曲柄连杆机构
第二章曲柄连杆机构09
0
不同形式的载荷,为了保证工作
可行减少磨损,在结构上要采取
相应的措施。
第二节 机体组(气缸体曲轴箱组)
机体组:包括机体、气缸盖、缸垫、气缸盖罩、主轴承盖、 以及油底壳。
机体组是发动机的 支架,是曲柄连杆 机构、配气机构和 发动机各系统主要 零部件的装配基体。 气缸盖用来封闭气 缸顶部,并与活塞 顶和气缸壁一起形 成燃烧室。 另外,气缸盖和机 体内的水套和油道 以及油底壳又分别 是冷却系和润滑系 的组成部分。
往复惯性力与离心力作用的后果:加剧发动机的振动(上下振动,水平振动), 增加发动机曲柄连杆机构的各部件及所有轴颈、轴承的磨损。
3、摩擦力:存在于作相对运动而又相互接触的零件表面之间。如气缸壁与
活塞间等。
*上述各力作用于曲柄连杆机构
及机体的各有关零件上,使它们 受到压缩、拉伸、弯曲、扭转等
加0
速
减 vmax
3、多缸发动机的气缸排列形式: 直列式:发动机的各气缸成一字型排列。 双列式:V型 Φ<180° ; P型 Φ=180°。
结构简单、加工容 易,但发动机长度 和高度较大。
缩短了机体的长度 和高度,增加了宽 度,减轻了发动机 的重量;形状复杂, 加工困难。
高度小,总体 布置方便。多 用于赛车。
对置气缸式发动机
状 5)篷形燃烧室,是近年来在高性能多气门轿车发动机上广
泛应用的燃烧室。
柴油机的分隔式燃烧室有两种类型: 1)涡流室燃烧室,其主、副燃烧室之间的连接通道与副燃烧室切向
连接,在压缩行程中,空气从主燃烧室经连接通道进入副燃烧室, 在其中形成强烈的有组织的压缩涡流,因此称副燃烧室为涡流室。
2)预燃室燃烧室,其主、副燃烧室之间的连接通道不与副燃烧室切向 连接,且截面积较小。在压缩行程中,空气在副燃烧室内形成强 烈的无组织的紊流。燃油迎着气流方向喷射,并在副燃烧室顶部 预先发火燃烧,故称副燃烧室为预燃室。
论述曲柄连杆机构的功用、组成和类型
论述曲柄连杆机构的功用、组成和类型
曲柄连杆机构是机械传动中常用的一种机构,它可以将连续圆周
运动变成间断直线运动或者间断直线运动变成连续圆周运动,是支持
现代机械加工、运输和工业生产的关键。
曲柄连杆机构由曲柄、连杆和活塞三个部分组成。
曲柄是一个弯
曲的轴,一般用于将旋转运动转化为直线运动。
连杆是曲柄的一端与
活塞的另一端连接的结构物,它可以将曲柄的旋转运动转化为活塞的
往复直线运动,或将活塞的往复直线运动转化为曲柄的旋转运动。
而
活塞就是连接到连杆上的一个移动元件,一般用于将压力进行转移或
从某个位置移动到另一个位置。
曲柄连杆机构有多种类型,包括曲柄机构、连杆机构、滑块机构
和齿轮机构等。
其中曲柄机构主要用于流体机械中,例如内燃机和蒸
汽机,用于将往复的活塞运动转化为旋转的轴运动。
连杆机构多用于
挖掘机、吊车、升降车等工程机械中,用于将往复的活塞运动转化为
连杆的直线运动。
滑块机构则是钳工和铣工机械等精密机械中常用结构,用于将往复的活塞运动转化为滑块的直线运动。
而齿轮机构主要
用于变速箱和传动系统中,用于将旋转的动力从一个轴传到另一个轴。
总的来说,曲柄连杆机构已经成为现代机械制造中不可缺少的一
部分,其功用和组成结构的高效协调性,有力地推动了现代化工业的
发展。
常见旋转机构 -回复
常见旋转机构-回复什么是旋转机构?旋转机构是一种将旋转运动转化为工作运动的机构。
它由各种装置组成,可以使一个部件或整个机器在一定的角度范围内旋转。
旋转机构在工业、日常生活和科学领域中广泛应用,是许多机械设备的重要组成部分。
常见的旋转机构有哪些?1. 齿轮传动:齿轮传动是一种常用的旋转机构,它通过两个或多个齿轮的啮合来传递动力。
齿轮传动可以实现不同速度和转矩传递,广泛应用于汽车、机床和工业设备等领域。
2. 曲柄连杆机构:曲柄连杆机构是一种将旋转运动转化为直线运动的机构。
它由一个曲轴和一个连杆组成,通过曲轴的旋转使连杆产生往复运动。
曲柄连杆机构广泛应用于内燃机、发电机和机械手臂等领域。
3. 球轴承:球轴承是一种用于支持轴的旋转机构,它由内外圈、钢球和保持架组成。
球轴承可在轴和轴承座之间提供旋转运动的支持和减轻摩擦力。
它广泛应用于汽车、机械设备和电机等领域。
4. 万向节:万向节是一种用于传递旋转运动的机构,它可以使两个轴在不同的角度下相互连接。
万向节由两个十字轴和四个万向节股组成,通过受力方向的不断变化实现旋转运动的传递。
万向节广泛应用于汽车传动系统、航天器和车辆转向系统等领域。
5. 离合器:离合器是一种用于控制旋转运动的机构,它可以使两个轴在需要时连接或断开。
离合器通常由摩擦片、压盘和弹簧组成,通过手动或自动操作实现旋转运动的传递。
离合器广泛应用于汽车、变速器和工业机械等领域。
6. 锁紧机构:锁紧机构是一种用于固定旋转部件的机构,它可以防止工作时的意外移动。
锁紧机构通常由螺栓、螺母和螺旋弹簧组成,通过紧固螺栓来锁定旋转部件。
锁紧机构广泛应用于机械设备、车辆和工艺装备等领域。
