初中几何常见的基本图形及证明
常用几何语言初中数学
常用几何语言初中数学在初中数学的学习中,几何语言的使用是不可或缺的一部分。
它不仅是我们理解和描述几何概念的工具,也是我们进行逻辑推理和问题解决的重要工具。
在这篇文章中,我们将探讨一些常用的几何语言及其在初中数学中的应用。
我们要了解的是几何中的基本元素和概念。
这些包括点、线、面、角、三角形、四边形等。
每个元素都有其特定的定义和性质,这些定义和性质是我们理解和描述几何图形的基础。
我们要学习的是如何使用几何语言进行描述和推理。
在初中数学中,我们通常会使用公理、定理和推论等来进行证明和推理。
这些公理、定理和推论是经过严格证明和检验的,可以用来确定某一命题是否成立。
同时,我们还要学会如何使用几何语言来表达和证明这些命题。
我们要了解的是几何语言在解决实际问题中的应用。
在日常生活中,我们经常会遇到一些与几何相关的问题,比如测量土地面积、计算房屋面积、确定最短路径等。
这些问题都需要我们使用几何语言来进行描述和解决。
几何语言是初中数学中非常重要的一部分。
通过学习和掌握常用的几何语言,我们可以更好地理解和应用几何知识,提高我们的逻辑推理能力和解决问题的能力。
也可以帮助我们更好地解决日常生活中的一些与几何相关的问题。
因此,我们应该认真学习几何语言,不断提高自己的数学素养和能力。
初中数学几何模型汇总一、引言初中数学是数学教育的基础阶段,其中几何学占据了相当重要的地位。
几何学不仅培养了学生的空间想象能力和逻辑推理能力,而且为高中数学的学习打下了坚实的基础。
本文将系统地整理初中数学中的几何模型,以期帮助学生更好地理解和掌握几何知识。
二、初中数学几何模型分类1、点、线、面:这是几何学中最基本的元素。
点代表位置,线代表长度,面代表形状。
这三个元素构成了几何学的基础。
2、直线型:包括线段、射线、直线等。
这些图形的关系和性质是初中几何学的重要内容。
3、平面型:包括三角形、四边形、圆形等。
这些图形的关系和性质是初中几何学的重要内容。
几何常见的基本图形及证明
初中几何基本图形及证明说明:本资料中所有虚线为证明用的辅助线 一:与角平分线有关的基本图形 基本图形1结论:如图,若P 点是B ∠和C ∠的平分线的交点,则P ∠和A ∠的数量关系为:A P ∠+︒=∠2190B基本图形2结论:如图,若P 点是FBC ∠的平分线和ECB ∠的平分线的交点,则P ∠与A ∠的数量关系为:A P ∠-︒=∠2190基本图形3如图,若P 是ABC ∠的角平分线和ACB ∠的外角平分线的交点,则P ∠与A∠的数量关系为:A P ∠=∠21BE二:等腰直角三角形与其共斜边的直角三角形 基本图形4如图,在等腰直角三角形ABC 中,D 点与C 点分别在AB 两侧,且BD AD ⊥,形成共斜边的两个直角三角形。
结论:CD BDAD 2=+E(延长DA 使BD EA =)基本图形5如图,在等腰直角三角形ABC 中,点D 与C 在AB 同侧,且BD AD ⊥,形成共斜边的两个直角三角形。
结论:CD BDAD 2=-A(截取BD AE=)三:线段和最短与轴对称 基本图形6 两定点一动点如图,A ,B 为直线l 同侧两定点,P 为直线l 上一动点,A 和1A 关于l 成轴对称,连接BA 1交直线l 于P 点。
结论:PB PA +最短基本图形7 一定点两动点如图P 为AOB ∠内一点,点1P 与P 关于OB 成轴对称,2P 与P 关于OA 成轴对称,连接21P P 交OB 于E 点,交OA 于F 点。
结论:△PEF 的周长最短OA基本图形8 两定点两动点如图,A ,B 为直角坐标系中的两定点,1A 与A 关于y 轴对称,1B 与B 关于x 轴对称,连接11B A 分别交x 轴、y 轴于C 、D 两点,连A ,B ,C ,D 结论:四边形ABCD 周长最短。
基本图形9 一定点一动长如图,P 为一定点,AB 为直线l 上的定长。
结论:当P 在AB 的垂直平分线上时△PAB 的周长最短基本图形10 两定点一动定长如图,A ,B 为直线l 同侧的两点,DC 为直线l 上的一定长,作∥BE DC 且DC BE =,A 与1A 关于直线l 对称,连接E A 1交直线于D结论:BC AD +最短基本图形11 线段差最大如图,A ,B 分别位于直线l 的两侧,作1A 与A 点关于直线l 对称,连B A 1交直线l 于P 。
平行四边形的性质和定理
平行四边形的性质和定理平行四边形是初中几何中基本的图形之一,它具有一些特殊的性质和定理。
本文将介绍平行四边形的定义、性质以及一些常见的定理。
一、平行四边形的定义与性质平行四边形是指具有两组对边分别平行的四边形。
