

第一环节:复习回忆:活动内容:复习前几节课学习的有关幂的三个知识点:1.幂的意义:n an a a a a =⨯⨯⨯个 2.同底数幂的乘法运算法那么.n m n m a a a +=⋅〔m 、n 为正整数〕3.幂的乘方运算法那么(a m )n =a m n (m 、n 都是正整数)活动目的:在学习的过程中要让学习者保持思维的连贯性是一件十分重要的事情,因而必要的铺垫是要进行的。

数学教案-幂的乘方与积的乘方

数学教案-幂的乘方与积的乘方

数学教案-幂的乘方与积的乘方教学建议一、知识结构二、重点、难点分析本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.1.幂的乘方幂的乘方,底数不变,指数相乘,即(都是正整数)幂的乘方的推导是根据乘方的意义和同底数幂的乘法性质.幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.2.积和乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(为正整数).三个或三个以上的积的乘方,也具有这一性质.例如:3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.三、教法建议1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.(2)记清幂的运算与指数运算的关系:(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:(1)(-2xy)4=-24x4y4.(2)(x+y)3=x3+y3.幂的乘方与积的乘方(一)一、教学目标1.理解幂的乘方性质并能应用它进行有关计算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.培养学生严谨的学习态度以及勇于创新的精神.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发现法、尝试指导法.2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.三、重点难点及解决办法(-)重点准确掌握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.(三)解决办法在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.七、教学步骤(-)明确目标本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用(二)整体感知幂的乘方法则的应用关键是判断准其适用的条件和形式.(三)教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)计算:①②2.探索新知,讲授新课(1)引入新课:计算和和提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.观察题目和结论:推测幂的乘方的一般结论:(2)幂的乘方法则语言叙述:幂的乘方,底数不变,指数相乘.字母表示:.(,都是正整数)推导过程按课本,让学生说出每一步变形的根据.(3)范例讲解例1计算:①②③④解:①②③④例2计算:①②解:①原式②原式练习:①P971,2②错例辨析:下列各式的计算中,正确的是()A.B.C.D.(四)总结、扩展同底数幂的乘法与幂的乘方性质比较:幂运算种类指数运算种类同底幂乘法乘法加法幂的乘方乘方乘法八、布置作业P101A组1~3;B组1.参考答案略.。

第3讲:同底数幂的乘法及幂的乘积与积的乘方-教案

第3讲:同底数幂的乘法及幂的乘积与积的乘方-教案
【解析】∵21×22=23,22×23=25,23×25=28,25×28=213,…,
∴x、y、z满足的关系式是:xy=z.
故答案为:xy=z.
【总结与反思】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.
阅读下列材料:
一般地,n个相同的因数a相乘 记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
A.6 B.8 C.9 D.12
【解析】因为 ,所以 ,故选B.
【总结与反思】幂的乘方法则的逆运算.
若x3=﹣8a9b6,则x=.
【解析】∵x3=﹣8a9b6,
∴x3=(﹣2a3b2)3,
∴x=﹣2a3b2.
故答案为:=﹣2a3b2.
【总结与反思】根据幂的乘方与积的乘方法则进行解答即可.
已知ax=2,ay=3,求ax+2y=.
【解析】∵21×22=23,22×23=25,23×25=28,25×28=213,…,
∴x、y、z满足的关系式是:xy=z.
故答案为:xy=z.
【总结与反思】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.
同底数幂相乘,底数不变,指数相加.
(1)讨论归纳结果;(2)得出法则.
同底数幂乘法法则:同底数幂相乘,底数不变,指数相加.

