第4章 数值积分与数值微分《数值分析》

合集下载

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

数值分析Cht4数值积分和数值微分

数值分析Cht4数值积分和数值微分

x
j
)dx.
(1.7)
定理1
求积公式
ab f
( x)dx
n
wk
fk至少具有n次代数精度
k 0
它是插值型求积公式.
四、求积公式的余项
若求积公式
b
f (x)dx
a
n
wk fk的代数精度为m, 则其余项
k 0
R[ f ]
b
f (x)dx
a
n
wk fk Kf (m1) (),
k 0
a,b.
定义2 在求积公式(1.3)中, 若
lim
n
n
wk
k 0
f
( xk
)
ab
f
(x)dx,
h0
其中h max(xi xi1),则称求积公式(1.3)是收敛的.
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,, n), 则有
| In ( f ) In ( ~f ) |
12
(a,b).
2. 中矩形公式的余项
b f (x)dx f (a b)(b a), 代数精度为1.
a
2
K
1 2
1
3
(b3
a3)
(b
a)
a
2
b
2
(b
a)3 24
中矩形公式的余项 : R[ f ] (b a)3 f ''(),
24
(a,b).
五、求积公式的收敛性和稳定性
wk fk
k 0
1 1 (m 1)! m
2
(bm2
am2 )
n k 0
wk

数值分析课件第4章数值积分与数值微分

数值分析课件第4章数值积分与数值微分

森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有

1_数值分析4-数值积分与微分

1_数值分析4-数值积分与微分

回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn

h
k 1
fk

2 ( f0

fn )

b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x

xk
)(x

xk
1
),
k (xk , xk1)
(
f0

fn)
(3)
k 1
非等距分割梯形公式
Tn

n1 k 0
fk
fk 1 2
(xk 1

xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。

数值分析课件 第4章 数值积分与数值微分

数值分析课件 第4章 数值积分与数值微分

第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。

在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。

对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()ba f x dx Fb F a =-⎰ 似乎问题已经解决,其实不然。

如1)()f x 是由测量或数值计算以数据表形式给出时,Newton-Leibnitz 公式无法应用。

2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-=等等,它们的原函数不能用初等函数的有限形式表示。

3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。

例如下列积分24111ln11arc 1)arc 1)xdxxtg tg C++=+⎡⎤+++-+⎣⎦⎰对于上述这些情况,都要求建立定积分的近似计算方法—数值积分法。

1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。

由积分中值定理:对()[,]f x C a b∈,存在[,]a bξ∈,有()()()baf x dx b a fξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a-而高为()fξ的矩形面积(图4-1)。

问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()fξ。

我们将()fξ称为区间[,]a b上的平均高度。

这样,只要对平均高度()fξ提供一种算法,相应地便获得一种数值求积分方法。

如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b a T f a f b -=+ (1.1)便是我们所熟悉的梯形公式(图4-2)。

数值分析(清华大学第五版) 第四章数值积分和微分

数值分析(清华大学第五版) 第四章数值积分和微分


b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .

研究生课程《数值分析》第四章数值积分与数值微分

研究生课程《数值分析》第四章数值积分与数值微分

b
a
f
(x)dx
1 (b 6
a)
f
(a)
4
f
(a
2
b)
f
(b)
y=f(x)
梯形公式把 f(a), f(b) 的加权平均值
1 f (a) f (b)
2
aa ((aa++bb))//22 bb
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
中矩形公式把 [a,b] 的中点处函数值
f
ab 2
定义 (代数精度) 设求积公式(1)对于一切次 数小于等于 m 的多项式( f (x) 1, x, x2 , , xm 或 f (x) a0 a1x a2 x 2 am x m )是准确的,而对于 次数为 m+1 的多项式是不准确的,则称该求积公 式具有 m 次代数精度(简称代数精度)
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
Simpson公式是以函数 f(x)在 a, b, (a+b)/2 这三点的函数
值 f(a),
f(b),
f
a
2
b
的加权平均值