根据这个定义,我们可以得出平行四边形的一些性质。
首先,平行四边形的对边相等。
也就是说,平行四边形的相对边长是相等的。
这一性质可以通过平行线的特性证明得出,因为对边平行,所以对边之间的距离相等。
其次,平行四边形的对角线互相平分。
平行四边形的对角线是将四边形分成两个三角形的线段。
根据平行线切割三角形的定理,我们可以得知平行四边形的对角线将三角形切割成两个面积相等的三角形,并且对角线和相应的边相等。
第三,平行四边形的相邻角互补。
相邻角是指平行四边形内相邻的两个角。
根据平行线的性质,我们知道同位角和内错角互补,而相邻角是同位角和内错角的一种特殊情况。
二、平行四边形的定理除了上述的基本性质外,还存在一些常见的平行四边形定理。
1. 对边平行定理:如果一组对边平行,则该四边形是平行四边形。
这个定理是平行四边形的定义,也是判断一个四边形是否是平行四边形的基本条件。
2. 对角线互相平分定理:平行四边形的对角线互相平分。
这个定理可以通过平行线切割三角形的定理来证明,证明过程略。
3. 对角线等分定理:平行四边形的对角线相等。
(证明略)4. 平行四边形的面积定理:平行四边形的面积可以通过任意一条对角线的长度和与之相邻的边的长度来计算。
这个定理的证明过程涉及到三角形的面积计算,具体过程略。
通过上述定理,我们可以在解决几何问题时更加方便地判断和计算平行四边形的性质。
总结:平行四边形是一种具有特殊性质的四边形,其对边相等、对角线互相平分、相邻角互补等性质是解决几何问题时的重要依据。
在运用平行四边形定理时,我们要善于发现平行关系、利用平行线切割三角形以及运用面积计算等技巧。
通过对平行四边形的研究和应用,可以提高我们的几何解题能力,并且深化对几何形状的理解。
证明四边形内角和为360度的5种方法初中
证明四边形内角和为360度的5种方法初中四边形是平面几何中常见的图形之一,由四条边和四个角组成。
而四边形内角和为360度是一个基本的定理,被广泛应用于数学领域中。
接下来将从五个角度来证明四边形内角和为360度的五种方法。
1.我们可以通过画出四边形的对角线来证明四边形内角和为360度。
对角线将四边形分割为两个三角形,根据三角形内角和定理可得,每个三角形的内角和为180度。
因此,整个四边形的内角和为360度。
2.我们可以通过将四边形分解为两个三角形来证明四边形内角和为360度。
将四边形的一条对角线作为分割线,从而将四边形分解为两个三角形。
根据三角形内角和定理,每个三角形的内角和为180度,因此整个四边形的内角和为360度。
3.利用四边形的一个角作为顶点,将其它三个角分解成两个三角形来证明四边形内角和为360度。
通过这种方法,我们可以将四边形分解成两个三角形,每个三角形的内角和也可以得出为180度,因此整个四边形的内角和为360度。
4.利用四边形的对角线互相垂直的性质来证明四边形内角和为360度。
由于四边形的对角线互相垂直,我们可以得出四个内角互相补角,即相加为180度。
因此,整个四边形的内角和为360度。
5.通过利用四边形中的角平分线性质来证明四边形内角和为360度。
当四边形中存在角平分线时,我们可以将角平分线作为分割线,将四边形分割为两个三角形。
根据三角形内角和定理,每个三角形的内角和为180度,因此整个四边形的内角和为360度。
总的来说,通过以上五种不同的方法,我们可以证明四边形内角和为360度这一定理。
这些方法不仅帮助我们理解四边形内角和为360度的原因,同时也能够锻炼我们的逻辑推理能力和几何图形分解能力。
在学习数学时,我们应该注重多种角度去理解和证明定理,以便更好地掌握知识。
初中数学几何定理大全
初中数学几何定理大全全文共四篇示例,供读者参考第一篇示例:初中数学的几何定理是学生必须掌握的重要知识之一。
通过学习几何定理,可以帮助学生更好地理解几何图形的性质,提高解题的能力。
本文将介绍一些常见的初中数学几何定理,帮助学生更好地进行学习和理解。
一、线段的垂直平分线定理定义:若过线段的中点做垂直于此线段的直线,则此直线称为此线段的垂直平分线。
定理:线段的垂直平分线经过此线段的中点。
证明:设AB为线段,M为AB的中点,直线l垂直于AB且经过M。
构建直角三角形AMB和BMC,根据直角三角形的性质可知AM=MB,BM=MC。
因此直线l是线段AB的垂直平分线。
二、垂直直线的性质定义:如果两条直线相交于一点,且它们的交角为直角,则这两条直线互相垂直。
定理:两条垂直直线的交角为直角。
三、三角形的中线定理定义:在三角形中,连接三角形的两个顶点,并使之等分第三个顶点所对的边的线段,称为这个三角形的中线。
