2019-2020年高中数学第一章空间几何体章末检测新人教A版必修2

合集下载

人教A版高中数学必修第一册 章末质量检测(二)

人教A版高中数学必修第一册   章末质量检测(二)

(2)由题意可得x +2y =(x +2y)⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y =19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.21.(12分)如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成. (1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解析:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x +6y =36,即2x +3y =18. 设每间虎笼的面积为S,则S =xy.方法一 由于2x +3y≥22x×3y=26xy, ∴26xy ≤18,得xy≤272,即S≤272.当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x =3y ,2x +3y =18,解得⎩⎪⎨⎪⎧x =4.5y =3.故每间虎笼长为4.5 m,宽为3 m 时,可使面积最大. 方法二 由2x +3y =18,得x =9-32y.∵x>0,∴0<y<6.S =xy =⎝ ⎛⎭⎪⎫9-32y y =32(6-y)y.∵0<y<6,∴6-y>0.∴S≤32⎣⎢⎡⎦⎥⎤(6-y )+y 22=272.当且仅当6-y =y,即y =3时,等号成立,此时x =4.5. 故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S =xy =24. 设钢筋网总长为l,则l =4x +6y.方法一 ∵2x+3y≥22x·3y=26xy =24,∴l=4x +6y =2(2x +3y)≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.。

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析
13.长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()
A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

1.1。

1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.如长方体形的盒子外表面是长方体.(×)2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8想一想1。

如何判断一个几何体是否为棱柱?提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.下面四个几何体中,是棱台的是( )答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1。

2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ­ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ­ADG +V F ­BHC +V AGD ­BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。

2019-2020学年高中数学人教A版(浙江专版)必修2讲学案:第一章 1.1 空间几何体的结构

2019-2020学年高中数学人教A版(浙江专版)必修2讲学案:第一章 1.1 空间几何体的结构

第一课时棱柱、棱锥、棱台的结构特征预习课本P2~4,思考并完成以下问题1.空间几何体2.空间几何体的分类3.棱柱、棱锥、棱台的结构特征[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)棱柱的侧面都是平行四边形( )(2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥( )(3)用一个平面去截棱锥,底面和截面之间的部分叫棱台( )答案:(1)√(2)×(3)×2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的有________(填序号).(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱;(2)棱柱的侧棱长相等,侧面都是平行四边形;(3)各侧面都是正方形的四棱柱一定是正方体.解析:(1)不正确,反例如图所示.(2)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.答案:(2)[典例]下列关于棱柱的说法中,错误的是( )A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形[解析] 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,所以C错误;D正确,所以选C.[答案] C[活学活用]下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④棱柱的侧棱总与底面垂直.其中正确说法的序号是________.解析:①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④错误,棱柱的侧棱可能与底面垂直,也可能不与底面垂直.所以说法正确的序号是③.答案:③[典例](1)①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥.②正棱锥的侧面是等边三角形.③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.[解析](1)本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.(2)①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.[答案] (1)A (2)0[活学活用]用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).[典例] 如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.[活学活用]下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是( )解析:选C将四个选项中的平面图形折叠,看哪一个可以围成正方体.层级一学业水平达标1.下面的几何体中是棱柱的有( )A.3个B.4个C.5个D.6个解析:选C棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是( )A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.下列图形中,是棱台的是( )解析:选C由棱台的定义知,A、D的侧棱延长线不交于一点,所以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定义,故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5 6 98.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:129.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)层级二应试能力达标1.关于空间几何体的结构特征,下列说法不正确的是( )A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:选B根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.2.下列说法正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.3.下列图形经过折叠可以围成一个棱柱的是( )解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.4.棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都相交于一点解析:选C只有正棱台才具有侧棱都相等的性质.5.一个无盖的正方体盒子的平面展开图如图,A ,B ,C 是展开图上的三点,则在正方体盒子中,∠ABC =________.解析:将平面图形翻折,折成空间图形, 可得∠ABC =60°. 答案:60°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,故填①③④⑤.答案:①③④⑤7.如图在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少? 解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2.8.如图,已知长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF 把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.第二课时圆柱、圆锥、圆台、球及简单组合体的结构特征预习课本P5~7,思考并完成以下问题1.圆柱、圆锥、圆台、球[点睛] 球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.2.简单组合体(1)概念:由简单几何体组合而成的几何体叫做简单组合体.(2)构成形式:有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[点睛]要描述简单几何体的结构特征,关键是仔细观察组合体的组成,结合柱、锥、台、球的结构特征,对原组合体进行分割.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥( )(2)夹在圆柱的两个平行截面间的几何体是一圆柱( )(3)圆锥截去一个小圆锥后剩余部分是圆台( )(4)半圆绕其直径所在直线旋转一周形成球( )答案:(1)×(2)×(3)√(4)×2.圆锥的母线有( )A.1条B.2条C.3条D.无数条答案:D3.右图是由哪个平面图形旋转得到的( )解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.[典例]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.[解析](1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.[答案](1)(2)[活学活用]给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面是矩形.其中正确说法的序号是________.解析:根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆;④正确.答案:①④[典例]将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥[解析]图1是一个等腰梯形,CD为较长的底边.以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图2包括一个圆柱、两个圆锥.[答案] D1.如图所示的简单组合体的组成是( ) A .棱柱、棱台 B .棱柱、棱锥 C .棱锥、棱台D .棱柱、棱柱解析:选B 由图知,简单组合体是由棱锥、棱柱组合而成.2.如图,AB 为圆弧BC 所在圆的直径,∠BAC =45°.将这个平面图形绕直线AB 旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[典例cm ,轴截面上有P ,Q 两点,且PA =40cm ,B 1Q =30cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm), QS =A 1B 1=10π(cm). ∴PQ =PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.如图,一只蚂蚁沿着长AB=7,宽BC=5,高CD=5的长方体木箱表面的A点爬到D点,则它爬过的最短路程为________.解:蚂蚁去过的路程可按两种情形计算,其相应展开图有2种情形如图,在图1中AD=AC2+CD2=122+52=13,在图2中AD=AB2+BD2=72+102=149,∵149<13,∴蚂蚁爬过的最短路程为149.层级一学业水平达标1.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.2.下列命题中正确的是( )A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线解析:选C将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.3.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球D.圆台解析:选C由球的定义知选C.4.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的底面周长是( )A.4πB.8πC.2πD.π解析:选C边长为1的正方形以其一边所在的直线为旋转轴旋转一周,得到的几何体是底面半径为1的圆,其周长为2π·1=2π.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体7.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,截去小圆锥的母线长为3 cm,则圆台的母线长为________ cm.解析:如图所示,设圆台的母线长为x cm,截得的圆台的上、下底半径分别为r cm,4r cm,根据三角形相似的性质,得33+x=r4r,解得x=9.答案:98.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱9.如图,在△ABC中,∠ABC=120°,它绕AB边所在直线旋转一周后形成的几何体结构如何?解:旋转后的几何体结构如下:是一个大圆锥挖去了一个同底面的小圆锥.10.指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.(2)几何体由一个六棱柱和一个圆柱拼接而成.(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B 错误;正六棱锥的侧棱长必然要大于底面边长,故C 错误.故选D.2.如图所示的几何体,关于其结构特征,下列说法不正确的是( ) A .该几何体是由2个同底的四棱锥组成的几何体B .该几何体有12条棱、6个顶点C .该几何体有8个面,并且各面均为三角形D .该几何体有9个面,其中一个面是四边形,其余各面均为三角形解析:选D 该几何体用平面ABCD 可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD 是它的一个截面而不是一个面.故D 说法不正确.3.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( ) A .2 B .2π C.2π或4π D.π2或π4解析:选C 如图所示,设底面半径为r ,若矩形的长8恰好为卷成圆柱底面的周长,则2πr =8,所以r =4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr =4,所以r =2π.所以选C.4.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面、下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A .①②B .①③C .①④D .①⑤解析:选D 一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分,故选D.5.用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是下面哪几种:________(填序号).①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球. 解析:可能是棱柱、棱锥、棱台与圆锥. 答案:①②③⑤6.某地球仪上北纬30°纬线圈的长度为12π cm ,如图所示,则该地球仪的半径是________cm.解析:如图所示,由题意知,北纬30°所在小圆的周长为12π,则该小圆的半径r=6,其中∠ABO =30°,所以该地球仪的半径R =6cos 30°=43 cm.答案:437.圆台的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.解:设圆台上底面半径为r ,则下底面半径为2r .将圆台还原为圆锥,如图,则有∠ABO =30°. 在Rt △BO ′A ′中,rBA′=sin 30°,∴BA ′=2r . 在Rt △BOA 中,2rBA =sin 30°,∴BA =4r . 又BA -BA ′=AA ′,即4r -2r =2a ,∴r =a .∴S =πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.8.圆锥底面半径为1 cm ,高为2 cm ,其中有一个内接正方体,求这个内接正方体的棱长.解:圆锥的轴截面SEF 、正方体对角面ACC 1A 1如图.设正方体的棱长为x cm ,则AA 1=x cm ,A 1C 1=2x cm.作SO ⊥EF 于点O ,则SO =2 cm ,OE =1 cm.∵△EAA 1∽△ESO ,∴AA1SO=EA1EO,即x2=1-22x1.∴x=22,即该内接正方体的棱长为22cm.。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

2020版高中数学人教版必修2第一章 空间几何体课后作业

2020版高中数学人教版必修2第一章   空间几何体课后作业

空间几何体的结构基础巩固1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:棱柱和棱锥的底面可以是任意多边形,故A、B错误;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱,故D正确.答案:D2.具备下列条件的多面体是棱台的是()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体解析:四棱台、五棱柱、长方体各表面均为平面,是多边形,均为多面体,圆锥体的侧面为曲面,底面是圆,均不是多边形,因此不是多面体.故选D.答案:D3.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是()A.圆台B.圆锥C.圆柱D.球解析:由题意可得AD⊥BC,且BD=CD,所以形成的几何体是圆锥.故选B.答案:B4.下列说法正确的有()①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的线段;③用一个平面截一个球,得到的是一个圆;④用一个平面截一个球,得到的截面是一个圆面.A.0个B.1个C.2个D.3个解析:①是正确的;②是错误的,只有两点的连线经过球心时才为直径;③是错误的;④是正确的.答案:C5.图1中的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()图1A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)解析:当截面不过旋转轴时,截面图形是(5),故选D.答案:D6.下列说法正确的是()①圆台可以由任意一个梯形绕其一边所在直线旋转形成;②在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;③圆柱的任意两条母线平行,圆锥的任意两条母线相交,圆台的任意两条母线延长后相交.解析:①错,圆台是直角梯形绕其直角边所在直线或等腰梯形绕其底边的中线所在直线旋转形成的;由母线的定义知②错,③对.答案:③能力提升1.关于如图2所示几何体的正确说法为()图2①这是一个六面体②这是一个四棱台③这是一个四棱柱④此几何体可由三棱柱截去一个三棱柱得到⑤此几何体可由四棱柱截去一个三棱柱得到A.①②③ B.①③④C.①②④⑤ D.①③④⑤解析:①正确.因为有六个面,属于六面体的范围.②错误.因为侧棱的延长线不能交于一点,所以不正确.③正确.如果把几何体放倒就会发现是一个四棱柱.④⑤都正确.如图3所示.图3答案:D2.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形图4D.必然都是非直角三角形解析:注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图4所示的长方体中,三棱锥A­A1C1D1的三个侧面都是直角三角形.答案:C3.已知正四棱锥V­ABCD中,底面面积为16,侧棱的长为211,则该棱锥的高是________.解析:如图5,取正方形ABCD的中心O,连接VO、AO,则VO 就是正四棱锥V­ABCD的高.图5因为底面面积为16,所以AO =2 2.因为侧棱的长为211,所以VO =VA 2-AO 2=44-8=6.所以正四棱锥V ­ABCD 的高为6.答案:64.圆台的两底面半径分别为2,5,母线长是310,则其轴截面面积是________.解析:设圆台的高为h ,则h =(310)2-(5-2)2=9,∴轴截面面积S =12(4+10)×9=63.答案:635.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10cm ,则圆锥的母线长为________.图6解析:如图6,设圆锥的母线长为y ,圆台的上、下底面半径为x ,4x ,根据相似三角形的比例关系得y -10y=x 4x ,也就是4(y -10)=y ,所以y =403cm ,所以圆锥的母线长为403cm.答案:403cm 6.下列说法中,正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥;②正棱锥的侧面是等边三角形;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.解析:图7①错误.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图7所示的几何体满足此说法,但它不是棱锥,理由是△ADE 和△BCF 无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图8所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形,三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.答案:07.直角三角形ABC中,AB=3,BC=4,AC=5,分别以AB,BC,AC所在直线为轴旋转一周,分析所形成的几何体的结构特征.解:在Rt△ABC中,分别以三条边AB,BC,AC所在直线为轴旋转一周所得的几何体,如图9.图9其中图(1)和图(2)是两个不同的圆锥,它们的底面分别是半径为4和3的圆面,母线长均为5.图(3)是由两个同底圆锥构成的几何体,在圆锥AO中,AB为母线,在圆锥CO中,CB为母线.8.指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.(2)几何体由一个六棱柱和一个圆柱拼接而成.(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.拓展要求1.如图11,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()图11A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图12.图12∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线),因此呈棱柱形状.答案:A2.已知圆锥的底面半径为r ,高为h ,正方体ABCD ­A 1B 1C 1D 1内接于圆锥,求这个正方体的棱长.解:图13过内接正方体的体对角线作圆锥的轴截面,如图13.设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x .因为△VA 1C 1∽△VMN ,所以A 1C 1MN =VO 1VO ,即2x 2r =h -x h,所以2hx =2rh -2rx ,即x =2rh 2r +2h.故这个正方体的棱长为2rh 2r +2h.。