1 ( f (a) 4 f ( a b ) f (b))作为平均高度 f() 的近
6
2
似值而获得的一种数值积分方法。
将积分区间细分, 在每个小区间内用简单函数代替复 杂函数进行积分,这是数值积分的思想。本章主要讨论 用代数插值多项式代替 f(x) 进行积分。
5.1.1 数值积分的基本思想
积分 I b f (x)dx 在几何上可以理解为由 x=a, x=b, a
y=0 以及 y = f(x) 这四条边所围成的曲边梯形面积。如图 1 所 示,而这个面积之所以难于计算是因为它有一条曲边 y=f(x)。

数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分

数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分
4
( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2

1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1

4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。

数值分析4数值积分与数值微分

数值分析4数值积分与数值微分

第4 章4数与数微数值积分与数值微分本章内容411.1 光波的特性4.1 引言4.2 Newton-Cotes 公式1.2 光波在介质界面上的反射和折射4.3 Romverg 算法4.4Gauss 1.3 光波在金属表面上的反射和折射4.4 Gauss 公式4.5 数值微分2本章要求主要内容:机械求积、牛顿柯特斯公式、龙贝格算法、高斯公式、•—数值微分。

•基本要求–(1)了解数值微分公式的导出方法及常用的数值微分公式。

–(2) 掌握数值积分公式的导出方法,截断误差;理解代数精度的概念,会用待定系数法。

–(3) 掌握梯形求积公式,抛物线求积公式,牛顿-柯特斯公式的构造及使用,并会应用公式求积分。

(4)熟悉复化梯形公式复化辛普生公式–(4) 熟悉复化梯形公式,复化辛普生公式。

–(5) 会用龙贝格积分法。

–(6) 了解高斯型求积公式的概念及导出方法,能构造简单问题的高精度求积公式,会使用常见的几种高斯型求积公式进行计算。

积公式会使用常见的几种高斯型求积公式进行计算•重点、难点重点牛顿柯特斯公式–重点:牛顿-柯特斯公式;–难点:代数精度的概念。

3414114.1 引言4.1.1 数值求积的基本思想一、问题,d)(∫=b a xxfI数学分析中的处方法由微积分学基本定当如何求积分数学分析中的处理方法:由微积分学基本定理,当f(x)在[a, b]上连续时,存在原函数F(x),牛顿-莱布尼茨(Newton-Leibniz)公式:).()(d)(aFbFxxf ba−=∫但有时用上面的方法计算定积分有困难但有时用上面的方法计算定积分有困难。

441N-L4.1 引言N L公式失效的情形:这时,N-L公式也不能直接运用。

因此有必要研究问题即用数值方法计算定积分因此,有必要研究数值积分问题,即用数值方法计算定积分的近似值.541二、构造数值积分公式的基本思想4.1 引言、构造数值积分公式的基本思想问题:点ξ的具体位置一般是不知道的,因而难以准确算出的值,怎么办?f(ξ)641采用不同的近似计算方法从而得到各种不同的4.1 引言)对f(ξ)采用不同的近似计算方法,从而得到各种不同的数值求积公式。

《数值分析-李庆杨》第4章 数值积分与数值微分-文档资料

《数值分析-李庆杨》第4章  数值积分与数值微分-文档资料

(a

b).得到的求积公式就是中矩形公式。再令

f (x) x2, 代入(1.4)式的第三式有

分 析 》
A0 x02
(b
a)( a
b)2 2

b
a 4
(a2
b2)