定理:在三角形中,三角形的三条中线交于一点,且这一点等距禈三角形的三个顶点。
证明:设在三角形ABC中,D、E、F为BC、AC、AB的中点。
连接AD、BE、CF,根据等腰三角形的性质可知AD=BD=BE=AE=CF=AF,即D、E、F三点在同一直线上,且相互等分对边的长度。
通过以上几个例子,我们可以看到初中数学的几何定理不仅包括了线段、直线、三角形等基本图形的性质,还涉及了垂直平分线、中线等更为复杂的几何关系。
掌握这些定理,可以帮助学生更好地理解几何图形的性质,提高解题的能力。
在学习几何定理的过程中,学生需要不断练习,加深对几何图形属性的认识。
通过多做几何题和实践,可以更好地掌握几何定理,提高解题的能力。
第二篇示例:初中数学几何定理是学习数学的重要内容之一,它是建立在几何学基础上的一系列定理和公式,帮助解决各种与几何相关的问题。
在初中阶段,学生需要掌握一些基本的几何定理,以便能够应对各种考试和解题需求。
本文将为大家介绍一些常见的初中数学几何定理,希望能够帮助大家更好地学习和理解几何学知识。
初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)
初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
了解了哪些常见的几何图形和几何关系
了解了哪些常见的几何图形和几何关系一、常见的几何图形1.点:几何学中最基本的元素,只有位置,没有大小和形状。
2.线段:连接两个点的线,具有长度和有限的两端点。
3.射线:起点固定,无限延伸的直线。
4.直线:无限延伸的线,无起点和终点。
5.三角形:由三条线段组成的图形,具有三个顶点和三个角。
6.四边形:由四条线段组成的图形,具有四个顶点和四个角。
7.矩形:四边形中,对边平行且相等,四个角都是直角的图形。
8.正方形:矩形中,四条边相等的图形。
9.圆形:平面上所有点到圆心的距离都相等的图形。
10.扇形:圆的一部分,由圆心、圆弧和两条半径组成。
二、几何关系1.邻边:在四边形中,相邻的两条边。
2.对边:在四边形中,相对的两条边。
3.平行线:在同一平面内,永不相交的两条直线。
4.垂线:与另一条直线相交,且交角为90度的直线。
5.直径:圆上通过圆心的线段,长度是圆的半径的两倍。
6.半径:从圆心到圆上任意一点的线段。
7.弧:圆上任意两点间的部分。
8.弦:圆上任意两点间的线段,不经过圆心。
9.切线:与圆相切且只有一个交点的直线。
10.圆周角:圆心所对的圆周上的角,等于其所对圆心角的一半。
11.同弧所对的圆周角:在同圆或等圆中,同弧所对的圆周角相等。
12.圆内接四边形:四个顶点都在圆上的四边形。
13.圆外切四边形:四边形的四个顶点都在圆外,且四边形的对边与圆相切。
14.相似图形:形状相同,大小不同的图形。
15.相等图形:形状和大小都相同的图形。
以上就是中学阶段常见的几何图形和几何关系,掌握这些基础知识,有助于更好地理解和解决几何问题。
习题及方法:1.习题:判断下列哪个图形是矩形。
A. 有一个角是直角的平行四边形B. 有三个角是直角的平行四边形C. 有四个角都是直角的平行四边形D. 有一个角是直角的梯形方法:根据矩形的定义,矩形是四个角都是直角的平行四边形。
所以选项C是正确的。
2.习题:计算一个半径为5cm的圆的周长和面积。
初中几何基本图形归纳(基本图形+常考图形)
初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。
2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。
3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。
4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。
5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。
6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。
7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。
8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。
10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。
