七年级下册数学期末测试

合集下载

七年级下册数学期末测试卷【含答案】

七年级下册数学期末测试卷【含答案】

七年级下册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么这个长方体的对角线长是多少dm?A. 5dmB. 6dmC. 7dmD. 9dm4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1075. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{6}{9}$C. $\frac{8}{10}$D. $\frac{10}{12}$二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个三角形的内角和等于180度。

()3. 任何两个偶数相乘的积都是偶数。

()4. 两个负数相乘的积是正数。

()5. 任何数乘以1都等于它本身。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 一个正方形的边长是6cm,那么它的面积是______平方厘米。

3. 1千米等于______米。

4. 5的立方是______。

5. $\frac{3}{5}$的倒数是______。

四、简答题(每题2分,共10分)1. 请简述勾股定理。

2. 请解释什么是最简分数。

3. 请简述平行线的性质。

4. 请解释什么是质数。

5. 请简述长方体的体积公式。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求这个长方体的体积。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。

3. 一个数的平方是49,求这个数。

4. 一个数的立方是64,求这个数。

5. 两个数的和是15,它们的差是3,求这两个数。

六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方体的长、宽、高分别是3cm、4cm、5cm,求这个长方体的对角线长。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

七年级数学下册期末测试题及答案共五套

七年级数学下册期末测试题及答案共五套

七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。

七年级数学下册期末试卷(附含答案)

七年级数学下册期末试卷(附含答案)

七年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(本大题共12小题,每小题4分,共48分)1.下列说法不正确的是( )A .0的平方根是0B .1的算术平方根是1C .-1的立方根是±1D .4的平方根是±2 2.在52-,-π,0,3.14, ,0.33333, ,313中,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个3.若点A(2,m)在x 轴上,则点B(m+1,m -1)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列条件中,不能判断直线l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°5.在下列四项调查中,方式正确的是( )A .了解某班同学每周锻炼的时间,采用全面调查的方式B .为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C .对某类烟花爆竹燃放安全情况,采用全面调查的方式D .了解某省中学生的视力情况,采用全面调查的方式6.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A .该班有50名同学参赛B .第五组的百分比为16%C .成绩在70~80分的人数最多D .80分以上的学生有14名第6题图 第12题图7.如果a >b ,c <0,那么下列不等式成立的是( )A. c -a >c -bB. c +a >c +bC. ac >bcD. a c >b c 8. 把不等式组⎩⎨⎧>-≥-36042x x 的解集表示在数轴上,正确的是( )A .B .C .D .9.小亮解方程组 ⎩⎨⎧=-•=+1222y x y x ,的解为 ⎩⎨⎧*==y x 5,由于不小心滴上了两滴墨水,刚好遮住了两个数*• ,则这两个数分别为( )A. 4和 - 6B. - 6和4C. - 2和8D. 8和 – 210.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .11.如图1是长方形纸带,∠DEF=15°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中∠CFB度数是多少( )A .160°B .150°C .120°D .110°12.如左边图,长方形的各边分别平行于轴或轴,物体甲和物体乙分别由点 (2,0)同时出发,沿矩形的边作环绕运动,物体甲按逆时针方向以1个单位/ 秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是( )A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)二、填空题:本大题共6个小题,每小题4分,共24分.把答案写在题中的横线上13. 已知、为两个连续的整数,且<13-<,则= .14. 在扇形统计图中,其中一个扇形的圆心角是216°,则这个扇形所表示的部分占总体的百分数是 .15.如图是超市里购物车的侧面示意图,扶手AB 与车底CD 平行∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________. 16.不等式:的非正整数解个数有 个. 17.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为______ . BCDE x y A BCDE a b a b a b +34125x +-<≤18.在平面直角坐标系中,对于平面内任意一点(x ,y),若规定以下两种变换:①f(x,y)=(x+2,y). ②g(x,y)=(−x,−y),例如按照以上变换有:f(1,1)=(3,1);g(f(1,1)) =g(3,1)=(−3,−1).则f(g(2,5)) = .三、简答题:(本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本题10分)(1)求x 的值:02592=-x (4分)(2)计算:322781)32(412-÷+-÷; (6分)20.(本题14分,每小题7分) (1)解方程组: ⎪⎩⎪⎨⎧=++=++=-232181531794z y x z y x z x(2)解下列不等式组:⎪⎩⎪⎨⎧<+-+≤+12312)2(352x x x x ,把解集在数轴上表示出来,并写出不等式组的非 正整数解。

七年级下册数学期末试卷试卷(word版含答案)

七年级下册数学期末试卷试卷(word版含答案)

七年级下册数学期末试卷试卷(word 版含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.4的算术平方根是_____.10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a +b 的值为____.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.(133181254(2)3|12427+(32(22)3(21)-18.已知m +n =2,mn =-15,求下列各式的值. (1)223m mn n ++; (2)2()m n -.19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD =180°,(_______) ∴AB ∥_______,(___________) ∴∠BAP =________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2,∴∠3=________,(等式的性质) ∴AE ∥PF ,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.21212请解答下列问题:(110的整数部分是,小数部分是.(25a13b,求a+b5(3)已知103x+y,其中x是整数,且0<y<1,求x-y的相反数.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改解析:D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.C 【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数. 【详解】∵AB ∥CD ,∠BAD=35°, ∴∠ADC =∠BAD =35°, ∵AD ⊥AC ,∴∠ADC+∠ACD =90°, ∴∠ACD =90°﹣35°=55°, 故选:C . 【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵3a =-,b =()22c ==--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.B 【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解. 【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒, 180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B . 【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.A 【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A 【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-, 567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-, 20211011x =,12320211x x x x ∴+++⋯+=,故选:A . 【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题 9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2. 考点:算术平方根.10.【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点关于轴的对称点的坐标是, 故答案为:. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不 解析:(4,3)-【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-, 故答案为:(4,3)-. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠B解析:①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠BFD =∠BCF +∠CBF =45°,可判定②;根据同角的余角性质可得∠GCE =∠ABC ,由角的和差∠GCD =∠ABC +∠ACD =∠ADC ,可判定③;由∠GCE +∠ACB =90°,可得∠GCE 与∠ACB 互余,可得CA 平分∠BCG 不正确,可判定④. 【详解】解:∵EG ∥BC ,且CG ⊥EG 于G , ∴∠BCG +∠G =180°, ∵∠G =90°,∴∠BCG =180°﹣∠G =90°, ∵GE ∥BC , ∴∠GEC =∠BCA , ∵CD 平分∠BCA , ∴∠GEC =∠BCA =2∠DCB , ∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n ﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,即2n﹣1=11,n=6.∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.故答案为:139.【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n - =2()4m n mn +-=()22415-⨯-=464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE ∥PF .(内错角相等两直线平行),∴∠E =∠F .(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a13b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,52a∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE +∠DCE =∠BEC =90°,∴∠ABE =90°﹣β,∴∠GBE =∠ABE ﹣∠ABF ﹣∠FBG =90°﹣β﹣2γ﹣2γ,∵BE 平分∠ABC ,∴∠CBE =∠ABE =90°﹣β,∴∠CBG =∠CBE +∠GBE ,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

七年级数学下册期末测试卷(含答案)

七年级数学下册期末测试卷(含答案)