这些旋转机构在不同的领域中发挥着重要作用。
它们可以将旋转运动转化为工作运动,实现各种机械设备的正常运行。
同时,旋转机构还具有传递力量、调整速度和控制运动方向等功能。
无论是汽车、机床还是工业生产线,旋转机构都扮演着不可或缺的角色。
曲柄连杆机构常见故障诊断与排除
故障原因
3. 使用不当
使用不当也会导致曲 柄连杆机构的故障。 例如,使用劣质燃油 、机油等会加剧部件 的磨损。此外,驾驶 习惯也会影响曲柄连 杆机构的使用寿命
LOGO
3故障诊断与排
除
故障诊断与排除
1. 活塞环磨损
诊断:检查活塞环的磨损程度,通常使用内窥镜检查气缸内壁的磨损情况。如 果发现活塞环磨损严重,建议更换活塞环
LOGO
4
预防措施
预防措施
为了减少曲柄连 杆机构的故障, 可以采取以下预
防措施
预防措施
定期更换机油和空气滤清器:保持发动机的清 洁和良好运转
定期检查曲柄连杆机构的磨损情况:及时更换 磨损部件
保持发动机处于正常温度和压力范围内运转: 避免长时间处于高温高压状态
使用适合车辆的燃油和机油:避免使用劣质燃 油和机油
故障现象
2. 气缸壁磨损
气缸壁磨损也会影响发动机性能。气缸壁 磨损会导致气缸与活塞之间的间隙增大, 进而影响发动机的密封性和性能。气缸壁 磨损通常伴随着发动机噪音、振动等问题
故障现象
3. 曲轴轴承磨 损
曲轴轴承磨损会导致 曲轴的旋转阻力增大 ,进而影响发动机的 性能。曲轴轴承磨损 通常伴随着发动机噪 音、振动等问题
注意:在更换气缸套时,需要注意气缸套的材质和尺寸是否与原车相同,以确 保良好的密封性。此外,需要注意维修或更换过程中的清洁和润滑,以确保发 动机的良好运转。在驾驶时,需要注意驾驶习惯和行驶路况,以减少对发动机 的冲击和磨损
故障诊断与排除
3. 曲轴轴承磨损
诊断:检查曲轴轴承的磨损情况,通常使用千分尺测量曲轴轴承的直径和跳动量。如 果发现曲轴轴承磨损严重,建议更换曲轴轴承或进行修复
《汽车构造》第二章曲柄连杆机构
3)按排列形式分
直列式(<6缸),V型>8缸),水平对置式 优缺点: 优缺点: 直列式:结构简单、长度、 高度较大(垂直、倾斜、 水平)。 V型:刚度大、缩短发动 机的长度、高度、质量。 水平对置式:高度最小、 使轿车和大客车总布置更 方便。
(c)水平对置式 水平对置式
(a)直列式 直列式
(b)V型 型
2.活塞的变形与防治措施 2.活塞的变形与防治措施
活 塞 受 力 情 况
采用的措施: 采用的措施:
(1)冷态下,将活塞裙部加工成断面为长轴垂直于活塞销的 椭圆。
采用的措施: 采用的措施:
(2)上小下大的阶梯形、近似圆锥形、阶梯型或 桶形(任何情况下都能得到良好润滑,但加工困难)。
采用的措施: 采用的措施:
扭曲环
锥面环
梯形环
桶面环
气环的泵油作用
活塞 汽 汽 活塞
缸
缸
2.油环 2.油环 种类 普通油环
上刮片
组合油环
示 意 图
刮片
油环的刮油作用
2.2.3 活塞销
作用: 作用:连接活塞和连杆小头,并把活塞承受 的气体压力传递给连杆。 材料与工艺: 材料与工艺:优质低碳钢,表面淬火、精磨。
1.活塞销的形状 1.活塞销的形状
1.连杆的结构 1.连杆的结构
连杆主要由连杆 小头、连杆杆身、连 杆螺栓、连杆大头、 连杆轴瓦和连杆盖等 组成
2.1 机体组
机体是构成发动机的骨架,是 发动机各机构和各系统的安装基础, 其内、外安装着发动机的所有主要 零件和附件,承受各种载荷。因此, 机体必须要有足够的强度和刚度。 机体组由汽缸体、曲轴箱、 汽缸盖、汽缸垫和油底壳等固定机 件组成。
图2-1 机体组的组成部件 1—汽缸盖; 2—汽缸体; 3—汽缸垫; 4—汽缸体—曲轴箱; 5—油底壳
3.曲柄连杆机构
活塞裙部
位置:从油环槽下端面起至活塞最下端的部分,包括销座 孔。
作用:活塞在气缸内的起良好的导向作用,气缸与活塞之 间在任何工况下都应该保持适宜的间隙,并承受侧压力, 防止破坏油膜。
主
次
推
推
销座孔 力
力
裙
面
面
部
2016.9
活塞的变形
形变原因:热膨胀、侧压力和气体压力。 变形规律:
凸起呈球状、顶部强 度高,起导向作用、 有利于改善换气过程, 在不改变气缸盖结构 的情况下增大压缩比。
2016.9
凹坑的形状、位置必 须有利于可燃混合气 的燃烧;调整压缩比, 防止碰气门。
活塞头部
位置:第一道活塞槽与活塞销孔之间的部分。 作用:
1、承受活塞顶的压力,并传给活塞销。 2、安装活塞环、与活塞环一起密封气缸,防止可燃混合气漏到曲
2016.9
1)浴盆形燃烧室,结构简单,气门与气缸轴线平行, 进气道弯度较大。压缩行程终了能产生挤气涡流。
2)楔形燃烧室,结构比较紧凑,气门相对气缸轴线 倾斜,进气道比较平直,进气阻力小。压缩行程终 了时能产生挤气涡流。
3)半球形燃烧室,结构最紧凑,燃烧室表面积与其 容积之比(面容比)最小。进排气门呈两列倾斜布置, 不能产生挤气涡流。