积的乘方的说课稿

积的乘方的说课稿

积的乘方的说课稿一、说教材1、教材的地位和作用积的乘方是整式运算中的重要内容,是幂的运算的进一步拓展和延伸。

它是后续学习整式乘法、因式分解等知识的基础,在数学知识体系中起着承上启下的作用。

2、教学目标(1)知识与技能目标理解积的乘方的运算法则,能够熟练运用法则进行计算。

(2)过程与方法目标通过探索积的乘方的运算过程,培养学生的观察、分析、归纳和推理能力,体会从特殊到一般的数学思想方法。

(3)情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索的精神和合作交流的意识。

3、教学重难点(1)教学重点掌握积的乘方的运算法则,并能正确运用。

(2)教学难点灵活运用积的乘方法则进行计算,理解法则的推导过程。

二、说教法1、启发式教学法通过设置问题,引导学生思考,激发学生的求知欲和探索精神。

2、讲练结合法在讲解新知识的同时,通过练习及时巩固,让学生在实践中掌握知识和技能。

三、说学法1、自主探究法让学生通过自主思考和探究,发现问题、解决问题,培养学生的自主学习能力。

2、合作学习法组织学生进行小组合作学习,共同讨论和交流,培养学生的合作意识和团队精神。

四、说教学过程1、复习引入(1)回顾幂的乘方法则:(a^m)^n = a^(mn) (m、n 为正整数)。

(2)计算:①(2^3)^2 ②(a^4)^32、探究新知(1)计算:(2×3)^2 与 2^2×3^2 ,比较它们的结果。

(2)再计算:(2×5)^3 与 2^3×5^3 ,(3×4)^4 与 3^4×4^4 ,观察并思考其规律。

(3)引导学生归纳出积的乘方法则:(ab)^n = a^n b^n (n 为正整数)。

3、法则推导(1)通过乘方的意义进行推导:(ab)^n =(ab)×(ab)×···×(ab) (n 个 ab 相乘)=(a×a×···×a)×(b×b×···×b) (n 个 a 相乘,n 个 b 相乘)= a^n b^n(2)强调法则的条件:积中的每一个因式都要乘方。

数学教案-幂的乘方与积的乘方-教学教案

数学教案-幂的乘方与积的乘方-教学教案

一、知识结构二、重点、难点分析本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.1.幂的乘方幂的乘方,底数不变,指数相乘,即(都是正整数)幂的乘方的推导是根据乘方的意义和同底数幂的乘法性质.幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.2.积和乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(为正整数).三个或三个以上的积的乘方,也具有这一性质.例如:3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.三、教法建议1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.(2)记清幂的运算与指数运算的关系:(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:(1)(-2xy)4=-24x4y4.(2)(x+y)3=x3+y3.幂的乘方与积的乘方(一)一、教学目标1.理解幂的乘方性质并能应用它进行有关计算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.培养学生严谨的学习态度以及勇于创新的精神.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发现法、尝试指导法.2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.三、重点&#183;难点及解决办法(-)重点准确掌握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.(三)解决办法在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.七、教学步骤(-)明确目标本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用(二)整体感知幂的乘方法则的应用关键是判断准其适用的条件和形式.(三)教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)计算:①②2.探索新知,讲授新课(1)引入新课:计算和和提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.观察题目和结论:推测幂的乘方的一般结论:(2)幂的乘方法则语言叙述:幂的乘方,底数不变,指数相乘.字母表示:.(,都是正整数)推导过程按课本,让学生说出每一步变形的根据.(3)范例讲解例1 计算:①②③④解:①②③④例2 计算:①②解:①原式②原式练习:①p97 1,2②错例辨析:下列各式的计算中,正确的是()a.b.c.d.(四)总结、扩展同底数幂的乘法与幂的乘方性质比较:幂运算种类指数运算种类同底幂乘法乘法加法幂的乘方乘方乘法八、布置作业p101 a组1~3; b组1.参考答案略.。

幂的运算教案

幂的运算教案

6.2.4幂的运算(4)一、教学目标:1、知识与技能:掌握同底数幂的乘法、除法、幂的乘方、积的乘方,知道它们的联系和区别,并能运用它们熟练进行有关计算。

综合运用幂的运算法则进行运算并解决问题。

2、过程与方法:通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。

体会化归整体和分类讨论的思想方法。

3、情感态度与价值观:进一步培养学生的合作交流、意识和探索能力。

二、重点难点重点:幂的法则的综合应用与灵活运用难点:幂的法则的综合应用与灵活运用三、教学方法:疑探式、小组合作四、教学过程:(一)设疑自探复习公式:幂的运算:1、同底数幂的乘法2、幂的乘方 3、积的乘方自学教材71页例6、例7思考本节的学习内容,提出问题自探提纲:1、幂的运算中符号如何确定。

