最新初三数学概率试题大全(含答案)

合集下载

概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)

概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)

专题概率(50题)一、单选题1(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:610=35,故选:B.【点睛】本题考查了概率公式求概率;解题的关键是熟练掌握概率公式.2(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为36=12.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3(2023·湖北武汉·统考中考真题)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C 和D 的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为212=16,故选:C .【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.4(2023·河北·统考中考真题)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选:B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.34【答案】C【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.6(2023·湖南永州·统考中考真题)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.1【答案】B【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.7(2023·山东临沂·统考中考真题)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为812=23,故选:D.【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.8(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.23【答案】C【分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为24=12;故选:C .【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.9(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.57【答案】C【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.10(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A.16B.18C.110D.112【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可.【详解】解:由题意得,大圆面积为π×202=400πcm 2,免一次作业对应区域的面积为60×π×202360-60×π×102360=50πcm 2,∴投中“免一次作业”的概率是50π400π=18,故选B.【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.11(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.29【答案】C【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123,321是“平稳数”∴恰好是“平稳数”的概率为26=13故选:C.【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.12(2023·浙江·统考中考真题)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A.12B.14C.13D.34【答案】B【分析】直接根据概率公式求解即可.【详解】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B【点睛】此题考查了概率的求法,通过所有可能结果得出n,再从中选出符合事件结果的数目m,然后根据概率公式P=mn求出事件概率.13(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.16【答案】B【分析】根据概率公式求解即可.【详解】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是26=13,故选:B .【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.14(2023·四川泸州·统考中考真题)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.13C.12D.23【答案】B【分析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.【详解】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为P =26=13.故选:B .【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.15(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A.18 B.16C.14D.12【答案】C【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.二、填空题16(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.【答案】16【分析】用树状图把所有情况列出来,即可求出.【详解】总共有12种组合,《论语》和《大学》的概率112=16,故答案为:16.【点睛】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.17(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是.【答案】710【分析】根据概率公式进行计算即可.【详解】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴P =710;故答案为:710.【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.18(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+n =25,去分母,得6×5=26+n ,解得n =9,经检验n =9是所列分式方程的根,∴n =9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.19(2023·天津·统考中考真题)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.【答案】710【分析】直接利用概率公式求解即可.【详解】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.【点睛】本题考查求简单事件的概率,理解题意是解答的关键.20(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是.【答案】16【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为636=16故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.21(2023·新疆·统考中考真题)在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,从中任选一个点恰好在第一象限的概率是.【答案】25【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,其中A 1,2 ,D 4,3 ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.22(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.【答案】25【分析】根据概率的公式即可求出答案.【详解】解:由题意得摸出红球的情况有两种,总共有5个球,∴摸出红球的概率:22+3=25.故答案为:25.【点睛】本题考查了概率的求法,解题的关键在于熟练掌握概率的简单计算公式:概率=事件发生的可能情况÷事件总情况.23(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.【答案】25【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为P =410=25,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.24(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350500=710,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.25(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.【答案】13【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.26(2023·四川南充·统考中考真题)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.【答案】6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:xx +4=0.6,解得x =6,检验,当x =6时,x +4≠0,∴x =6是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.27(2023·重庆·统考中考真题)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【答案】19【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28(2023·四川自贡·统考中考真题)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【答案】25【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是820=25,故答案为:25.【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.29(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为.【答案】12【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为P =24=12,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.30(2023·山东·统考中考真题)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为.【答案】59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.三、解答题31(2023·四川内江·统考中考真题)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角α=度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.【答案】(1)200,补全条形统计图见解析(2)54(3)恰好选中甲、乙两名同学的概率为16【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E 四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;(2)用360°乘以C类型社团的人数占比即可求出扇形统计图中α的度数;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.【详解】(1)解:50÷25%=200(人),C类型社团的人数为200-30-50-70-20=30(人),补全条形统计图如图,故答案为:200;=54°,(2)解:α=360°×30200故答案为:54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为212=16.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.32(2023·湖北宜昌·统考中考真题)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A 文学类,B 科幻类,C 漫画类,D 数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A 文学类24B 科幻类mC 漫画类16D 数理类8(1)本次抽查的学生人数是,统计表中的m =;(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是;(3)若该校共有1200名学生,请你估计该校学生选择“D 数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.【答案】(1)80,32(2)72°(3)120(4)14【分析】(1)利用A 文学类的人数除以对应的百分比即可得到本次抽查的学生人数,用抽查总人数乘以B 科幻类的百分比即可得到m 的值;(2)用360°乘以“C 漫画类”对应的百分比即可得到“C 漫画类”对应的圆心角的度数;(3)用该校共有学生数乘以抽查学生中选择“D 数理类”书籍的学生的百分比即可得到该校学生选择“D 数理类”书籍的学生人数;(4)画出树状图,找到等可能情况总数和小文、小明选择同一社团的情况数,利用概率公式求解即可.【详解】(1)解:由题意得,本次抽查的学生人数是24÷30%=80(人),统计表中的m =80×40%=32,故答案为:80,32(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是:360°×1680×100%=72°,故答案为:72°(3)由题意得,1200×880×100%=120(人),即估计该校学生选择“D 数理类”书籍的学生为120人;(4)树状图如下:从树状图可看出共有16种等可能的情况,小文、小明选择同一社团的情况数共有4种,∴P (小文、小明选择同一社团)=416=14.【点睛】此题考查了树状图或列表法求概率、样本估计总体、扇形统计图等相关知识,读懂题意,熟练掌握树状图或列表法求概率和准确计算是解题的关键.33(2023·湖北黄冈·统考中考真题)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m =,n =,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,72°(2)480人(3)29【分析】(1)根据选择“E :其他类”的人数及比例求出总人数,总人数乘以A 占的比例即为m ,总人数减去A ,B ,C ,E 的人数即为n ,360度乘以B 占的比例即为文学类书籍对应扇形圆心角;。

初三概率公式试题及答案

初三概率公式试题及答案

初三概率公式试题及答案试题一:某班级共有50名学生,其中男生30人,女生20人。

随机抽取一名学生,求抽到男生的概率。

答案:抽到男生的概率 \( P(\text{男生}) = \frac{\text{男生人数}}{\text{总人数}} = \frac{30}{50} = \frac{3}{5} \)。

试题二:一个袋子中有红球5个,蓝球3个,白球2个。

随机抽取一个球,求抽到蓝球的概率。

答案:抽到蓝球的概率 \( P(\text{蓝球}) = \frac{\text{蓝球数量}}{\text{总球数}} = \frac{3}{5+3+2} = \frac{3}{10} \)。

试题三:在一个盒子里,有10个乒乓球,其中3个是黄色的,7个是白色的。

如果随机取出2个乒乓球,求至少有一个是黄色的概率。

答案:至少有一个是黄色的概率可以通过计算没有黄色的概率,然后用1减去这个概率得到。

没有黄色的概率为:\[ P(\text{没有黄色}) = \frac{C(7,2)}{C(10,2)} = \frac{21}{45} \]至少有一个是黄色的概率为:\[ P(\text{至少一个黄色}) = 1 - P(\text{没有黄色}) = 1 -\frac{21}{45} = \frac{24}{45} = \frac{8}{15} \]试题四:某工厂生产的产品中,有90%是合格的,10%是次品。