11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。
12.等边三角形在等边三角形ABC中,AB=AC=BC。
13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。
14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。
15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。
16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。
17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。
18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。
完整版)初中数学经典几何模型
完整版)初中数学经典几何模型初中数学经典几何模型(模型即套路),是初中数学里的重要部分。
在解决几何证明问题时,我们可以运用这些模型,从而更加高效地解决问题。
人们常说几何很困难,其中一个难点就在于辅助线的运用。
为了更好地运用辅助线,我们需要把握定理和概念,并且刻苦加钻研,找出规律凭经验。
在绘制图形时,我们可以利用角平分线向两边作垂线,或者将图形对折来寻找对称关系。
利用角平分线的平行线,我们可以构造等腰三角形。
同时,我们也可以尝试将角平分线加上垂线,从而将三条线合为一条。
线段垂直平分线时,我们可以将线段向两端延长或缩短来验证线段的倍数与半数关系。
在三角形中,连接两中点可以构造出中位线,同时延长中线也可以等于中线。
对于平行四边形,我们可以找到对称中心等分点。
在梯形中,我们可以利用高线平移一腰来解决问题。
同时,平行移动对角线,补成三角形也是常见的方法。
当证明相似时,我们可以通过比线段,添加平行线来构造相似三角形。
在等积式子比例换时,寻找线段也是很关键的。
直接证明有困难时,我们可以通过等量代换来简化问题。
在计算圆的相关问题时,我们可以利用半径与弦长计算,或者利用勾股定理来计算切线长度。
同时,在判断是否为切线时,我们可以通过半径垂线来进行辨别。
在解决相交圆的问题时,我们需要注意作公共弦。
对于内外相切的两个圆,我们可以通过切点来构造公切线。
同时,我们也可以利用连心线来确定切点。
在绘制图形时,我们需要注意勿改变虚线的位置。
基本作图也是很关键的,我们需要熟练掌握。
在解题时,我们需要多动脑筋,经常总结方法。
同时,我们也需要注意方法的灵活性,不要盲目乱添线。
在选用分析综合方法时,我们需要根据具体情况进行选择。
最重要的是,我们需要虚心勤学,加以苦练,才能在数学上取得更好的成绩。
斜边上作高线,比例中项一大片。
--。
在斜边上作高线,可以得到比例中项一大片。
半径与弦长计算,弦心距来中间站。
--。
通过计算半径和弦长,可以得到弦心距。
人教版初中七年级上册数学《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类⎧⎨⎩要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段 1. 直线,射线与线段的区别与联系立体图形:棱柱、棱锥、圆柱、圆锥、球等.⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。
沪教版数学初中几何知识点
沪教版数学初中几何知识点初中数学是培养学生数学思维和解决问题的能力的重要阶段。
其中,几何学是初中数学的一个重要组成部分,它不仅是对空间形状和平面图形的研究,更是对培养学生的逻辑思维和推理能力有着重要的作用。
一、基本概念1、图形:一个或多个线段、曲线、点等组成的平面或立体的形状。
2、角:两条射线或线段在同一点相交而形成的封闭图形。
3、直线:两点之间最短的路径。
4、矩形、正方形:一组对边相等且垂直的四边形。
5、菱形:一组对边相等且平行但不垂直的四边形。
6、梯形:一组对边平行但不相等的四边形。
7等腰梯形:两腰相等的梯形。
8、直角梯形:一腰垂直于底的梯形。
9等腰三角形等边三角形:有两边长度相等的三角形。
10、直角三角形:有一个角为90度的三角形。
11、锐角三角形:三个内角都小于90度的三角形。
12、钝角三角形:至少有一个内角大于90度的三角形。
二、定理与性质1、平行线定理:两条直线在同一平面内,如果其中一条直线平行于另一条直线,那么这两条直线平行。
2、三角形内角和定理:三角形三个内角的和等于180度。