2、 如何综合运用幂的运算公式学生自探,思考问题解决(二)教师引探总结方法和注意点:每项符号:奇数个负号为负,偶数个负号为正,注意底数中的负号,指数为奇数还是偶数。

综合运算要注意运算顺序。

画出运算顺序。

注意每一项符号的确定。

巩固练习:教材72页练习1题,教材73页提升第1题(三)学生合探教材72页练习第2题,习题6-2基础第8题。

小组内解决,小组竞争展示,注意重点和难点,如何保证正确性。

(四)提高拓展1、教材73页提升第3题。

把x-y 看为一个整体,y-x 对符号变化的影响。

2、教材73页提升第4题。

思考为什么(1)要分类讨论?(2)要不要分类讨论?(五)检测与作业 1、(1)(3×105)2 =_________ (2)(2x )2=___________(3)(-2x )3 =___________ (4)a 2 • (ab )3=___________2、(1)若b a b b a m n 159)(3=⋅⋅,则m=________,n=__________ (2)a a a a 102223(____)][(___)(___)=∙==∙⋅3、计算)2(22a -的结果是( )A a 42B a 42-C a 44D a 44-(6))125.0(42454-⨯⨯(7))()(233232y x x y x ⋅+6.2.4幂的运算(4)检测与作业(6))125.0(42454-⨯⨯ (7))()(233232y x x y x ⋅+。

(完整版)《幂的乘方与积的乘方》教案

(完整版)《幂的乘方与积的乘方》教案

幂的乘方与积的乘方一、教学目标(一)知识目标1。

经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。

了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。

三、教具准备投影片三张第一张:做一做,记作(§1。

4.1 A)第二张:例题,记作(§1.4。

1 B)第三张:练习,记作(§1.4。

1 C)四、教学过程Ⅰ。

提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。

[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。

根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。

于是我们就求出了V=106立方毫米,V1=109立方毫米。

我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。

幂的乘方与积的乘方教案

幂的乘方与积的乘方教案

第三章第4节 幂的乘方与积的乘方(一)东岳中学 兰顺河教学内容 幂的乘方教学目标1. 经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2. 了解幂的乘方的运算性质,能运用“幂的乘方”法则进行运算。

教学重难点1. 重点:幂的乘方法则及用法则进行计算。

2. 难点:幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。

教学过程一. 创设情境,提出问题:1.你知道吗如果甲球的半径是乙球的n 倍,那么甲球的体积是乙球的3n 倍。

地球、木星、太阳可以近似地看作是球体。

木星的半径约是地球的10倍,太阳的半径约是地球的210倍,它们的体积分别约是地球的多少倍由学生独立思考后可得出:木星的体积是地球的310倍,太阳的体积是地球的32)10(倍(即610倍)。

引导学生观察电脑展示的上图,通过比较三个球体的大小,体会球体扩大的倍数比半径扩大的倍数大得多。

2.提出问题 4a 的意义是什么把4a 看成底数,则34)(a 的意义是什么怎样计算34)(a 二. 探索规律,得出结论1. 计算下列各式,并说明理由(学生先独立完成计算,后学习小组讨论说明理由,再 电脑展示推理过程)(1)42)6(; (2)32)(a ; (3)2)(m a ; (4)n m a )(。

n m a )(=(•m a •m a •m a …m a •)=m m m a+⋅⋅⋅++ =mn a即 n m a )(=mn a (n m ,都是正整数)2.鼓励学生自己发现幂的乘方性质的特点(如底数和指数发生了什么变化),运用自己的语言进行描述:幂的乘方,底数不变,指数相乘。

3. 让学生回顾这一性质得来的过程,进一步体会幂的意义。

并引导学生剖析法则:(1) 公式中的底数a 可以是具体的数,也可以是代数式。

(2) 注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加。

三. 运用法则,进行计算例1 计算:(1)32)10(; (2)55)(b ; (3)3)(n a ;(4)m x )(2-; (5)y y •32)(; (6)4362)()(2a a -。

《14.1.3积的乘方》说课稿

《14.1.3积的乘方》说课稿

《14.1.3 积的乘方》说课稿武威第九中学:张天娥尊敬的各位领导、各位同仁:大家上午好!今天我说课的内容是新人教版八年级数学上册第十四章《整式的乘法与因式分解》,第一节《幂的运算》中的第三课时《积的乘方》。