如果随机抽取5个产品,求至少有4个是合格的概率。

答案:至少有4个是合格的概率可以通过计算所有可能的合格产品数量的概率,然后求和得到。

\[ P(\text{至少4个合格}) = P(\text{4个合格}) + P(\text{5个合格}) \]\[ P(\text{4个合格}) = C(5,4) \times (0.9)^4 \times (0.1) \] \[ P(\text{5个合格}) = (0.9)^5 \]\[ P(\text{至少4个合格}) = C(5,4) \times (0.9)^4 \times (0.1) + (0.9)^5 \]试题五:在一个班级中,有60%的学生喜欢数学,40%的学生喜欢英语。

中考数学真题《概率》专项测试卷(附答案)

中考数学真题《概率》专项测试卷(附答案)

中考数学真题《概率》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(50题)一、单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.342.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.233.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1124.(2023·河北·统考中考真题)1有7张扑克牌如图所示将其打乱顺序后背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等任意转动这个转盘1次当转盘停止转动时指针落在灰色区域的概率是()A.14B.13C.12D.346.(2023·湖南永州·统考中考真题)今年2月某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练参加永州市即将举办的“唱响新时代筑梦新征程”合唱选拔赛那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.17.(2023·山东临沂·统考中考真题)在项目化学习中“水是生命之源”项目组为了解本地区人均淡水消耗量需要从四名同学(两名男生两名女生)中随机抽取两人组成调查小组进行社会调查恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.238.(2023·浙江温州·统考中考真题)某校计划组织研学活动现有四个地点可供选择:南麂岛百丈漈楠溪江雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.239.(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球它们除颜色外都相同从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.5710.(2023·四川遂宁·统考中考真题)为增强班级凝聚力吴老师组织开展了一次主题班会.班会上他设计了一个如图的飞镖靶盘靶盘由两个同心圆构成小圆半径为10cm大圆半径为20cm每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次)投中“免一次作业”的概率是()A.16B.18C.110D.11211.(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用123这三个数字随机组成一个无重复数字的三位数恰好是“平稳数”的概率为()A.59B.12C.13D.2912.(2023·浙江·统考中考真题)某校准备组织红色研学活动需要从梅岐王村口住龙小顺四个红色教育基地中任选一个前往研学选中梅岐红色教育基地的概率是()A.12B.14C.13D.3413.(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目老师提供6张背面完全相同的卡片其中蔬菜类有4张正面分别印有白菜辣椒豇豆茄子图案水果类有2张正面分别印有草莓西瓜图案每个图案对应该种植项目.把这6张卡片背面朝上洗匀小明随机抽取一张他恰好抽中水果类卡片的概率是()A.12B.13C.14D.1614.(2023·四川泸州·统考中考真题)从1 2 3 4 5 5六个数中随机选取一个数这个数恰为该组数据的众数的概率为()A.16B.13C.12D.2315.(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习每门课程被选中的可能性相等小明恰好选中“烹饪”的概率为()A.18B.16C.14D.12二 填空题16.(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》 它是儒家思想的核心著作 是中国传统文化的重要组成部分 若从这四部著作中随机抽取两本(先随机抽取一本 不放回 再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.17.(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球 它们除颜色外 大小 质地都相同.从袋子中随机取出一个球 是红球的概率是___________.18.(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________.19.(2023·天津·统考中考真题)不透明袋子中装有10个球 其中有7个绿球 3个红球 这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为________.20.(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.21.(2023·新疆·统考中考真题)在平面直角坐标系中有五个点 分别是()1,2A ()3,4B - ()2,3C --()4,3D ()2,3E - 从中任选一个点恰好在第一象限的概率是______.22.(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球 其中2个红球 3个白球.随机摸出一个小球 摸出红球的概率是________.23.(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球 两个白球 三个红球 四个绿球 这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.24.(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人) 在该年级随机抽取一名学生 该生体重“标准”的概率是__________. “偏瘦” “标准” “超重” “肥胖”80350462425.(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮宸宸和莲莲的不透明卡片卡片除正面图案不同外其余均相同将三张卡片正面向下洗匀从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.26.(2023·四川南充·统考中考真题)不透明袋中有红白两种颜色的小球这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6若袋中有4个白球,则袋中红球有________个.27.(2023·重庆·统考中考真题)一个口袋中有1个红色球有1个白色球有1个蓝色球这些球除颜色外都相同.从中随机摸出一个球记下颜色后放回摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________ .28.(2023·四川自贡·统考中考真题)端午节早上小颖为全家人蒸了2个蛋黄粽3个鲜肉粽她从中随机挑选了两个孝敬爷爷奶奶请问爷爷奶奶吃到同类粽子的概率是________.29.(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为_______________.30.(2023·山东·统考中考真题)用数字0 1 2 3组成个位数字与十位数字不同的两位数其中是偶数的概率为__________.三解答题31.(2023·四川内江·统考中考真题)某校为落实国家“双减”政策丰富课后服务内容为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团B.体育社团C.美术社团D.文学社团E.电脑编程社团该校为了解学生对这五类社团活动的喜爱情况随机抽取部分学生进行了调查统计并根据调查结果绘制了如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)此次调查一共随机抽取了___________名学生补全条形统计图(要求在条形图上方注明人数)(2)扇形统计图中圆心角α=___________度(3)现从“文学社团”里表现优秀的甲乙丙丁四名同学中随机选取两名参加演讲比赛请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.32.(2023·湖北宜昌·统考中考真题)“阅读新时代书香满宜昌”.在“全民阅读月”活动中某校提供了四类适合学生阅读的书籍:A文学类B科幻类C漫画类D数理类.为了解学生阅读兴趣学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据整理后得到下列不完整的图表:书籍类别学生人数A文学类24B科幻类mC漫画类16D数理类8(1)本次抽查的学生人数是_________ 统计表中的m=_________(2)在扇形统计图中“C漫画类”对应的圆心角的度数是_________(3)若该校共有1200名学生请你估计该校学生选择“D数理类”书籍的学生人数(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文小明随机选取四个社团中的一个请利用列表或画树状图的方法求他们选择同一社团的概率.33.(2023·湖北黄冈·统考中考真题)打造书香文化培养阅读习惯崇德中学计划在各班建图书角开展“我最喜欢阅读的书篇”为主题的调查活动学生根据自己的爱好选择一类书籍(A:科技类B:文学类C:政史类D:艺术类E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查根据收集到的数据绘制了两幅不完整的统计图(如图所示).根据图中信息请回答下列问题(1)条形图中的m=________ n=________ 文学类书籍对应扇形圆心角等于________度(2)若该校有2000名学生请你估计最喜欢阅读政史类书籍的学生人数(3)甲同学从A B C三类书籍中随机选择一种乙同学从B C D三类书籍中随机选择一种请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.34.(2023·湖南岳阳·统考中考真题)为落实中共中央办公厅国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》深入开展“我们的节日”主题活动某校七年级在端午节来临之际成立了四个社团:A包粽子B腌咸蛋C酿甜酒D摘艾叶.每人只参加一个社团的情况下随机调查了部分学生根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生(2)请补全条形统计图(3)学校计划从四个社团中任选两个社团进行成果展示请用列表或画树状图的方法求同时选中A和C两个社团的概率.35.(2023·山东烟台·统考中考真题)“基础学科拔尖学生培养试验计划”简称“珠峰计划” 是国家为回应“钱学森之问”而推出的一项人才培养计划旨在培养中国自己的杰出人才.已知A B C D E五所大学设有数学学科拔尖学生培养基地并开设了暑期夏令营活动参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况随机抽取部分学生进行调查并将统计数据整理后绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整(2)在扇形统计图中D所在的扇形的圆心角的度数为_________ 若该市有1000名中学生参加本次活动,则选择A大学的大约有_________人(3)甲乙两位同学计划从A B C三所大学中任选一所学校参加夏令营活动请利用树状图或表格求两人恰好选取同一所大学的概率.36.