3、直角三角形勾股定理:直角三角形斜边的平方等于两直角边的平方和。
4、中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
5、全等三角形对应边相等、对应角相等。
6等腰三角形的两腰相等,底角相等。
7等边三角形的三边相等,三个内角相等。
8、平行四边形的对边相等,对角相等。
9、矩形、正方形、菱形的对角线相等,对角线互相平分。
10、梯形的中位线平行于上、下底,并且等于上、下底和的一半。
11等腰梯形的两腰平行,并且等于上、下底差的一半。
12、直角梯形的斜边垂直于任意一条腰。
13等腰梯形的两腰中点连线平行于底边,并且等于底边的一半。
14、圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,所对的弦的弦心距相等。
15、切线定理:圆的切线垂直于过切点的半径。
16、直径所对的圆周角是直角;圆周角等于两弧所对的圆心角的一半。
初中常见几何模型结论
初中常见几何模型结论全文共四篇示例,供读者参考第一篇示例:初中阶段学习几何模型是数学学习的一个重要组成部分,通过学习几何模型可以帮助学生理解几何概念,培养其逻辑思维和空间想象能力。
在初中课本中,涉及到的常见几何模型有三角形、四边形、圆等,学生需要掌握这些模型的性质和结论。
本文将从几何模型的性质和结论入手,详细介绍初中常见几何模型的相关知识。
一、三角形三角形是几何学中的基本图形之一,包括等腰三角形、等边三角形、直角三角形等。
在初中阶段,学生主要需要掌握三角形的性质和定理,如三角形内角和为180度、三角形外角和等于其对应内角等。
还要掌握利用角平分线、垂直平分线等相关知识解决三角形问题。
常见的三角形结论包括:1.等腰三角形的底角相等,等边三角形的三个角都相等。
2.三角形内角和为180度,即三角形的三条边可以围成一个封闭的图形。
3.等腰直角三角形的斜边等于底边的平方和。
二、四边形四边形是指有四条边的多边形,包括矩形、正方形、菱形等。
在初中阶段,学生需要掌握四边形的性质和定理,如内角和、对角线交点的性质、边的性质等。
学生还需要学会利用平行线、垂直线等概念解决四边形问题。
1.矩形的对角线相等且互相垂直。
4.平行四边形的对角线相等、同一条对角线上的内角互补。
三、圆圆是一个重要的几何模型,具有许多独特的性质和特点。
在初中阶段,学生需要掌握圆的周长、面积计算方法,以及圆的心、弦、弧等概念。
学生还需要掌握切线和切于圆的定理,并能够运用这些知识解决有关圆的问题。
1.圆的周长等于其直径乘以π,面积等于半径的平方乘以π。
2.圆的直径、弧、弦之间的关系满足弧长公式、角度公式等。
3.相交圆中的两条切线互相垂直。
4.相交圆的切线与切点处的切线垂直。
总结:通过学习初中常见几何模型的相关知识,可以帮助学生建立对几何概念的深刻理解,培养其解决实际问题的能力和创造力。
在学习几何模型的过程中,学生需要不断巩固掌握相关的性质和定理,灵活运用这些知识解决各种几何问题。
初中几何基本知识汇总
初中几何基本知识汇总一、线和角1、线段、射线、直线(略)①过二点有且只有一条直线。
②所有连接二点的线中,线段最短,叫二点间的距离。
2、同位角、内错角、同旁内角(略)3、互为补角(两角的和是一个平角),互为余角(两角的和为直角)。
①同角或等角的补角相等。
②同角或等角的余角相等。
4、平行线:①平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
②推论:两条直线都和弟三条直线平行,则两直线平行性质①两直线平行,同位角相等②两直线平行,内错角相等③两直线平行,同旁内角互补判定:①公理:同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行5、线段的垂直平分:①定理:线段垂直平分线上的点到线段两个端点的距离相等②逆定理:到线段两个端点的距离相等的点在线段的垂直平分线上。
6、对称轴:定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、三角形、四边形、多边形6、三角形的内角和、外角、中线、中位线、高①三角形三个角平分线交于一点:内心(该点到三角形三边距离相等)②三条边的垂直平分线相交于一点:外心(该点到三角形三个顶点的距离相等)③三角形中线相交于一点:重心(这点到顶点的距离是它到对边中点距离的两倍)④三角形三条高交于一点:垂心7、三角形两边之和大于弟三边,两边之差小于弟三边8、三角形的一个外角等于与它不相邻的两个内角和,大于和它不相邻的恣意内角。