2019-2020数学新课堂设计同步必修二人教A版讲义:第一章 空间几何体1.1 第2课时 Word版含答案

2019-2020数学新课堂设计同步必修二人教A版讲义:第一章 空间几何体1.1 第2课时 Word版含答案

第2课时圆柱、圆锥、圆台、球及简单组合体的结构特征学习目标 1.认识圆柱、圆锥、圆台、球的结构特征(重点).2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.3.圆柱、圆台、圆锥之间关系的理解(重点).知识点1圆柱的结构特征【预习评价】1.在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示圆柱的任意两条母线平行,过两条母线的截面是矩形.2.圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线吗?提示不一定.圆柱的母线与轴是平行的.知识点2圆锥【预习评价】(正确的打“√”,错误的打“×”)(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(√)(2)过轴的截面是全等的等边三角形.(×)提示不一定是等边三角形,但一定是等腰三角形.知识点3圆台【预习评价】(正确的打“√”,错误的打“×”)(1)圆台有无数条母线,且它们相等,但延长后不相交于一点.(×)提示延长后相交于一点.(2)过任意两条母线的截面是等腰梯形.(√)知识点4球【预习评价】1.半圆或圆绕它的直径所在直线旋转一周形成什么?提示半圆或圆绕它的直径所在直线旋转一周形成球面.2.用一个平面去截球,得到的是一个圆吗?提示不是,得到的是一个圆面,球是一个几何体,包括表面及其内部.知识点5简单组合体1.概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.【预习评价】观察下列几何体,分析它们是由哪些基本几何体组成的.提示图1是由圆柱中挖去圆台形成的,图2是由球、棱柱、棱台组合而成的.题型一旋转体的结构特征【例1】给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.①②B.②③C.①③D.②④解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.答案 D规律方法简单旋转体判断问题的解题策略(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决此类概念问题的关键.(2)解题时要注意两个明确:①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.【训练1】下列命题正确的是________(只填序号).①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段.解析①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四个不同的点,则这四点就在球面上,故⑤错误;根据球的半径定义,知⑥正确.答案④⑥题型二简单组合体的结构特征【例2】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?解旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.规律方法(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.【训练2】 如图,将直角梯形ABCD 绕边AB 所在的直线旋转一周,由此形成的几何体是由哪些简单几何体组成的?解 画出形成的几何体如图所示.由图可知,旋转得到的几何体是由一个圆柱和一个圆锥组成的.方向1 有关圆柱、圆锥、圆台的计算问题【例3-1】 用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长. 解 设圆台的母线长为l cm ,截得圆台的上底面的半径为r cm.根据题意,得圆台的下底面的半径为4r cm.根据相似三角形的性质,得33+l =r 4r .解得l =9.所以圆台的母线长为9 cm.方向2有关球的简单计算问题【例3-2】已知球的半径为10 cm,若它的一个截面圆的面积为36π cm2,则球心与截面圆圆心的距离是________cm.解析如图,设截面圆的半径为r,球心与截面圆圆心之间的距离为d,球半径为R.由示意图易构造出一个直角三角形,解该直角三角形即可.由已知,R=10 cm,由πr2=36π cm2,得r=6 cm,所以d=R2-r2=100-36=8(cm).答案8规律方法(1)旋转体中有关底面半径、母线、高的计算,可利用轴截面求解,即将立体问题平面化.(2)利用球的截面,将立体问题转化为平面问题是解决球的有关问题的关键.课堂达标1.下列几何体是台体的是()解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点;B的错误在于截面与圆锥底面不平行;C是棱锥;结合棱台和圆台的定义可知D正确.答案 D2.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是() A.圆柱B.圆台C.球体D.棱台解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.答案 D3.过球面上任意两点A,B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确解析当过A,B的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时过A,B作球的大圆有无数个;当直线AB不经过球心O时,经过A,B,O 的截面就是一个大圆,这时只能作出一个大圆.答案 B4.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.答案 25.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.课堂小结1.圆柱、圆锥、圆台的关系如图所示.2.球面、球体的区别和联系3.处理台体问题常采用还台为锥的补体思想.4.处理组合体问题常采用分割思想.5.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.基础过关1.圆柱的母线长为10,则其高等于()A.5 B.10 C.20 D.不确定解析圆柱的母线长与高相等,则其高等于10.答案 B2.如图是由哪个平面图形旋转得到的()解析图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选D.答案 D3.下列说法正确的是()A.到定点的距离等于定长的点的集合是球B.球面上不同的三点可能在同一条直线上C.用一个平面截球,其截面是一个圆D.球心与截面圆心(截面不过球心)的连线垂直于该截面解析对于A,球是球体的简称,球体的外表面我们称之为球面,球面是一个曲面,是空心的,而球是几何体,是实心的,故A错;对于B,球面上不同的三点一定不共线,故B错;对于C,用一个平面截球,其截面是一个圆面,而不是一个圆,故C也是错误的.所以选D.答案 D4.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为()A.4 B.3 2 C.2 3 D.2 6解析圆台的母线长l、高h和上、下两底面圆的半径r,R满足关系式l2=h2+(R-r)2,求得h=26,即两底面之间的距离为2 6.答案 D5.观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________(填序号).解析①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.答案 ①④6.已知一个圆柱的轴截面是一个正方形,且其面积是Q ,则此圆柱的底面半径为________(用Q 表示).解析 设圆柱的底面半径为r ,则母线长为2r .∴4r 2=Q ,解得r =Q 2,∴此圆柱的底面半径为Q2.答案 Q27.圆台的上底周长是下底周长的13,轴截面面积等于392,母线与底面的夹角为45°,求此圆台的高、母线长及两底面的半径.解 设圆台上、下底面半径分别为r ,R ,母线长为l ,高为h . 由题意,得2πr =13·2πR ,即R =3r .① 12(2r +2R )·h =392,即(R +r )h =392.②又母线与底面的夹角为45°,则h =R -r =22l .③ 联立①②③,得R =21,r =7,h =14,l =14 2.8.已知一个圆锥的底面半径为r ,高为h ,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.解 作出圆锥的一个纵截面如图所示:其中AB ,AC 为母线,BC 为底面直径,DG ,EF 是正方体的棱,DE ,GF 是正方体的上、下底面的对角线.设正方体的棱长为x ,则DG =EF =x ,DE =GF =2x .依题意,得△ABC ∽△ADE ,∴hh -x =2r2x,∴x =2rh h +2r ,即此正方体的棱长为2rhh +2r.能力提升9.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是()A.4 B.3 C.2 D.0.5解析如图所示,∵两个平行截面的面积分别为5π,8π,∴两个截面圆的半径分别为r1=5,r2=2 2.∵球心到两个截面的距离d1=R2-r21,d2=R2-r22,∴d1-d2=R2-5-R2-8=1,∴R2=9,∴R=3.答案 B10.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的(填序号)()解析易知截面是一个非等边的等腰三角形,排除A、D;等腰三角形的底边是正三棱锥的一条棱,这条棱不可能与内切球有交点,所以排除B;而等腰三角形的两条腰正好是正三棱锥两个面的中线,且经过内切球在两个面上的切点,所以正确答案是C.答案 C11.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.解析设圆锥的底面半径为r,母线长为l,则4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径r=1,所以该圆锥的高为h =l 2-r 2=22-12= 3.答案312.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,则⎩⎪⎨⎪⎧h +h1h =49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.故圆台的高被截面分成的两部分的比为2∶1.13.(选做题)如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离; (3)f (x )的最大值.解 将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离, 在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR , ∴SR =SA ·SM AM =4xx 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4).(3)∵f (x )=x 2+16(0≤x ≤4)是增函数, ∴f (x )的最大值为f (4)=32.。