我将按照新课标的理念和要求进行本节课的教学。

课堂教学坚持以“学生为主体,训练为主线,思维为主攻”的教学模式,在学生原有的知识基础上构建新的知识体系。

为此,我从说教材,说教法,说学法,说教学流程,说课后反思这五个环节谈谈我对这一节课的理解和设计。

一、说教材:1.教材的地位与作用:本节课是学生学习了《同底数幂相乘》和《幂的乘方》之后的又一种幂的运算,它不仅能加深学生对幂的意义、乘法的交换律和结合律的理解,而且也进一步加强加深了学生对同底数幂相乘和幂的乘方的理解和运用。

它是整式乘法运算的三大基础运算之一,为今后整式乘法运算提供了理论依据,打下了坚实的基础。

因此,本节课在本章和今后的教学中占据重要的地位。

2.教学目标:本节课新课程标准要求是:使学生进一步了解幂的意义,学会积的乘方运算,根据幂的运算性质解决数学问题和简单的实际问题。

由此,结合教材内容和学生的认知结构心理特征,我制定了如下教学目标:(1).知识与技能:能准确理解并掌握积的乘方运算性质,灵活运用这一性质进行相关计算。

(2).过程与方法:通过探索积的乘方运算法则的过程,知道这一法则是由乘方的意义和乘法的交换律、结合律以及同底数幂相乘的法则推到而来,从而发展学生推理能力和有条理的表达能力。

理解学习这一法则,进一步体会幂的意义,体会数学的转化思想,理解“特殊与一般”的数学归纳方法。

(3).情感、态度与价值:在发展推理能力和有条理的表达能力的同时,进一步让学生体会学习数学的方法和兴趣,提高学生学习数学的信心,感受数学的简洁美。

3.教学重点和难点:本着学生学情和本节课的教学内容,我把“理解并正确熟练地运用积的乘方运算法则”作为本节课的重点。

学生在学习幂的运算后,对同底数幂相乘法则、幂的乘方法则和积的乘方法则很容易在运算中混淆,所以在教学过程中我将“积的乘方运算法则的探索过程及其应用方法”作为本节课的难点。

幂的乘方和积的乘方北师大版数学初一下册教案

幂的乘方和积的乘方北师大版数学初一下册教案

幂的乘方和积的乘方北师大版数学初一下册教案幂的乘方和积的乘方:教案幂的乘方:公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则。

积的乘方:1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么?学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加.幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.知识点1.地球的半径长约为6×103 km,用S,r分别表示赤道所围成的圆的面积和地球半径,则S=πr2,计算赤道所围成的圆的面积约为1.13×108__km2.(π取3.14,结果精确到0.01)2.用公式表示图中阴影部分面积S,并求出当a=1.2×103 cm,r=4×102 cm时,S的值.(π取3.14)《1.2幂的乘法与积的乘方》同步测试一、选择题1.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n22.计算(x2)3的结果是()A.xB.3x2C.x5D.x63.下列各式计算正确的是()A.(a2)2=a4B.a+a=a2C.3a2+a2=2a2D.a4-a2=a84.下列计算正确的是()A.a3-a4=a12B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)《1.2幂的乘方与积的乘方》课时练习含答案解析一.填空题(a3)2-a4等于;答案:a10解析:解答:(a3)2-a4=a6-a4=a10.分析:先根据幂的乘方算出(a3)2=a6,再同底数幂的乘法法则可完成此题.。