工作条件:由于接触高温 高压燃气,要求气缸盖应 具有足够的强度和刚度, 良好的冷却。
导热性好、利于提高压缩比,但 刚度低,易变形,适用与高速高
强化汽油机
2016.9
燃烧室
燃烧室基本要求
1、结构紧凑(表面积/容积)要小,减小 热损失,缩短火焰行程,提高热效率 2、能增大进气门直径或进气道通道面积: 增加进气量,提高发动机转矩和功率 3、能在压缩行程终点产生挤气涡流:以提 高混合气燃烧速度,保证混合气充分燃烧 ·汽油机燃烧室: 在气缸盖底面通常铸有形状各异的凹坑, 保证火焰传播距离最短,以防止发生不正 常燃烧 ·柴油机燃烧室: 有直喷式和分隔式两种燃烧室。应与燃油 喷射、空气涡流运动进行良好配合。
曲柄连杆机构拆卸步骤
曲柄连杆机构拆卸步骤嘿,朋友们!今天咱们要聊聊一个挺有意思的话题,曲柄连杆机构的拆卸步骤。
听起来有点高大上对吧?别担心,咱们用最简单易懂的语言,把这个话题聊得轻松有趣。
准备好了吗?咱们一起开始这段“机械之旅”吧!1. 理解曲柄连杆机构首先,咱得知道,什么是曲柄连杆机构。
简单来说,这个机构就像一个小小的机械手,负责把旋转的动力转换成直线运动。
就像是你骑自行车的时候,脚蹬转动了,链条带动后面的轮子,形成推力,嗨,您就是在使用曲柄连杆机构呀!听上去简单吧?其实,它在很多地方都能见到,比如汽车、机器设备等等。
1.1 为什么要拆卸?那么,为啥要拆卸它呢?这可是个好问题!可能是因为它需要维护,或者说是换个新零件,甚至是要清洁一下。
就像我们人有时候也得“洗洗澡”,对吧?所以,拆卸曲柄连杆机构是非常必要的,让它焕然一新,继续干活。
1.2 拆卸前的准备在开始之前,咱得做好准备工作。
首先,确保手上有工具,比如扳手、螺丝刀啥的。
这就好比去打仗,得先把武器准备齐全!而且,记得穿上工作服哦,免得弄得满身油污。
最重要的是,要有一颗耐心的心,因为拆卸过程可能会遇到一些小麻烦,就像做饭时突然发现少了盐,真是让人心慌。
2. 拆卸步骤好啦,准备工作做足了,咱们正式进入拆卸的阶段。
记得哦,慢慢来,别急,保持镇定,咱们可不想在这个过程中搞得一团糟。
2.1 拆掉外部配件第一步,先把外部的配件都拆掉。
这就像是先把衣服脱掉,然后才能好好洗澡。
用扳手把连接的螺丝拧松,再用手把那些小零件轻轻拿下来。
小心点,不要把它们掉到地上,万一找不着就麻烦了。
你可以在旁边准备一个小盒子,把它们放好,免得乱成一锅粥。
2.2 拆卸曲柄和连杆接下来,就要着手拆卸曲柄和连杆了。
首先要找到连接点,一般是在曲柄的底部。
用扳手轻轻拧松,听到“咔嚓”声的时候,心里千万别紧张,继续保持耐心。
把连杆从曲柄上卸下来时,尽量小心点,别把它们搞坏了,毕竟这可是“心肝宝贝”呀!完成后,记得检查一下周围,看看有没有落下的小配件,别让它们在角落里孤单。
曲柄连杆机构概述
曲柄连杆机构受力分析
3.离心力——是指曲柄、连杆轴颈、连杆大头等围绕曲轴轴线做圆周运 动产生的离心惯性力,简称离心力,用FC表示。
离心力在垂直方向上的分力Fcy,与惯性力Fj的 方向总是一致的,因而加剧了发动机的上、下振动 。
而水平方向的分力Fcx则使发动机产生水平方向 的振动。
此外,离心力使连杆大头的轴承和轴颈受到又 一附加载荷,增加了它们的变形和磨损。
曲柄连杆机构受力分析
曲柄连杆机构受力分析
曲柄连杆机构在工作时做变速运动,受力情况相当复杂,气体压力、往复 惯性力、旋转运动的离心力、相对运动件接触表面的摩擦力等都作用在曲柄连 杆机构上。
(1)气体压力
(2)往复惯性力
(3)旋转运动的离心力
(4)相对接处表—在发动机工作循环的每个行程中,气
曲柄连杆机构受力分析
4.摩擦力——任何一对互相压紧并做 相对运动的零件表面之间都存在摩擦力。 在曲柄连杆机构中,活塞、活塞环与气缸 壁之间,以及曲轴、连杆轴承与轴颈之间 都存在摩擦力,摩擦力是造成零件配合表 面磨损的根源。
感谢您的观看
曲柄连杆机构的组成
曲柄连杆机构的作用 曲柄连杆机构的组成 曲柄连杆机构的工作条件
曲柄连杆机构的作用
将燃烧的油气混合气作用在活塞顶上的压力转变为曲轴旋转运动 而对外输出动力。
曲柄连杆机构的组成
机体组
活塞连杆组
曲轴飞轮组
曲柄连杆机构的工作条件
曲柄连杆机构是在高温、高压、高速和化学腐蚀的环境中工作的。 高温:最高可达 2500K以上 ; 高压:最高可达 5MPa—10MPa; 高速:最高可达 3000 r/min—6000 r/min; 化学腐蚀:可燃混合气和燃烧废气直接接触机件;
简述曲柄连杆机构的作用与组成
简述曲柄连杆机构的作用与组成
曲柄连杆机构是一种广泛应用于机械装置中的传动机构,它的作用是将旋转运动转化为往复运动,或者将往复运动转化为旋转运动。
在各种机械设备中,如发动机、压缩机、液压泵等,都能看到曲柄连杆机构的身影。
曲柄连杆机构主要由曲柄、连杆、轴承、活塞等部件组成。
这些部件各自承担着不同的功能,共同完成整个机构的运转。
1.曲柄:曲柄是曲柄连杆机构的核心部件,它与连杆相连,负责将旋转运动传递给连杆。