(2023·江苏苏州·统考中考真题)一只不透明的袋子中装有4个小球分别标有编号1,2,3,4这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球这个球的编号是2的概率为________________.(2)搅匀后从中任意摸出1个球记录球的编号后放回搅匀再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)37.(2023·山东枣庄·统考中考真题)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布劳动课正式成为中小学的一门独立课程日常生活劳动设定四个任务群:A清洁与卫生B整理与收纳C家用器具使用与维护D烹饪与营养.学校为了较好地开设课程对学生最喜欢的任务群进行了调查并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中一共调查了___________名学生其中选择“C家用器具使用与维护”的女生有___________名“D烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.38.(2023·湖北随州·统考中考真题)中学生心理健康受到社会的广泛关注某校开展心理健康教育专题讲座就学生对心理健康知识的了解程度采用随机抽样调查的方式根据收集到的信息进行统计绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有___________人条形统计图中m的值为___________ 扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为___________(2)若该校共有学生800人根据上述调查结果可以估计出该校学生中对心理健康知识“不了解”的总人数为___________人(3)若某班要从对心理健康知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加心理健康知识竞赛请用列表或画树状图的方法求恰好抽到2名女生的概率.39.(2023·江西·统考中考真题)为了弘扬雷锋精神某校组织“学雷锋争做新时代好少年”的宣传活动根据活动要求每班需要2名宣传员某班班主任决定从甲乙丙丁4名同学中随机选取2名同学作为宣传员.(1)“甲乙同学都被选为宣传员”是_______事件:(填“必然” “不可能”或“随机”)(2)请用画树状图法或列表法求甲丁同学都被选为宣传员的概率.40.(2023·甘肃武威·统考中考真题)为传承红色文化激发革命精神增强爱国主义情感某校组织七年级学生开展“讲好红色故事传承红色基因”为主题的研学之旅策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县)B.长征会师胜利之旅(会宁县)C.西路军红色征程之旅(高台县)且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片正面分别写上字母A B C卡片除正面字母不同外其余均相同将3张卡片正面向下洗匀小亮先从中随机抽取一张卡片记下字母后正面向下放回洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率(2)请用画树状图或列表的方法求两人都抽到卡片C的概率.41.(2023·四川乐山·统考中考真题)为培养同学们爱劳动的习惯某班开展了“做好一件家务”主题活动要求全班同学人人参与经统计同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息 回答下列问题:(1)m =__________(2)在扇形统计图中 “拖地”所占的圆心角度数为__________(3)班会课上 班主任评选出了近期做家务表现优异的4名同学 其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会 请用画树状图或列表的方法求所选同学中有男生的概率.42.(2023·四川遂宁·统考中考真题)为贯彻落实党的二十大关于深化全民阅读活动的重要部署 教育部印发了《全国青少年学生读书行动实施方案》于是某中学开展了以“书香润校园 好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况 采用随机抽样的方式获取了若干名学生的周末阅读时间数据 整理后得到下列不完整的图表: 类别A 类B 类C 类D 类 阅读时长t (小时)01t ≤< 12t ≤< 23t ≤< 3t ≥ 频数 8 m n 4请根据图表中提供的信息 解答下面的问题:(1)此次调查共抽取了_________名学生 m = _________ n = _________(2)扇形统计图中 B 类所对应的扇形的圆心角是_________度(3)已知在D 类的4名学生中有两名男生和两名女生 若从中随机抽取两人参加阅读分享活动 请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.43.(2023·四川广安·统考中考真题)“双减”政策实施后某校为丰富学生的课余生活开设了A书法B 绘画C舞蹈D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况随机抽取该校部分学生进行了问卷调查并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查学生共有___________人估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为___________人.(2)请将以上两个..统计图补充完整.(3)甲乙两名学生要选择参加兴趣班若他们每人从A B C D四类兴趣班中随机选取一类请用画树状图或列表法求两人恰好选择同一类的概率.44.(2023·四川宜宾·统考中考真题)某校举办“我劳动 我快乐 我光荣”活动.为了解该校九年级学生周末在家的劳动情况 随机调查了九年级1班的所有学生在家劳动时间(单位:小时) 并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题: 类别 劳动时间xA01x ≤< B12x ≤< C23x ≤< D34x ≤< E 4x ≤(1)九年级1班的学生共有___________人 补全条形统计图(2)若九年级学生共有800人 请估计周末在家劳动时间在3小时及以上的学生人数(3)已知E 类学生中恰好有2名女生3名男生 现从中抽取两名学生做劳动交流 请用列表或画树状图的方法 求所抽的两名学生恰好是一男一女的概率.45.(2023·四川南充·统考中考真题)为培养学生劳动习惯 提升学生劳动技能 某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理 B .环境美化 C .植物栽培 D .工具制作.要求每个学生选择其中一项活动参加该班数学科代表对全班学生参与四类活动情况进行了统计并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖其中一名女生叫王丽若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛求刚好抽中王丽和1名男生的概率.46.(2023·四川凉山·统考中考真题)2023年“五一”期间凉山旅游景点人头攒动热闹非凡州文广旅、、、表局对本次“五一”假期选择泸沽湖会理古城螺髻九十九里邛海沪山风景区(以下分别用A B C D 示)的游客人数进行了抽样调查并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整、、、四个景区中的两个用列表或画树状图的方法求他第一个景区恰好选(3)若某游客随机选择A B C D择A的概率.47.(2023·四川达州·统考中考真题)在深化教育综合改革提升区域教育整体水平的进程中某中学以兴趣小组为载体加强社团建设艺术活动学生参与面达100%通过调查统计八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团B.泥塑社团C.陶笛社团D.书法社团E.合唱社团并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人并把条形统计图补充完整(2)扇形统计图中m=___________ n=___________ 参加剪纸社团对应的扇形圆心角为_______度(3)小鹏和小兵参加了书法社团由于参加书法社团几位同学都非常优秀老师将从书法社团的学生中选取2人参加学校组织的书法大赛请用“列表法”或“画树状图法” 求出恰好是小鹏和小兵参加比赛的概率.48.(2023·山东·统考中考真题)某学校为扎实推进劳动教育把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x表示)进行调查整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数x≥4A90B8090≤<mxC7080≤<20xD6070x≤<8x<3E60请根据以上图表信息解答下列问题:(1)统计表中m _________ C等级对应扇形的圆心角的度数为_________(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人请估计该学校“劳动之星”大约有多少人(3)A等级中有两名男同学和两名女同学学校从A等级中随机选取2人进行经验分享请用列表法或画树状图法求恰好抽取一名男同学和一名女同学的概率.49.(2023·福建·统考中考真题)为促进消费助力经济发展某商场决定“让利酬宾” 于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①①①的3个黄球的袋中随机摸出1个球若摸得红球,则中奖可获得奖品:若摸得黄球,则不中奖.同时还允许未中奖的顾客将其摸得的球放回袋中并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同)然后从中随机摸出1个球记下颜色后不放回再从中随机摸出1个球若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率(2)假如该顾客首次摸球未中奖为了有更大机会获得精美礼品他应往袋中加入哪种颜色的球?说明你的理由50.(2023·湖北荆州·统考中考真题)首届楚文化节在荆州举办前 主办方为使参与服务的志愿者队伍整齐 随机抽取了部分志愿者 对其身高进行调查 将身高(单位:cm )数据分A B C D E 五组制成了如下的统计图表(不完整).组别身高分组 人数 A155160x ≤< 3 B160165x ≤< 2 C165170x ≤< m D170175x ≤< 5 E 175180x ≤< 4根据以上信息回答:(1)这次被调查身高的志愿者有___________人 表中的m =___________ 扇形统计图中α的度数是___________(2)若E 组的4人中 男女各有2人 以抽签方式从中随机抽取两人担任组长.请列表或画树状图 求刚好抽中两名女志愿者的概率.参考答案一 单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人随机抽取一个学号共有10种等可能结果抽到的学号为男生的可能有6种则抽到的学号为男生的概率为:63 105=故选:B.【点睛】本题考查了概率公式求概率解题的关键是熟练掌握概率公式.2.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果再找出符合题意的结果数最后利用概率公式计算即可.【详解】①任意掷一枚均匀的小正方体色子共有6种等可能的结果其中朝上点数是偶数的结果有3种①朝上点数是偶数的概率为31 62 =.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画出树状图找到所有情况数和满足要求的情况数利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画树状图如下:。