人教A版高中数学选修1章末检测1第一章空间向量与立体几何

人教A版高中数学选修1章末检测1第一章空间向量与立体几何

第一章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,点P (-2,1,4)关于x 轴的对称点的坐标是( ) A .(-2,-1,-4) B .(-2,1,-4) C .(2,-1,4) D .(2,1,-4)【答案】A【解析】关于x 轴对称的点横坐标相等,纵坐标和竖坐标相反.故选A . 2.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A .x =13,y =1B .x =12,y =-4C .x =2,y =-14D .x =1,y =-1 【答案】B【解析】由题意可得,a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2).∵(a +2b )∥(2a -b ),∴∃λ∈R ,使a +2b =λ(2a -b ),得⎩⎪⎨⎪⎧1+2x =λ(2-x ),4=3λ,4-y =λ(-2y -2),解得⎩⎪⎨⎪⎧λ=43,x =12,y =-4.故选B . 3.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0)C .⎝ ⎛⎭⎪⎫-12,12,0 D .⎝ ⎛⎭⎪⎫12,-12,0【答案】C【解析】由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH →=(-λ,λ-1,-1).又因为BH ⊥OA ,所以BH →·OA →=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,所以H ⎝ ⎛⎭⎪⎫-12,12,0. 4.在平行六面体ABCD -A 1B 1C 1D 1中,向量AB 1→,AD 1→,BD →是( )A .有相同起点的向量B .等长的向量C .不共面向量D .共面向量【答案】D【解析】因为AD 1→-AB 1→=B 1D 1→=BD →,所以AB 1→,AD 1→,BD →共面.5.已知E ,F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A .23B .23C .53D .233【答案】C【解析】以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),所以AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0.设平面AEFD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x 2+y =0,所以x =2y =z .取y =1,则n =(2,1,2).而平面ABCD 的一个法向量u =(0,0,1),因为cos 〈n ,u 〉=23,所以sin 〈n ,u 〉=53.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x +y +z =( )A .-1B .0C .13D .1【答案】C【解析】因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.7.在以下命题中,不正确的个数为( ) ①|a|-|b|=|a +b|是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a ·b )·c|=|a|·|b|·|c|. A .5 B .4 C .3 D .2【答案】B【解析】①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知,正确;⑤由向量的数量积的性质知,不正确.8.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A .15B .25C .55D .255【答案】C【解析】如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF→=⎝ ⎛⎭⎪⎫-12,12,1.设n =(x ,y ,z )是平面DEF 的法向量,由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧12y =0,-12x +12y +8=0,取x =2,则z =1,y =0,所以n =(2,0,1)是平面DEF 的一个法向量.设直线PA 与平面DEF 所成的角为θ,所以sin θ=|cos 〈PA →,n 〉|=22×5=55.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中,不正确的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0B .对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面【答案】BCD【解析】显然A 正确;若a ,b 为非零向量,则〈a ,b 〉与〈a ,-b 〉互补,故B 错误;若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.10.若A ,B ,C ,D 为空间不同的四点,则下列各式的结果为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC → C .AB →+CA →+BD → D .AB →-CB →+CD →-AD →【答案】BD【解析】A 中,原式=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →,不符合题意;B 中,原式=2(AB →+BC →+CD →+DA →)+(AC →+CD →+DA →)=0;C 中,原式=CD →,不符合题意;D 中,原式=(AB →-AD →)+(CD →-CB →)=0.11.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的有( )A .OA →+OD →与OB ′→+OC ′→是一对相反向量 B .OB →-OC →与OA ′→-OD ′→是一对相反向量C .OA →+OB →+OC →+OD →与OA ′→+OB ′→+OC ′→+OD ′→是一对相反向量 D .OA ′→-OA →与OC →-OC ′→是一对相反向量 【答案】ACD【解析】如图,A 中,OA →=-OC ′→,OD →=-OB ′→,所以OA →+OD →=-(OB ′→+OC ′→),是一对相反向量;B 中,OB →-OC →=CB →,OA ′→-OD ′→=D ′A ′→,而CB →=D ′A ′→,故不是相反向量;C 中,同A 也是正确的;D 中,OA ′→-OA →=AA ′→,OC →-OC ′→=C ′C →=-AA ′→,是一对相反向量.12.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,CD =23,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B -ACQ 的体积为6 2D .四棱锥Q -ABCD 外接球的内接正四面体的表面积为24 3 【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接OE ,OP ,因为三角形PAD 为等边三角形,所以OP ⊥AD .因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .因为AD ⊥OE ,所以OD ,OE ,OP 两两垂直,如图,以O 为坐标原点,OD ,OE ,OP 所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则O (0,0,0),D (6,0,0),A (-6,0,0),P (0,0,32),C (6,23,0),B (-6,23,0).因为点Q 是PD 的中点,所以Q ⎝⎛⎭⎪⎫62,0,322,平面PAD 的一个法向量m =(0,1,0),QC →=⎝ ⎛⎭⎪⎫62,23,-322,显然m 与QC →不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;PC →=(6,23,-32),AQ →=⎝ ⎛⎭⎪⎫362,0,322,AC →=(26,23,0),设平面AQC 的法向量n=(x ,y ,z ),则⎩⎨⎧n ·AQ →=362x +322z =0,n ·AC →=26x +23y =0,令x =1,则y =-2,z =-3,所以n =(1,-2,-3),设PC 与平面AQC 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·PC→|n ||PC →|=2666=13,所以cos θ=223,所以B 正确;三棱锥B -ACQ 的体积为V B -ACQ =V Q -ABC =13S △ABC ·12OP =13×12×23×26×12×32=6,所以C 不正确;设四棱锥Q -ABCD 外接球的球心为M (0,3,a ),则MQ=MD ,故⎝ ⎛⎭⎪⎫622+(3)2+⎝ ⎛⎭⎪⎫a -3222=()62+()32+a 2,解得a =0,即M (0,3,0)为矩形ABCD 对角线的交点,所以四棱锥Q -ABCD 外接球的半径为3,设四棱锥Q -ABCD 外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以3⎝ ⎛⎭⎪⎫22x 2=62,得x 2=24,所以正四面体的表面积为4×34x 2=243,所以D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.(2021年潮州模拟)由空间向量a =(1,2,3),b =(1,-1,1)构成向量集合A ={x |x =a +k b ,k ∈Z },则向量x 的模|x |的最小值为________.【答案】13【解析】因为a =(1,2,3),b =(1,-1,1),所以x =a +k b =(1+k ,2-k ,3+k ), 所以|x |=(1+k )2+(2-k )2+(3+k )2=14+4k +3k 2=3⎝ ⎛⎭⎪⎫k +232+383.因为k ∈Z ,所以k =-1时,|x |的值最小,最小值为13.14.下列命题:①已知λ∈R ,则|λa |=λ|a |;②在正方体ABCD -A 1B 1C 1D 1中,BC →=B 1C 1→;③若两个平面的法向量不垂直,则这两个平面一定不垂直. 其中正确的命题的序号是________. 【答案】②③【解析】①|λa |=|λ||a |,故①错误;②正确;③若两个平面垂直,则它们的法向量一定垂直,若两个平面的法向量不垂直,则这两个平面一定不垂直,故③正确.15.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,则x +y =________.【答案】-1【解析】AE →=OE →-OA →=12OC →-OA →=12(OB →+BC →)-OA →=12(OB →+AD →)-OA →=12(OB →+OD →-OA →)-OA→=-32OA →+12OB →+12OD →,所以x =12,y =-32.所以x +y =-1.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动,则直线D 1E 与A 1D 所成角的大小是________;若D 1E ⊥EC ,则AE =________.【答案】90° 1【解析】在长方体ABCD -A 1B 1C 1D 1中,如图,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,又因为AD =AA 1=1,AB =2,则D (0,0,0),D 1(0,0,1), A (1,0,0),A 1(1,0,1),C (0,2,0),设E (1,m ,0),0≤m ≤2,则D 1E →=(1,m ,-1),A 1D →=(-1,0,-1),所以D 1E →·A 1D →=-1+0+1=0,所以直线D 1E 与A 1D 所成角的大小是90°.因为D 1E →=(1,m ,-1),EC →=(-1,2-m ,0),D 1E ⊥EC, 所以D 1E →·EC→=-1+m (2-m )+0=0,解得m =1,所以AE =1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b|;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)? 解:(1)因为a =(1,-3,2),b =(-2,1,1), 所以2a +b =(0,-5,5).所以|2a +b |=02+(-5)2+52=52. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),所以⎩⎪⎨⎪⎧x =λ-3,y =-λ-1,z =-2λ+4,所以E (λ-3,-λ-1,-2λ+4),所以OE →=(λ-3,-λ-1,-2λ+4). 又因为b =(-2,1,1),OE →⊥b ,所以OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0, 所以λ=95,所以E ⎝ ⎛⎭⎪⎫-65,-145,25.所以在直线AB 上存在点E ⎝ ⎛⎭⎪⎫-65,-145,25,使OE →⊥b .18.(12分)已知空间三点A (1,2,3),B (2,-1,5),C (3,2,-5),试求: (1)△ABC 的面积; (2)△ABC 的AB 边上的高.解:(1)AB →=(2,-1,5)-(1,2,3)=(1,-3,2), AC →=(3,2,-5)-(1,2,3)=(2,0,-8), AB →·AC →=1×2+(-3)×0+2×(-8)=-14,|AB →|=14,|AC →|=217,cos 〈AB →,AC →〉=-1414×217=-734,sin 〈AB →,AC →〉=2734, S △ABC =12|AB →|·|AC →|sin 〈AB →,AC →〉=1214×217×2734=321. (2)|AB →|=14,设AB 边上的高为h , 则12|AB |·h =S △ABC =321,所以h =36. 19.(12分)如图,在三棱锥S -ABC 中,侧面SAC 与底面ABC 垂直,E ,O 分别是SC ,AC 的中点,且SA =SC =2,BC =12AC ,∠ASC =∠ACB =90°.(1)求证:OE ∥平面SAB ;(2)若点F 在线段BC 上,问:无论点F 在BC 的何处,是否都有OE ⊥SF ?请证明你的结论.(1)证明:因为E ,O 分别是SC ,AC 的中点,所以OE ∥SA . 又因为OE ⊄平面SAB ,SA ⊂平面SAB , 所以OE ∥平面SAB .(2)解:方法一,在△SAC 中,因为OE ∥AS ,∠ASC =90°,所以OE ⊥SC . 又因为平面SAC ⊥平面ABC ,∠BCA =90°,BC ⊂平面SAC ,所以BC ⊥平面SAC . 又因为OE ⊂平面SAC ,所以BC ⊥OE . 因为SC ∩BC =C ,所以OE ⊥平面BSC . 又因为SF ⊂平面BSC ,所以OE ⊥SF . 所以无论点F 在BC 的何处,都有OE ⊥SF . 方法二,连接SO .因为O 是AC 的中点,SA =SC , 所以SO ⊥AC .又因为平面SAC ⊥平面ABC , 所以SO ⊥平面ABC .同理可得BC ⊥平面SAC .如图,在平面ABC 内,过点O 作OM ⊥AC ,以O 为原点,OM ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则点O (0,0,0),A (0,-1,0),B (1,1,0),C (0,1,0),S (0,0,1),E ⎝⎛⎭⎪⎫0,12,12,OE →=⎝ ⎛⎭⎪⎫0,12,12.由于点F ∈BC ,故可设点F (x ,1,0), 则SF →=(x ,1,-1),SF →·OE →=0恒成立, 所以无论点F 在BC 的何处,都有OE ⊥SF .20.(12分)在直角梯形ABCD 中,AD ∥BC ,BC =2AD =2AB =22,∠ABC =90°,如图1把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图2).(1)求证:CD ⊥AB .(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离.(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN BC的值;若不存在,说明理由.(1)证明:由已知条件可得BD =2,CD =2,CD ⊥BD .因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD . 又因为AB ⊂平面ABD ,所以CD ⊥AB .(2)解:如图,以点D 为原点,DB 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,由已知可得A (1,0,1),B (2,0,0),C (0,2,0),D (0,0,0),M (1,1,0),所以CD →=(0,-2,0),AD →=(-1,0,-1),MC →=(-1,1,0).设平面ACD 的法向量n =(x ,y ,z ),则CD →⊥n ,AD →⊥n ,所以⎩⎪⎨⎪⎧-2y =0,-x -z =0,令x =1,得平面ACD 的一个法向量n =(1,0,-1), 所以点M 到平面ACD 的距离d =|n ·MC →||n |=22.(3)解:假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60°,设BN →=λBC →,0≤λ≤1,则N (2-2λ,2λ,0),所以AN →=(1-2λ,2λ,-1).又因为平面ACD 的一个法向量n =(1,0,-1),且直线AN 与平面ACD 所成角为60°,所以sin60°=|AN →·n ||AN →||n |=32, 可得8λ2+2λ-1=0,所以λ=14或λ=-12(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60°,此时BN BC =14. 21.(12分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =2.(1)求线段BC 1的长度;(2)求异面直线BC 1与DC 所成角的余弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (2,4,0),C (0,2,0),C 1(0,2,2),所以DC →=(0,2,0),BC 1→=(-2,-2,2),|DC →|=2,|BC 1→|=4+4+4=23.(2)由(1)可知,DC →=(0,2,0),BC 1→=(-2,-2,2),所以cos 〈DC →,BC 1→〉=DC →·BC 1→|DC →||BC 1→|=-42×23=-13=-33. 所以异面直线BC 1与DC 所成的角的余弦值为33.22.(12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D为AC 的中点.(1)求证:平面POD ⊥平面PAC ;(2)求二面角B -PA -C 的余弦值.解:如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0. (1)证明:设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2,从而平面POD ⊥平面PAC .(2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量n 3=(0,1,0).由(1)知,平面PAC 的一个法向量n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2||n 3|=25=105. 由图可知,二面角B -PA -C 的平面角为锐角,所以二面角B -PA -C 的余弦值为105.。