曲柄的设计需要考虑到强度、刚度和轻量化等因素,以承受来自活塞的高压力和冲击力。
2.连杆:连杆的作用是将曲柄的旋转运动转化为活塞的往复运动。
连杆的设计需要考虑到材料的选择、杆长和杆径的合理搭配,以确保其在承受高压力的同时,具有良好的运动平稳性和较长的使用寿命。
3.轴承:轴承是曲柄连杆机构中用于支撑和定位曲柄、连杆的重要部件。
轴承的选择需要根据工作条件和使用要求来确定,以保证其在高速、高负荷工况下具有良好的润滑性能和耐磨性。
4.活塞:活塞是曲柄连杆机构的终端执行部件,负责完成实际的作业任务。
活塞的设计需要考虑到材料、尺寸和冷却等方面的因素,以确保其在高温、高压等恶劣环境下具有良好的性能。
曲柄连杆机构在各类机械设备中的应用具有显著的优势,如高效、节能、紧凑和耐用等。
随着科技的不断进步,曲柄连杆机构的设计和制造技术也在不断提高,使其在更广泛的领域发挥更大的作用。
总之,曲柄连杆机构是一种重要的机械传动装置,它通过各部件的协同作用,实现了旋转运动与往复运动的相互转换。
第二章曲柄连杆机构动力学分析
x (L R) (L cos R cos)
R(1 cos) L(1 1 2 sin 2 )
(精确式)
x
R(1 cos)
R
4
(1
c os2 )
xI
xII
(近似式)
近似式与精确式相比误差很小,如当λ=1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
mCA
mC
L lA L
mCB
mC
L lB L
mC
lA L
对于有的高速发动机还须满足一个条件:
③ 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯
量,即
mCA
l
2 A
mCB
l
2 B
IC
式中IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆 摆动角加速度下的惯性力矩要偏大 ΔMC=[(mCAlA2+mCBlB2)-IC]ε 为此,可用三质量替代系统:
a
R
2
cos
cos
c os2 c os3
R 2 cos cos2 sin
连杆摆角: arcsinsin
连杆摆动角速度:L
cos
1 2 sin 2
1/ 2
连杆摆动角加速度: L
2
(1 2
2 2 ) sin
1 2 sin
2 (1 sin 2 )
2 3/ 2
单缸切力曲线及六缸合成图 各轴颈输出扭矩
各轴颈输出扭矩如图
M TII M T (1) M TIII M TII M T (2)
M TIV M TIII M T (3) M TV M TIV M T (4)
曲柄连杆机构名词解释_概述及解释说明
曲柄连杆机构名词解释概述及解释说明1. 引言1.1 概述曲柄连杆机构是一种常见的机械传动结构,它由曲柄和连杆组成,通过运动副的连接使得曲柄产生往复旋转运动,并将这种运动转化为连杆的直线往复运动。
该机构在许多领域中得到广泛应用,如汽车发动机、农业机械和工业设备等。
本文将对曲柄连杆机构进行全面的名词解释和详细的说明。
1.2 文章结构本文将按照以下结构来介绍曲柄连杆机构的相关内容:第2部分:曲柄连杆机构的定义和原理。
我们将介绍曲柄连杆机构的基本概念以及其组成部分,并详细解释其工作原理和运动特点,以便读者能够更好地理解该机构。
第3部分:曲柄连杆机构的分类与应用领域。
在此部分中,我们将对不同类型的曲柄连杆机构进行分类介绍,并通过案例分析展示其在汽车发动机等领域中的具体应用。
第4部分:曲柄连杆机构设计与优化方法研究进展。
我们将介绍曲柄连杆机构的设计流程和基本原则,并列举当前常用的设计软件和工具。
此外,我们还将探讨曲柄连杆机构优化方法的研究现状和未来发展趋势。
第5部分:结论。
在这一部分,我们将对全文进行小结,并指出本研究存在的不足之处以及进一步研究的方向。
同时,我们还将展望曲柄连杆机构在未来的应用前景。
1.3 目的本文旨在对曲柄连杆机构进行深入解析,帮助读者全面了解其定义、原理、分类和应用领域,并介绍相关的设计与优化方法。
通过掌握这些知识,读者能够更好地理解曲柄连杆机构在实际应用中的意义和作用,并为相关领域中的工程设计和科学研究提供参考依据。
2. 曲柄连杆机构的定义和原理:曲柄连杆机构是一种常见的机械传动装置,由曲柄、连杆和活塞组成。
它通过转动曲柄轴使连杆运动,从而实现能量的转换和传递。
2.1 曲柄连杆机构的概念和基本组成部分:曲柄连杆机构主要由三个基本部分组成:曲柄、连杆和活塞。
- 曲柄:曲柄一般为一个旋转轴,又称为枢轴或者主轴。
它被固定在机器的机壳上,并具有一个离心浇铸或锻造得到的非对称几何形状。
- 连杆:连杆是连接曲柄与活塞的元件,其长度可以控制活塞的运动幅度。
发动机的曲柄连杆机构的结构
发动机的曲柄连杆机构是将活塞的往复运动转化为曲轴的旋转运动的重要机构。
其结构通常包括以下几个部分:
1. 曲轴:发动机的曲轴是一个长条形的金属杆,其上有几个偏心的凸起,称为曲轴齿轮或连杆轴齿轮。
曲轴的作用是将连杆机构中的往复运动转化为旋转运动。
2. 连杆:发动机的连杆是一种长条形的金属杆,其两端分别与活塞和曲轴相连。
连杆的作用是将活塞的往复运动传递给曲轴,使其产生旋转运动。
3. 活塞:发动机的活塞是一个可以在汽缸内往复运动的金属杆,其顶部与汽缸盖相连,底部与连杆相连。
活塞的作用是在汽缸内产生压力,从而推动汽缸内的混合气体进行燃烧。
4. 活塞销:发动机的活塞销是一种连接连杆和活塞的金属销,其作用是将连杆和活塞连接在一起,并使其能够相对运动。
5. 曲柄轴瓦:发动机的曲柄轴瓦是一种安装在曲轴上的轴承,其作用是减少曲轴与连杆机构的摩擦力,使其运转更加平稳。
6. 连杆轴承:发动机的连杆轴承是一种安装在连杆上的轴承,其作用是减少连杆与曲轴之间的摩擦力,使其运转更加平稳。
以上是发动机曲柄连杆机构的主要结构部件,它们共同构成了发动机的往复运动转化为旋转运动的关键机构。
第04章曲柄连杆机构介绍
第四章曲柄连杆机构第一节概述一、功用与组成曲柄连杆机构是内燃机完成工作循环、实现能量转换的传动机构。
它在作功行程中把活塞的往复运动转变成曲轴的旋转运动;而在进气、压缩、排气行程中又把曲轴的旋转运动转变为活塞的往复直线运动。
因此曲柄连杆机构的功用是:将燃料燃烧时产生的热能转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动而对外输出动力。
曲柄连杆机构由以下3部分组成:机体组主要包括气缸盖、气缸垫、气缸体、气缸套、曲轴箱和油底壳等不动件。
活塞连杆组主要包括活塞、活塞环、活塞销和连杆等运动件。
曲轴飞轮组主要包括曲轴、飞轮和扭转减振器、平衡轴等机构。
二、工作条件及受力分析曲柄连杆机构是在高温、高压、高速以及有化学腐蚀的条件下工作的。
在发动机作功时,气缸内的最高温度可达2 500k以上,最高压力可达5 MPa~9MPa,现代汽车发动机最高转速可达3 000r/min~6 000r/min,则活塞每秒钟要行经约100~200个行程,可见其线速度是很大的。
此外,与可燃混合气和燃烧废气接触的机件(如气缸、气缸盖,活塞等)还将受到化学腐蚀。
由于曲柄连杆机构是在高压下作变速运动,因此它在工作时的受力情况是很复杂的。
在此只对受力情况作简单分析。
曲柄连杆机构受的力主要有气体压力,往复惯性力,旋转运动件的离心力以及相对运动件接触表面的摩擦力。
1.气体压力在每个工作循环的四个行程中,气缸内气体压力始终存在而且是不断变化的。
作功行程压力最高,其瞬间最高压力汽油机可达3MPa~5MPa;柴油机可达5MPa~9MPa,这意味着作用在曲柄连杆机构上的瞬间冲击力可达数万牛顿(N)。
下面分析各机件作功行程的受力情况。
如图4-1a所示,气体压力对气缸盖和活塞顶作用有大小相等,方向相反的力,分别用P'和P p表示。
作用力P p经活塞传到活塞销上,分解为N p和S p两个力。
N p垂直于集中力p气缸壁,它使活塞的一个侧面压向气缸壁,称为侧压力。
第2章曲柄连杆机构构造与维修
危害:积炭经常发生在气缸顶部、气缸盖底部,它会引起汽 油机早燃和爆燃,增加气缸磨损。 清除方法:①机械法直接采用钢丝刷或刮刀清除(注意不要 刮伤机体组件);②化学法是采用化学溶剂对机体组件积炭 处进行浸泡2~3h,加热浸泡效果更好,使积炭软化,再用 刷子刷洗去除。
2.2.2 机体组的检修
1) 发动机气缸体类型
(a)水冷 (b)风冷 发动机冷却方式
2.2.1 机体组的构造
2) 气缸的排列形式
(a)单列式 (b)V 形排列 (c)对置式 多缸发动机排列形式
2.2.1 机体组的构造
2) 气缸的排列形式
(a)单列式 (b)V 形排列 (c)对置式 多缸发动机排列形式
2.2.1 机体组的构造
活塞标记 1-安装方向 2-生产日期 3-厂家标志 4-活塞直径 5-装配间隙
2.3.1 活塞连杆组的构造
1.活塞
活塞裙部位置:从油环槽下端面起至活塞最下端 的部分,包括装活塞销的销座孔。 活塞裙部作用:对活塞在气缸内的往复运动起导 向作用,并承受侧压力,防止破坏油膜。
活塞裙 部侧压 力
2.3.1 活塞连杆组的构造
(a)直开口 (b)阶梯形
(c)斜开口(d)带防转销钉槽
2.3.1 活塞连杆组的构造
2.活塞环 1)气环 气环的断面形状:
(a)矩形
(b)锥形
(c)扭曲形1
(d)扭曲形2
(e) 梯形
(f)桶形
2.3.1 活塞连杆组的构造
2.活塞环 2)油环
油环有普通油环和组合油环两种。
2.3.1 活塞连杆组的构造
2.2.1 机体组的构造
3. 气缸盖 气缸盖罩
气缸盖
气缸垫
汽车构造上册(2)
第一节
机体组
一、气缸体
发动机各个机构 和系统的装配基体。 气缸体般用灰铸铁 铸成,气缸体上部的 圆柱形空腔称为气缸, 下半部为支承曲轴的 曲轴箱,其内腔为曲 轴运动的空间。在气 缸体内部铸有许多加 强筋,冷却水套和润 滑油道等。