初三概率练习题及答案

初三概率练习题及答案

初三概率练习题及答案概率是数学中一个重要的分支,它研究随机事件的发生概率。

在初三数学学习中,概率也是一个重要的知识点。

为了帮助同学们更好地掌握概率知识,我将提供一些初三概率练习题及答案。

练习题1:某班级学生早餐的习惯如下:80%的学生吃面包,60%的学生喝牛奶,40%的学生既吃面包又喝牛奶。

现在从该班级中随机选取一位学生,请回答以下问题:a) 这位学生早餐吃面包的概率是多少?b) 这位学生早餐喝牛奶的概率是多少?c) 这位学生早餐既吃面包又喝牛奶的概率是多少?解答:a) 这位学生早餐吃面包的概率为80%。

b) 这位学生早餐喝牛奶的概率为60%。

c) 这位学生早餐既吃面包又喝牛奶的概率为40%。

练习题2:一副扑克牌共有52张牌,其中红桃有13张,黑桃有13张,方块有13张,梅花有13张。

现从扑克牌中随机抽取一张,请回答以下问题:a) 抽到红桃的概率是多少?b) 抽到黑桃或者方块的概率是多少?解答:a) 抽到红桃的概率为13/52,即1/4。

b) 抽到黑桃或者方块的概率为26/52,即1/2。

练习题3:某箱子中有5个红球和3个蓝球,现从中随机抽取两个球,请回答以下问题:a) 抽到两个红球的概率是多少?b) 抽到一个红球和一个蓝球的概率是多少?c) 抽到两个蓝球的概率是多少?解答:a) 抽到两个红球的概率为(5/8) * (4/7) = 20/56,即5/14。

b) 抽到一个红球和一个蓝球的概率为(5/8) * (3/7) + (3/8) * (5/7) = 30/56,即15/28。

c) 抽到两个蓝球的概率为(3/8) * (2/7) = 6/56,即3/28。

练习题4:小明参加一次抽奖活动,共有20个奖品,其中2个一等奖,5个二等奖,13个三等奖。

小明只能中奖一次,请回答以下问题:a) 小明中一等奖的概率是多少?b) 小明中二等奖的概率是多少?c) 小明中三等奖的概率是多少?解答:a) 小明中一等奖的概率为2/20,即1/10。

概率试题及答案初三

概率试题及答案初三

概率试题及答案初三【试题一】题目:在一个口袋中,有3个红球和2个蓝球。

如果随机抽取2个球,求抽到至少1个红球的概率。

【答案】解:设抽到至少1个红球为事件A。

首先计算抽到2个蓝球的概率,即事件A的对立事件(没有抽到红球)的概率。

抽到第一个蓝球的概率为2/5,抽到第二个蓝球的概率为1/4(因为已经抽走一个球,剩下4个球)。

所以,抽到2个蓝球的概率为:(2/5) * (1/4) = 1/10。

由于事件A和其对立事件是互斥的,所以抽到至少1个红球的概率为:P(A) = 1 - P(A的对立事件) = 1 - 1/10 = 9/10。

【试题二】题目:掷一枚均匀的硬币两次,求出现至少一次正面的概率。

【答案】解:设掷出正面为事件B。

掷硬币两次,可能出现的结果是:正正、正反、反正、反反。

事件B的对立事件是两次都掷出反面。

掷出两次反面的概率为:(1/2) * (1/2) = 1/4。

由于事件B和其对立事件是互斥的,所以至少出现一次正面的概率为:P(B) = 1 - P(B的对立事件) = 1 - 1/4 = 3/4。

【试题三】题目:在一个班级中有30名学生,其中10名男生和20名女生。

随机选取3名学生,求至少有1名男生的概率。

【答案】解:设至少有1名男生为事件C。

首先计算没有男生,即3名学生都是女生的概率。

选取3名女生的概率为:(20/30) * (19/29) * (18/28)。

所以,没有男生的概率为:(20/30) * (19/29) * (18/28) = 36/145。

由于事件C和其对立事件是互斥的,所以至少有1名男生的概率为:P(C) = 1 - P(C的对立事件) = 1 - 36/145 = 109/145。

【结束语】通过以上三道试题,我们可以看到概率的计算通常涉及到互斥事件和对立事件的概念。

在实际问题中,我们经常需要通过计算对立事件的概率来间接求解事件本身的概率。

希望这些试题能够帮助同学们更好地理解和掌握概率的基本概念和计算方法。

初三数学概率精彩试题大全(含问题详解)