《积的乘方》教案

《积的乘方》教案

14.1.3 积的乘方教学目标(一)教学知识点1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.(二)能力训练要求1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力.2.学习积的乘方的运算法则,提高解决问题的能力.(三)情感与价值观要求在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.教学重点积的乘方运算法则及其应用.教学难点幂的运算法则的灵活运用.教学方法自学─引导相结合的方法.同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题.教具准备投影片.教学过程Ⅰ.提出问题,创设情境[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为 1.1×103cm,•你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,•我认为应是积的乘方才有道理.[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?•有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒.Ⅱ.导入新课老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.出示投影片学生探究的经过:1.(1)(ab)2 =(ab)·(ab)= (a·a)·(b·b)= a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.•同样的方法可以算出(2)、(3)题.(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=()()()ab ab abn个ab =()a a an个a·()b b bn个b=a n b n2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n(n是正整数)3.正方体的体积V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3)通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.4.积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n =a·a·a···b·b·b···=(ab)(ab)(ab)····(ab)=(a·b)n──乘方的意义5.[例3]计算(1)(2a)3=23·a3=8a3.(2)(-5b)3=(-5)3·b3=-125b3.(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4.(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师要深入到学生中,发现问题,及时启发引导,•使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.•可以作如下归纳总结:1.积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n(n 为正整数).2.三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n (n为正整数).3.积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n,(n 为正整数).Ⅲ.随堂练习1.课本练习(由学生板演或口答)Ⅳ.课时小结[师]通过本节课的学习,你有什么新的体会和收获?[生]通过自己的努力,探索总结出了积的乘方法则,还能理解它的真正含义. [生]其实数学新知识的学习,好多都是由旧知识推理出来的.我现在逐渐体会到温故知新的深刻道理了.[生]通过一些例子,我们更熟悉了积的乘方的运算性质,而且还能在不同情况下对幂的运算性质活用.Ⅴ.课后作业1.课本习题2.总结我们学过的三个幂的运算法则,反思作业中的错误.3.预习“整式的乘法”一节.板书设计。

初中数学幂的运算规则教案

初中数学幂的运算规则教案

初中数学幂的运算规则教案教学目标:1. 理解幂的运算规则,包括同底数幂的乘法、幂的乘方、积的乘方和同底数幂的除法。

2. 能够运用幂的运算规则进行相关的计算和解决问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 掌握幂的运算规则。

2. 能够正确进行幂的运算。

教学难点:1. 幂的运算规则的理解和运用。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入幂的概念,复习已学过的幂的定义和基本性质。

2. 提问:同学们,我们已经学习了幂的概念,那么你们知道幂的运算规则吗?二、新课讲解(20分钟)1. 同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

示例:\(a^m \times a^n = a^{m+n}\)2. 幂的乘方法则:幂的乘方,底数不变,指数相乘。

示例:\((a^m)^n = a^{mn}\)3. 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

示例:\((ab)^n = a^n \times b^n\)4. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