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,

高中数学人教A版必修二 第一章 空间几何体 学业分层测评2 Word版含答案

高中数学人教A版必修二 第一章 空间几何体 学业分层测评2 Word版含答案

学业分层测评一、选择题1.用一个平面去截一个几何体得到的截面是圆面这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱【解析】用一个平面去截圆锥、圆柱、球均可以得到圆面但截棱柱一定不会产生圆面.【答案】 D2.在日常生活中常用到的螺母可以看成一个组合体其结构特征是()A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱【解析】一个六棱柱挖去一个等高的圆柱选B【答案】 B3.一个正方体内接于一个球过球心作一截面如图1-1-21所示则截面可能的图形是()图1-1-21A.①③B.②④C.①②③D.②③④【解析】当截面平行于正方体的一个侧面时得③当截面过正方体的体对角线时得②当截面不平行于任何侧面也不过对角线时得①但无论如何都不能截出④【答案】 C二、填空题6.如图1-1-22是一个几何体的表面展开图形则这个几何体是________【09960010】图1-1-22【解析】一个长方形和两个圆折叠后能围成的几何体是圆柱.【答案】圆柱7.一圆锥的母线长为6底面半径为3用该圆锥截一圆台截得圆台的母线长为4则圆台的另一底面半径为________.【解析】作轴截面如图则r 3=6-46=13∴r=1【答案】 1三、解答题8.指出如图1-1-23(1)(2)所示的图形是由哪些简单几何体构成的.图1-1-23【解】 图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体. 9.一个圆台的母线长为12 cm 两底面面积分别为4π cm 2和25π cm 2求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【解】 (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底半径O 1A =2(cm) 下底半径OB =5(cm)又因为腰长为12 cm 所以高AM =122-(5-2)2=315(cm).(2)如图所示延长BAOO 1CD 交于点S 设截得此圆台的圆锥的母线长为l 则由△SAO 1∽△SBO 可得l -12l =25解得l =20(cm)即截得此圆台的圆锥的母线长为20 cm[自我挑战]10.已知球的两个平行截面的面积分别为5π和8π它们位于球心的同一侧且距离为1那么这个球的半径是( )A .4B .3C .2D .05【解析】 如图所示∵两个平行截面的面积分别为5π、8π∴两个截面圆的半径分别为r 1=5r 2=2 2∵球心到两个截面的距离d 1=R 2-r 21d 2=R 2-r 22∴d 1-d 2=R 2-5-R 2-8=1∴R 2=9∴R =3 【答案】 B11.一个圆锥的底面半径为2 cm 高为6 cm 在圆锥内部有一个高为x cm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S; 【09960011】 (2)当x 为何值时S 最大?【解】 (1)如图设圆柱的底面半径为r cm 则由r 2=6-x6得r =6-x 3∴S =-23x 2+4x (0<x <6).(2)由S =-23x 2+4x =-23(x -3)2+6 ∴当x =3时S max =6 cm 2。