七年级数学下册期末测试卷(含答案)一、单项选择(本题包括10个小题,每小题3分,共30分。

下列各题,每小题只有一个选项符合题意。

)1. 估计√10的值( )A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间2. 下列命题中,是假命题的是( )A.一个锐角与一个钝角的和等于平角B.互为邻补角的两个角的平分线互相垂直C.若|a-2|+|b+3|=0,则a=2,b=-3D.两条直线相交,有2对对顶角3. 已知点P(2﹣a,3)到两坐标轴距离相等,则a的值为()A.3 B.﹣1 C.﹣1 或 5 D.﹣34. 不等式2x﹣7<5﹣2x的非负整数解有()A.1个 B.2个C.3个 D.4个5. 直线a与直线b相交于点O,则直线b上到直线a的距离等于2 cm的点有( )A.1个B.2个C.4个D.无数个6. 若关于x、y的二元一次方程组{3x+y=1+a,①x+3y=3②的解满足x+y<2,则a的取值范围为( )A.a<4B.a>4C.a<-4D.a>-47. 如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8. 足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场9. 在平面直角坐标系中,若点A (a,﹣b)在第一象限内,则点B (a,b﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2022次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(-2020,2)B.(-2021,-2)C.(-2020,-2)D.(-2023,2)二.填空题(共6题,总计20分)11.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.12. 不等式组-3≤<5的解集是_________.13. 不等式的解集是________;14. 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB= .15. 某正数的两个平方根是n+l和n﹣5,则这个数为16. 某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是____________元.三.解答题(共7题,总计50分)17. 计算:√14+√0.52-√83;18.x 取哪些非负整数时,3x−25的值大于2x+13与1的差.19.已知方程组{5x +y =3,ax +5y =4与方程组{x −2y =5,5x +by =1有相同的解,求a ,b 的值.20.已知:如图,四边形ABCD 中,∠A=106°-α,∠ABC=74°+α,BD ⊥DC 于点D,EF ⊥DC 于点F.求证:∠1=∠2.21. 某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为人.22. 暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:哥哥和弟弟平均每天各编多少个中国结?(答案取整数)23.如图,AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,∠ADC=70°(1)求∠EDC的度数;(2)若∠ABC=30°,求∠BED的度数;(3)将线段BC 沿DC 方向移动,使得点B 在点A 的右侧,其他条件不变,若∠ABC=n °,请直接写出∠BED 的度数?(用含n 的代数式表示)参考答案一.选择题1. B2. A3. C4. C5. B6. A7. A8. C9.D 10. B二. 填空题11. (0,0)12. -4≤x<813. x ≤514. 105°15.916.528三. 解答题17. 原式=12+0.5-2=-118.解:由题意得:3x−25>2x+13﹣1,解得x <4,∴x 取0,1,2,3.19. 解:解方程组{5x +y =3,x −2y =5,得{x =1,y =−2.将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.20.【证明】∵∠A=106°-α,∠ABC=74°+α,∴∠A+∠ABC=180°.∴AD ∥BC.∴∠1=∠DBC.∵BD⊥DC,EF⊥DC,∴∠BDF=∠EFC=90°.∴BD∥EF.∴∠2=∠DBC.∴∠1=∠2.21. 解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.22. 解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.依题意得:{7x<287(x+2)>28,解得:2<x<4.∵x取正整数,∴x=3;x+2=5,答:弟弟每天编3个中国结,哥哥每天编5个中国结.23. (1)解:∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)解:过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=15°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=15°+35°=50°. (3)∠BED的度数为n°−35°或215°−n°。

七年级数学下册期末试卷及答案【含答案】

七年级数学下册期末试卷及答案【含答案】

七年级数学下册期末试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 492. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个数是偶数?()A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的对角线长度是多少cm?()A. 5cmB. 6cmC. 7cmD. 9cm5. 下列哪个数是合数?()A. 23B. 29C. 31D. 33二、判断题1. 两个质数的和一定是偶数。