初三数学概率精彩试题大全(含问题详解)
10.在中考体育达标跳绳项目测试中,1min跳160次为达标.小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.
11.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
C.老师安排每位同学回家做实验,图钉自由选取
D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不 满意的就不要
A.28个B.30个C.36个D.42个
8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是()
A.6B.16C.18D.24
9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是()
三、解答题(共46分)
19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?
20.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:
抽取台数
50
100
200
300
500
1000
合格品数(台)
40
92
192
285
478
954
频率
并求该厂生产的电视机次品的概率.
4.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()D

(完整版)初三数学概率试题大全(含答案)

(完整版)初三数学概率试题大全(含答案)

试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键 3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.24 9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数). (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个; (2) ∵ ∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122=++m 1=m 161122)(==两次都摸到红球P x y )6(y x --20)6(35=--++y x y x 72=+y x x y 27-=x y y x --61=x 06,5=--=y x y 2=x 16,3=--=y x y 3=x 26,1=--=y x y 150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .52 8.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有 粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张.910.在中考体育达标跳绳项目测试中,1min 跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。

九年级概率试题及答案

九年级概率试题及答案

九年级概率试题及答案一、选择题1. 某班有50名学生,其中男生30人,女生20人。

随机抽取一名学生,求抽到男生的概率。

A. 1/2B. 2/5C. 3/5D. 4/5答案:C2. 抛一枚均匀硬币,求正面朝上的概率。

A. 1/2B. 1/3C. 2/3D. 1/4答案:A3. 一个袋子里有3个红球,2个蓝球,随机摸出一个球,求摸到红球的概率。

A. 1/2B. 3/5C. 2/5D. 4/5答案:B4. 某地区连续3天下雨的概率是0.3,求该地区连续3天不下雨的概率。

A. 0.7B. 0.9C. 0.49D. 0.51答案:B5. 某工厂生产的零件,合格率为95%,求生产出不合格零件的概率。

A. 0.05B. 0.1C. 0.95D. 0.5答案:A二、填空题6. 某班有40名学生,其中10名是优秀学生。

随机抽取一名学生,求抽到优秀学生的概率是________。

答案:1/47. 某次考试,共有100道选择题,每题有4个选项,随机选择答案,求至少答对60题的概率。

答案:此题需要使用二项分布概率公式计算,较为复杂,答案略。

8. 某班有50名学生,随机抽取5名学生,求这5名学生中恰好有2名男生的概率。

答案:此题需要使用组合概率计算,答案略。

三、解答题9. 一个不透明的袋子里有5个红球,3个白球,2个蓝球。

求以下事件的概率:(1) 随机摸出一个球,是红球的概率。

(2) 随机摸出两个球,都是红球的概率。

解答:(1) 袋子里共有10个球,其中5个是红球。

因此,摸出一个球是红球的概率为 \( P(\text{红球}) = \frac{5}{10} = \frac{1}{2} \)。

(2) 摸出两个球都是红球的概率,可以使用组合概率计算。

首先计算摸出第一个红球的概率为 \( \frac{5}{10} \),然后从剩下的9个球中摸出第二个红球的概率为 \( \frac{4}{9} \)。

所以,两个都是红球的概率为 \( P(\text{两个红球}) = \frac{5}{10} \times\frac{4}{9} = \frac{2}{9} \)。

初三数学概率试题大全(含答案)

初三数学概率试题大全(含答案)

试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是()A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是()A.字母键B.空格键C.功能键D.退格键3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为()A.12个B.9个C.6个D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为()A.16B.13C.14D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功()A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中()A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是()A.12B.13C.23D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是()A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是.16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是.17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?20.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:抽取台数50 100 200 300 500 1000 合格品数(台)4092192 285 478 954频率并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,?连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581.三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100.23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112.四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16.26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个;(2) ∵∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122m 1m161122)(两次都摸到红球P x y )6(y x20)6(35y x y x 72yxxy27x y y x61x06,5yxy2x16,3yx y3x26,1yxy150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个 B.9个 C.6个 D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,?得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,?其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试 .(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为 .0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .528.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.910.在中考体育达标跳绳项目测试中,1min跳160次为达标.?小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2 511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。

初三数学概率试题(含答案)

初三数学概率试题(含答案)

一、选择题1. 下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.32个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12 B.14 C.16 D.18二、填空题11.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .12.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下图1图2一盘棋小红不输的概率是_______.13.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .14.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .15.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.16.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?17.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?18.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?19.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是多少?四、能力提升20.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)21. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?1.c2.a3.a4.d5.c6.b7.c8.b9.a 10.b 11.251 12.54% 13.52 14.小红 15.9 16.①102:2=x :100 x=5100②每条鱼的质量=(150+150-1.5x2)/(100+100-2)总重量=5100x 每条鱼的质量=7573.5 17.1001 18.32 ;61 19.363=121 20.①下、上、中的顺序; ②61(齐王上中下-上中下,上中下-上下中,上中下-中上下,上中下中下上,上中下-下上中,上中下-下中上 )21.①1 ② 61 ③设小明摸到红球有x 次,黄球y 次,蓝球(6-x-y )次,则5x+3y+(6-x-y)=20 即2x+y=7 y=7-2x由于三者均为自然数,经讨论得:1,5,0 或2,3,1 或3,1,2。

概率试题及答案初三

概率试题及答案初三

概率试题及答案初三一、选择题(每题3分,共30分)1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 1/3C. 2/5D. 3/5答案:C2. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 1/2B. 1C. 0D. 2/3答案:A3. 一个班级有30名学生,其中15名男生和15名女生,随机抽取一名学生,抽到女生的概率是多少?A. 1/2B. 1/3C. 2/3D. 3/5答案:A4. 一个骰子有6个面,每个面出现的概率是多少?A. 1/6B. 1/2D. 1/12答案:A5. 一个袋子里有2个白球和8个黑球,随机抽取两个球,两个都是黑球的概率是多少?A. 1/3B. 2/5C. 7/15D. 1/2答案:C6. 一个袋子里有3个红球,4个蓝球和2个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 2/3B. 1/2C. 2/5D. 1/3答案:C7. 一个班级有40名学生,其中20名男生和20名女生,随机抽取两名学生,两名都是女生的概率是多少?A. 1/4B. 1/2C. 1/7D. 1/8答案:C8. 一个袋子里有5个红球和5个蓝球,随机抽取两个球,两个都是红球的概率是多少?A. 1/5C. 1/3D. 1/2答案:B9. 抛两枚均匀的硬币,两枚都是正面朝上的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/8答案:A10. 一个袋子里有10个球,其中3个是特殊球,随机抽取一个球,抽到特殊球的概率是多少?A. 3/10B. 1/3C. 1/4D. 1/5答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,随机抽取一个球,抽到红球的概率是______。