新教材高中数学章末综合检测一数列新人教A版选择性必修第二册

新教材高中数学章末综合检测一数列新人教A版选择性必修第二册

章末综合检测(一)A 卷——基本知能盘查卷 (时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列1,3,5,7,3,11,…,2n -1,…,则21是这个数列的( ) A .第10项 B .第11项 C .第12项D .第21项解析:选B 观察可知该数列的通项公式为a n =2n -1(事实上,根号内的数成等差数列,首项为1,公差为2),令21=2n -1,解得n =11.2.在等比数列{a n }中,a 4=6,a 8=18,则a 12=( ) A .24 B .30 C .54 D .108解析:选C 由等比数列的性质知a 4,a 8,a 12成等比数列,则a 28=a 4·a 12,所以a 12=a 28a 4=1826=54. 3.在等差数列{a n }中,a 3=2,a 5=7,则a 7=( ) A .10 B .20 C .16 D .12 解析:选D ∵{a n }是等差数列, ∴d =a 5-a 35-3=52, ∴a 7=2+4×52=12.4.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D .12解析:选B 设等差数列{a n }的公差为d .在等差数列{a n }中,a 3=1,a 2a 4=34.则由等差数列的通项公式得,a 3=a 1+2d =1,(a 1+d )(a 1+3d )=34,∴d =12,a 1=0.故选B.5.在等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3解析:选C ∵数列{a n }是等比数列,a 4=2,a 5=5, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=10,∴lg a 1+lg a 2+…+lg a 8=lg(a 1×a 2×…×a 8)=lg(a 4a 5)4=4lg 10=4.故选C. 6.1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+1210的值为( )A .18+129B .20+1210C .22+1211D .18+1210解析:选B 设a n =1+12+14+…+12n -1=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴原式=a 1+a 2+…+a 11=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫121+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122+…+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1211 =2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫12+122+…+1211=2⎣⎢⎡⎦⎥⎤11-12⎝ ⎛⎭⎪⎫1-12111-12=2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫1-1211=2⎝ ⎛⎭⎪⎫11-1+1211=20+1210. 7.若方程x 2-5x +m =0与x 2-10x +n =0的四个根适当排列后,恰好组成一个首项为1的等比数列,则m n的值是( )A .4B .2 C.12 D .14解析:选D 由题意可知1是方程的一个根,若1是方程x 2-5x +m =0的根,则m =4,另一根为4.设x 3,x 4是方程x 2-10x +n =0的两个根,且x 3<x 4,则x 3+x 4=10,这四个数的排列顺序只能为1,x 3,4,x 4,则公比为2,x 3=2,x 4=8,n =16,m n =14;若1是方程x2-10x +n =0的根,则n =9,另一根为9.设x 1,x 2是方程x 2-5x +m =0的两个根,则x 1+x 2=5,无论怎么排列均不合题意.综上可知,m n =14.8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升B .6766 升 C.4744 升 D .3733 升解析:选B 设该等差数列为{a n },公差为d ,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{a n }的前n 项和为S n ,若S 7=a 4,则( ) A .a 1+a 3=0 B .a 3+a 5=0 C .S 3=S 4D .S 4=S 5解析:选BC 由S 7=7a 1+a 72=7a 4=a 4,得a 4=0,所以a 3+a 5=2a 4=0,S 3=S 4,故选B 、C.10.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n ·a n +1,设数列{b n }的前n 项和S n ,则( )A .a n =n2B .a n =nC .S n =4n n +1D .S n =5n n +1解析:选AC 由题意得a n =1n +1+2n +1+…+n n +1=1+2+3+…+n n +1=n2, ∴b n =1n 2·n +12=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴数列{b n }的前n 项和S n =b 1+b 2+b 3+…+b n =4⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 故选A 、C.11.已知数列{a n }的通项为a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1,则下列表述正确的是( )A .最大项为0B .最大项不存在C .最小项为-14D .最小项为-2081解析:选AD 由题意得a 1=⎝ ⎛⎭⎪⎫231-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231-1-1=1×(1-1)=0,当n >1时,0<⎝ ⎛⎭⎪⎫23n -1<1,⎝ ⎛⎭⎪⎫23n -1-1<0,∴a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1<0, ∴{a n }的最大项为a 1=0.又a n +1-a n =⎝ ⎛⎭⎪⎫23n -1⎣⎢⎡⎦⎥⎤13-56⎝ ⎛⎭⎪⎫23n ,∴当n ≥3时,a n +1-a n >0;当1<n <3时,a n +1-a n <0. ∴{a n }的最小项为a 3=-2081.故选A 、D.12.已知等差数列{a n }的公差d 不等于0,S n 是其前n 项和,则下列命题正确的是( ) A .给定n (n ≥2,且n ∈N *),对于一切k ∈N *(k <n ),都有a n -k +a n +k =2a n 成立 B .存在k ∈N *,使得a k -a k +1与a 2k +1-a 2k -3同号C .若d >0,且S 3=S 8,则S 5与S 6都是数列{S n }中的最小项D .点⎝ ⎛⎭⎪⎫1,S 11,⎝ ⎛⎭⎪⎫2,S 22,⎝ ⎛⎭⎪⎫3,S 33,…,⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上解析:选ACD A .由等差中项的性质,可得命题正确;B .a k -a k +1=-d ,a 2k +1-a 2k -3=4d .又d ≠0,故二者不可能同号;C .因为S 3=S 8,所以a 4+a 5+a 6+a 7+a 8=5a 6=0,即a 6=0.又d >0,即数列{a n }为递增数列,因此S 5=S 6,所以S 5和S 6都是数列{S n }中的最小项;D .由于等差数列的前n 项和S n =na 1+n n -12d ,故S n n =a 1+n -12d =d 2n +a 1-d2,因此点⎝ ⎛⎭⎪⎫1,S 11,⎝ ⎛⎭⎪⎫2,S 22,⎝ ⎛⎭⎪⎫3,S 33,…,⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上.综上可得A 、C 、D 是正确的.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:由a 2n +1=a 2n +4,得a 2n +1-a 2n =4, ∴数列{a 2n }是首项为1,公差为4的等差数列, ∴a 2n =1+(n -1)×4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -314.已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若S 2=34,S 4=154,则a 6=________,a n =________.解析:由题知数列{a n }为等比数列,公比q >0且q ≠1,由⎩⎪⎨⎪⎧S 2=34,S 4=154得⎩⎪⎨⎪⎧a 11-q 21-q =34,a 11-q 41-q=154,解得⎩⎪⎨⎪⎧a 1=14,q =2,故a 6=a 1q 5=14×25=8,a n =a 1q n -1=14×2n -1=2n -3.答案:8 2n -315.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为________.解析:∵在前m 项中偶数项之和为S 偶=63, ∴奇数项之和为S 奇=135-63=72, 设等差数列{a n }的公差为d , 则S 奇-S 偶=2a 1+m -1d2=72-63=9. 又a m =a 1+d (m -1),∴a 1+a m2=9,∵a m -a 1=14,∴a 1=2,a m =16. ∵m a 1+a m2=135,∴m =15,∴d =14m -1=1,∴a 100=a 1+99d =101. 答案:10116.已知数列{a n }满足a n =(n -λ)2n (n ∈N *),若{a n }是递增数列,则实数λ的取值范围是________.解析:∵{a n }是递增数列,∴a n +1>a n , ∴(n +1-λ)2n +1>(n -λ)2n,即λ<n +2.又∵n ∈N *,∴λ<3. 答案:(-∞,3)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)在数列{a n },{b n }中,已知a 1=12,且2a n +1=a n +⎝ ⎛⎭⎪⎫12n ,b n =2na n ,求证:数列{b n }为等差数列.证明:法一:由2a n +1=a n +⎝ ⎛⎭⎪⎫12n 得a n +1=12a n +⎝ ⎛⎭⎪⎫12n +1,所以b n +1-b n =2n +1a n +1-2n a n =2n+1·⎣⎢⎡⎦⎥⎤12a n +⎝ ⎛⎭⎪⎫12n +1-2na n =1,即b n +1-b n =1,所以数列{b n }是以b 1=2a 1=1为首项,1为公差的等差数列.法二:在2a n +1=a n +⎝ ⎛⎭⎪⎫12n 的两边同时乘以2n 得2n +1a n +1=2na n +1,即b n +1-b n =1,所以数列{b n }是以b 1=2a 1=1为首项,1为公差的等差数列.18.(12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132. (1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n . 解:(1)由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,即q =-12.(2)由(1),得a n =(-1)×⎝ ⎛⎭⎪⎫-12n -1,所以a 2n =⎝ ⎛⎭⎪⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列,故a 21+a 22+…+a 2n =1×⎝ ⎛⎭⎪⎫1-14n 1-14=43⎝ ⎛⎭⎪⎫1-14n . 19.(12分)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ).解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=6a 1+6×52d=6×(-10)+15×2=-30.20.(12分)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.21.(12分)在等差数列{a n }中,a 3=4,a 7=8. (1)求数列{a n }的通项公式a n ;(2)令b n =a n2n -1,求数列{b n }的前n 项和T n . 解:(1)因为d =a 7-a 37-3=1,所以a n =a 3+(n -3)d =n +1.(2)b n =a n 2n -1=n +12n -1,T n =b 1+b 2+…+b n =2+32+422+…+n +12n -1,①12T n =22+322+…+n 2n -1+n +12n ,② 由①-②得12T n =2+12+122+…+12n -1-n +12n =⎝ ⎛⎭⎪⎫1+12+122+…+12n -1+1-n +12n=1-12n1-12+1-n +12n =2⎝ ⎛⎭⎪⎫1-12n +1-n +12n=3-n +32n,所以T n =6-n +32n -1.22.(12分)已知数列{a n }的前n 项和为S n ,满足S n =n (n -6),数列{b n }满足b 2=3,b n+1=3b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和T n .解:(1)当 n =1时,a 1=S 1=-5,当n ≥2时,a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7.∵n =1适合上式,∴a n =2n -7(n ∈N *). ∵b n +1=3b n (n ∈N *)且b 2≠0,∴b n +1b n=3(n ∈N *). ∴{b n }为等比数列,∴b n =3n -1(n ∈N *).(2)由(1)得,c n =⎩⎪⎨⎪⎧2n -7,n 为奇数,3n -1,n 为偶数,当n 为偶数时,T n =c 1+c 2+…+c n =n2-5+2n -92+=n n -72+33n-18. 当n 为奇数时,T n =c 1+c 2+…+c n =n +12-5+2n -72+=n +1n -62+33n -1-18.综上所述:T n=⎩⎪⎨⎪⎧n n -72+33n-18,n 为偶数,n +1n -62+33n -1-18,n 为奇数.B 卷——高考能力达标卷 (时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( ) A .2nB .2n+1 C .2n -1D .2n +1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n+1,故选B.2.一个各项均为正数的等比数列中,每一项都等于它后面的相邻两项之和,则公比q =( )A.32 B . 5 C.5-12D .1+52解析:选C 由题意知a n =a n +1+a n +2=a n q +a n q 2,即q 2+q -1=0,解得q =5-12(负值舍去).3.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( ) A .8 B .-8C .±8D .以上选项都不对解析:选A ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64,且a 2>0,a 6>0,∴a 4=a 2q 2>0(q 为公比),∴a 4=8.4.