为了能够使气缸内表面在高温下正常工作, 必须对气缸和气缸盖进行适当地冷却。冷却方法 有两种,一种是水冷,另一种是风冷。
(1)作功行程 图2-1 气体 压力作用 情况示意图
2、往复惯性力Fj与离心力Fc
活塞加速度:在上止点前后活塞加速度是正 值,往复惯性力朝上;在下止点前后活塞加速度 是负值,往复惯性力朝下。如图(2-2)。 偏离曲轴轴线的曲柄、曲柄销和连杆大头绕 曲轴轴线旋转,产生旋转惯性力,其方向沿曲柄 半径向外。 曲轴转速愈高,往复惯性质量和旋转惯性质 量愈大,则往复惯性力与离心力愈大,惯性力使 曲柄连杆机构的各零件和所有轴颈(轴承)受周 期性变化的附加负荷,加快磨损。若不加以平衡, 惯性力传到气缸体外,引起发动机的振动。
第二章 曲柄连杆机构
曲柄连杆机构的作用,是把可燃混合气作用 在活塞的力转变为曲轴的转矩,从而向外界输出 动力。 曲柄连杆机构的主要零件可分为活塞连杆组 和曲轴飞轮组。机体组与曲柄连杆机构有密切的 关系,所以这里一起研究。
第二章 曲柄连杆机构
一、曲柄连杆机构的作用
1.将活塞的往复直线运动转变为曲轴的旋转运动; 2.将作用在活塞顶上的燃气压力转变为曲轴的输出 扭矩。
活塞销的功用是连 接活塞和连杆小头,将 活塞承受的气体作用力 传给连杆。 活塞销通常做成空 心圆柱体,用低碳钢或 低碳合金钢制造。
在汽车发动机中连杆小头与活塞销的连接 方式有两种,即全浮式和半浮式。全浮式活塞 销工作时,在连杆小头孔和活塞销孔中转动, 可以保证活塞销沿圆周磨损均匀。为防止活塞 销两端刮伤气缸壁 ,在活塞销孔外侧装置活 塞销挡圈。半浮式活塞销是用螺栓将活塞销夹 紧在连杆小头孔内,这时活塞销只在活塞销孔 内转动,在小头孔内不转动。小头孔不装衬套, 销孔中也不装活塞销挡圈。
开关阀门曲柄连杆机构和齿轮齿条的区别
开关阀门曲柄连杆机构和齿轮齿条是在工程领域常见的两种传动机构,它们分别应用于不同的工程场景中。
本文将对开关阀门曲柄连杆机构和齿轮齿条的区别进行深入分析和探讨。
一、结构形式1. 开关阀门曲柄连杆机构开关阀门曲柄连杆机构是一种通过连杆和曲柄实现运动转换的机构。
它由曲柄、连杆和阀门杆组成,曲柄通过旋转带动连杆作直线往复运动,最终使阀门开关。
2. 齿轮齿条齿轮齿条传动机构是一种利用齿轮和齿条进行传动的机构。
通过齿轮的旋转带动齿条作直线运动或者通过齿条的移动带动齿轮作旋转运动,从而实现机械装置的运动传动。
二、工作原理1. 开关阀门曲柄连杆机构开关阀门曲柄连杆机构通过旋转曲柄带动连杆作直线往复运动,最终带动阀门杆实现开关。
这种机构工作稳定,传动比较简单,适用于需要实现阀门快速开关的场合。
2. 齿轮齿条齿轮齿条传动机构通过齿轮和齿条的啮合传递力和运动,实现工作机构的运动。
这种机构具有传动效率高、运动平稳的特点,适用于需要实现精密运动和传动的场合。
三、应用场景1. 开关阀门曲柄连杆机构开关阀门曲柄连杆机构广泛应用于工程领域的阀门控制系统中,特别适用于对阀门开关速度和灵活性要求较高的场合。
2. 齿轮齿条齿轮齿条传动机构常见于数控机床、自动化生产线等需要实现精密传动和位置控制的机械装置中,其精准的运动传动特性使其成为这些领域的首选。
四、优缺点对比1. 开关阀门曲柄连杆机构优点是结构简单、动作灵活,缺点是传动精度相对较低,不能实现精密控制。
2. 齿轮齿条优点是传动效率高、运动平稳,缺点是结构复杂、安装调试较为繁琐。
五、发展趋势1. 开关阀门曲柄连杆机构随着工程自动化程度的提高,对阀门控制精度和速度的要求也在不断提高,未来可能会在传动精度和控制性能上有所改进。
2. 齿轮齿条在数控技术和自动化领域的发展推动下,将会在结构设计和材料工艺上有所突破,以满足更高精度、更复杂运动控制的需求。
开关阀门曲柄连杆机构和齿轮齿条是两种不同的传动机构,各自具有特定的优点和应用场景。
曲柄连杆机构
曲柄连杆机构的常见故障与维护
曲轴磨损 曲轴是发动机的 核心部件之一, 若曲轴磨损严重, 会影响发动机的 动力输出和运转
平稳性
飞轮损坏 飞轮是储存和释放动力的关键部件,若飞轮损坏,会
影响发动机的动力输出和运转平稳性
连杆弯曲或断裂 连杆是连接活塞和 曲轴的重要部件, 若连杆弯曲或断裂, 会导致活塞无法正 常运动,严重时会
导致发动机损坏
曲柄连杆机构的常见故障与维护
3.2 维护与保养
为了延长曲柄连杆机构的使用寿命和提高发动机的性能 ,以下是一些建议的维护与保养措施
定期更换机油:机油是发动机的润滑剂,定期更换 机油有助于减少机件的摩擦和磨损 检查机体组:定期检查机体组各部位是否松动、变 形或损坏,如有异常应及时修复 检查活塞环:定期检查活塞环是否磨损严重、老化 或断裂,如有问题应及时更换 检查气缸:定期对气缸进行测量和检查,如发现气 缸磨损超限应更换气缸套或进行修理
3
曲柄连杆机构的常见故障与维护
曲柄连杆机构的常见故障与维护