答案:2/52. 抛一枚均匀的六面骰子,得到偶数点数的概率是______。

答案:1/23. 一个班级有50名学生,其中25名男生和25名女生,随机抽取一名学生,抽到男生的概率是______。

初三数学概率初步测试卷

初三数学概率初步测试卷

1. 从一副扑克牌中随机抽取一张牌,抽取到红桃的概率是:A. 1/4B. 1/2C. 1/4D. 1/132. 抛掷一枚均匀的硬币,正面朝上的概率是:A. 1/2B. 1/4C. 1/3D. 1/63. 一个装有3个红球和2个蓝球的袋子,随机取出一个球,取出红球的概率是:A. 1/2B. 2/3C. 3/5D. 1/34. 一个班级有30名学生,其中有18名男生和12名女生,随机选择一名学生,选择到女生的概率是:A. 3/5B. 2/5C. 1/2D. 1/35. 从0到9这10个数字中随机选择一个数字,选择到偶数的概率是:A. 1/2B. 1/4C. 1/5D. 1/10二、填空题(每空5分,共25分)6. 抛掷一枚均匀的六面骰子,出现偶数的概率是__________。

7. 一个袋子里有5个红球和3个蓝球,随机取出一个球,取出红球的概率是__________。

8. 一个班级有20名学生,其中有10名男生和10名女生,随机选择一名学生,选择到男生的概率是__________。

9. 从1到100这100个数字中随机选择一个数字,选择到3的倍数的概率是__________。

10. 一个装有3个白球、2个黑球和5个红球的袋子,随机取出一个球,取出白球的概率是__________。

三、解答题(每题15分,共30分)11. 一个装有4个红球、3个蓝球和2个绿球的袋子,随机取出一个球,求:(1)取出红球的概率;(2)取出非红球的概率。

12. 抛掷一枚均匀的硬币两次,求:(1)两次都是正面朝上的概率;(2)至少有一次正面朝上的概率。

四、简答题(每题10分,共20分)13. 简述概率的定义。

14. 简述互斥事件的概念。

答案:一、1.A 2.A 3.B 4.A 5.A二、6. 1/2 7. 5/8 8. 1/2 9. 1/3 10. 3/10三、11.(1)取出红球的概率为 4/9;(2)取出非红球的概率为 5/9。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

九年级概率试题及答案

九年级概率试题及答案

九年级概率试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机取出一个球,再放回,再取一个球。

求两次都取到红球的概率。

答案:第一次取到红球的概率为5/8,由于放回了,第二次取球的概率仍然是5/8,两次都取到红球的概率为(5/8) * (5/8) = 25/64。

2. 一副扑克牌中,除去大小王,共有52张牌。

从中任选一张牌,求抽到黑桃A的概率。

答案:一副扑克牌中有4张A,所以抽到任意一张A的概率为4/52,即1/13。

3. 一个骰子投掷两次,求两次点数之和为7的概率。

答案:一个骰子有6个面,投掷两次共有6*6=36种可能的结果。

点数和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)共6种。

所以概率为6/36 = 1/6。

4. 一个班级有30名学生,其中10名是男生。

随机选出一名学生,求选中男生的概率。

答案:班级中男生的数量是10,总人数是30,所以选中男生的概率为10/30 = 1/3。

5. 一批产品中有10%的次品。

从中任选5件产品,求恰好有3件次品的概率。

答案:这属于二项分布问题。

设X为选中的次品数量,X服从B(5,0.1)分布。

根据二项分布的概率公式,P(X=3) = C(5, 3) * (0.1)^3* (0.9)^2 ≈ 0.0386。

二、填空题1. 一个袋子里有4个白球和6个黑球,随机取出两个球,求两个球颜色不同的概率。

答案:两个球颜色不同,即一个白球和一个黑球。

第一个球是白色的概率为4/10,取出后第二个球是黑色的概率为6/9,所以两个球颜色不同的概率为(4/10) * (6/9) = 24/90 = 4/15。

2. 一个不透明的箱子里有20个球,其中有5个红球,其余为白球。

随机取出三个球,求至少有一个红球的概率。

答案:首先求没有红球的概率,即取出的三个球都是白球的概率为(15/20) * (14/19) * (13/18)。

所以至少有一个红球的概率为1 - (15/20) * (14/19) * (13/18) ≈ 0.7917。

初三数学概率单元测试卷

初三数学概率单元测试卷

一、填空题(每空2分,共10分)1. 在一个装有大、小相同的红、黄、蓝、绿四种颜色球各5个的袋子中,任意取出一个球,取出红球的概率是______。

2. 抛掷一枚公平的硬币,正面朝上的概率是______。

3. 一副扑克牌共有52张,其中有4张王牌,任意抽取一张,抽到王牌的概率是______。

4. 从0到9这10个数字中,随机抽取一个数字,抽取到偶数的概率是______。

5. 一个正方体有6个面,每个面上分别写有1、2、3、4、5、6这6个数字,任意掷一次,得到偶数的概率是______。

二、选择题(每题3分,共15分)1. 抛掷一枚骰子,得到奇数的概率是()A. 1/6B. 1/3C. 1/2D. 2/32. 从0到9这10个数字中,随机抽取一个数字,抽取到大于5的数字的概率是()A. 1/2B. 1/3C. 2/5D. 1/53. 一副扑克牌共有52张,随机抽取一张,抽到红桃的概率是()A. 1/4B. 1/2C. 1/13D. 1/264. 一个口袋中有5个红球和3个蓝球,随机取出一个球,取出红球的概率是()A. 2/5B. 3/5C. 1/2D. 2/35. 抛掷一枚公平的硬币,连续抛掷两次,两次都是正面的概率是()A. 1/4B. 1/2C. 1/3D. 1/6三、解答题(每题10分,共30分)1. 一个袋子里装有5个红球和7个蓝球,随机取出一个球,求取出红球的概率。

2. 一个正方体有6个面,每个面上分别写有1、2、3、4、5、6这6个数字,任意掷一次,求得到3的概率。

3. 一副扑克牌共有52张,随机抽取一张,求抽到黑桃的概率。

四、应用题(10分)一个班级有男生40人,女生60人。

随机抽取一名学生,求这名学生是女生的概率。

答案:一、填空题1. 1/42. 1/23. 1/134. 1/25. 1/2二、选择题1. C2. C3. A4. A5. A三、解答题1. P(红球) = 5/(5+7) = 5/122. P(3) = 1/63. P(黑桃) = 13/52 = 1/4四、应用题P(女生) = 60/(40+60) = 3/5。

初三数学概率试题大全(含答案)

初三数学概率试题大全(含答案)

初三数学概率试题大全(含答案)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学概率试题大全(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学概率试题大全(含答案)的全部内容。