b x2dx 1 (b3 a3 ),
a
3
说明中矩形公式对f (x) x2不精确成立,故它的代数精确度为1.
当f(x)=x2时(1.4)式的第三个式子不成立,因为
b a (a2 b2 ) b x2dx 1 (b3 a3).
2
a
3
故梯形公式(1.1)的代数精确度为1.
第4章 数值积分与数值微分
在方程组(1.4)中如果节点xi及系数Ai都不确定,那么方 程组(1.4)是关于xi及Ai(i=0,1,…,n)的2n+2个参数的非线性方 程组。此方程组当n>1时求解是很困难的,但当n=0及n=1的 情形还可通过求解方程组(1.4)得到相应的求积公式。
练习 设有求积公式
1
1 f (x)dx A0 f (1) A1 f (0) A2 f (1)
试确定系数A0, A1, A2, 使上述求积公式的代数精度尽量高.
三、插值型求积公式
第4章 数值积分与数值微分
在n 1个互异节点a x0 x1 xn b上已知函数值f0,

A1

1(b a).于是得 2
数 值
I ( f ) b f ( x)dx b a [ f (a) f (b)]
a
2

析 这就是梯形公式(1.1),它表明利用线性方程组(1.4)推出的求积公式,

数值分析第五版全答案chap4

数值分析第五版全答案chap4

第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 1012101211212(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];h h h h hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。

(1)若101(1)()()(0)()h hf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+从而解得 011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0h h hhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()h hf x dx A f h A f A f h --=-++⎰成立。

令4()f x x =,则4551012()52()(0)()3h h hhf x dx x dx hA f h A f A f h h---==-++=⎰⎰故此时,101()()(0)()h hf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

数值分析第四章数值积分-69页精选文档

数值分析第四章数值积分-69页精选文档

x
m k

1 m 1
b m 1 a m 1
由上面代数精度条件确定求积公式可分两种情形:
1. 若事先给定求积节点xk(k=0,…,n),例如被积函数以表的形式 给出时xk确定,可令m=n,由上式确定n+1个系数Ak即可---待定系数法和插值法。
2. 若xk和Ak都可选择,令m=2n +1,确定xk和法Ak ---Gauss法
求积系数,与被
b
n
积函数无关
f (x)dx
a
Ak f(xk)
k0
求积节 点
像这样,将积分用若干节点上被积函数值的线性组合来表示
的数值积分公式称为机械求积公式。
求积误差
b
n
R[f] f(x)dx a
Akf(xk)
k0
机械型求积公式的构造归结为,确定求积节点xk和求积系
Case 1---方法1
Case 1---方法2 §1 插值型求积 公式
插值型积分公式
/*interpolatory quadrature*/
思 路
利用插值多项式
Pn(x)f(x)则积分易算。
在[a, b]上取 a x0 < x1 <…< xn b,做 f 的 n 次插值
n
多项式 Ln(x) f(xk)lk(x),即得到 k0
数Ak,使在某种意义下精确度较高。总之,要解决三个问 题:
1. 精确度的度量标准;
2. 如何构造具体的求积公式;
3. 具体求积公式构造出来后,误差如何估计?
问题1
定义:代数精度
若某个求积公式对次数 m 阶的多项式准确成立,而对 m+1 阶 的 多 项 式 不 一 定 准 确 成 立 。 即 对 应 的 误 差 满 足 : R[ Pk ]=0 对任意 k m 阶的多项式成立,且 R[ Pm+1 ] 0 对某 个 m+1 阶多项式成立,则称此求积公式的代数精度为 m 。

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。

数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。

一、数值微分数值微分是通过数值方法来近似计算函数的导数。

在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。

1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。

假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。

通过取不同的步长h,可以得到不同精度的数值微分结果。

2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。

假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。

二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。

定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。

1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。

假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。

2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。

假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。

《数值分析-李庆杨》第4章 数值积分与数值微分

《数值分析-李庆杨》第4章  数值积分与数值微分


b f (x)dx b a [ f (a) f (b)]
a
2
(1.1)
数 值
如图4.3,若用抛物线代替曲线f(x),则可得到抛物线
分 析
公式(或辛普生公式)

b f (x)dx b a [ f (a) 4 f ( a b) f (b)] (1.2)
a
6
2
《 数 值 分 析 》
图 4.2
R[ f ] Kf '''()令 f (x) x3 得 f '''() 3!,于是有
K
1
3!
1 x3dx
0
2 3
f
(0)
1 3
f
(1)
1 6
f
' (0)
1 72
故得 R[ f ] 1 f '''(), (0,1)
72
第4章 数值积分与数值微分
五、求积公式的收敛性和稳定性
定义2 在求积公式(1.3)中, 若
k 0
《 则称求积公式(1.3)是稳定的.