()2. 一个等边三角形的三个角都是60度。

()3. 0是最小的自然数。

()4. 一个正方形的对角线长度等于它的边长。

()5. 两个奇数的积一定是奇数。

()三、填空题1. 1的相反数是______。

2. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的周长是______cm。

3. 5的倍数中最小的两位数是______。

4. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是______cm³。

5. 下列数中最大的质数是______。

四、简答题1. 请写出三个质数,并说明它们的特点。

2. 请解释等边三角形和等腰三角形的区别。

3. 请解释偶数和奇数的定义。

4. 请解释长方体和正方体的区别。

5. 请解释质数和合数的区别。

五、应用题1. 一个长方体的长、宽、高分别为3cm、4cm、5cm,请计算这个长方体的对角线长度。

2. 一个等腰三角形的底边长为10cm,腰长为12cm,请计算这个三角形的面积。

3. 请找出30以内的所有质数。

4. 请找出50以内的所有偶数。

5. 请找出100以内的所有合数。

六、分析题1. 请分析质数和合数的分布规律。

2. 请分析等边三角形和等腰三角形的性质。

七年级下册数学期末真题50题含答案

七年级下册数学期末真题50题含答案

七年级下册数学期末真题50题含答案一、单选题1.如图,P是直线l外一点,A,B,C三点在直线l上,且PB l⊥于点B,∠=︒,则下列结论:①线段AP是点A到直线PC的距离;①线段BP的长是点P APC90到直线l的距离;①PA,PB,PC三条线段中,PB最短;①线段BC的长是点C到线段PB的距离.其中正确的是()A.①①①B.①①①C.①①①D.①①①①2.在平面直角坐标系中,点(-7,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法中正确的是()A.在同一平面内,两条直线的位置关系有相交、垂直、平行B.在同一平面内,如果两条线段不相交,那么这两条线段平行C.在同一平面内,不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线4.下列问题中,应采用全面调查的是()A.检测某品牌儿童鲜奶是否符合食品卫生标准B.调查人民对冰墩墩的喜爱情况C.调查与一新冠肺炎感染者密切接触人群的核酸检测结果D.了解全国中学生的视力和用眼卫生情况5.8的立方根是()A B.2C.D.±6.如图,下列条件中,能判断AB①CD的是()A .①A =①CBEB .①A =①C C .①C =①CBED .①C +①D =180°7.如图所示,点E 在AC 的延长线上,下列条件中不能判断BD AC ∥( )A .①3=①4B .①1=①2C .①D =①DCE D .①D +①ACD =180°8.下列说法错误的是( ) A .两条直线相交,只有一个交点B .在连接直线外一点与直线上各点的线段中,垂线段最短C .同一平面内,过一点有且只有一条直线垂直于已知直线D .直线外一点到直线的距离就是这点到直线的垂线段9.若点 A 在 x 轴下方,y 轴右侧,距 x 轴 3 个单位长度,距 y 轴 2 个单位长度,则点 A 的 坐标为( ) A .(3,2)B .(-3,-2)C .(-2,3)D .(2,-3)10.下列各数不是无理数的是( )AB .2πC D 11.6的平方根是( )A .6-B .36C .6±D .12.满足x <的整数x 是( ) A .0,1±,2±B .0,1±C .0, 1 ,2D .1,213.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C .签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年低了21.9亿元14.已知a >b ,下列不等式中错误的是( ) A .a +1>b +1B .a ﹣2>b ﹣2C .2a >2bD .﹣4a >﹣4b15.下列条件中,可能得到平行线的是( ) A .对顶角的角平分线 B .邻补角的角平分线 C .同位角的角平分线D .同旁内角的角平分线16.平面直角坐标系中,已知点(),A a b ,()2,3B -,//AB x 轴,线段AB 的长是( ) A .2a -B .3b -C .2a -D .3b -17.下列命题中,逆命题为真命题的是( ) A .菱形的对角线互相垂直 B .矩形的对角线相等C .平行四边形的对角线互相平分D .正方形的对角线垂直且相等18.李老师对本班60名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )A .6人B .9人C .21人D .24人19.如图,直线AB 与CD 相交于点E ,在CEB ∠的平分线上有一点F ,FM AB ∥.当10DEB ∠=︒时,F ∠的度数是( )A .70︒B .75︒C .80︒D .85︒二、填空题20.比较大小:________6.(填“>”、“=”、“<”)21.一个正数的平方根是a+3和2a-9,则这个数为_________.22.已知:2a ﹣4、3a ﹣1是同一个正数的平方根,则这个正数是__________. 23.如图,点E 在AD 的延长线上,下列四个条件:①①3=①4;①①1=①2;①①A=①5;①①C+①ABC=180°.能判定AB①CD 的条件是______(填序号)24.若点P (2a -,3)在y 轴上,则=a ___________.25.在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.26.由点(2,1)M -向y 轴作垂线,垂足为H ,则点H 的坐标是________. 27.比较大小:-______-4(填“<”或“=”或“>”).28()230b -=______. 29.不等式2x-1≥5的最小整数解为__________.30.把 命 题 “ 锐 角 的 补 角 是 钝 角 ” 改 写 成 “ 如 果 …… 那 么 …… 的 形 式 ” .31.把二元一次方程3x - y = 2 改写成含 x 的式子表示 y 的形式:_____.32.若2(2)0m ++ 则m n -=______.33+__________.34.一块占地800平方米的蔬菜大棚中,种着青椒、黄瓜、丝瓜和茄子四种蔬菜,下图表示各种蔬菜的种植面积,青椒占( )%,黄瓜比丝瓜多( )平方米.35.点B 在y 轴上且到点A (0,4)的线段长度是5,点B 的坐标是____36.若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为_____.37.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP 和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第_____名.38.将一副三角板中的两个直角顶点C 叠放在一起,其中30A ∠=︒,=60B ∠︒,45D E ∠=∠=︒.若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,在旋转过程中始终要求点E 在直线BC 上方,当三角板DCE 运动中,有一边和AB 平行时,则BCE ∠的度数为_______.39.若()2352280x y x y -++-+=,则x y +的值为___.三、解答题40.解下列方程:(1)(x −2)3=−0.125 (2)x 2−2516=0(3)(2x +3)(x −4)−(x +2)(x −3)=641.某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)该调查的样本容量是;(2)补全条形统计图;(3)若该校一共有2800名学生,估计该校年龄在15岁及以上的学生人数.42.解方程及解方程组:(1)2121 34y y-+=-(2)2313 314x yx y+=⎧⎨+=+⎩①②43.写出如图所示直角坐标系中点A,B,C,D,E的坐标.44.数轴上A、B、C、D依次表示四个实数:、133、142-、0(1)在数轴上描出点A、B、C、D的大致位置;(2)求AD两点之间的距离45.计算:(1)(8)(2)++-(2)1176--+(3)84(2)-+÷-(446.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了①中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值. 47.在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到下面两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在表中的频数分布表中,m = ,n = .(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?48.如图,平面直角坐标系中,三角形ABC 的顶点都在网格上,平移三角形ABC ,使点C 与坐标原点O 重合.(1)请写出图中点A ,B ,C 的坐标; (2)画出平移后的三角形OA 1B 1; (3)求三角形OA 1A 的面积.49.如图,平面直角坐标系中,直线AB 与x 轴负半轴交于()0A a ,,与y 轴正半轴交于()0B b ,.(1)求ABO 的面积;(2)若P 为直线AB 上一动点(不与A ,B 重合),连OP ,且23AOP BOP AOP S S S ≤≤△△△,求P 点横坐标P x 的取值范围.(3)如图,点C 在第三象限的直线AB 上,连OC ,OE OC ⊥于O 点,连CE 交y 轴于D 点,连AD 交OE 的延长线于F ,则OAD ∠,ADC ∠,CEF ∠,AOC ∠之间是否有某种确定的数量关系,请直接写出你的结论:_____________.参考答案:1.B【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答. 【详解】解:①由90APC ∠=︒可知,线段AP 的长是点A 到直线PC 的距离,错误; ①由PB l ⊥可知,线段BP 的长是点P 到直线l 的距离,正确; ①由垂线段最短可知,P A ,PB ,PC 三条线段中,PB 最短,正确; ①由PB l ⊥可知,线段BC 的长是点C 到线段PB 的距离,正确; 故选:B .【点睛】此题主要考查了点到直线的距离,垂线段最短.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短. 2.B【分析】根据横纵坐标的符号,可得相关象限. 【详解】解:①−7<0,2>0, ①点(−7,2)在第二象限. 故选:B .【点睛】本题主要考查点的坐标,解题的关键是熟练掌握各象限内点的符号特点. 3.D【分析】根据线段、射线、直线、相交和平行的定义逐一判断即可.【详解】解:A . 在同一平面内,两条直线的位置关系有相交、平行,故本选项错误; B . 在同一平面内,如果两条线段不相交,那么这两条线段也不一定平行(如下图所示),故本选项错误;C . 在同一平面内,不相交的两条射线也不一定是平行线(如下图所示),故本选项错误;D . 在同一平面内,不相交的两条直线是平行线,故本选项正确. 故选D .【点睛】此题考查的是直线、射线和线段位置关系的判断,掌握线段、射线、直线、相交和平行的定义是解决此题的关键. 4.C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】A .检测某品牌儿童鲜奶是否符合食品卫生标准,适合抽样调查,故本选项不合题意;B .调查人民对冰墩墩的喜爱情况,适合抽样调查,故本选项不合题意;C .调查与一新冠肺炎感染者密切接触人群的核酸检测结果,适合采用全面调查方式,故本选项符合题意;D .了解全国中学生的视力和用眼卫生情况,适合抽样调查,故本选项不合题意; 故选:C .【点睛】本题考查全面调查与抽样调查,解题的关键是根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断. 5.B【分析】根据立方根的含义可得答案. 【详解】解:8的立方根是2. 故选:B .【点睛】本题考查了立方根的定义,掌握立方根的定义是解题的关键. 6.C【分析】根据平行线的判定定理求解即可. 【详解】A CBE ∠=∠,//AD BC ∴, 故A 不符合题意;由A C ∠=∠,不能得出//AB CD , 故B 不符合题意;C CBE ∠=∠,//AB CD ∴, 故C 符合题意;180C D ∠+∠=︒,//AD BC ,故D 不符合题意;故选:C .【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.7.B【分析】根据平行线的判定,逐项判断即可求解.【详解】解:A .因为①3=①4,所以BD AC ∥,故本选项不符合题意;B .因为①1=①2,所以AB CD ∥,不能判断BD AC ∥,故本选项符合题意;C .因为①D =①DCE ,所以BD AC ∥,故本选项不符合题意;D .因为①D +①ACD =180°,所以BD AC ∥,故本选项不符合题意;故选:B【点睛】本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,①内错角相等,两直线平行,①同旁内角互补,两直线平行.8.D【分析】根据相交直线的定义,垂线段的性质,垂线的性质,垂线段的定义解答即可.【详解】解:A .两条直线相交,只有一个交点,原说法正确,故本选项不符合题意; B .在连接直线外一点与直线上各点的线段中,垂线段最短,原说法正确,故本选项不符合题意;C .在同一平面内,过一点有且只有一条直线垂直于已知直线,原说法正确,故本选项不符合题意;D .从直线外一点到这条直线的垂线段的长度,叫这个点到这条直线的距离,原说法错误,故本选项符合题意;故选:D .【点睛】本题考查了垂线的定义,点到直线的距离的定义,垂线段最短等知识点,能熟记知识点的内容是解此题的关键.9.D【详解】分析:先根据点 A 在 x 轴下方,y 轴右侧,判断出点A 所在象限,在根据距x 轴3个单位长度,距 y 轴2个单位长度即可判断出点A 的坐标.详解:①点 A 在 x 轴下方,y 轴右侧,①点A 在第四象限.又①距 x 轴3个单位长度,距 y 轴2个单位长度,①点A 的坐标为(2,-3).故选D.点睛:本题考查了平面直角坐标系.10.D【分析】根据无理数的定义逐项分析即可.【详解】A 是无理数,故不符合题意;B .2π是无理数,故不符合题意;CD 3=,是整数,不是无理数,符合题意.故选:D .【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;①①虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.11.D【分析】直接根据平方根的概念解答判断即可.【详解】解:6的平方根是,故选:D .【点睛】此题考查的是平方根,如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根.12.A【详解】试题分析:因为x <<-2.3<x <2.3,所以整数x 是0,1±,2±,故选A.考点:实数.13.C【分析】根据折线统计图对每一项分别进行分析判断即可.【详解】解答A.错误.签约金额2017,2018年是下降的.B.错误.与上年相比,2016年的签约金额的增长量最多.C.正确.-=亿元.D.错误.下降了244.5221.622.9故选:C.【点睛】本题考查了折线统计图,解决本题的关键是正确理解题意,能够从折线统计图中获取正确的信息.14.D【分析】根据a>b,应用不等式的基本性质,逐项判断即可.【详解】解:①a>b,①a+1>b+1,①选项A不符合题意;①a>b,①a﹣2>b﹣2,①选项B不符合题意;①a>b,①2a>2b,①选项C不符合题意;①a>b,①﹣a<﹣b,①﹣4a<﹣4b,①选项D符合题意.故选:D.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.15.C【详解】选项A,对顶角的平分线所在的直线是同一直线;选项B,互为邻补角的角平分线互相垂直;选项C、两条平行线的一对同位角的平分线所在的直线,互相平行;选项D,两条平行线的一对同旁内角的平分线所在的直线互相垂直;故选C.16.A【分析】根据与x 轴平行的直线上两点的距离等于这两点横坐标的差的绝对值解答即可.