9、三角形的判定:①边角边(SAS)②角边角(ASA)③边边边(SSS)④斜边直角边公理(HL)10、角平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到角的两边的距离相等的点在角的平分线上。
11、等腰三角形:⑴性质定理:等边对等角(两底角相等)①推论1:等腰三角形顶角的平分线平分底边且垂直底边。
初级中学几何基本图形归纳(基本图形常考图形)
初中几何常见基本图形FEDBAFEDCB ADCA几何基本图形1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF=a 63 ③外接圆半径AF=a 33 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为a 213- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 为a 25; ②当BD 是角平分线时,BD 长为a 224-。
①当D 是AC 中点时,BD 长5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450:①△ABE ∽ECD ②设BE=x ,则CD=ax ax 22-。
CBA300EDCBA45AB C6、如图AB=AC ,∠A=360,则:BC=215-AB 。
7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:21∠BAD=∠EDC 。
8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2180x -0。
9、如图,△BCA 中,D 是三角形内一点,①当点D 是外心时,∠BDC=21∠A ;②当点D 是内心时,∠BDC=2180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()22234x x =+-; ②△BED ∽△BAC 。
11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。
初中数学48个几何模型及题型
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
初中数学知识归纳几何证明题的解题思路与方法
初中数学知识归纳几何证明题的解题思路与方法几何证明题在初中数学中占据着重要的位置,它既考察了学生对基本几何知识的理解,又培养了学生的逻辑思维和推理能力。
本文将对初中数学中归纳几何证明题的解题思路与方法进行归纳总结,帮助学生更好地应对这类题目。
解题思路一:利用基本图形性质归纳几何证明题中经常会涉及到基本图形性质的运用,例如利用三角形的性质、四边形的性质等。
在解题过程中,可以先观察题目中给出的图形,根据其中的线段、角等要素,运用基本图形性质进行推理。
举例说明:证明一个角是直角。
首先,可以观察该角所在的图形,是否能够应用直角三角形的性质进行推理。
如果能找到一个直角三角形,并且该角是该直角三角形的内角或外角,那么该角就是直角。
解题思路二:利用各种等式与平行线性质初中几何证明题还涉及到线段、角的等式,以及平行线性质的应用。
在解题过程中,可以根据题目条件,利用各种等式与平行线性质进行推导与证明。
举例说明:证明两条线段相等。
可以根据题目给出的条件,利用等式性质进行推导。
比如,如果给出了两个三角形的一边和该边对应的角相等,那么可以根据等式来证明两条线段相等。
解题思路三:利用三角形相似性质在初中数学中,三角形相似性质是一个重要的内容。
在解决几何证明题时,可以利用三角形相似性质进行推理与证明。
要注意观察题目中给出的图形,找到相似的三角形,并利用相似比例进行推导。
举例说明:证明两条线段成比例。
可以根据题目给出的条件,利用相似三角形性质进行推导。
如果题目给出了两个三角形中的两条边成比例,那么可以根据相似比例来证明两条线段成比例。
解题思路四:利用等腰三角形与等边三角形性质等腰三角形与等边三角形在初中数学中也是一个重要的内容,并且在几何证明题中经常会用到。
在解题过程中,可以根据题目给出的条件,利用等腰三角形与等边三角形的性质进行推导与证明。
举例说明:证明某个角是等腰三角形的顶角。
可以根据题目给出的条件,利用等腰三角形的性质进行推理。
初中数学几何常见基本图形归纳总结大全
6、如图 AB=AC,∠A=360,则:BC= 5 1 AB。 2
7、如图 AB=AC,D 是 BC 上一点,AE=AD,则: 1 ∠BAD=∠EDC。 2