分 析 》
定 理 2 若求积公式 (1.3)中系数Ak (0 0,1, , n), 则求积公式
是稳定的.
这是因为,

f (xk )
f%k
(k
0,L
, n)时,取

ba
n
n
| Rn || Ak ( f (xk ) f%(xk ) | Ak f (xk ) f%(xk )
b
b
b
a
f (x)dx a
pn ( x)dx a
Rn (x)dx

数值分析复习之数值积分与数值微分

数值分析复习之数值积分与数值微分
4、 梯型求积公式的余项估计为:
辛甫森求积公式的余项估计为:
Cotes求积公式的余项估计为:
5、 当用Newton-Cotes求积公式的时,当很大时一样存在数值不稳定性。为 了使用低阶求积公式,并且能达到较高的计算精度,可以将区间做若干 等分,在每个子区间上使用低阶求积公式,这样的方法称为复化求积方 法。次代数精度 证明:梯型求积公式为,取时,有 取时 取时,积分真值为 梯型求积公式的值为 故,即梯型求积公式只具有1次代数精度。
3、分别应用梯型求积公式、Simpson求积公式、Cotes求积公式计算积分,并 估计各种方法的误差(要求小数点后至少保留5位) 解:运用梯形求积公式 其误差 应用Simpson求积公式, 其误差为 应用Cotes求积公式,有 其误差为:
4、推导下列三种矩形求积公式
解:将在处Taylor展开,得 两边在上积分,得 将在处Taylor展开,得 两边在上积分,得 将在处Taylor展开,得 两边在上积分,得
5、已知, (1)推导以这三个点作为求积节点在上的插值型求积公式, (2)指明求积公式所具有的代数精度 (3)用所求公式的计算 解:由构造Lagrange插值多项式 并用近似表示,可得插值型求积公式: ,其中
为数值微分。
三、例题 1、确定下列求积公式中的待定系数,使其代数精度尽量高,并指出求积公式 所具有的代数精度。
解:这是的Newton-Cotes求积公式,至少具有三次代数精度。由此可以确定它 的系数,取可得以下方程组: 如果取,它的积分真值为,如果用积分公式来计算则得到它的近似值为,所 以,求积公式只具有3次代数精度。
构造出来的求积公式称为Newton-Cotes求积公式它的一般表达式可以写 为:
其中称为Cotes系数。特别地当时Newton-Cotes求积公式称为梯型求积公 式,写为:

数值分析讲义第四章数值积分

数值分析讲义第四章数值积分

方法的选取
不同的数值积分方法具有不同 的收敛性和稳定性,应根据具 体问题选择合适的方法。
初值和边界条件
初值和边界条件对数值积分的 收敛性和稳定性也有影响,不 合理的初值和边界条件可能导 致数值积分发散或误差增大。
05
数值积分的应用实例
在物理模拟中的应用
01
流体动力学模拟
数值积分被广泛应用于流体动力 学模拟中,如计算流体速度、压 力、温度等的分布。
02
数值积分方法
矩形法
总结词:简单直观
详细描述:矩形法是一种基本的数值积分方法,它将积分区间划分为若干个小的矩形,然后求和近似计算积分值。由于计算 简单直观,适用于初学者理解数值积分的基本思想。
梯形法
总结词:易于理解
详细描述:梯形法是另一种数值积分方法,它将积分区间划分为若干个小的梯形,然后求和近似计算 积分值。与矩形法相比,梯形法更接近于真实曲线下面积的形状,因此误差相对较小。
衍生品定价
通过数值积分方法,可以 对复杂的衍生品进行定价, 如期权、期货等。
蒙特卡洛模拟
蒙特卡洛模拟是一种基于 随机抽样的数值积分方法, 常用于估计预期收益和风 险。
在图像处理中的应用
图像滤波
通过数值积分方法,可以 对图像进行滤波处理,如 平滑、锐化等。
图像重建
在图像重建中,数值积分 常用于从部分图像数据中 恢复完整的图像。
辛普森法
总结词:精度较高
详细描述:辛普森法是数值积分的一种改进方法,它利用了被积 函数在积分区间的端点和中心点的函数值进行近似计算,因此精 度相对较高。辛普森法是数值积分中常用的方法之一。
高斯法
总结词:高精度
VS
详细描述:高斯法是一种基于高斯积 分的数值积分方法,它利用了被积函 数在积分区间内的高斯点的函数值进 行近似计算,具有很高的精度。高斯 法适用于需要高精度计算的情况,但 计算过程相对复杂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f x x2 时
ab ab I f b a f b a 2 2 b b 1 3 2 f x dx x dx b a 3 a a 3
因此,矩形公式的代数精度为 1 。
注:如果 给出了节点上的导数值,也可得到求积公式。




事实上,上式是关于
Ak 的线性方程组,其系数行列式为: 1 1 1 x0 x1 x m m m x0 x1m x m
xk 互异时不为零, Ak 存在唯一解。
(证毕)
2013年8月13日
此式为范德蒙德行列式,当
5
《数值分析》 黄龙主讲
对于求积公式:
f x dx A
b a k 0
n
k
f xk
如果具有
n
次代数精度,则:
A ba 1 A x 2 b
k
k k
2
a2

Ak x n k
1 b n1 a n1 n1

因此:构造机械求积公式,成为确定参数
6
xk 和 Ak 的代数问题。
2013年8月13日
《数值分析》 黄龙主讲
2013年8月13日
A1 x 2dx
11
《数值分析》 黄龙主讲
解方程组得
1 2 1 A1 , 0 , 0 A B 3 3 6
求积公式为


1
0
2 1 1 f x dx f 0 f 1 f 0 3 3 6 1 f x dx x dx 0 4 2 1 1 1 0 f 0 f 1 f 3 3 6 3
f x x2 时
f b a f a f b b a a 2 b 2 I
2
b a
2 b 1 3 2 f x dx x dx b a 3 a 3


因此,梯形公式的代数精度为 1 。
8
2013年8月13日
《数值分析》 黄龙主讲
4
1 b m 1 a m 1 m 1

2013年8月13日
《数值分析》 黄龙主讲
A0 A1 Am b a
1 2 A0 x0 A1 x1 Am xm b a 2 2 1 m m m A0 x0 A1 x1 Am xm b m 1 a m 1 m 1
k
f xk 精确成立。
f x x m 1 时:
f m1 x m 1 ! , Rm x 0
m b m 1 1 m 1 K a x dx Ak xk m 1 ! k 0 m 1 1 m 2 m2 m 1 Ak xk m 2 b a m 1 ! k 0
1 3
f x x3 时

1
0
因此:求积公式的代数精度为 2 。
12
2013年8月13日
《数值分析》 黄龙主讲
4.1.3
插值型的求积公式
已知:节点
a x0 x1 xn b 上的函数值 f x ,
Ln x f xk l k x f x ,
② 原函数太复杂,不便计算,例如:积分表中公式; ③ 被积函数无解析表达式,只有某些函数值。
1
2013年8月13日
2
《数值分析》 黄龙主讲
3. 数值积分: 中值定理:
x dx b a f a f b 梯形公式: f a 2
b
f x dx b a f
f x 1 时, f x 0 f x x 时, f x 1
A1 B0
0
A0 A1 1 dx 1 ┄┄① 0
1
1