【详解】解:①AB //x 轴,①AB =A B x x -=2a -=2a -故选:A .【点睛】本题考查了与坐标轴平行的直线上两点距离的求法.与x 轴平行的直线上两点的距离等于这两点横坐标的差的绝对值;与y 轴平行的直线上两点的距离等于这两点纵坐标的差的绝对值.17.C【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】解:A 、菱形的对角线互相垂直的逆命题是对角线互相垂直的四边形是菱形,是假命题;B 、矩形的对角线相等的逆命题是对角线相等的四边形是矩形,是假命题;C 、平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题;D 、正方形的对角线垂直且相等的逆命题是对角线垂直且相等的四边形是正方形,是假命题;故选:C .【点睛】考核知识点:命题与逆命题.理解相关性质是关键.18.D【分析】根据频数、频率、总数之间的关系进行计算即可;【详解】解:60(135%15%10%)24⨯---=(人),故选:D .【点睛】本题主要考查了频率与频数的相关计算,准确分析列式是解题的关键. 19.D【分析】由对顶角求得10AEC ∠=︒,由角平分线的定义求得285∠=︒,根据平行线的性质即可求得结果.【详解】解:①10DEB ∠=︒,①10AEC ∠=︒,①18010170BEC ∠︒=︒︒=-,①EN 平分CEB ∠,①285∠=︒,①FM AB ∥,①285F ︒∠=∠=,故选:D .【点睛】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.20.<【详解】试题分析:根据二次根式的意义,把6还原为二次根式的表示为36,通过被开方数的大小可判断为<6.考点:实数的大小比较21.25【详解】试题解析:①一个正数的平方根是a+3和2a-9,①a+3+2a-9=0,①a=2,①这个数是(a+3)2=25考点:平方根.22.100或4.【分析】根据“一个正数有两个平方根,它们互为相反数”进行先确定2a ﹣4、3a ﹣1的关系,有两种情况,分情况讨论即可.【详解】①当2a ﹣4和3a ﹣1是同一个正数的同一个平方根时:2a ﹣4=3a ﹣1,解得:a =-3,当a =-3时,2a -4=-10,3a -1=-10,①-10是100的平方根,①这个正数是100;①当2a ﹣4和3a ﹣1是同一个正数的两个平方根时:2a ﹣4+3a ﹣1=0,解得:a =1, 当a =1时,2a -4=-2,3a -1=2,①2和-2是4的平方根,①这个正数是4;故答案为:100或4.【点睛】本题主要考查了平方根的概念,熟练掌握平方根的概念是解题的关键.一个正数有两个平方根,它们互为相反数.解这道题时注意分类讨论.23.①①①【分析】根据平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可求解.【详解】解:①①①3=①4,①BC①AD,故本选项错误;①①①1=①2,①AB①CD,故本选项正确;①①①A=①5,①AB①CD,故本选项正确;①①①C+①ABC=180°,①AB①CD,故本选项正确;故答案为:①①①.【点睛】本题考查的是平行线的判定,正确的掌握和应用平行线的判定方法是解题的关键.24.2a-,3)在y轴上,可知其横坐标为0,进而即可得出a的值.【分析】根据题意点P(2a-,3)在y轴上,【详解】点P(2a-=,则20a=.解得2故答案为:2.【点睛】本题考查了坐标轴上的点的特点,熟练掌握点在x轴上其纵坐标为0,点在y轴上其横坐标为0是解题的关键.25.(-2,0)【详解】根据点的平移规律,向上平移3个单位,横坐标不变,纵坐标加3,即可得到答案.解:①点(-2,-3)向上平移3个单位,①平移后的点的坐标为:(-2,-3+3),即(-2,0),故答案为(-2,0)此题主要考查了点的平移规律,关键掌握好:左右移,横减加,纵不变;上下移,纵加减,横不变.26.(0,1)【分析】直接利用M 点坐标得出H 点的坐标.【详解】解:由点(2,1)M -向y 轴作垂线,垂足为H ,则点H 的坐标是(0,1).故答案为:(0,1).【点睛】此题主要考查了点的坐标,正确掌握y 轴上点的坐标特点是解题关键. 27.>【分析】本题考查的是无理数与有理数比大小的问题,将有理数化成无理式的形式在进行比较即可【详解】因为4--=4->-【点睛】本题的关键是将有理数转化成无理式的形式28【分析】根据算术平方根和偶次方的非负性列式求出a 、b 即可.【详解】解:()230b -=,0=,230b ,①60a -=,30b -=,①6a =,3b =,【点睛】本题考查了非负数的性质,熟练掌握算术平方根和偶次方的非负性是解题的关键.29.3【详解】解不等式2x -1≥5得x≥3,所以最小整数解为3,故答案为3.30.如果一个角是锐角的补角,那么这个角是钝角.【分析】命题中的条件是一个角是锐角的补角,放在“如果”的后面,结论是这个角是钝角,应放在“那么”的后面.【详解】题设为:一个角是锐角的补角,结论为:这个角是钝角,故写成“如果…那么…”的形式是:如果一个角是锐角的补角,那么这个角是钝角, 故答案为如果一个角是锐角的补角,那么这个角是钝角.【点睛】本题考查了命题与定理,解题的关键是熟练的掌握命题与定理的相关知识点. 31.y=3x-2【分析】根据等式性质,直接移项可得.【详解】直接移项可得y=3x-2故答案为y=3x-2【点睛】考核知识点:二元一次方程的变形.掌握等式性质是关键.32.-3【详解】试题分析:根据非负数之和为零,则每个非负数都是零可得:m+2=0,n-1=0,解得:m=-2,n=1,则m-n=-2-1=-3.考点:非负数的性质.33【详解】根据绝对值的性质先去绝对值符号,再合并同类二次根式即可.34.20160【详解】观察图形可得,青椒所占的百分比为1-25%-10%-45%=20%;种植黄瓜的面积为800×45%=360平方米,种植丝瓜的面积为800×25%=200平方米,所以黄瓜比丝瓜多:360-200=160平方米.35.(0,9)和(0,-1).【分析】因为A、B都在y轴上,且AB=5,所以有两种情况:即当B点在A的上方时;当B在A点下方时.【详解】在y轴上且到点A(0,4)的线段长度为5的点B有两种情况,当在点A的上方时为(0,9),当在点A的下方时为(0,-1).故答案为:(0,9)和(0,-1).【点睛】主要考查了坐标与图形的性质,此题是比较简单的基础题,要注意有两种情况,不要漏解.36.(-3,-3)【分析】根据点到直线的距离和各象限内点的坐标特征解答.【详解】①点P在x轴下方,y轴的左方,①点P 是第三象限内的点,①第三象限内的点的特点是(-,-),且点到各坐标轴的距离都是3,①点P 的坐标为(-3,-3).故答案为(-3,-3).【点睛】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是正确解此类题的关键.37.3【分析】由第一个图可得综合实力排名全国第5名的城市的GDP 排名第九,再由第二个图可求解.【详解】解:由第一个图可得综合实力排名全国第5名的城市的GDP 排名第九, 由第二个图可得GDP 排名第九的城市的教育科研与医疗的排名为第3名,故填3.38.30︒或120°或165°【分析】根据题意可分①当CD ①AB 时;①当CE ①AB 时;①当DE ①AB 时;然后根据平行线的性质可分类进行求解即可.【详解】解:由题意得:①当CD ①AB 时,如图所示:①30A ∠=︒,①30ACD A ∠=∠=︒,①90ACB DCE ∠=∠=︒,①60ACE ∠=︒,①30BCE ∠=︒;①当CE ①AB 时,如图所示:①30A ∠=︒,①30ACE A ∠=∠=︒,①90ACB ∠=︒,①120BCE ACB ACE ∠=∠+=︒;①当DE ①AB 时,过点C 作CF ①DE ,如图所示:①DE ①AB ①CF ,①30A ∠=︒,45D E ∠=∠=︒,①30,45ACF A ECF E ∠=∠=︒∠=∠=︒,①75ACE ACF ECF ∠=∠+∠=︒,①165BCE ACB ACE ∠=∠+=︒;综上所述:当三角板DCE 运动中,有一边和AB 平行时,则BCE ∠的度数为30︒或120°或165°;故答案为30︒或120°或165°.【点睛】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.39.3【分析】结合题意,根据乘方和绝对值的性质,列二元一次方程组并求解,即可得到x 和y 的值,结合代数式的性质计算,即可得到答案.【详解】①()2352280x y x y -++-+= ①3502280x y x y -+=⎧⎨-+=⎩ ①354x y x y -=-⎧⎨-=-⎩解得:1272x y ⎧=-⎪⎪⎨⎪=⎪⎩①3x y +=故答案为:3.【点睛】本题考查了乘方、绝对值、二元一次方程组、代数式的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组的性质,从而完成求解.40.(1)、;(2)、;(3)、【详解】试题分析:(1)、根据立方根的性质进行计算;(2)、根据平方根的性质进行计算;(3)、首先根据去括号的法则将括号去掉,然后将方程化成一般式,最后根据平方根的性质进行求解.试题解析:(1)、x −2=√−0.1253∴x −2=−1232x ∴=(2)、22516=x ∴x =±√2516∴x =±54 (3)、原方程可化为:(2x 2-5x −12)−(x 2−x −6)=6∴x 2-4x −12=0①考点:解方程41.(1)50(2)见解析(3)1120人【分析】(1)由12岁的人数及其所占百分比可得样本容量;(2)用总人数乘以14岁所占的百分比,求出14岁的人数,再用总人数减去其他年龄的人数,从而补全统计图;(3)用总人数乘以样本中15岁及以上的学生人数所占比例可得.(1)解:(1)样本容量是612%50÷=;故答案为:50.(2)(2)14岁的学生人数5028%14⨯=(人),16岁的学生人数5061014182----=(人),补全统计图如下:(3)(3)22800(36%)112050⨯+=(人). 答:估计该校年龄在15岁及以上的学生人数为1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.42.(1)0.4y =-;(2)23x y =⎧⎨=⎩ 【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可得;(2)先将方程①进行变形,再利用加减消元法解二元一次方程组即可得.【详解】解:(1)212134y y -+=-, 方程两边同乘以12去分母,得4(21)3(2)12y y -=+-,去括号,得843612y y -=+-,移项,得836124y y -=-+,合并同类项,得52y =-,系数化为1,得0.4y =-;(2)2313314x y x y +=⎧⎨+=+⎩①②可变形为231333x y x y +=⎧⎨-=⎩①③, 由①+①3⨯得:29139x x +=+,解得2x =,将2x =代入①得:63y -=,解得3y =,则方程组的解为23x y =⎧⎨=⎩. 【点睛】本题考查了解一元一次方程和二元一次方程组,熟练掌握方程和方程组的解法是解题关键.43.A (3,0),B (-1,3),C (-2,-2),D (2,-4),E (-5,0).【分析】根据平面直角坐标系写出各点的坐标即可.【详解】观察直角坐标系可得:A (3,0),B (﹣1,3),C (﹣2,﹣2),D (2,﹣4),E (﹣5,0).【点睛】本题考查了点的坐标,是基础题.44.(1)大致位置见解答过程;(2.【分析】(1)根据A 、B 、C 、D 表示的数描出大致位置即可;(2)AD 两点之间的距离即是A 、D 表示的数的差之绝对值.【详解】解:(1)数轴上描出点A 、B 、C 、D 的大致位置如图:(2)AD 两点之间的距离为:0(-=【点睛】本题考查数轴上点表示的数,解题的关键是根据各数的近似值描出其在数轴上的大致位置.45.(1)6;(2)-12;(3)-10;(4)2【分析】(1)先化简符号,再作减法;(2)从左往右依次计算;(3)先算除法,再算加法;(4)先算开方,再算加法.【详解】解:(1)(8)(2)++-=8-2=6;(2)1176--+=-18+6=-12;(3)84(2)-+÷-=-8-2=-10;(4=-2+4=2【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则.46.0【分析】将31xy=-⎧⎨=-⎩代入第二个方程可得b的值,将54xy=⎧⎨=⎩代入第一个方程得a的值,即可求出所求式子的值.【详解】解:将31xy=-⎧⎨=-⎩代入411x by-=-得:1211-+=-b,解得1b=将54xy=⎧⎨=⎩代入方程组中的515ax y+=得:52015a+=,即1a=-20202021()a b∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.47.(1)80,0.20;(2)详见解析;(3)1200.【详解】试题分析:(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比即可求得m;用成绩在80≤x<90段的频数除以总人数即可求得n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.试题解析:(1)根据题意得:m=200×0.40=80(人),n=40÷200=0.20;(2)根据(1)可得:70≤x<80的人数有80人,补图如下:(3)根据题意得:4000×(0.20+0.10)=1200(人).答:估计约有1200人进入决赛.考点:频数(率)分布表;频数(率)分布直方图;用样本估计总体.48.(1)A(2,-1),B(4,3),C(1,2);(2)见解析;(3)三角形OA1A的面积为5 2 .【详解】试题分析:(1)根据平面直角坐标系写出即可;(2)找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可得解;(3)先求出OA1A所在的矩形的面积,然后减去OA1A四周的三角形的面积即可.试题解析:(1)A(2,-1),B(4,3),C(1,2)(2)如图所示,△A1B1C1即为所求作的三角形;(3)1OA A S =2×3-12×2×1-12×3×1-12×1×2, =6-3.5=2.5. 49.(1)12ab - (2)3243a x a 或322a x a (3)①CEF +①ADC -①OAD -①AOC =90°【分析】(1)根据题意可得OA =-a ,OB =b ,再根据三角形面积公式,即可求解; (2)过点P 作PH ①y 轴于点H ,可得P PH x =,然后分三种情况讨论:当点P 在第一象限时;当点P 在第二象限时;当点P 在第三象限时,即可求解;(3)过点A 作AM OF ∥交CD 于点M ,过点D 作DN OF ∥交x 于点N ,可得①AMD =①CEF ,①ADN =①DAM =①F ,从而得到①AMD +①ADC +①ADN =180°①,再由平行线的性质可得DN ①OC ,从而得到①AOC =①ODN ,进而得到①OAD +①AOC +①DAM =90°①,然后根据①ADN =①DAM ,可得①AMD +①ADC -①OAD -①AOC =90°,再由①AMD =①CEF ,即可求解.(1)解①根据题意得①OA =-a ,OB =b ,①ABO 的面积为1122a b ab ; (2)解:如图,过点P 作PH ①y 轴于点H ,①P PH x =,当点P 在第一象限时,BOP AOP S S ∆∆<,不合题意,舍去;当点P 在第二象限时,p p PH x x ==-, ①1122BOP p p S b x bx , ①1122AOPAOB BOP p S S S ab bx , ①23AOP BOP AOP S S S ≤≤△△△,①111112322222p p p ab bx bx ab bx , 解得:3243a x a ; 当点P 在第三象限时,p p PH x x ==-, ①1122BOP p p Sb x bx , ①1122AOPBOP AOB p S S S bx ab , ①23AOP BOP AOP S S S ≤≤△△△, ①111112322222p p p bx ab bx bx ab , 解得:322a x a ; 综上所述,P 点横坐标P x 的取值范围为3243a x a 或322a x a ; (3)解:①CEF +①ADC -①OAD -①AOC =90°,如图,过点A 作AM OF ∥交CD 于点M ,过点D 作DN OF ∥交x 于点N ,。