舑。

初三数学概率试题含答案

初三数学概率试题含答案

一、选择题1. 下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16B.13C.14D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )(摸到白球)=21,P (摸到黑球)=21 (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )个 个 个 个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )图1 图2A.12B.14C.16D.18二、填空题11.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .12.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.13.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .14.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .15.白球有2个,黄球有1个,_个.16.某鱼塘捕到100条鱼,称得总重为150千克,塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?17.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?18.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?19.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升20.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)21. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法? 1.c 11.251 % 13.52 14.小红 16.①102:2=x :100 x=5100②每条鱼的质量=(150+)/(100+100-2)总重量=5100x 每条鱼的质量= 17.1001 18.32 ;61 19.363=121 20.①下、上、中的顺序; ②61(齐王上中下-上中下,上中下-上下中,上中下-中上下,上中下中下上,上中下-下上中,上中下-下中上 )21.①1 ② 61 ③设小明摸到红球有x 次,黄球y 次,蓝球(6-x-y )次,则 5x+3y+(6-x-y )=20 即2x+y=7 y=7-2x 由于三者均为自然数,经讨论得:1,5,0 或 2,3,1 或 3,1,2。

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。

(word完整版)初三数学概率试题大全(含),文档

(word完整版)初三数学概率试题大全(含),文档

试题一一、选择题〔每题 3 分,共 30 分〕1. 〔 08 新疆建设兵团〕以下事件属于必然事件的是〔〕A.翻开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数 a< 0,那么 2a< 0D.新疆的冬天不下雪2.在计算机键盘上,最常使用的是〔〕A.字母键B.空格键C.功能键D.退格键3.(08 甘肃庆阳〕在一个不透明的口袋中,装有假设干个除颜色不同样其余都同样的球,如1果口袋中装有 4 个红球且摸到红球的概率为3 ,那么口袋中球的总数为〔〕A. 12个B.9个C.6个D.3 个4.掷一枚质地平均的正方体骰子,骰子的六个面上分别刻有1~ 6 的点数,掷得面向上的点数为奇数的概率为〔〕1111A. B. C. D.63425.小明准备用6 个球设计一个摸球游戏,下面四个方案中,你认为哪个不可以功〔〕〔摸到白球〕=1, P〔摸到黑球〕=1 22〔摸到白球〕=1, P〔摸到黑球〕=1, P〔摸到红球〕=1 236〔摸到白球〕=2, P〔摸到黑球〕=P〔摸到红球〕=1313D.摸到白球、黑球、红球的概率都是36.概率为 0.007 的随机事件在一次试验中〔〕A.必然不发生B.可能发生,也可能不发生C.必然发生D.以上都不对7.一个密闭不透明的盒子里有假设干个白球,在不同样意将球倒出来数的状况下,为估计白球的个数,小刚向其中放入8 个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球 400 次,其中 88 次摸到黑球,估计盒中大体有白球〔〕A.28 个B.30 个C.36 个D.42 个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其余都完满同样,小明经过屡次试验后发现其中摸到红色、黑色的频率分别为15%和 45%,那么口袋中白色球的个数很可能是〔〕9.如图 1,有 6 张写有汉字的卡片,它们的反面都同样,现将它们反面向上洗匀后如图 2 摆放,从中任意翻开一张是汉字“自〞的概率是〔〕1121A. B. C. D.2336110.如图,一个小球从 A 点沿轨道下落,在每个交织口都有向左或向右两种机会相等的结果,小球最后到达 H 点的概率是〔〕1111A. B. C. D.2468二、填空题〔每题 3 分,共 24 分〕11.扔掷两枚分别标有1,2,3, 4,5,6 的正六面体骰子,写出这个试验中的一个随机事件: _______,写出这个试验中的一个必然发生的事件:_______.12.在 100 张奖券中,有 4 张中奖,小勇从中任抽 1 张,他中奖的概率是.13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在 4 张小卡片上分别写有实数0, 2 ,π,1,从中随机抽取一张卡片,抽到3无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将 5 张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是.16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和 3m 的同心园,如图,尔后蒙上眼睛在必然距离外向圈内掷小石子,掷中阴局部小红胜,否那么小明胜,未掷入圈内不算,获胜可能性大的是.17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都同样〕,其中白球有 2 个,黄球有 1 个,现从中任意摸出一个白球的概率是1,那么口袋里有蓝球6___个 .18.飞机进行投弹演习,地面上有大小同样的9 个方块,如图 2,其上分别标有1,2,3,4,5,6,7,8,9 九年数字,那么飞机投弹两次都投中9 号方块的概率是 _____;两次投中的号数之和是14 的概率是 ______.123456789三、解答题〔共46 分〕19.“元旦这日,小明与妈妈去逛商场,他们会买东西回家.〞这是一个随机事件吗?为什么?20.对某电视机厂生产的电视机进行抽样检测的数据以下,请你经过计算填出相应合格品的概率:抽取台数50 100 200 300 5001000合格品数〔台〕40 92192 285 478954频率并求该厂生产的电视机次品的概率.21.某鱼塘捕到100 条鱼 ,称得总重为150 千克 ,这些鱼大小差不多, 做好标记后放回鱼塘 ,在它们混入鱼群后又捕到102 条大小差不多的同种鱼,称得总重仍为150 千克 ,其中有 2 条带有标记的鱼 .(1〕鱼塘中这种鱼大体有多少千克?(2〕估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0- 9 这十个数字中的一个,只有当四个数字与所设定的密码同样时,才能将柜翻开,粗心的刘芳忘了其中中间的两个数字,他一次就能翻开该锁的概率是多少?23.将正面分别标有数字 6, 7, 8,反面花色同样的三张卡片洗匀后,反面向上放在桌面上 .(1〕随机地抽取一张,求 P〔偶数〕 .(2〕随机地抽取一张作为个位上的数字〔不放回〕,再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“ 68〞的概率是多少?24.一枚平均的正方体骰子,六个面上分别标有数字1, 2, 3, 4, 5, 6, ?连续抛掷两次,向上的数字分别是m、n,假设把 m、n 作为点 A 的横、纵坐标,那么点A〔 m,n〕在函数y= 2x 的图像上的概率是多少?四、能力提升〔每题10 分,共 20 分〕25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同样级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌忧如没有什么获胜的希望,但是田忌的谋士认识到主人的上、中等马分别比齐王的中、低等马强(1〕若是齐王将马按上、中、下的序次出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2〕若是齐王将马按上、中、下的序次出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?〔要求写出双方对阵的全部状况〕26.〔08 江苏宿迁〕不透明的口袋里装有红、黄、蓝三种颜色的小球〔除颜色外其余都1同样〕,其中红球有 2 个,蓝球有 1个,现从中任意摸出一个是红球的概率为 2 .(1)求袋中黄球的个数;(2)第一次摸出一个球〔不放回〕,第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)假设规定摸到红球得 5 分,摸到黄球得 3 分,摸到蓝球得 1分,小明共摸 6 次小球〔每120 分,问小明有哪几种摸法?次摸 个球,摸后放回〕得备用题:1.在一个不透明的口袋中, 装有假设干个除颜色不同样外其余都同样的球,若是口袋中装有 4 个红球且摸到红球的概率为,那么口袋中球的总数为〔〕 AA .12 个B .9 个C .6 个D .3 个2.一名保险销售员对人们说: “人有可能患病,也有可能不患病,因此,?患病与不患病的概率各占 50%〞,他的说法〔〕 CA.正确B.有时正确,有时不正确C.不正确D.应依照天气等条件确定3.袋中有 16 个球, 7 个白球, 3 个红球, 6 个黄球,从中任取一个,获取红球的概率是〔〕 BA. 3B.3C.1D.37 162134.冰柜时装有四种饮料, 5 瓶特种可乐,12 瓶一般可乐, 9 瓶橘子水, 6 瓶啤酒, ?其中特种可乐和一般可乐是含有咖啡因的饮料, 那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是〔〕DA. 5B.3C.15D.1732 832325.某同学期中考试全班第一,那么期末考试 .〔填 “不可以能 〞, “可能 〞或 “必然 〞〕全班第一 .可能6.在标有 1,3,4,6,8 的五张卡片中, 随机抽取两张, 和为奇数的概率为.7.在中考体育达标跳绳工程测试中, 1 分钟跳绳 160 次为达标,小敏记录了他展望时 1 分钟跳的次数分别为 145, 155, 140,162, 164,那么他在该次测试中达标的概率 是.258.某人把 50 粒黄豆染色后与一袋黄豆充分混匀,接着抓出100 粒黄豆,数出其中有 10 粒黄豆被染色,那么这袋黄豆原来约有粒 . 4509.含有 4 种花色的 36 张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放 回,洗匀牌后再同,不断重复上述过程, 记录抽到红心的频率为 25%,那么其中扑克牌 花色是红心的大体有张 .910.在中考体育达标跳绳工程测试中, 1min 跳 160 次为达标. ?小敏记录了他展望时 1min 跳的次数分别为 145, 155, 140, 162,164,那么他在该次展望中达标的概率是2 ______.511.在一次考试中,有一局部学生对两道选择题〔答对一个得 3 分〕无法确定其正确选项,于是他们就从每道题的四个选项中任意选择了某项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1. 下列事件属于必然事件的是( )
A .打开电视,正在播放新闻
B .我们班的同学将会有人成为航天员
C .实数a <0,则2a <0
D .新疆的冬天不下雪
2.在计算机键盘上,最常使用的是( )
A.字母键
B.空格键
C.功能键
D.退格键
3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为1
3,那么口袋中球的总数为( )
A.12个 B.9个 C.6个 D.3个
4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A.16 B.13 C.14 D.12
5.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )
A.P (摸到白球)=21,P (摸到黑球)=2
1 B.P (摸到白球)=
21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=3
1 D.摸到白球、黑球、红球的概率都是
31 6.概率为0.007的随机事件在一次试验中( )
A.一定不发生
B.可能发生,也可能不发生
C.一定发生
D.以上都不对
7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的
个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )
A.28个
B.30个
C.36个
D.42个
8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )
A.6
B.16
C.18
D.24
9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )
A.12
B.13
C.23
D.16
10.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )
A.
12 B.14 C.16 D.18
二、填空题
11.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .
12.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下
图1
图2
一盘棋小红不输的概率是_______.
13.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .
14.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,
获胜可能性大的是 .
15.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是
6
1,则口袋里有蓝球___个.
16.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.
(1)鱼塘中这种鱼大约有多少千克?
(2)估计这个鱼塘可产这种鱼多少千克?
17.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?
18.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数).
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?
19.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是多少?
四、能力提升
20.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…
(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?
(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)
21. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2
个,蓝球有1个,现从中任意摸出一个是红球的概率为21