f x x 2 时, f x 2 x
1 0
1 xdx ┄┄② 2 1 ┄┄③ 3
k
即:基函数的积分值是机械求积的系数,故是插值型求积。
16
2013年8月13日
《数值分析》 黄龙主讲
4.1.4
求积公式的余项
n
对于求积公式:
f x dx A
b a k 0
k
f xk
若求积公式的代数精度为
b m
m
,则其余项为:
b
R f f x dx Ak f xk
a k 0
a
f m 1 m 1 x dx m 1 !
如果积分的核函数
m 1 x
m
在区间
a , b 上保号,
由积分中值定理得:
R f f x dx Ak f xk Kf m 1
b a k 0
《数值分析》 黄龙主讲
第4章
4.1
4.1.1
数值积分与数值微分
数值积分概论
数值积分的基本思想
1. 牛顿—莱布尼兹公式:
如果被积函数
b a
f x 存在原函数 F x ,则
f x dx F b F a
2. 求积时存在问题:
① 无法求出原函数,例如: sinx ;
其中 K 为不依赖于
17
f x 的待定参数, a , b 。
2013年8月13日
《数值分析》 黄龙主讲

f x 是次数小于或等于 m 的多项式时:
f m1 x 0 , R f 0
求积公式 当
f x dx A
b a k 0
n
f n1 Rn x f x Ln x n 1 x n 1 !
b a
Rn f I I n
注:
14
f n1 n1 x dx n 1 !
,并与
a , b
x 有关。
f x dx l x dx
b b a a k
Aj f x j Aj lk x j
j 0 j 0
n

n

lk x j kj
因此:

1 , k j 0 , k j
,( k j 项不为零)
l x dx A
b a k
例如 n 1 :

x0 a , 1 b ,求积公式为 x
I f f x dx A0 f a A1 f b
b a

f x 1 , 时求积公式准确成立 x
f x 1 : A0 A1 b a f x x
: A0 a A1b
再如 n 0 :
求积公式为
I f f x dx A0 f x0
b a

f x 1 , 时求积公式准确成立 x
f x 1 : f x x

A0 b a
A0 x0 1 2 b a2 2


解得
A0 b a , 0 a b 2 ,求积公式为 x


18
——具体的余项表达式
2013年8月13日
《数值分析》 黄龙主讲
例如梯形公式,代数精度为 1 :
R f Kf , a , b
m 1 1 m 2 m 2 m 1 K Ak xk m 2 b a m 1 ! k 0
f n1 0 , Rn f 0
即:误差为零,求积公式准确相等。
求积公式至少有
n 次代数精度。
2013年8月13日
15
《数值分析》 黄龙主讲
② 必要性:如果求积公式具有 因
n 次代数精度(证明:插值型?)
l k x 是 n 次多项式,取 f x lk x (检验代数精度)
b a
ab 矩形公式: f x dx b a f a 2 b b a f a 4 f a b f b 辛普森公式: a f x dx 6 2
b
机械求积公式:
f x dx A
I f
b a
ab f x dx b a f 2
——矩形公式(中矩形公式)
2013年8月13日
9
《数值分析》 黄龙主讲
对于矩形公式
f a f x dx b a f a b I
b
2 2当 Nhomakorabea1 2 b a2 2


解得
A0 A1 b a 2 ,求积公式为
f a f x dx b a f a f b I
b
2
7
——梯形公式
2013年8月13日
《数值分析》 黄龙主讲
对于梯形公式
I f

b
a
ba f a f b f x dx 2
证明:假设机械求积公式,对于
f x 1, x , x 2 , , x m 均准确成立,
f x 1 : A0 A1 Am b a f x x : A0 x0 A1 x1 Am xm

1 2 b a2 2


m m m f x x m : A0 x0 A1 x1 Am xm
因此:
13
Ak l k x dx
b a
2013年8月13日
《数值分析》 黄龙主讲
相关文档
最新文档