七年级下册数学期末试卷及答案

七年级下册数学期末试卷及答案

一、细心填一填〔每题2分,共计20〕1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方法,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,假设∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农〞问题时说,202X 年中央财政用于“三农〞的支出将到达33970000万元,这个数据用科学记数法可表示为 万元. 5. 一只蝴蝶在空中飞行,然后随意落在如下图的某一方格中〔每个方格除颜色外完全相同〕,则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .8.现在规定两种新的运算“﹡〞和“◎〞:a ﹡b=22b a +;a ◎b=2ab,如〔2﹡3〕〔2◎3〕= 〔22+32〕〔2×2×3〕=156,则[2﹡〔-1〕][2◎〔-1〕]= .9.某物体运动的路程s 〔千米〕与运动的时间t 〔小时〕关系如下图,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕11.以下图形中不是..正方体的展开图的是〔 〕A B C D 12. 以下运算正确的选项是......〔 〕 A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 以下结论中,正确的选项是......〔 〕 A .假设22b a ,b a ≠≠则 B .假设22b a , b a >>则 C .假设b a ,b a 22±==则 D .假设b1a 1,b a >>则第5题 32 1cb a 第3题 E D C B A第7题t 〔小时〕 2 O 30 S 〔千米〕 第9题 第14题E DCB A14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,假设△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万〔 〕A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为〔 〕A .2〔n -1〕B .2n -1C .2〔n +1〕D .2n +1 17.以下关系式中,正确的选项是......〔 〕 A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5的关系,则对这种产品来说,该厂〔 〕 A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3 持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 19.以下图形中,不肯定...是轴对称图形的是〔 〕 A .等腰三角形 B .线段 C .钝角 D .直角三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成〔首尾连结〕三角形的个数为〔 〕A .1B .2C . 3D .4三、精心算一算〔21题3分,22题5分,共计8分〕21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数替代x ,并求原代数式的值.四、认真画一画〔23题4分,24题4分,共计8分〕23.如图,某村庄方案把河中的水引到水池M 中,怎样开的渠最短,为什么?〔保存作图痕迹,不写作法和证明〕理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如下图中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形〔所画三角形可与原三角形有重叠的局部〕,你最多可以设计出几种?〔至少设计四种〕25.在“五·在只有一个名额.小丽想出了一个方法,她将一个转盘〔均质的〕均分成6份,如下图.游戏规定:随意转动转盘,假设指针指到3,则小丽去;假设指针指到2,则小芳去.假设你是小芳,会同意这个方法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场202X ~202X 年的养鸡统计图:〔1〕从图中你能得到什么信息.〔2〕各年养鸡多少万只?〔3〕所得〔2〕的数据都是精确数吗? 〔4〕这张图与条形统计图比拟,有什么优点?28.某种产品的商标如下图,O 是线段AC 、BD 的交点,并且AC图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29.如下图,要想推断AB 是否与CD说明理由.30.乘法公式的探究及应用.〔1〕如左图,可以求出阴影局部的面积是〔写成两数平方差的形式〕;〔2〕如右图,假设将阴影局部裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 〔写成多项式乘法的形式〕〔3〕比拟左、右两图的阴影局部面积,可以得到乘法公式 〔用式子表达〕. 〔4〕运用你所得到的公式,计算以下各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题〔6分〕31.一农民朋友带了假设干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y 〔含备用零钱〕的关系如下图,结合图像答复以下问题: 〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱〔含备用的钱〕是26元,问他一共带了多少千克的土豆?一、细心填一填〔每题2分,共计20〕1. 5x ;2a .2.±×1075.83 6.26或22㎝7. AC=AE 〔或BC=DE ,∠E=∠C ,∠B=∠D 〕 8.-20 9. 45 10.B6395二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- (3)分当x=0时,原式四、认真画一画〔23题4分,24题423.解:理由是: 垂线段最短. ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!〔第25题小4分,第26小题6分,共计10分〕25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:依据小王的设计可以设宽为x 米,长为〔x +5〕米,依据题意得2x +〔x +5〕=35 解得x=10.因此小王设计的长为x +际的. ……2分依据小赵的设计可以设宽为x 米,长为〔x +2〕米,依据题意得2x +〔x +2〕=35 解得x=11.因此小王设计的长为x +2=11+2=13〔米〕,而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143〔平方米〕. ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:〔1〕202X 年该养鸡场养了2万只鸡.〔答案不唯一〕〔2〕202X 年养了2万只;202X 年养了3万只;202X 年养了4万只;202X 年养了3万只;202X 年养了4万只;202X 年养了6万只.〔3〕近似数.〔4〕比条形统计图更形象、生动.〔能符合即可〕 ………〔每题1分〕 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C 〔或∠A=∠D 、或符合即可〕…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分〔答案不唯一〕 七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29. 〔1〕∠EAB=∠C ;同位角相等,两直线平行.〔2〕∠BAD=∠D ;内错角相等,两直线平行〔3〕∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.〔1〕22b a -.〔2〕()b a -,()b a + ,()()b a b a -+ . 〔3〕()()b a b a -+=22b a -.〔4〕: 评分标准:每空1分,〔4〕小题各1分八、信息阅读题〔6分〕31.〔1〕解:由图象可以看出农民自带的零钱为5元;〔2〕()元5.030520=- 〔3〕()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第〔1〕问和答各1分,〔2〕、〔3〕各2分.。