(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;
(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?
第1章 绪论
第1.1节 焚烧技术的发展历史
垃圾焚烧技术作为一种以燃烧为手段的垃圾处理方法,其应用可以追溯至人类文明的早期,如刀耕火种时期的烧荒即可视为焚烧应用的一例。

但焚烧作为一种处理生活垃圾的专用技术,其发展历史与其他垃圾处理方法相比要短很多,大致经历了三个阶段。

1.1.1萌芽阶段
萌芽阶段是从19世纪80年代开始到20世纪初期。

1874年和1885年,英国诺丁汉和美国纽约先后建造了处理生活垃圾的焚烧炉,代表了生活垃圾焚烧技术的兴起。

1896年和1898年,德国汉堡和法国巴黎先后建立了世界上最早的生活垃圾焚烧厂,开始了生活垃圾焚烧技术的工程应用。

但是由于这一阶段的技术原始和垃圾中可燃物的比例较低,在垃圾焚烧过程中产生的浓烟和臭味,对环境的二次污染相当严重,因此这种方法曾一度为人们所抛弃。

1.1.2 发展阶段
从20世纪初到60年代末的约半个世纪,是垃圾焚烧技术的发展阶段。

一次世界大战后,发达国家的经济得到了较大发展,城市居民生活水平的提高和生活垃圾成分的变化,给垃圾焚烧创造了条件,因此垃圾焚烧技术又逐渐发展起来。

这期间,欧洲、北美及日本都陆续建起了一些生活垃圾焚烧厂,其工艺与设
施水平也在随着燃煤技术的发展而从固定炉排到机械炉排,从自然通风到机械供风而逐步得到发展。

二次世界大战以后,发达国家的经济得到更大发展,城市居民的生活水平进一步提高,垃圾中的可燃物和易燃物也随之迅速上升,促进了垃圾焚烧技术的应用。

特别是在20世纪60 年代的电子工业变革后,各种先进技术在垃圾焚烧炉上得到了应用,使垃圾焚烧炉得到了进一步完善。

但总体来说,由于当时城市生活垃圾中的可燃物仍然少于非可燃物,产生量与消耗空间的矛盾尚不突出,对垃圾焚烧伴随的环境问题的认识仍肤浅等因素,直到20世纪70年代以前,生活垃圾焚烧技术的发展并不十分理想。

1.1.3 成熟阶段
从20世纪70年代初到90年代中期的20多年间,是生活垃圾焚烧技术的成熟阶段,也是生活垃圾焚烧技术发展最快的时期。

这时期几乎所有的发达国家、中等发达国家都建设了不同规模、不同数量的垃圾焚烧发电厂,发展中国家建设的垃圾焚烧发电厂的也不在少数,垃圾焚烧技术的发展方兴未艾。

表1-1所示的数据可以对生活垃圾焚烧技术的当代发展史作一代表性的注解。

综合分析发达国家生活垃圾焚烧技术在近二十年间迅速发展的原因,除了经济、技术、观念等因素外,还有一些其他方面的影响,比如:随着城市建设的发展和城市规模的扩大,城市人口数量骤增,生活垃圾产量也快速递增,使原有的垃圾填埋场日益饱和或已经饱和,而新的垃圾填埋场地又难于寻找,采取垃圾焚烧方法,可使生活垃圾减容85%。

相关文档
最新文档