示例:\(a^m / a^n = a^{m-n}\)三、例题讲解(15分钟)1. 举例讲解同底数幂的乘法法则的应用。

2. 举例讲解幂的乘方法则的应用。

3. 举例讲解积的乘方法则的应用。

4. 举例讲解同底数幂的除法法则的应用。

四、练习与巩固(10分钟)1. 让学生独立完成练习题,巩固幂的运算规则。

2. 老师选取一些练习题进行讲解和解析。

五、总结与反思(5分钟)1. 总结幂的运算规则,让学生清晰地掌握每个运算规则的要点。

2. 让学生反思自己在学习过程中遇到的困难和问题,并进行解答。

教学延伸:1. 进一步学习幂的更高级运算规则,如幂的乘方与除方的运算法则。

2. 运用幂的运算规则解决实际问题,如代数方程的求解等。

教学反思:本节课通过讲解和练习,让学生掌握了幂的运算规则。

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案

(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。

本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。

教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。

但对于幂的乘方与积的乘方,学生可能存在理解上的困难。

因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。

三. 教学目标1.理解幂的乘方与积的乘方的运算法则。

2.能够运用幂的运算性质解决实际问题。

3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。

2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。

五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。

2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。

3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。

六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。

2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。

3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。

例如:计算(23)2,32×33等。

引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。

2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。

如:(a m)n=a mn,(ab)n=a n b n等。

让学生总结出幂的乘方与积的乘方的运算法则。

初中数学初一数学下册《幂的运算》教案、教学设计

初中数学初一数学下册《幂的运算》教案、教学设计
学生在学习过程中,可能存在以下问题:1.对幂的运算性质理解不深刻,容易混淆同底数幂的乘除法则;2.在解决实际问题时,不能灵活运用幂的运算规律;3.部分学生对数学学习兴趣不足,学习积极性不高。
针对以上学情,教师在教学过程中应关注以下几点:1.通过生动有趣的实例引入幂的运算,激发学生的学习兴趣;2.注重启发式教学,引导学生自主探究、合作交流,提高学生对幂的运算规律的认知;3.设计有针对性的练习题,帮助学生巩固幂的运算法则,提高解题能力;4.关注学生的情感态度,鼓励学生积极参与课堂,培养良好的学习习惯。通过以上措施,使学生在掌握幂的运算知识的同时,提高数学素养,为后续学习奠定坚实基础。
初中数学初一数学下册《幂的运算》教案、教学设计
一、教学目标
(一)知识与技能
1.理解幂的概念,掌握幂的运算法则,包括同底数幂的乘法、除法、幂的乘方、积的乘方等基本运算法则。
2.能够运用幂的运算性质进行简便计算,解决实际问题,提高运算速度和准确率。
3.能够运用幂的运算规律进行数学推理,培养学生的逻辑思维能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的概念、运算法则,以及在实际问题中的应用。
2.难点:同底数幂的乘除法则、幂的乘方、积的乘方的灵活运用。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过自主探究、合作交流,发现幂的运算规律。
(2)利用多媒体辅助教学,以生动形象的方式展示幂的运算过程,帮助学生理解幂的运算性质。
(4)拓展提高:结合实际问题,引导学生运用幂的运算规律解决问题,培养学生的数学应用意识。
(5)课堂小结:让学生总结幂的运算知识,形成知识体系,提高学生的概括能力。
3.教学评价:
(1)关注学生的学习过程,通过课堂表现、练习情况等多方面评价学生的学习效果。

2 幂的乘方与积的乘方公开课教案

2 幂的乘方与积的乘方公开课教案
课 题
幂的运算性质
课 时
1
课 型
复习课
地 点
授 课 人
时 间




知识与能力目标
幂的运算性质(即同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、零指数幂和负整数指数幂).
过程与方法目标
经历复习,回顾,总结,归纳的过程,回顾整式的运算法则的探究过程,发展推理能力和表达能力,培养学生“观察——归纳——概括”的思维方法和策略.
思维拓展
训练
内化
独立完成
交流讨论
互动
探究3
学生思考、讨论
巩固提高
训练
内化
独立完成
交流讨论
互动
探究4
学生思考、讨论
训练
内化
独立完成
交流讨论
辅导
提升
1.教师根据学生回答或质疑点拨,或肯定鼓励。
2.当堂检测
教学后记
目标达成情况
学生参与情况
存在问题
反思
同底数幂相乘,底数不变,指数_______。注意底数可以是多项式或单项式。
2、幂的乘方法则: ( 都是正整数)
幂的乘方,底数不变,指数__ ______。
3、积的乘方法则: ( 是正整数)
积的乘方,等于每个因式分别,再把所得幂。
4同底数幂的除法法则: ( 都是正整数,且
同底数幂相除,底数不变,指数______。如:
5任意非零数的零次方等于1. =_____。(a≠0)
学生课前进行知识梳理,回答
帮助学生回忆知识点建立知识结构
互动
探究1
典型例题
例1:下列运算中计算结果正确的是( )
学生思考、讨论
巩固训练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
8.1 幂的运算
(第3课时)积的乘方
一、教学背景
(一)教材分析
本节课的内容是乘法法则的延续,在以后的内容和实际生活中应用广泛.积的乘方是继同底数幂乘法、幂的乘方的又一种幂运算。