8、 如图,D、E 是△ABC 边 BC 上两点,AC=CD,BE=BA,则当:①∠BAC=1000 时,∠
A D
C E
A
D
A
E
G
H
D
E
F
A
D
B
B
C
F
B
C
B
C
G
13、如图,正方形 ABCD 对角线交于 O,E 是 OB 上一点,EF∥BC: ①△AOE≌△BOF; ②AE⊥BF。 14、如图,E 是正方形 ABCD 对角线上一点,EF⊥CD,EG⊥BC: ①AE=FG;②AE⊥FG。 15、如图,将矩形 ABCD 顶点 B 沿某直线翻折可与 D 点重合:
B
D
O
F
C
B
F
C
E
17、如图,B 是直线 DF 上一点,∠ABC=Rt∠,过 A、C 做直线的垂线,D、E 是垂足:① △ABD∽△BCE; ②当 AB=BC 时,△ABD≌△BCE。 18、如图,以△ABC 两边向形外作正方形 ABED,ACFG,H 是 BC 中点:
①AH= 1 DG;②E、F 到 BC 所在直线的距离和等于 A 到直线 BC 的距离;③当∠BAC=Rt 2
13
P
A
C
A
12
14
B
D
C
A
PB=PC
① AB=AC ② BD=CD ③ ADBC ④ 1=2
“二推二”
几何相似证明:相似图形的证明
几何相似证明:相似图形的证明相似图形是几何学中的重要概念,指的是具有相同形状但尺寸不同的图形。
在几何相似证明过程中,我们需要证明两个或多个图形的对应部分边长成比例,并且对应角度相等。
下面将通过几个具体的例子来介绍相似图形的证明方法。
例一:三角形的相似证明给定两个三角形ABC和DEF,已知∠A = ∠D,∠B = ∠E,我们需要证明这两个三角形相似。
证明:1. 连接AD和BE,设交点为P。
通过引言引用欧几里得的名言:“几何是永恒的尺和数。
”我们可以看出,几何学的基本原理是建立在对形状和尺寸的研究基础上的。
在这个证明中,我们将通过对第一个图形的一些基本信息进行分析,来推导出两个图形的相似性。
在这个例子中,我们将证明两个三角形相似。
为了证明这一点,我们需要找到两个对应角度相等的角,并且找到两个对应边长成比例的边。
首先,我们已知∠A = ∠D,因此角A与角D对应。
接下来,我们需要找到另外一个对应角。
从图中可以看出,角B和角E是两个相应顶点的对应角。
由于我们已知∠B = ∠E,所以角B和角E对应。
现在,我们已经找到两对对应角。
接下来,我们需要验证对应边长成比例。
从图中可以看出,边AD和边BE是连接相应顶点的两条线段。
为了证明它们成比例,我们可以使用类似三角形的性质。
换句话说,我们可以使用三个角度相等的三角形来验证两个边长成比例的三角形。
这样,我们可以得出结论:图形ABC和图形DEF是相似的。
通过对这一例子的证明过程进行详细解释,我们可以看到,几何定理和基本原则是相似图形证明的基础,同时我们也学到了如何使用角度和边长来证明相似图形。
例二:矩形的相似证明给定两个矩形ABCD和EFGH,已知EF = 2AB,EH = 3AD,我们需要证明这两个矩形相似。
证明:1. 连接AE、BF、CG和DH,形成四边形AEFH。
在这个例子中,我们将证明两个矩形相似。
为了证明这一点,我们需要证明两个对应边长成比例的边,并且对应角度相等。
三角形相似全等的条件-概述说明以及解释
三角形相似全等的条件-概述说明以及解释1.引言1.1 概述三角形是几何学中的基本图形之一,具有三条边和三个顶点。
在三角形的研究中,相似和全等是两个重要的概念。
相似指的是两个三角形的形状相似,即它们的对应角度相等,对应边的比值相等。
全等则表示两个三角形的形状和大小完全相同,它们的对应边长和对应角度都相等。
在本文中,我们将深入探讨三角形相似和全等的条件。
通过研究这些条件,我们能够更好地理解三角形的性质和关系,并在实际问题中应用它们。
首先,我们将介绍三角形的基本概念,包括边、角、高度等。
理解这些基本概念对于后续的讨论非常重要。
然后,我们将详细讨论三角形相似和全等的条件。
相似的条件包括AAA(三个对应角度相等)、AA(两个对应角度相等,一对对应边成比例)以及SAS(一对对应边成比例,两个对应角度相等)。
全等的条件包括SSS (三边对应边长相等)、SAS(两边对应边长及夹角相等)以及ASA(两个对应角度相等,一对对应边相等)。
在文章的结尾部分,我们将总结三角形相似和全等的条件,并重申本文的目的。
通过深入研究这些条件,我们能够更好地理解和应用三角形的性质,为解决实际问题提供帮助。
总之,本文将对三角形相似和全等的条件进行详细阐述,通过理论推导和实例分析,帮助读者更好地理解和应用这些概念。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构部分的内容应该对整个文章的结构进行简单的介绍和总结。