人教版七年级数学下册期末考试测试卷(含答案)精选全文

人教版七年级数学下册期末考试测试卷(含答案)精选全文

精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)

七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。

七年级数学下册期末试卷(附带答案)

七年级数学下册期末试卷(附带答案)

GFEDC BA1七年级数学下册期末试卷(附带答案)(满分:120分;考试时间:120分)一、选择题(每题3分,共30分)1、下面四个实数中,是无理数的为( ) A .-3 B .0 C .27D .3 2.下列调查中,调查方式选择正确的是( ) A .为了了解100个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量,选择全面调查C .为了了解生产的50枚炮弹的杀伤半径,选择全面调查D .学校给七年级新生做校服前进行的尺寸大小的调查,选择全面调查3.如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A .B .C .D .4.已知a b <,则下列式子正确的是( )A .55a b ->-B .33a b >C .55a b ->-D .33a b > 5.如右图,在数轴上表示实数7的可能是( )A .点PB .点QC .点MD .点N6.在平面直角坐标系中,点(2x -,x )在第二象限,则x 的取值范围是( ) A .02x << B .2x < C .0x > D .2x > 7.若15x y =⎧⎨=-⎩是二元一次方程23x ay +=-的一组解,则a 的值为( )A .1-B .1C .15-D .158.如图所示,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )• A .2个 B .4个 C .5个 D .6个 9.下列命题是真命题的共有( )(1)对顶角相等;(2)邻补角相等; (3)同位角相等; (4)在同一平面内,不平行的两条直线一定垂直;(5)两直平行线被被第三条直线所截,一对内错角的角平分线互相平行.A .1个B .2个C .3个D .4个10.某校运动员分组训练,若每组7人,则余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7y x 38y 5x =+⎧⎨+=⎩ B .7y x 38y 5x =-⎧⎨+=⎩ C .7y x 38y x 5=-⎧⎨=+⎩ D .7y x 38y x 5=+⎧⎨=+⎩二、填空题(每题4分,共24分)11.点(2,-2)为于第 象限.12.某饮料瓶上有这样的字样:Eatable Date 18 months .如果用x (单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为 . 13.如图:如果CD ∥BE ,∠1=70°,那么∠B 的度数为 .14.有一个数值转换器,原理如下:当输入的x 为16时,输出的是 .15.乐乐用100元购得笔记本和钢笔共30件,若每本笔记本2元,每支钢笔5元,那么乐乐最多能 买 支钢笔.16.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…则点A 18的坐标是 .三.解答题(一)(每题5分,共15分)17.解方程:223528x y x y -=⎧⎨+=⎩.18.解不等式组:332183(1)x x x x -⎧+≥⎪⎨⎪+<+-⎩.19.学着说点理:如图,∠1=∠2,DE ⊥BC ,AB ⊥BC ,那么∠A =∠3吗?说明理由. (请补充完整推理过程,并为部分推理注明依据,每空1分)取算术平方根 输入x是有理数输出y是无理数数结论:∠A=∠3,理由:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°(垂直的定义)∴DE∥AB( )∴∠1= ( )∠2= ( )∵∠1=∠2(已知)∴∠A=∠3(等量代换) .四.解答题(二)(每题8分,共24分)20.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上.且A(1,-4),B(5,-4),C(4,-1)(1)画出△ABC;(2)求出△ABC的面积;(3)若把△ABC向上平移2个单位长度再向左平移4个单位长度得到△A′B′C′在图中画出△A′B′C′,并写出B′的坐标.21.金平区某中学现有学生1500人,学校为了进一步丰富学生的课余生活,拟调整学校兴趣活动小组,为此进行一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:(1)样本的容量是多少?(2)在如图2中,将“体育”部分的图形补充完整.(3)试确定图1中,“音乐”部分所对应的圆心角的大小. (4)估计该中学现有的学生中,有多少人爱好“书画”?22.先阅读,再解题.例:解不等式:()()2530x x +->. 解:根据两数相乘,同号得正,得 不等式组Ⅰ:25030x x +>⎧⎨->⎩或不等式组Ⅱ:25030x x +<⎧⎨-<⎩.解不等式组Ⅰ,得3x > 解不等式组Ⅱ,得52x <-. 所以原不等式的解集为3x >或52x <-. 参照以上解题过程所反映的解题思想方法,试解不等式:()()23130x x -+<.五.解答题(三)(每题9分,共27分)23.今年4月20日四川省雅安市芦山县发生7.0级地震,A 、B 两村庄急需救灾物资分别为15吨和35吨,很快,C 、D 两城市已分别收到20吨和30吨捐赈物资,并准备全部运往A 、B 两地.若运输的总费用为545元,请问C 、D 两城市如何调运这些捐赈物资.24.一张四边形纸片ABCD ,AB ∥CD ,∠B=46°,把纸片一角沿折痕CN 折叠,使BC 与 B ’C ’重合,过点C 作CM ⊥CN ,试求∠BCM 的度数.25.已知点A (a ,0)和B (0,b )满足()2460a b -+-=,分别过点A 、B 作x 轴、y 轴的垂线交于点C ,如图所示,点P 从原点出发,以每秒2个单位长度的速度沿着O -B -C -A -O 的路线移动.(1)写出A 、B 、C 三点的坐标;(2)当点P 移动了6秒时,描出此时P 点的位置,并写出点P 的位置;(3)连结(2)中B 、P 两点,将线段BP 向下平移h 个单位(h >0),得到B ’P ’,若B ’P ’将四边形OACB 的周长分成线段的两部分,求h 的值.B'N M ED C B A参考答案一.选择题(每题3分,共30分) 1-10、DDBCB ABCBC 二.填空题(每题4分,共24分)11.四 12.x ≤18 13.110° 14.2 15.13 16.(5,-5) 三.解答题(一)(每题5分,共15分)17.解:223528x y x y -=⎧⎪⎨+=⎪⎩①②由①,得:22x y =+. ③把③代入②,得:3(22)528y y ++=.解得:y=2. 2分把y=2代入③,得:x=6. 4分 所以方程组的解为x 6y 2=⎧⎨=⎩. 5分18.解:解不等式①,得:3x ≤; 2分 解不等式②,得:2x >-; 4分 所以不等式组的解集为23x -<≤. 5分 19.解:∵DE ⊥BC ,AB ⊥BC (已知)∴∠DEC=∠ABC=90°(垂直的定义)∴DE ∥AB( 同位角相等,两直线平行) 1分 ∴∠1= ∠A ( 两直线平行,同位角相等) 3分 ∠2=∠3 (两直线平行,内错角相等) 5分 ∵∠1=∠2(已知) ∴∠A =∠3(等量代换) .四.解答题(二)(每题8分,共24分)20.解:(1)如图,△ABC 为所求; 3分 (2)过C 作CD ⊥AB 于D(3)“音乐”部分所对应的圆心角为:360°×2480=108°;6分8不等式组Ⅰ:230130xx->⎧⎨+<⎩或不等式组Ⅱ:230130xx-<⎧⎨+>⎩.3分解不等式组Ⅰ,无解,5分解不等式组Ⅱ,得1332x-<<.7分所以原不等式的解集为1332x-<<.8分五.解答题(三)(每题9分,共27分)23.解:(1)(15-x),(35-y)或(x+15)2分(2)由题意得:20151210(15)9(35)545x yx y x y+=⎧⎨++-+-=⎩5分解得:1010xy=⎧⎨=⎩7分∴15-x=5,35-y=25 8分答:C城市运往A村庄的捐赈物资为10吨,则从C城市运往B村庄的捐赈物资为10吨,从D城市运往A 村庄的捐赈物资为5吨,运往B村庄的捐赈物资为25吨.9分24.解:∵AB∥CD。