曲柄连杆机构由于长时间处于高温、高压和高摩擦 的工作环境中,容易出现磨损和变形等问题
因此,日常维护和保养非常重要
这些问题的出现会影响发动机的正常运转,严重时 会导致发动机损坏或失效
曲柄连杆机构的常见故障与维护
3.1 常见故障
活塞环磨损:活塞环是活塞连杆组中重要的部件之一,它的主要作用是密封燃烧室内 的气体。若活塞环磨损严重,会导致燃烧室内气体泄漏,影响发动机的动力输出和燃 油经济性
曲柄连杆机构主要由机体组、活塞连杆组和曲轴飞轮组三部分组成
曲柄连杆机构的组成
1.1 机体组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涡流燃烧室
第二章 曲柄连杆机构
《汽车构造》
空气被挤 入涡流室 形成强烈 有规则涡 流运动 大 部分柴油 在涡流室 内燃烧形 成二次涡 流混合燃
烧
预燃燃烧室
第二章 曲柄连杆机构
《汽车构造》
空气被挤 入预燃室 产生无规 则紊流 小部分柴 油在预燃 室内燃烧 产生二次 紊流混合 完全燃烧
气缸衬垫
第二章 曲柄连杆机构
气缸直列式
第二章 曲柄连杆机构
《汽车构造》
结构简单
加工容易
长度较大 高度较大
一般多用 于6缸以 下发动机
气缸V型式
第二章 曲柄连杆机构
《汽车构造》
缩短长度 缩短高度 刚度增加 重量减轻
形状复杂 宽度加大 加工困难
一般多用 于8缸以 上发动机
气缸对置式
高度较小
布置方便
对风冷发 动机有利
第二章 曲柄连杆机构
第二章 曲柄连杆机构
Hale Waihona Puke 《汽车构造》2、气缸体的工作条件
●(1)应具有足够的强度和刚度
•承受高温高压气体作用力
•发动机大部分零件安装在缸体上
●(2)为减轻整机的重量
•气缸体结构紧凑
•气缸体重量较轻
第二章 曲柄连杆机构
《汽车构造》
3、气缸体的结构型式
• 一般式
•龙门式
•隧道式
第二章 曲柄连杆机构
《汽车构造》
3、气缸盖的材料
•灰铸 铁或合 金铸铁
高温强度高、铸造性能好、 价格低、应用广泛 导热性差、重量大
•铝合 金
导热性好,有利于提高压缩比 铸造性能好、重量轻 高温强度低、易变形、成本高 有取代铸铁缸盖的趋势
第二章 曲柄连杆机构
《汽车构造》
4、燃烧室
(1)汽油机燃烧室
•楔形
•盆形
•半球 形
第二章 曲柄连杆机构
曲柄连杆机构
活塞连 杆组
第二章 曲柄连杆机构
曲轴 飞轮
组
《汽车构造》
机体 组
第一节 概 述
➢曲柄连杆机构的功用 ➢曲柄连杆机构的组成 ➢曲柄连杆机构的受力分析
第二章 曲柄连杆机构
《汽车构造》
一、曲柄连杆机构的功用
热能
机械能
燃气压力
转矩
活塞 连杆 曲轴
曲柄连杆机构 能量转换
曲柄连杆机构 工作过程
干、湿式缸套比较
和冷却 水直接 接触
与缸体 配合 较
松
壁厚 5~9mm
不直接 和冷却 水接触
与缸体 紧配合
壁厚 1~ 3mm
缸套材料:合金铸铁或合金钢
第二章 曲柄连杆机构
《汽车构造》
气缸盖
气缸盖示意图
气缸盖实物
第二章 曲柄连杆机构
《汽车构造》
楔形燃烧室
第二章 曲柄连杆机构
《汽车构造》
结构简 单紧凑
Fp 燃气压力
Fp1 连杆分力
Fp2 侧压力
Fp T
Fp
Fp2
Fp2
Fp1
FR
FS
Fp1
第二章 曲柄连杆机构
《汽车构造》
●(2)压缩行程
F´p 气体压力 F´p1 连杆分力 F´p2 侧压力 F´R 压紧力 F´S 旋转阻力
F´p F´p2
T´
F´S F´R
第二章 曲柄连杆机构
《汽车构造》
F´p1
第二章 曲柄连杆机构
《汽车构造》
二、曲柄连杆机构的组成
1、机体组 气缸体 曲轴箱 气缸套 气缸盖 气缸垫 油底壳等
2、活塞连杆组 活塞 活塞环 活塞销 连杆等
3、曲轴飞轮组 曲轴 飞轮等
第二章 曲柄连杆机构
《汽车构造》
三、曲柄连杆机构的受力分析
●1、气体作用力
(1)作功行程
FR 压紧力 FS 曲轴旋转力
第二章 曲柄连杆机构
《汽车构造》
缸体与 曲 轴箱 分开 铸造缸体 和缸盖铸 有 散热片 如有风扇 可加强 散
热
二、气缸盖
• 1、气缸盖的功用和组成
• (1)密封气缸上部 形成燃烧室
• (2)冷却水套与缸体水套相通
• (3)设有进排气座 气门导管孔
• (4)设有进排气通道
• (5)汽油机缸盖 设有火花塞座孔
《汽车构造》
油底壳
第二章 曲柄连杆机构
《汽车构造》
•
柴油机缸盖 设有喷油器座孔
第二章 曲柄连杆机构
《汽车构造》
2、气缸盖的结构型式
•整体 式
•单体 式 •块状 式
能覆盖全部气缸 缩短气缸中心距 缩短发动机总长度 刚性较差
只覆盖一个气缸
能覆盖部分气缸 (两个以上)
多用于缸 径
<105m m发动机
缸体较大 发动机 常采用
第二章 曲柄连杆机构
《汽车构造》
•要求
储存机油并封闭曲轴箱
一般为薄钢板冲压而成
也有铝合金铸造(带散热片)
中部或后部较深 有时设有挡油板 底部有磁性放油螺塞
第二章 曲柄连杆机构
《汽车构造》
课
思考题?