等差数列{a n }中,a 3+a 9=10,则该数列的前11项和S 11=( ) A .58 B .55 C .44 D .33 解析:选B 由题意得S 11=11a 1+a 112=11a 3+a 92=11×102=55.5.若等比数列{a n }的前5项的乘积为1,a 6=8,则数列{a n }的公比为( ) A .-2 B .2 C .±2D .12解析:选B 设数列{a n }的公比为q ,由题意得a 1a 2a 3a 4a 5=a 53=1,所以a 3=1,所以q 3=a 6a 3=8,解得q =2.6.已知a ,b ,c 为等比数列,b ,m ,a 和b ,n ,c 是两个等差数列,则a m +c n等于( ) A .4 B .3 C .2 D .1解析:选C 因为b ,m ,a 和b ,n ,c 是两个等差数列,所以m =a +b2,n =b +c2,又a ,b ,c 为等比数列,所以b 2=ac ,所以a m +c n =2a a +b +2c b +c =2ab +2ac +2ac +2bca +b b +c=2ab +4ac +2bc ab +ac +b 2+bc =2ab +2ac +bcab +2ac +bc=2.7.已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( ) A .7 B .8 C .9D .10解析:选B 法一:由⎩⎪⎨⎪⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =-n 2+16n=-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.8.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其大意为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A .30尺B .90尺C .150尺D .180尺解析:选B 由题意知,该女子每天织布的数量构成等差数列{a n },其中a 1=5,a 30=1,∴S 30=30×5+12=90,即共织布90尺.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n ,且(n +1)S n =(7n +23)T n ,则使a n b n为整数的正整数n 的值可以是( )A .2B .3C .4D .8解析:选ACD 由题意,可得S n T n =7n +23n +1,则a n b n =2a n2b n =2n -1a 1+a 2n -122n -1b 1+b 2n -12=S 2n -1T 2n -1=14n +162n =7n +8n =7+8n ,经验证,知当n =1,2,4,8时,a nb n为整数.故选A 、C 、D.10.设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列解析:选AD 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列;对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,当q =1时,数列{a n-a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列,故选A 、D.11.一个弹性小球从100 m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为S n ,则当n ≥2时,下面说法正确的是( )A .S n <500B .S n ≤400C .S n 的最小值为7003D .S n 的最大值为400解析:选AC 第一次着地时,共经过了100 m ,第二次着地时,共经过了⎝ ⎛⎭⎪⎫100+100×23×2m ,第三次着地时,共经过了⎣⎢⎡⎦⎥⎤100+100×23×2+100×⎝ ⎛⎭⎪⎫232×2m ,…,以此类推,第n 次着地时,共经过了⎣⎢⎡⎦⎥⎤100+100×23×2+100×⎝ ⎛⎭⎪⎫232×2+…+100×⎝ ⎛⎭⎪⎫23n -1×2 m .所以S n =100+4003⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=100+400⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -1.则S n 是关于n 的增函数,所以当n ≥2时,S n 的最小值为S 2,且S 2=7003.又S n =100+400⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -1<100+400=500,故选A 、C. 12.若数列{a n }满足:对任意的n ∈N *且n ≥3,总存在i ,j ∈N *,使得a n =a i +a j (i ≠j ,i <n ,j <n ),则称数列{a n }是“T 数列”.则下列数列是“T 数列”的为( )A .{2n }B .{n 2} C .{3n}D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝⎛⎭⎪⎫1-52n -1 解析:选AD 令a n =2n ,则a n =a 1+a n -1(n ≥3),所以数列{2n }是“T 数列”;令a n =n 2,则a 1=1,a 2=4,a 3=9,所以a 3≠a 1+a 2,所以数列{n 2}不是“T 数列”;令a n =3n,则a 1=3,a 2=9,a 3=27,所以a 3≠a 1+a 2,所以数列{3n}不是“T 数列”;令a n =⎝⎛⎭⎪⎫1-52n -1,则a n =⎝ ⎛⎭⎪⎫1-52n -2+⎝ ⎛⎭⎪⎫1-52n -3=a n -1+a n -2(n ≥3),所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫1-52n -1是“T 数列”.故选A 、D.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知数列{a n }的前n 项和为S n =2n-3,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=2-3=-1; 当n ≥2时,a n =S n -S n -1=(2n-3)-(2n -1-3)=2n -1,而21-1=1≠-1.故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥214.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5, 即2a 1+2m -1=5,所以a 1=3-m . 由S m =(3-m )m +m m -12×1=0,解得m =5.答案:515.记S n 为数列{a n }的前n 项和,S n =1-a n .记T n =a 1a 3+a 3a 5+…+a 2n -1·a 2n +1,则a n=________,T n =________.解析:由题意有a 1=1-a 1,得a 1=12.当n ≥2时,有S n -1=1-a n -1,①结合S n =1-a n ,②则①-②得a n =12a n -1,故数列{a n }是以12为首项,12为公比的等比数列,可得数列{a n }的通项公式a n =12n ,所以T n =a 22+a 24+…+a 22n =116⎝ ⎛⎭⎪⎫1-116n 1-116=115⎝ ⎛⎭⎪⎫1-116n .答案:12n 115⎝ ⎛⎭⎪⎫1-116n16.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n<0的最大自然数n 的值是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0, 又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0, 所以公差d >0,则数列{a n }的前203项都是负数, 那么2a 203=a 1+a 405<0,所以S 405<0, 所以使前n 项和S n <0的最大自然数n =405. 答案:405四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知四个正数成等比数列,积为16,且第2个数与第3个数的和为5,求这四个数.解:由已知设这四个数分别为aq 3,a q,aq ,aq 3. ∵这四个数的积为16,∴a 4=16,∴a =±2. ∵第2个数与第3个数的和为5,∴a q+aq =5. 当a =2时,2q +2q =5,解得q =2或12,∴这四个数分别为14,1,4,16或16,4,1,14;当a =-2时,-2q -2q =5,解得q =-2或-12,∴这四个数分别为14,1,4,16或16,4,1,14.综上知,这四个数分别为14,1,4,16或16,4,1,14.18.(12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.19.(12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n n -12d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=13-2n1-2n=1212n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n . 20.(12分)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . ∵a 3+a 8-(a 2+a 7)=2d =-6,∴d =-3, ∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 21.(12分)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,3,….(1)证明:数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .解:(1)证明:由a n +1=2a n a n +1,得1a n +1=a n +12a n =12+12×1a n ,所以1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1, 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)得1a n -1=12×12n -1=12n ,即1a n =12n +1,所以n a n =n2n +n . 设T n =12+222+323+…+n2n ,①则12T n =122+223+…+n -12n +n2n +1.② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n2n .又1+2+3+…+n =n n +12, 所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +nn +12=n 2+n +42-n +22n.22.请从下面三个条件中任选一个,补充在下面的横线上,并作答. ①a 1,14,a 2成等差数列;②a 1,a 2+1,a 3成等比数列;③S 3=34.已知S n 为数列{a n }的前n 项和,3S n =a n +2a 1(n ∈N *),a 1≠0,且________. (1)求数列{a n }的通项公式. (2)记b n =⎩⎪⎨⎪⎧a n n 为偶数,log 3a nn 为奇数,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知3S n =a n +2a 1,n ≥2时,3S n -1=a n -1+2a 1. 两式相减得到3a n =a n -a n -1,即a n a n -1=-12. 因为a 1≠0,所以数列{a n }是公比为-12的等比数列,从而a n =a 1⎝ ⎛⎭⎪⎫-12n -1.若选①,由a 1,14,a 2成等差数列可得a 1+a 2=2×14,即a 1-12a 1=12,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.若选②,由a 1,a 2+1,a 3成等比数列可得a 1a 3=(a 2+1)2, 即a 1×14a 1=⎝ ⎛⎭⎪⎫1-12a 12,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.若选③,由S 3=34可得a 1+a 2+a 3=34,即a 1-12a 1+14a 1=34,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.(2)当n 为奇数时,b n =log 3⎝ ⎛⎭⎪⎫-12n -1=log 3⎝ ⎛⎭⎪⎫12n -1=-(n -1)log 32.记前2n +1项和T 2n +1中奇数项和为T 奇, 则T 奇=b 1+b 3+b 5+…+b 2n +1 =-(0+2+4+…+2n )log 32 =-n (n +1)log 32.当n 为偶数时,b n =⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫12n -1,记前2n +1项和T 2n +1中偶数项和为T 偶, 则T 偶=b 2+b 4+b 6+…+b 2n=-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫125+…+⎝ ⎛⎭⎪⎫122n -1=-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=-23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .故T 2n +1=-n (n +1)log 32-23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .。

2019-2020学年数学高中人教A版必修2学案:第一章 空间几何体 本章小结 含解析

2019-2020学年数学高中人教A版必修2学案:第一章 空间几何体 本章小结 含解析
布置作业
课本P36A组第7,9题,B组第1,4题.
课堂小结
参考答案
要点分析
一、三视图与直观图
1.B解析:根据选项A,B,C,D中的直观图,画出其三视图,只有B项符合.
2.B解析:根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB=2 ,OA=1,则AB=3,所以周长为8.
A. B. C. D.
三、截面问题与剪开问题
一个平面与几何体相交所得的几何图形(包括边界及其内部)叫做几何体的截面,截面的边界叫做截线(或交线).
8.轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为1cm,求球的体积.
9.圆柱的轴截面是边长为5cm的正方形ABCD,圆柱侧面上从A到C的最短距离是多少?
要点分析
一、三视图与直观图
三视图是从三个不同的方向看同一个物体而得到的三个视图.从三视图可以看出,俯视图反映物体的长和宽,正视图反映它的长和高,侧示,则这个几何体的直观图可以是( )
2.如图所示,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )
四、与球有关的问题
球内有一个几何体,若该几何体是多面体,则多面体的各个顶点都在球面上;若是旋转体,圆在球面上,这个球称为这个几何体的外接球.若在几何体内的球切于该几何体的各个表面,则称之为内切球.
10.已知一个半径为 的球有一个内接正方体(即正方体的顶点都在球面上),求这个球的表面积与其内接正方体的表面积之比.
11.设正方体的表面积为24cm2,一个球内切于该正方体,求这个球的体积.
12.四棱锥S-ABCD的底面边长和各侧棱长都为 ,点S,A,B,C,D都在同一个球面上,则该球的体积为.