七年级数学下册期末考试题(附答案解析)

七年级数学下册期末考试题(附答案解析)

七年级数学下册期末考试题(附答案解析)一、单选题1.目前代表华为手机最强芯片的麒麟990处理器采用7nm工艺制程,1nm=0.0000001cm,则7nm用科学记数法表示为()A.0.7×10﹣6cm B.0.7×10﹣7cm C.7×10﹣6cm D.7×10﹣7cm2.下列各式,计算结果为a6的是()A.a2+a4B.a7÷a C.a2•a3D.(a2)43.若a<b,则下列不等式中正确的是()A.a﹣3<b﹣3 B.a﹣b>0 C.b D.﹣2a<﹣2b4.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.5.下列命题中,可判断为假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.两条直线被第三条直线所截,同位角相等C.同旁内角互补,两直线平行D.直角三角形两个锐角互余6.如图,在四边形ABCD中,连接BD,下列判断正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AB∥CDD.若∠A=∠C,∠ABC=∠ADC,则AB∥CD7.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打出来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.8.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF =4,则下列结论中错误的是()A.DF=7 B.∠F=30°C.AB∥DE D.BE=49.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.如图,四边形ABCD中,AD∥BC,AB⊥BC,AD=6,BC=10,DC=DE,∠CDE=90°,则△ADE的面积是()A.4 B.8 C.12 D.1611.若x、y满足2134x yx y=-⎧⎨+≥⎩,则x的最小整数值为()A.-1 B.1 C.0 D.212.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少( )A .160°B .150°C .120°D .110°二、填空题 13.已知112x y =⎧⎪⎨=⎪⎩是方程42ax y +=的一个解,那么a =___________. 14.如图,将△ABC 向左平移3cm 得到△DEF ,AB 、DF 交于点G ,如果△ABC 的周长是12cm ,那么△ADG 与△BGF 的周长之和是__.15.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.对于实数a ,b ,定义运算“*”:a *b =22()()a ab a b ab b a b ⎧-≥⎨-<⎩,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.若x ,y 是二元一次方程组521x y x y +=⎧⎨-=⎩的解,则x *y =_____. 17.为了加强学生课外阅读,开阔视野,某学校开展了“书香校园,从我做起”的主题活动学校随机抽取50名学生,对他们一周的课外阅读时间进行调查,结果如图所示,学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,若学校共有2000人,则获得“阅读之星”的有 ___人.18.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n个正方形(实线)四条边上的整点个数共有_______________个.19.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 ________.20.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是_______________.三、解答题21.计算下列各题:(13;(2)若(2x ﹣1)2=9,试求x 的值.22.解不等式组()2532113x x +≥⎧⎪+⎨<⎪⎩,并把它的解集在数轴上表示出来.23.为庆祝中国共产党成立100周年,让红色基因、革命薪火代代传承,某校开展以学习“四史”(党史、新中国史、改革开放史、社会主义发展史)为主题的书画展,为了解作品主题分布情况,在学生上交的作品中,随机抽取了若干份进行统计,并根据调查统计结果绘制了统计图表:请结合上述信息完成下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)在扇形统计图中,“新中国史”主题作品份数对应的圆心角是度;(4)若该校共上交书画作品1800份,估计以“党史”为主题的作品有多少份?24.如图,AD∥BE,AB∥CD,点C在直线BE上,连接AC、AE,∠3=∠4,求证:∠1=∠225.甲、乙两同学在商店购买中性笔和笔记本,甲要买3支中性笔,2本笔记本需花费19元;乙要买7支中性笔,1本笔记本需花费26元,(1)求中性笔和笔记本的单价;(2)商店新进一种单价为3元的小装饰品,甲、乙两同学非常喜欢,都想购买,但各自付款后,只有甲还剩2元钱,他们看到商店的优惠条件“中性笔每盒10支,整盒买每支可优惠0.5元”后,经商讨两人找到了一种购买方法,如愿以偿,他们是怎样买的?请通过计算说明.26.在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.°(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2 = 2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示.参考答案与解析:1.【解答】解:7nm=7×0.0000001cm=7×10﹣7cm,故选:D.2.【解答】解:A、a2+a4,无法计算,故此选项错误;B、a7÷a=a6,故此选项正确;C、a2•a3=a5,故此选项错误;D、(a2)4=a8,故此选项错误.故选:B.3.【解答】解:A、不等式的两边都减3,不等式的方向不变,故A正确;B、不等式的两边都减b,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:A.4.【解答】解:2x>1﹣3,2x>﹣2,x>﹣1,故选:D.5.【解答】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B、两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C、同旁内角互补,两直线平行,正确,是真命题;D、直角三角形两个锐角互余,正确,是真命题,故选:B.6.【解答】解:A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能不能推出AB∥CD,故本选项不符合题意;D、根据∠A=∠C,∠ABC=∠ADC,可得∠A+∠ADC=180°,能推出AB∥CD,故本选项符合题意.故选:D.7.【解答】解:设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为:.故选:C.8.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:过D点作DH⊥BC于H,过E点作EF⊥AD于F,如图,∵AB⊥BC,AD∥BC,∴∠DAB=∠B=90°,∵DH⊥BC,∴四边形ABHD为矩形,∴BH=AD=6,∴CH=BC﹣BH=10﹣6=4,∵∠ADH=90°,∴∠FDC +∠CDH =90°,∵∠CDE =90°,即∠EDF +∠FDC =90°,∴∠EDF =∠CDH ,在△DEF 和△DCH 中,,∴△DEF ≌△DCH (AAS ),∴EF =CH =4,∴S △ADE =•AD •EF =×6×4=12.故选:C .11.B【解析】∵2134x y x y =-⎧⎨+≥⎩, ∴1234x y x y +⎧=⎪⎨⎪+≥⎩, ∴3342x x ++≥, 解得1≥x ,∴x 的最小整数为1,故选B .12.B【解析】∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE =∠DEF =10°.由翻折的性质可知:图2中,∠EFC =180°﹣∠BFE =170°,∠BFC =∠EFC ﹣∠BFE =160°, ∴图3中,∠CFE =∠BFC ﹣∠BFE =150°.故选B .13.0【解析】∵112xy=⎧⎪⎨=⎪⎩是方程42ax y+=的一个解,∴1422a+⨯=,即:a=0.故答案是:0.14.12【解析】∵△ABC向左平移3cm得到∆DEF,∴AD=FC,∴△ADG与△BGE的周长之和=AD+BF+DF+AB=BC+AC+AB=12,故答案为12;15.70°##70度【解析】连接AB.∵C岛在A岛的北偏东45°方向,在B岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-110°=70°.故答案为:70°.16.-3【解析】=52=1x yx y+⎧⎨-⎩①②,①+②得:3=6x,∴=2x,代入①得:=3y,∵2<3,∴原式2=233=69=3⨯---.故答案为:﹣3.17.200【解析】2000×550=200(人),即若学校共有2000人,则获得“阅读之星”的有200人,故答案为:200.18.4n【解析】第1个正方形的整点个数为4=41⨯,第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.19.(6,3)【解析】∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为15,点A的坐标为(1,3),∴3AC=15,∴AC=5,∴C(6,3),故答案为:(6,3).20.(45,43)【解析】由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)21.(1;(2)2或﹣1.【解析】(1)原式=4﹣1﹣(3=4﹣1﹣;(2)根据平方根的意义可得:2x ﹣1=3或2x ﹣1=﹣3,解得:x =2或x =﹣1,即x 的值为2或﹣1.22.10.5x -≤<,图见解析【解析】:解不等式253x +≥,得1x ≥-,解不等式()2113x +<,得0.5x <, 则不等式组的解集为10.5x -≤<,将其解集表示在数轴上如下:同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)10;28;(2)见解析;(3)144°;(4)216份【解析】(1)由题意得:样本总数=6÷12%=50人,∴m =50×20%=10,∴n %=14÷50=28%,∴n =28,故答案为:10,28;(2)如图(3)由题意得:“新中国史”主题作品份数对应的圆心角=360°×20÷50=144°;(4)由题意得:以“党史”为主题的作品=1800×12%=216(份)答:以“党史”为主题的作品大约有216份.24.见解析【解析】证明:∵AD∥BE,∴∠3=∠DAC,又∵AB∥CD,∴∠4=∠BAE,又∵∠3=∠4,∴∠DAC =∠BAE,∴∠DAC-∠5=∠BAE-∠5,∴∠1=∠2.25.(1)笔记本的单价为5元,单独购买一支笔芯的价格为3元;(2)他们合买笔芯即可如愿以偿,见解析【解析】(1)设笔记本的单价为x元,中性笔单价为y元,依题意,得:2319726x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)他们合买笔芯即可如愿以偿.甲、乙带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为:5×(2+1)+(30.5-)×10=40(元).∵4740-=7(元),3×2=6(元),7>6,∴他们合在一起购买笔芯,即可如愿以偿.进行解题.26.(1)∠1=40°;(2)∠AEF+∠FGC=90°,理由见详解;(3)α+β=300°,理由见详解【解析】:(1)∵AB∥CD,∴∠1=∠EGD,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)∠AEF+∠FGC=90°,理由如下:如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD,∴∠AEF=∠EFP,∠FGC=∠GFP,∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∴∠AEG−∠FEG+∠CFG−∠EFG=180°,∵∠FEG=30°,∠EFG=90°,∴∠AEG−30°+∠CFG−90°=180°,∴∠AEG+∠CFG=300°,即:α+β=300°.。