堂
1、指出右 图中各零 件的名称?
第二章 曲柄连杆机构
《汽车构造》
课
思考题(续)
外
●1、曲柄连杆机构的功用和组成?
●2、气缸体的结构形式及概念比 较?
能形成 挤气 涡流
盆形燃烧室
第二章 曲柄连杆机构
《汽车构造》
结构简 单紧凑
能获得 较好 涡
流
缸盖工 艺较好
半球形燃烧室
第二章 曲柄连杆机构
《汽车构造》
结构最 为紧凑
散热面 积小燃 烧完全
配气机 构复杂
直喷式燃烧室
第二章 曲柄连杆机构
《汽车构造》
燃烧室 容积 集 中于活 塞顶上 的 燃烧 室凹坑
❖ 三种气缸体结构型式的比较
一般式
龙门式
隧道式
概 曲轴轴线与缸 曲轴轴线高于 主轴承座 念 体下平面共面 缸体下平面 孔不分开
特 便于机械加工 刚度强度较好 结构刚度 点 但刚度较差 工艺性较差 大但最重
应 多用于中小型 中型及重型车 机械负荷
用 发动机
用发动机
大柴油机
实 夏利富康发动 捷达/高尔夫 6135Q滚
《汽车构造》
(2)柴油机燃烧 室
①直喷式燃烧室
•ω形燃烧 室
•球形燃烧 室
第二章 曲柄连杆机构
《汽车构造》
②分开式燃烧室 •涡流燃烧
•预燃燃烧
室
室
喷油器 加热塞
预燃 室
涡流 室
第二章 曲柄连杆机构
《汽车构造》
三、气缸盖罩与气缸衬垫
●1、气缸盖罩 • 位置 气缸盖上部 • 功用 起封闭及防尘作用 • 材料 一般为薄钢板冲压而成 ●2、缸盖螺栓 • 功用 用于固定缸盖 • 要求 用规定力矩 按规定顺序分2~3
合金铸铁缸体 普通铸铁或铝合金缸体
第二章 曲柄连杆机构
《汽车构造》
•
干式缸
干套
式
缸
套
可卸干式缸套
1~3
普通铸铁或铝合金缸体 ❖干、湿式缸套比较
第二章 曲柄连杆机构
《汽车构造》
6、水冷和风 冷 (1)水冷
利用水套 中的冷却 水流过高 温零件的 周围带走 多余热量
第二章 曲柄连杆机构
《汽车构造》
(2)风 冷
《汽车构造》
湿式缸套
第二章 曲柄连杆机构
《汽车构造》
缸体铸造 方便 容 易拆卸更 换 冷却 效果较好 刚度较差 易漏气 和漏水
干式缸套
第二章 曲柄连杆机构
《汽车构造》
与缸体 紧 配合
刚度较好
制造工艺 复杂
拆卸困难
可卸干式缸套
第二章 曲柄连杆机构
《汽车构造》
与缸体 不是紧
配合
可拆卸 更换
上端有 凸缘
例 机,BJ492Q CA6102
动主轴承
第二章 曲柄连杆机构
《汽车构造》
4、气缸的排列方式(发动机形式)
•直列式
•对置式
•V型式
第二章 曲柄连杆机构
《汽车构造》
5、气缸 套
•无缸套
•湿式缸套
0.05~0.15
C B
5~9
A
AB环带: 径向定位 凸缘C: 轴向定位 缸套顶面
略高于 缸体平面
密封圈
●3、气缸的三种排列方式及特点?
●4、比较干式和湿式缸套的特点?
●5、机体组由哪些零件组成? 第二章 曲柄连杆机构
《汽车构造》
曲柄连杆机构能量转换
第二章 曲柄连杆机构
《汽车构造》
热能 转变为 机械能
向工作 机构 输出
机械能
曲柄连杆机构工作过程
第二章 曲柄连杆机构
《汽车构造》
将活塞 顶上的
燃气 压力 转变为 曲轴 转矩
F´
F´j
jn
F´c
F´cx
F´cy
3、摩擦力 各相对运动件表面的摩擦阻力
第二章 曲柄连杆机构
《汽车构造》
第二节 机 体 组
➢气缸体
➢气缸盖 ➢气缸盖罩与气缸衬垫 ➢油底壳
第二章 曲柄连杆机构
《汽车构造》
一、气缸体
●1、气缸体的功用和组成 ●(1)发动机的基体和骨架 ●(2)称为气缸体—曲轴箱 •气缸体往往与曲轴箱铸成一体 •通常简称气缸体
● 2、往复惯性力和离心力
(1)活塞在上半行程时(向下运动)
Fj 惯性力(向上) Fc 离心力 Fcy 上下振动 Fcx 水平振动
Fj
Fc n
Fj
Fcy
Fcx
第二章 曲柄连杆机构