新教材人教A版选择性必修第一册 第一章 空间向量与立体几何 章末测试(含答案)

新教材人教A版选择性必修第一册  第一章  空间向量与立体几何   章末测试(含答案)
详解
如图建立坐标系,不妨设棱长 ,则 , ,
①在 中, ,因此 。同理 , ,与 成角都为 。
故当P位于棱 , , 上时,与 所成角都为 ,故不满足条件。
②当点P位于棱AD上时,设 , ,则 , ,若,满足 于 所成角为 ,则 ,即 ,无正数解(舍),同理当P位于 上时,也不符合题意。
③当P位于棱 上时,设 ,则 , ,若满足 于 所成角为 ,则 ,即 ,因为 ,所以 ,满足条件,此时 。
15、已知直线 的一个方向向量为 ,直线 的一个方向向量为 ,且 ,则 ______, _____.
16、已知空间向量 , ,设 , , 与 垂直, , ,则 ________.
三、解答题
17、如图所示,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,类比平面向量有关运算,如何求向量 与 的数量积?并总结求两个向量数量积的方法.
A. B. C. D.
8、设 是棱长为a的正方体,以下结论为正确的有()
A. B.
C. D.
9、若向量 与 不共线, ,且 ,则向量 与 的夹角为( )
A. B.
C. D.
10、向量 ,若 ,且 ,则 的值为( )
A. B.1C.3或1D. 或1
11、已知平面 , 的法向量分别为 和 (其中 ),若 ,则 的值为( )
新教材人教A版选择性必修第一册
第一章 空间向量与立体几何 章末测试
一、选择题
1、已知向量 , , ,则向量 的坐标为().
A. B. C. D.
2、在正方体 中,点 (异于点 )是棱长一点,则满足 与 ,所成的角为45°的点 的个数为( )
A.0B.3C.4D.6

新教材高中数学第一章空间向量与立体几何章末检测一含解析新人教A版选择性必修第一册

新教材高中数学第一章空间向量与立体几何章末检测一含解析新人教A版选择性必修第一册

章末检测(一) 空间向量与立体几何本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知四面体ABCD ,G 是CD 的中点,连接AG ,则AB ―→+12(BD ―→+BC ―→)=( )A .AG ―→B .CG ―→C .BC ―→D.12BC ―→ 解析:选A 在△BCD 中,因为点G 是CD 的中点,所以BG ―→=12(BD ―→+BC ―→),从而AB ―→+12(BD ―→+BC ―→)=AB ―→+BG ―→=AG ―→.2.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D .23解析:选 C a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.3.已知直线l 过定点A (2,3,1),且n =(0,1,1)为直线l 的一个方向向量,则点P (4,3,2)到直线l 的距离为( )A.322 B.22C.102D. 2解析:选A PA ―→=(-2,0,-1),|PA ―→|=5,PA ―→·n|n |=-22,则点P 到直线l 的距离为|PA ―→|2-⎪⎪⎪⎪⎪⎪PA ―→·n |n |2=5-12=322. 4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意知c =xa +yb ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.在棱长为1的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则AE ―→·CF ―→=( ) A .0 B.12 C .-34D .-12解析:选D 设AB ―→=a ,AC ―→=b ,AD ―→=c , 则|a |=|b |=|c |=1, 且a ·b =b ·c =c ·a =12,又AE ―→=12(a +b ),CF ―→=12c -b ,因此AE ―→·CF ―→=12(a +b )·⎝ ⎛⎭⎪⎫12c -b=14a ·c -12a ·b +14b ·c -12b 2=-12, 故选D.6.在长方体ABCD ­A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.34解析:选C 建立如图所示的空间直角坐标系.则A (2,0,0),B 1(2,2,4),D 1(0,0,4),A 1(2,0,4),AB 1―→=(0,2,4),AD 1―→=(-2,0,4),AA 1―→=(0,0,4).设平面AB 1D 1的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AB 1―→·n =0,AD 1―→·n =0,即⎩⎪⎨⎪⎧2y +4z =0,-2x +4z =0,令x =2,得n =(2,-2,1).所以A 1到平面AB 1D 1的距离为d =|AA 1―→·n ||n |=43.7.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当QA ―→·QB ―→取得最小值时,点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 解析:选C 设点Q (x ,y ,z ).因为点Q 在OP ―→上,所以OQ ―→∥OP ―→,可设x =λ,0≤λ≤1,则y =λ,z =2λ,则Q (λ,λ,2λ),QA ―→=(1-λ,2-λ,3-2λ),QB ―→=(2-λ,1-λ,2-2λ),所以QA ―→·QB ―→=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23.故当λ=43时,QA ―→·QB ―→取得最小值,此时点Q ⎝ ⎛⎭⎪⎫43,43,83.故选C.8.如图,在四棱锥P ­ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC .则点M 在正方形ABCD 内的轨迹为( )解析:选A 如图,以D 为原点,DA ,DC 所在的直线分别为x 轴,y 轴建立如图所示的空间直角坐标系.设正方形ABCD 的边长为a ,M (x ,y,0),则0≤x ≤a,0≤y ≤a ,P ⎝ ⎛⎭⎪⎫a2,0,3a 2,C (0,a,0),则|MC ―→|=x 2+a -y2,|MP ―→|=⎝ ⎛⎭⎪⎫a 2-x 2+y 2+⎝ ⎛⎭⎪⎫3a 22.由|MP ―→|=|MC ―→|,得x =2y ,所以点M 在正方形ABCD 内的轨迹为一条线段y =12x (0≤x ≤a ),故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.有下列四个命题,其中正确的命题有( )A .已知A ,B ,C ,D 是空间任意四点,则AB ―→+BC ―→+CD ―→+DA ―→=0 B .若两个非零向量AB ―→与CD ―→满足AB ―→+CD ―→=0,则AB ―→∥CD ―→C .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),则P ,A ,B ,C 四点共面解析:选BC 对于A,已知A ,B ,C ,D 是空间任意四点,则AB ―→+BC ―→+CD ―→+DA ―→=0,错误;对于B,若两个非零向量AB ―→与CD ―→满足AB ―→+CD ―→=0,则AB ―→∥CD ―→,正确;对于C,分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量,正确;对于D,对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),仅当x +y +z =1时P ,A ,B ,C 四点共面,故错误.10.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 为AC 的中点.则( ) A .〈A 1B ―→,B 1D 1―→〉=120° B .BD 1⊥AC C .BD 1⊥EB 1 D .∠BB 1E =45°解析:选ABC 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系D ­xyz .设正方体的棱长为1,则B (1,1,0),D 1(0,0,1),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎪⎫12,12,0,B 1(1,1,1),A 1(1,0,1).BD 1―→=(-1,-1,1),AC ―→=(-1,1,0),∵BD 1―→·AC ―→=(-1)×(-1)+(-1)×1+1×0=0, ∴BD 1―→⊥AC ―→,∴BD 1⊥AC ,B 正确. EB 1―→=⎝ ⎛⎭⎪⎫12,12,1,∵BD 1―→·EB 1―→=(-1)×12+(-1)×12+1×1=0,∴BD 1―→⊥EB 1―→,∴BD 1⊥EB 1,C 正确. A 1B ―→=(0,1,-1),B 1D 1―→=(-1,-1,0), cos 〈A 1B ―→,B 1D 1―→〉=-12·2=-12,∴〈A 1B ―→,B 1D 1―→〉=120°,A 正确. B 1E ―→=⎝ ⎛⎭⎪⎫-12,-12,-1,B 1B ―→=(0,0,-1),cos 〈B 1E ―→,B 1B ―→〉=114+14+1=63≠22,D 不正确,故A 、B 、C 正确. 11.如图,PA ⊥平面ABCD ,正方形ABCD 边长为1,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,则( )A .AF ∶FD =2∶1B .AF ∶FD =1∶1C .若PA =1,则异面直线PE 与BC 所成角的余弦值为23D .若PA =1,则直线PE 与平面ABCD 所成角为30°解析:选BC 建立如图所示的空间直角坐标系,PA =a ,则B (1,0,0),C (1,1,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0), 则BF ―→=(-1,y,0), PE ―→=⎝ ⎛⎭⎪⎫12,1,-a ,∵BF ⊥PE ,∴BF ―→·PE ―→=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, ∴F 为AD 的中点,∴AF ∶FD =1∶1,B 正确,A 不正确.若PA =1,则P (0,0,1),PE ―→=⎝ ⎛⎭⎪⎫12,1,-1,BC ―→=(0,1,0),cos 〈PE ―→,BC ―→〉=114+1+1=23,故C 正确. AP ―→=(0,0,1), cos 〈AP ―→,PE ―→〉=-114+1+1=-23,故D 不正确.12.在正方体ABCD ­A 1B 1C 1D 1中,若F ,G 分别是棱AB ,CC 1的中点,则( ) A .二面角A 1­AC 1­B 的大小为90° B .FG ―→·AC ―→=32C .直线FG 与平面A 1ACC 1所成角的正弦值等于36D .FG ⊥BC 1解析:选BC 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D ­xyz .设正方体的棱长为1,则易知平面ACC 1A 1的一个法向量为n =(1,1,0).A (1,0,0),B (1,1,0),C (0,1,0),C 1(0,1,1),A 1(1,0,1).∵F ⎝ ⎛⎭⎪⎫1,12,0,G ⎝ ⎛⎭⎪⎫0,1,12,∴FG ―→=⎝ ⎛⎭⎪⎫-1,12,12, 设直线FG 与平面A 1ACC 1所成角为θ,则sin θ=|cos 〈n ,FG ―→〉|=|n ·FG ―→||n |·|FG ―→|=122×62=36,故C 正确;AB ―→=(0,1,0),AC 1―→=(-1,1,1),AA 1―→=(0,0,1). 设平面ABC 1的法向量u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·AB ―→=0,u ·AC 1―→=0,即⎩⎪⎨⎪⎧y =0,-x +y +z =0.令z =1,则u =(1,0,1).同理可得平面A 1AC 1的一个法向量v =(-1,-1,0),cos 〈u ,v 〉=u ·v |u ||v |=-12,故A 错误;BC 1―→=(-1,0,1),∴FG ―→·BC 1―→=1+12≠0.故D 错误;∵AC ―→=(-1,1,0),∴FG ―→·AC ―→=1+12=32,故B 正确.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若A (-1,2,3),B (2,-4,1),C (x ,-1,-3)是以BC 为斜边的直角三角形的三个顶点,则x =________.解析:由题意得AB ―→=(3,-6,-2),AC ―→=(x +1,-3,-6),∴AB ―→·AC ―→=3(x +1)+18+12=0,解得x =-11.答案:-1114.如图,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.解析:不妨设CB =1,则B (0,0,1),A (2,0,0),C 1(0,2,0),B 1(0,2,1).∴BC 1―→=(0,2,-1),AB 1―→=(-2,2,1).cos 〈BC 1―→,AB 1―→〉=BC 1―→·AB 1―→|BC 1―→|·|AB 1―→|=0+4-15×3=55.答案:5515.如图,已知矩形ABCD ,AB =1,BC =a ,PA ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.解析:如图,建立空间直角坐标系A ­xyz ,则D (0,a,0). 设Q (1,t,0)(0≤t ≤a ),P (0,0,z ). 则PQ ―→=(1,t ,-z ),QD ―→=(-1,a -t,0). 由PQ ⊥QD ,得-1+t (a -t )=0, 即t 2-at +1=0.由题意知方程t 2-at +1=0只一解. ∴Δ=a 2-4=0,a =2,这时t =1∈[0,a ]. 答案:216.如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA ―→=a ,DB ―→=b ,DC ―→=c .(1)以{a ,b ,c }为基底表示FE ―→,则FE ―→=________;(2)若∠ADB =∠BDC =∠ADC =60°,且|DA ―→|=4,|DB ―→|=3,|DC ―→|=3,则|FE ―→|=________.解析:(1)如图所示,连接DE .因为FE ―→=FD ―→+DE ―→,FD ―→=-DF ―→=-13DC ―→,DE ―→=12(DA ―→+DB ―→),所以FE ―→=12a +12b -13c .(2)|FE ―→|2=⎝ ⎛⎭⎪⎫12a +12b -13c 2=14a 2+14b 2+19c 2+12a ·b -13a ·c -13b ·c =14×42+14×32+19×32+12×4×3×12-13×4×3×12-13×3×3×12=274.所以|FE ―→|=332.答案:(1)12a +12b -13c (2)332四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 夹角的余弦值.解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,则a =(2,4,1),b =(-2,-4,-1). 又b ⊥c ,所以b ·c =0,即-6+8-z =0, 解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1), 设a +c 与b +c 夹角为θ, 因此cos θ=5-12+338×38=-219.18.(本小题满分12分)在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,求D 1C 1与平面A 1BC 1所成角的正弦值.解:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0,BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13. 19.(本小题满分12分)如图所示,已知四面体OABC 各边及对角线长都是1,D ,E 分别是OA ,BC 的中点,连接DE .(1)求证:DE 是OA 和BC 的公垂线; (2)求OA 和BC 间的距离. 解:(1)证明:∵E 为BC 的中点.∴DE ―→=12(DB ―→+DC ―→),DB ⊥OA ,得DB ―→·OA ―→=0.同理可得DC ―→·OA ―→=0.∴DE ―→·OA ―→=12(DB ―→+DC ―→)·OA ―→=12DB ―→·OA ―→+12DC ―→·OA ―→=0,∴DE ⊥OA .同理可证DE ⊥BC .∴DE 是OA 和BC 的公垂线.(2)∵DE ―→=OE ―→-OD ―→=12OB ―→+12OC ―→-12OA ―→,∴|DE ―→|2=⎝ ⎛⎭⎪⎫12OB ―→+12OC ―→-12OA ―→2=14(OB ―→2+OC ―→2+OA ―→2+2OB ―→·OC ―→-2OB ―→·OA ―→-2OC ―→·OA ―→) =14×(12+12+12+2×1×1×cos 60°-2×1×1×cos 60°-2×1×1×cos 60°) =12, ∴|DE ―→|=22,即OA 和BC 间的距离为22.20.(本小题满分12分)如图,在四棱锥P ­ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点.(1)求异面直线GE 与PC 所成角的余弦值; (2)若F 是棱PC 上一点,且DF ⊥GC ,求PF FC的值.解:(1)以G 点为原点,GB ,GC ,GP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE ―→=(1,1,0),PC ―→=(0,2,-4).∵cos 〈GE ―→,PC ―→〉=GE ―→·PC ―→|GE ―→||PC ―→|=22×20=1010,∴GE 与PC 所成角的余弦值为1010. (2)∵GD ―→=34BC ―→=⎝ ⎛⎭⎪⎫-32,32,0,∴D ⎝ ⎛⎭⎪⎫-32,32,0.设F (0,y ,z ),则DF ―→=(0,y ,z )-⎝ ⎛⎭⎪⎫-32,32,0=⎝ ⎛⎭⎪⎫32,y -32,z .∵DF ―→⊥GC ―→,∴DF ―→·GC ―→=0,即⎝ ⎛⎭⎪⎫32,y -32,z ·(0,2,0)=2y -3=0,∴y =32.又点F 在PC 上,∴PF ―→=λPC ―→,即⎝ ⎛⎭⎪⎫0,32,z -4=λ(0,2,-4),∴z =1,故F ⎝ ⎛⎭⎪⎫0,32,1, ∴PF ―→=⎝ ⎛⎭⎪⎫0,32,-3,FC ―→=⎝ ⎛⎭⎪⎫0,12,-1,∴PFFC =35252=3. 21.(本小题满分12分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(1)证明:AM ⊥PM ;(2)求二面角P ­AM ­D 的大小; (3)求点D 到平面AMP 的距离.解:(1)证明:以D 点为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0).PM ―→=(2,1,-3),AM ―→=(-2,2,0), ∴PM ―→·AM ―→=(2,1,-3)·(-2,2,0)=0, 即PM ―→⊥AM ―→,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量, 则⎩⎪⎨⎪⎧n ·PM ―→=0,n ·AM ―→=0,即⎩⎨⎧2x +y -3z =0,-2x +2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∴cos 〈n ,p 〉=n ·p |n ||p |=36=22.结合图形可知,二面角P ­AM ­D 为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)与平面PAM 垂直,则 d =|DA ―→·n ||n |=|22,0,0·2,1,3|22+12+32=263, 即点D 到平面AMP 的距离为263. 22.(本小题满分12分)如图,在三棱柱ABC ­A 1B 1C 1中,四边形AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1­BC 1­B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. 解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题意知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为坐标原点,建立空间直角坐标系,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).所以A 1B ―→=(0,3,-4),A 1C 1―→=(4,0,0),BB 1―→=(0,0,4),BC 1―→=(4,-3,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1B ―→=0,n ·A 1C 1―→=0,即⎩⎪⎨⎪⎧ 3y -4z =0,4x =0. 令z =3,则x =0,y =4, 所以平面A 1BC 1的一个法向量为n =(0,4,3).设平面B 1BC 1的一个法向量为m =(a ,b ,c ),则⎩⎪⎨⎪⎧ m ·BB 1―→=0,m ·BC 1―→=0,即⎩⎪⎨⎪⎧ 4c =0,4a -3b +4c =0.令a =3,得b =4,c =0,故平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625. 由题意知二面角A 1­BC 1­B 1为锐角,所以二面角A 1­BC 1­B 1的余弦值为1625.(3)假设D (x 1,y 1,z 1)是线段BC 1上一点,且BD ―→=λBC 1―→(λ∈[0,1]),所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ, 所以AD ―→=(4λ,3-3λ,4λ).由AD ―→·A 1B ―→=0,得9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D , 使得AD ⊥A 1B .此时BD BC 1=925.。