七年级数学下册期末试卷测试卷 (word版,含解析)

七年级数学下册期末试卷测试卷 (word版,含解析)

七年级数学下册期末试卷测试卷 (word 版,含解析)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160° 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x.(1)x2-81=0(2)(x﹣1)3=819.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE∥BC.理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(),∴∠2=∠4().∴∥().∴∠3=().∵∠3=∠B(),∴=().∴DE∥BC().20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=12×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.【详解】解:DE∥BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试
(时间:90分钟 总分:120分)
一、选择题(每小题3分,共30分)
1.已知实数a ,b ,若a >b ,则下列结论错误的是(D )
A .a -5>b -5
B .3+a >b +3
C .a 5>b 5
D .-3a >-3b
2.如果点P(x ,y)在坐标轴上,那么(C )
A .x =0
B .y =0
C .xy =0
D .x +y =0
3.下列四个图形中,不能推出∠2与∠1相等的是(B )
4.要了解某校1 000名初中学生的课外作业负担情况,若采用抽样调查的方法进行调查,则下面哪种调查方式具有代表性?(C )
A .调查全体女生
B .调查全体男生
C .调查七、八、九年级各100名学生
D .调查九年级全体学生 5.在2 017991,3.141 592 65,13,-6,-37,0,36,π3
中无理数的个数是(C )
A .1
B .2
C .3
D .4
6.若把不等式组⎩
⎪⎨⎪
⎧2-x ≥-3,x -1≥-2的解集在数轴上表示出来,则其对应的图形为(B )
A .长方形
B .线段
C .射线
D .直线
7.如图中的条件,能判断互相平行的直线为(C )
A .a ∥b
B .m ∥n
C .a ∥b 且m ∥n
D .以上均不正确
8.有下列四个命题:①对顶角相等;②等角的补角相等;③如果b ∥a ,c ∥a ,那么b ∥c ;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中是真命题的有(A )
A .4个
B .3个
C .2个
D .1个
9.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩
⎪⎨⎪⎧x =6,
y =■,那么被“★”“■”遮住的两个数分别为(A )
A .10,4
B .4,10
C .3,10
D .10,3
10.(黄石中考)当1≤x ≤2时,ax +2>0,则a 的取值范围是(A )
A .a >-1
B .a >-2
C .a >0
D .a >-1且a ≠0
二、填空题(每小题3分,共24分)
11.64的立方根是2.
12.直线m 外有一定点A ,A 到直线m 的距离是7 cm ,B 是直线m 上的任意一点,则线段AB 的长度:AB ≥7 cm .(填写“<”“>”“=”“≤”或“≥”)
13.如图,有6对同位角,4对内错角,4对同旁内角.
14.(港南区期中)如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点(4,2).
15.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为②①④⑤③.(填序号)
16.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于35°.
17.某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是528元.
18.已知点A(-2,0),B(3,0),点C 在y 轴上,且S 三角形ABC =10,则点C 坐标为(0,4)或(0,-4). 三、解答题(共66分) 19.(8分)计算:
(1)4-3
8+
3
-1
27
; 解:原式=2-2+(-13)=-1
3.
(2)2(2-3)+|2-3|.
解:原式=22-23+3-2=2- 3.
20.(8分)(1)解方程组:⎩
⎪⎨⎪⎧2x +5y =25,①4x +3y =15;② (2)解不等式:2x -13-1≤5x +1
2.
解:①×2,得4x +10y =50.③ 解:去分母,得2(2x -1)-6≤3(5x +1).
③-②,得7y =35,解得y =5. 去括号,得4x -2-6≤15x +3. 将y =5代入①,得x =0. 移项,得4x -15x ≤3+2+6.
∴原方程组的解是⎩
⎪⎨⎪⎧x =0,
y =5. 合并,得-11x ≤11.
系数化为1,得x ≥-1.
21.(6分)已知:如图所示的网格中,三角形ABC 的顶点A(0,5),B(-2,2).
(1)根据A ,B 坐标在网格中建立平面直角坐标系,并写出点C 坐标(2,3);
(2)平移三角形ABC ,使点C 移动到点F(7,-4),画出平移后的三角形DEF ,其中点D 与点A 对应,点E 与点B 对应.
解:如图.
22.(6分)苹果熟了,一个苹果从树上被抛下.如图所示,从A 处落到了B 处.(网格单位长度为1)
(1)写出A ,B 两点的坐标;
(2)苹果由A 处落到B 处,可看作由哪两次平移得到的? 解:(1)A(2,4),B(-1,-2).
(2)先向左平移3个单位长度,再向下平移6个单位长度.(或先向下平移6个单位长度,再向左平移3个单位长度)
23.(8分)如图,已知四边形ABCD 中,∠D =100°,AC 平分∠BCD ,且∠ACB =40°,∠BAC =70°.
(1)AD与BC平行吗?试写出推理过程;
(2)求∠DAC和∠EAD的度数.
解:(1)AD与BC平行.
∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°.
又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°.∴AD∥BC.
(2)由(1)知AD∥BC,∴∠DAC=∠ACB=40°.
∵∠BAC=70°,∴∠B=70°.
∴∠EAD=∠B=70°.
24.(8分)在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.
捐款户数分组统计表,
)
请结合以上信息解答下列问题:
(1)a=2.本次调查的样本容量是50;
(2)补全捐款户数统计表和统计图;
(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少? 解:(2)补全捐款户数统计图如图:
(3)600×(28%+8%)=600×36%=216(户). 答:不少于300元的有216户.
25.(10分)(株洲中考)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么? (3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分? 解:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,由题意,得
⎩⎪⎨⎪⎧x +y =185,80%x +20%y =91.解得⎩⎪⎨⎪⎧x =90,y =95.
答:孔明同学测试成绩为90分,平时成绩为95分.
(2)不可能.由题意可得:80-70×80%=24,24÷20%=120>100,故不可能. (3)设平时成绩为满分,即100分,综合成绩为100×20%=20. 设测试成绩为a 分,根据题意,可得 20+80%a ≥80,解得a ≥75.
答:他的测试成绩应该至少为75分.
26.(12分)如图1,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,得到A ,B 的对应点C ,D ,连接AC ,BD ,CD.
(1)写出点C ,D 的坐标并求出四边形ABDC 的面积;
(2)在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在,请求出点F 的坐标;若不存在,请说明理由;
(3)如图2,点P 是直线BD 上一个动点,连接PC ,PO ,当点P 在直线BD 上运动时,请直接写出∠OPC 与∠PCD ,∠POB 的数量关系.
解:(1)C(0,2),D(4,2). S 四边形ABDC =AB ·OC =4×2=8.
(2)存在,当BF =1
2CD 时,三角形DFC 的面积是三角形DFB 面积的2倍.
∵C(0,2),D(4,2),
∴CD =4,BF =
2
1
CD =2. ∵B(3,0),
∴F(1,0)或(5,0).
(3)当点P 在线段BD 上运动时:∠OPC =∠PCD +∠POB ; 当点P 在BD 延长线上运动时:∠OPC =∠POB -∠PCD ; 当点P 在DB 延长线上运动时:∠OPC =∠PCD -∠POB.。

相关文档
最新文档