从数的相应运算入手,类比过渡到“式”的运算,从中探索,归纳“式”的运算性质。

使原有知识得到扩充,自然地引入到整式运算,为整式运算打下基础和提供依据。

这节课无论从其内容还是从所处地位都十分重要的,是后继学习整式乘除与因式分解的桥梁.
(二)学情分析
七年级下学期的学生思维正处在从具体形象思维向抽象逻辑思维转变的阶段.已学习了有理数乘方运算的意义、同底数幂的乘法,这些都为本节课的学习打下了基础. 通过七上的学习,学生已经初步具备了发现问题,分析、合作、讨论、解决问题的能力.根据这节课的内容特点、学生认知规律,本课采取引导探索发现法来组织教学.让学生在探索中发现、形成、应用和拓展新知识,让学生在活动的过程中体验学习的快乐,培养学生之间相互合作、相互交流的能力,为今后的学习、生活、工作打下基础.
二、教学目标:
1 经历探索积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.
2 了解积的乘方的运算性质,并能解决一些实际问题.
三、重点、难点:
重点:理解并正确运用积的乘方的.
难点:积的乘方的探究过程及应用方法.
四、教学方法分析及学习方法指导
教法指导
本节课以“学生为本”的思想为指导,主要采取引导探索发现法.让学生先独立思考,再与同伴交流,然后归纳其中的规律获取新知识.
学法指导
通过先个人学习,后各小组合作学习的方式,教师提出让学生困惑的问题,让学生深刻理解积的乘方的意义,避免幂的乘法三个运算性质的混淆;充分发挥学生的主观能动性,让学生通过合作学习,培养学生的综合能力.
五、教学过程:
(一)知识回顾:
1 叙述同底数幂乘法法则并用字母表示.
2 叙述幂的乘方法则并用字母表示.
设计意图:复习旧知识,为学习新知识做铺垫。

从实例引入课题,强化数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生的思想,从而激发学生的求知欲.
(二)情境导入:
计算
()223⨯ 思考:()2
23⨯与2223⨯的值相等吗?()222ab a b 与呢? ()()()()()222ab ab ab a a b b a b ==⋅⋅=
(三)探究新知: 你能猜想()()()()445b ab xy abc mnpq 、、、的结果怎样呢?()n ab (n 为正整数)
如何计算呢?
证明:()n
ab =n ab ab ab ab ⋅⋅⋅⋅14243个=n n a a a b b b ⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅ ⎪⎪ ⎪⎪⎝⎭⎝⎭1424314243个a个b=n n a b ()n ab =n n a b (n 为正整数)
设计意图:教学过程是学生对有关学习内容进行探索与思考的过程,学生是学习活动的主体。

教师是学习活动的组织者、引导者和合作者,因此鼓励学生观察等式两边的底数和指数发生了什么变化?从而归纳猜想获得的结果.通过小组讨论展示成果体验规律的探索过程,培养学生观察力,逻辑推理能力,语言表达能力.
(四)合作学习:
例3 计算:
()()()()()()2
43231 2 2 3 3 x a ab c -- 例4 地球可以近似地看做是球体,如果用V , r 分别代表球的体积和半径,那么343
v r π=地球的半径约为36.410⨯千米,它的体积大约是多少立方千米? 设计意图:引导学生观察,计算过程中应注意什么?既调动学生的积极性,又对积的乘方的法则巩固.
22
23⨯
(五)自主学习:
1 计算:
()()()()()()()()32223432
1 210
2 310
3 3
4 2m a b c ⨯-⨯- 2 下列计算对不对,如果不对,怎样改正? ()()()()()()()()()()()3
23332222362241 =b 2 612 3 39 4 24 a b a xy x y x x ax a x =-=-=-
3 球的表面积公式为24s r π=,已知球的半径约为36.410⨯km ,求地球的表面积.( π取3.14)
设计意图:学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.分组练习,不仅能激发学生的兴趣,同时也可培养学生的集体荣誉感.学生对知识的印象会更深刻.
(六)课堂小结:
1本节课的主要内容是什么?
2运用积的乘方法则时要注意什么?
设计意图:通过小结,让学生让学生谈收获及注意的问题,体验成功的喜悦和探索的乐趣;让学生认识自我,增强自信心.
(七)布置作业:
课本54页,习题8.1:第3题
设计意图:分层次作业是不同层次学生得到了不同的发展,又为后续学习打下了良好的基础.
板书设计:
预设反思:
本节课的主要内容是积的乘方公式及其应用.由于在应用当中需要用到同底数幂的乘法和幂的乘方,也是为了引导学生回忆巩固前面的知识,所以在上新课之前先复习它们的法则.积的乘方公式的理解及应用时这节课的重点,首先要让学生理解这个公式,而要让学生理解这个公式,就要让学生理解积的乘方的含义.后面设计了2个例题,以便学生进一步理解和应用公式.给了一定的时间给学生训练,让学生初步掌握了概念并能对它进行简单的应用.。

相关文档
最新文档