【同步检测】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

【同步检测】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径;因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠,由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。

【同步课堂】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

【同步课堂】2019-2020学年人教A版数学必修2第一章 空间几何体 测试B卷(提升)

2019-2020学年人教A 版数学必修2第一章 空间几何体测试B 卷(提升)1、以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形; ③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形. 其中,真命题的个数为( )A.4B.3C.2D.12、用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( ) A .棱锥B .圆柱C .球D .圆锥3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4、如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8?,高为5,点,M N 分别在棱1111,A B D C 上,且111A M D N ==.若过点,M N 的平面α与此四棱台的下底面相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为( )A. 187B. 302C. 661D. 363 5、已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a ,且长为a 的棱与长为2的棱所在直线是异面直线,则三棱锥的体积的最大值为( )A.212 B. 3C. 26D. 366、如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2B.62+ C .2+2 D.22+7、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 16B. 13C.12D. 18、如图,ABC ∆的斜二测直观图为等腰''Rt A B C ∆,其中''2A B =,则原ABC ∆的面积为( )A .2B .4C .22 D .429、在三棱锥P ABC -中,2,2,3AB AC BC PA PB PC =====,若三棱锥P ABC -的顶点均在球O的表面上,则球O 的半径为( )1313232210、如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )A.323π B. 32π C. 36π D. 48π11、一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和边长为a 的正三角形,则它们的表面积之比为__________.12、已知某几何体的三视图如图所示,则该几何体的表面积为_________体积为_________.13、如图,正方形O ABC '的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是__________.14、已知三棱锥P ABC -中,PAB △是面积为43π4ACB ∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_______.15、如图,正方体ABCD A B C D-的棱长为a,连接''''-.求:,,,,,,得到一个三棱锥A BC D''''''''AC A D A B BD BC C D(1)求三棱锥A BC D''-的表面积与正方体表面积的比值;(2)求棱锥A BC D-的体积.''答案以及解析1答案及解析:答案:B解析:由正棱锥的性质可得①正确; ②不正确,如直棱柱的底面是梯形时,侧面不是全等的矩形;由圆柱的母线的定义知,③正确;由圆锥的轴截面是全等的等腰三角形知,④正确.综上,①③④正确,②不正确,故选B.2答案及解析:答案:A解析:用一个平面去截一个棱锥,得到的截面是三角形,不可能是圆,所以A正确;用一个平面去截一个圆柱,截面与底面平行,得到的截面是圆面,所以B 不满足题目要求;用一个平面去截一个球,得到的截面是圆面,所以C 不满足题目要求;用一个平面去截一个圆锥,截面与底面平行,得到的截面是圆面,所以D 不满足题目要求; 故选:A.3答案及解析: 答案:A解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .4答案及解析: 答案:B解析:当平面α经过点,,,B C N M 时与四棱台的面的交线围成的图形的面积最大,此时所围成的图形为等腰梯形,上底4?MN =,下底8BC =. 此时作正四棱台1111ABCD A B C D -俯视图如下.则MN 的中点在底面的投影到BC 的距离为8215--=, 因为正四棱台1111ABCD A B C D -的高为5. 所以截面等腰梯形的高为2255=52+.所以截面面积的最大值为()1S=48523022⨯+⨯=.故选B.5答案及解析: 答案:A解析:如图所示,三棱锥A BCD -中, ,2,1AD a BC AB AC BD CD ======,则该三棱锥为满足题意的三棱锥,将△BCD 看作底面,则当平面ABC ⊥平面BCD 时,该三棱锥的体积有最大值,此时三棱锥的高22h =,△BCD 是等腰直角三角形, 则12BCD A ∆=,综上可得,三棱锥的体积的最大值为112232⨯⨯=.本题选择A 选项.6答案及解析:答案:D解析:把对角面1A C 绕1A B 旋转,使其与1AA B ∆在同一平面上,连接1AD ,则在1AA D ∆中,1AD7答案及解析: 答案:A解析:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积111122S =⨯⨯=,高为1,故棱锥体积1136V Sh ==.8答案及解析: 答案:D解析:∵'''O A B Rt ∆是一平面图形的直观图,直角边长为''2A B =,222⨯=,因为平面图形与直观图的面积的比为∴原平面图形的面积是2⨯=.9答案及解析: 答案:B 解析:如图,取AB 的中点D ,连接,PD CD ,由2,2AB AC BC PA PB =====,可得,CD AB PD AB ⊥⊥,且3CD PD ==,又3PC =,所以PDC △是正三角形,60PDC ∠=o 易知平面PDC ⊥平面ABC ,所以点O 在平面PDC 内,过点O 作OE CD ⊥于点E ,OF PD ⊥于点F ,则点,E F 分别是,ABC PAB △△外接圆的圆心,且OE OF =,连接OD ,在Rt ODE △中,1330,3ODE DE CD ︒∠===,所以313OE DE ==,连接,OB OE ,在Rt OBE △中,233BE =,因此球O 的半径221121399R OE BE =+=+=.10答案及解析: 答案:D解析:由三视图可知,这个四面体为三棱锥,且三棱锥的每个顶点都在边长为4的正方体上,如下图所示三棱锥底面为直角边长等于4的等腰直角三角形,同时三棱锥的高为4,三条侧棱长分别为22222224442,4442,44443+=+=++=,由图可知四面体的外接球与正方体的外接球为同一个外接球,所以外接球的半径222444R 232++==,故外接球表面积24R 48S ππ==,故选项D 正确.11答案及解析: 答案:2:1解析:由题意,得圆柱的表面积2232π2ππ222a a S a a ⎛⎫=⋅+⋅⋅= ⎪⎝⎭圆柱圆锥的表面积223πππ224a a S a a ⎛⎫=+⋅⋅= ⎪⎝⎭圆锥所以面积比圆柱面积比圆锥面积为2:112答案及解析: 答案:5π2+;3π2解析:由三视图还原该几何体的直观图如图所示.可看作是由一个底面半径为1,高为1的圆柱和一个底面半径为1,高为1的半圆柱组合而成的,故该几何体的表面积为212π12π112π11215π22⨯+⨯⨯+⨯⨯⨯+⨯=+,体积为2213π11π11π22⨯⨯+⨯⨯⨯=13答案及解析:答案:8cm解析:水平放置的平面图形的直观图是用斜二测画法,所以与x 轴平行的保持不变,与y 轴平行的变为原来的一半,所以将直观图还原如图所示的图形, 11OA =,1222OB OB ==,113A B ∴=,所以原图形的周长是()3+12=8cm ⨯.14答案及解析:答案:112π3 解析:当平面CAB ⊥平面PAB 时,三棱锥P ABC -的体积达到最大; 记点,D E 分别为,APB ACB △△的外心,并过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 即为三棱锥P ABC -外接球的球心,AO 即为球的半径; 因为43PAB S ∆=4AB =;在ACB △中,45ACB ∠=︒,则90AEB =︒∠, 由正弦定理可2sin AB AE ACB =∠,故22AE EB EC === 记AB 的中点为F ,则1132333OE DF PF AB ==== 故22283OA OE AE =+=2112π4π3S R ==.故答案为:112π315答案及解析:答案:(1)∵ABCD A B C D ''''-是正方体,∴六个面都是正方形, ∴A C A B A D BC BD C D ''''''=====,∴224)S =三棱锥=,26S a 正方体=,∴S S 正方体三棱锥(2)显然,三棱锥A ABD C BCD D A D C B A B C ''''''''-、-、-、-是完全一样的, ∴32311144323A BC D A ABD V V V a a a a '''⨯⨯⨯=三棱锥-正方体三棱锥-=-=-解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 空间几何体章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法中正确的是( ) A .棱柱的侧面可以是三角形 B .正方体和长方体都是特殊的四棱柱 C .所有的几何体的表面都能展成平面图形 D .棱柱的各条棱都相等解析:棱柱的侧面必须是平行四边形,侧棱长相等,但底面只需为多边形,且边长也不需要与侧棱长相等,故A 、D 不正确;球的表面不能为平面图形,故C 不正确. 答案:B2.棱锥的侧面和底面可以都是( ) A .三角形 B .四边形 C .五边形D .六边形解析:三棱锥的侧面和底面均是三角形,故选A. 答案:A3.已知正方体的内切球(球与正方体的六个面都相切)的体积是323π,则该球的表面积为( )A .4πB .8πC .12πD .16π解析:设球的半径为R .由43πR 3=323π得R =2,∴S 球=4πR 2=16π.答案:D4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台解析:由三视图可知该几何体是长方体. 答案:A5.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积是( )A .6B .3 2C .6 2D .12解析:由画直观图的规则可知,平行于y 轴的减半,平行x 轴的长度保持不变. 故△OAB 中OA =6,OB =4, 故△OAB 的面积S =12×4×6=12.答案:D6.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π4π B .1+2π2πC.1+2ππD .1+4π2π解析:设圆柱的半径为r ,高为h .由题意得h =2πr ,∴圆柱的表面积S 圆柱表面积=2πr 2+2πr ×h =2πr 2+2πr ×2πr =2πr 2(1+2π), 圆柱的侧面积S 圆柱侧面积=2πr ×h =2πr ×2πr =4π2r 2.故S 圆柱表面积S 圆柱侧面积=2πr 2+2π4π2r2=1+2π2π. 答案:B7.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,①③都是能符合要求的几何体,故选A. 答案:A8.已知正六棱锥P ­ABCDEF 的底面边长为2,高也为2,则其侧面积为( ) A .2 B .12 C.7D .67∴S 侧=6×12×2×7=67.答案:D9.如图所示是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A .24B .12C .8D .4解析:由三视图可知,该几何体由两个相同的直三棱柱构成.三棱柱的高为4,三棱柱的底面为直角三角形,两直角边分别为2,32,所以三角形的面积为12×2×32=32,所以三棱柱的体积为32×4=6,故该几何体的体积为2×6=12. 答案:B10.在△ABC 中,AB =2,BC =32,∠ABC =120°,若△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( )A.32π B .72π C.52π D .92π 解析:如图,△ABC 绕BC 旋转一周形成一个组合体,该组合体可看成圆锥CD 中挖去一个小圆锥BD 得到的.∵∠ABD =60°,AB =2, ∴AD =3,BD =1. ∴V 几何体=V 大圆锥-V 小圆锥 =13π·AD 2·CD -13π·AD 2·BD =13π×(3)2×⎝ ⎛⎭⎪⎫32+1-1=32π. 答案:A11.如果一个棱锥的侧面积为Q ,平行于底面的截面把高分成1∶2两部分,那么此截面截得的棱台的侧面积为( ) A.34Q B .89Q C.23Q D .12Q 解析:截面截得的小棱锥的高与原棱锥的高的比为1∶3,由相似三角形的性质易得它们的侧棱长之比为1∶3,则侧面积的比为1∶9,所以小棱锥的侧面积为19Q ,因此截面截得的棱台的侧面积为89Q .答案:B12.三棱台ABC ­A 1B 1C 1中,AB ∶A 1B 1=1∶2,则三棱锥A 1­ABC ,B ­A 1B 1C ,C ­A 1B 1C 1的体积之比为( )A .1∶1∶1B .1∶1∶2C .1∶2∶4D .1∶4∶4解析:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . ∴VA 1­ABC =13S △ABC ·h =13Sh ,VC ­A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,∴VB ­A 1B 1C =V 台-VA 1­ABC -VC ­A 1B 1C 1=73Sh -13Sh -43Sh =23Sh .即体积之比为1∶2∶4.答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.若一个圆台的母线长为l ,上、下底面半径分别为r 1,r 2,且满足2l =r 1+r 2,其侧面积为8π,则l =________. 解析:S 圆台侧=π(r 1+r 2)l =2πl 2=8π,所以l =2. 答案:214.一块正方形薄铁片的边长为4 cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积等于________cm 3. 解析:设圆锥底面圆的半径为r ,则圆周长为2πr =14×2π×4,所以r =1.设圆锥高h ,则h =42-1=15. 所以所求容积为13πr 2h =15π3 (cm 3).答案:15π315.某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知题中几何体是由圆柱的一半和球的四分之一组成的,所以该几何体的体积V =12V圆柱+14V 球=12×π×12×2+14×43π×13=43π.答案:43π16.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.解析:设三棱台的上底面面积为S 0,则下底面面积为4S 0,高为h ,则V 三棱台ABC ­A 1B 1C 1=13(S 0+4S 0+2S 0)h =73S 0h ,V 三棱柱FEC ­A 1B 1C 1=S 0h .设剩余的几何体的体积为V ,则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.答案:3∶4 (或4∶3)三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)某五面体的三视图如图所示,其正视图、俯视图均是等腰直角三角形,侧视图是直角梯形,部分长度已标出,试画出该几何体,并求出此几何体各棱的长.解析:借助正方体(棱长为1)及题目所给的三视图,该几何体可看作是从正方体中截出来的(如图①所示),然后将所得图形从正方体中分离出来,即可得到该几何体(如图②所示),易知该几何体为四棱锥A ­BMC 1C .结合给定的三视图的长度关系,可知在四棱锥A ­BMC 1C 中,AB =1,BC =1,AC =2,BM =12,AM =52,CC 1=1,AC 1=3,MC 1=52. 18.(本小题满分12分)已知有一块扇形铁皮OAB ,∠AOB =60°,OA =72 cm ,要剪下来一个扇环ABCD 作圆台形容器的侧面,并且在余下的扇形OCD 内剪下一块与扇形相切的圆形,使它恰好作圆台形容器的下底面 (大底面).试求: (1)AD 的长;(2)容器的体积(结果保留π).解析:(1)如图所示,设圆台上、下底面半径分别为r ,R ,AD =x ,则OD =72-x .由题意得⎩⎪⎨⎪⎧2πR =60π180×72,2πr =60π180-x ,72-x =3R ,∴R =12,r =6,x =36,∴AD =36 cm. (2)圆台的高为h =x 2-R -r 2=362--2=635(cm),故V =13πh (R 2+Rr +r 2)=13π×635×(122+12×6+62)=50435π(cm 3).19.(本小题满分12分)如图所示是一个长方体截去一个角所得多面体的直观图及其正视图和侧视图(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的数据,求该多面体的体积.解析:(1)加上俯视图后的三视图如图所示.(2)该多面体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).20.(本小题满分12分)如图所示,A 为直线y =33x 上一点,AB ⊥x 轴于点B ,半圆的圆心O ′在x 轴的正半轴上,且半圆与AB ,AO 相切,已知△ABO 绕x 轴旋转一周形成的几何体的体积为93π,求阴影部分旋转成的几何体的体积. 解析:设A 点坐标为⎝ ⎛⎭⎪⎫x ,33x .V 旋=V 圆锥-V 球, V 圆锥=13πr 2h =13π×13x 2×x =19πx 3=93π,求得x =3 3.∴OB =33,AB =3,故OA =6.∴∠AOB =30°. 故OO ′=2R ,又∵OO ′+O ′B =x ,即2R +R =x , 求得R =13x = 3.V 球=43πR 3=43π×(3)3=43π.∴V 旋=93π-43π=53π.21.(本小题满分13分)直角梯形的一个底角为45°,下底长为上底长的32,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积.解析:如图所示,在梯形ABCD 中,AB ∥CD ,∠A =90°,∠B =45°,绕直线AB 旋转一周后形=x 2,BC =22x . 成一个圆柱和一个圆锥的组合体.设CD =x ,则AB =32x ,AD =AB -CD =32x -xS 表=S 圆柱底+S 圆柱侧+S 圆锥侧=π·AD 2+2π·AD ·CD +π·AD ·BC=π·x 24+2π·x 2·x +π·x 2·22x=5+24πx 2. 根据题设,5+24πx 2=(5+2)π,解得x =2.所以旋转体的体积V =π·AD 2·CD +13π·AD 2·(AB -CD )=π×12×2+π3×12×(3-2)=73π.22.(本小题满分13分)一个圆锥底面半径为R ,高为3R ,求圆锥的内接正四棱柱表面积的最大值. 解析:如图所示,△SAB 为圆锥的一个轴截面,且该轴截面经过正四棱柱的对角面,DF 为棱柱的底面对角线.设正四棱柱的高为h ,底面正方形边长为a ,则DE =22a . ∵△SDE ∽△SAO ,∴DE AO =SE SO. ∵AO =R ,SO =3R ,∴22a R =3R -h 3R ,∴h =3R -62a .∴S 表=2a 2+4ah =2a 2+4a ⎝ ⎛⎭⎪⎫3R -62a . 整理得S 表=(2-26)⎝⎛⎭⎪⎫a -3R 6-12+6R26-1(0<a <2R ). ∵2-26<0,3R 6-1<2R ,∴当a =3R 6-1时,S 表有最大值,为6R26-1,即圆锥的内接正四棱柱表面积的最大值为6R26-1, 即6+5R 2.。

相关文档
最新文档