它可以包括以下几个方面的内容:1. 引言部分的简述:首先,对引言部分的内容进行简短概述,介绍引言部分的主要目的和内容,为读者提供一个整体的概览。
2. 正文部分的大致分析:其次,可以简要介绍正文部分的大致分析结构和思路,包括三个主要章节的涉及内容,即「三角形的基本概念」、「三角形相似的条件」和「三角形全等的条件」。
3. 结论部分的预期结果:最后,可以提前介绍结论部分的预期结果,包括对三角形相似和全等条件的总结,并再次重申本文的目的。
初中数学(几何)知识点总结
初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何基本图形及证明
说明:本资料中所有虚线为证明用的辅助线一:与角平分线有关的基本图形基本图形1
结论:如图,若P点是B和C 的平分线的交点,则P和A的数量关系
1为:
P 90 A
2
基本图形2
结论:如图,若P点是FBC的平分线和ECB 的平分线的交点,则P与
A 的数量关系为:P
1 90 A
2
基本图形3
如图,若P是ABC 的角平分线和ACB的外角平分线的交点,则P与A 的数量关系为:P 1 A
2
二:等腰直角三角形与其共斜边的直角三角形
基本图形 4
如图,在等腰直角三角形 ABC 中,D 点与C 点分别在 AB 两侧,且 AD BD ,
基本图形 5
如图,在等腰直角三角形 ABC 中,点 D 与C 在 AB 同侧,且 AD BD ,形 三:线段和最短与轴对称
基本图形 6
两定点一动点
如图,A ,B 为直线l 同侧两定点, P 为直线l 上一动点, A 和A 1关于l 成轴对
形成共斜边的两个直角三角形。
结论: AD BD 2CD
延长 DA 使 EA BD ) AD BD 2CD
B
(截取 AE BD )
E
B
成共斜边的两个直角三角形。
结
论:
称,连接A1B交直线l于P点。
结论:PA PB最短
A1
基本图形7
一定点两动点
如图P为AOB内一点,点P1与P关于OB成轴对称,P2与P关于OA成轴
对称,连接P1P2交OB于E点,交OA于F 点。
结论:△ PEF 的周长最短
P2
基本图形8
两定点两动点
如图,A ,B为直角坐标系中的两定点,A1与A关于y轴对称,B1与B关于x 轴对称,连接A1B1分别交x轴、y轴于C、D两点,连A,B,C,D 结论:
四边形 ABCD 周长最短。
基本图形 9
一定点一动长
如图, P 为一定点, AB 为直线 l 上的定长。
结论:当 P 在AB 的垂直平分线上
时△ PAB 的周长最短
A2
AB 基本图形 10 两定点一动定长 如图, A , B 为直线l 同侧的两
点, DC 为直线l 上的一定长,作 BE ∥DC 且
BE DC , A 与A 1关于直线l 对称,连接 A 1E 交直线于 D 结论: AD BC 最短 y
C
D
A1
A
B1
B
A
A1
基本图形11 线段差最大
直线l 于P 。
结论:PA PB最大
四:圆与垂直弦
基本图形12
如图⊙ O的弦AB和CD 相互垂直,
OH
BD 。
结论:AC 2OH D
如图,A ,B分别位于直线l 的两侧,作A1与A点关于直线l 对称,连A1B交
五、圆内接三角形与外角平分线 基本图形 13
如图, CD 平分△ ABC 的外角交圆于 D 。
结论: AD BD
六、直角三角形与其内切圆
基本图形 14
如图,设 r 内Rt △ ABC 内切圆的半径,其三边长分别为 a ,b ,c
七、等边三角形与圆
基本图形 15
结论:
PB PC PA
结论: r 1
(a b c) 2
如图,等边三角形 ABC 内接于⊙ O , P 为⊙ O 上一点,连 PB , PC
B
A
A D
如图,B ,D 位于AC 两侧,
AD 结论:A,B,C,D四点共圆
基本图形17
如上图B,D位于AC同侧,AD
结论:A,B,C,D四点共圆
八、相似三角形与基本图形相似三角形基本图形主要分A型、X 型、E 型、蝴蝶型、共角型、共边共角型等多种基本图形,这几种较为基础不作总结,主要总结综合题用到的基本图形基本图形18
如图,P 为△ABC的重心(重心是三条中线的交点)。
如图,在△ ABC中,CD 平分ACB交AB于D点
结论:
AC AD
BC BD
CD,AB BC
CD,AB BC
结论:PE
PA
PF
PB
PD 1
PC 2
基本图形19
射影定理
如图,在直角三角形ABC中,AC BC,CD AB 结论:
AC2 AD ?AB BC2 BD?AB CD2AD ?BD。