UG NX 8.5 有限元分析入门与实例精讲 第12章
ug有限元分析教程
ug有限元分析教程有限元分析是一种数值计算方法,用于求解工程结构或物理问题的数学模型。
它将连续的解析问题离散化成有限数量的子域,并在每个子域上进行数值计算,最终得到整个问题的解。
本教程将介绍有限元分析的基本原理和应用方法。
1. 有限元网格的生成有限元分析的第一步是生成适合问题的有限元网格。
网格是由许多小的单元组成,如三角形、四边形或六边形。
生成网格的方法有很多种,如三角剖分、矩形划分和自适应网格等。
2. 定义有限元模型在定义有限元模型时,需要确定问题的几何形状、边界条件和材料性质。
几何形状可以通过几何构造方法来描述,边界条件包括固支、力和热边界条件等。
材料性质可以通过弹性模量、热传导系数和热膨胀系数等参数来描述。
3. 选择合适的有限元类型根据具体的问题,选择合适的有限元类型。
常见的有限元类型包括一维线性元、二维三角形单元和二维四边形单元等。
使用不同的有限元类型可以更好地逼近实际问题的解。
4. 构造有限元方程有限元分析的核心是构造线性方程组。
根据平衡方程和边界条件,将整个问题离散化为有限个子问题,每个子问题对应于一个单元。
然后,根据单元间的连续性,将所有子问题组合成一个总的方程组。
5. 解算有限元方程通过求解线性方程组,可以得到问题的解。
求解线性方程组可以使用直接方法或迭代方法。
常见的直接方法包括高斯消元法和LU分解法,迭代方法包括雅可比迭代法和共轭梯度法等。
6. 后处理结果在求解得到问题的解后,可以进行后处理结果。
后处理包括计算力、应变和位移等物理量,以及绘制图表和动画。
有限元分析是一种强大的数值方法,广泛应用于结构力学、流体力学、热传导和电磁场等领域。
它在解决复杂问题和优化结构设计方面发挥着重要作用。
通过学习有限元分析,您可以更好地理解结构的行为,并提高工程设计的准确性和效率。
UG有限元分析第12章
UG有限元分析第12章第12章:有限元分析在结构密集度设计中的应用导言:有限元分析是一种基于离散化方法的数值分析技术,可以用于求解结构力学问题。
它已经成为现代工程设计的重要工具之一、本章将研究有限元分析在结构密集度设计中的应用,以及相关的优化算法。
1.结构密集度设计的概念和要求结构密集度设计是指通过优化设计,将结构尺寸和重量最小化的设计方法。
在工程实践中,通常需要同时考虑结构的强度、刚度、稳定性和减震等因素。
有限元分析为结构密集度设计提供了一种有效的数值分析方法。
2.有限元模型的建立在进行有限元分析之前,首先需要建立结构的有限元模型。
有限元模型的建立包括网格划分、单元类型的选择和边界条件的设定等步骤。
在结构密集度设计中,需要使用合适的单元类型和足够的网格密度来保证分析结果的准确性。
3.结构的优化设计在有限元分析的基础上,可以进行结构的优化设计,以实现结构密集度的最小化。
常用的优化算法包括遗传算法、粒子群算法和模拟退火算法等。
这些算法可以通过调整结构的参数,如尺寸、形状和材料等,来实现结构的优化设计。
4.结构密集度设计的应用案例本章还将介绍几个结构密集度设计的应用案例,包括飞机机翼、汽车车身和桥梁等结构的优化设计。
这些案例将展示有限元分析在结构密集度设计中的应用效果,并讨论其对结构性能和重量的影响。
5.研究进展和展望最后,本章将总结有限元分析在结构密集度设计中的应用,并对未来的研究方向进行展望。
随着计算机技术的不断发展和优化算法的改进,有限元分析在结构密集度设计中的应用将变得更加广泛和深入。
总结:有限元分析在结构密集度设计中发挥了重要作用。
通过建立合适的有限元模型和使用优化算法,可以实现结构的最优设计和重量的最小化。
未来的研究还应该关注如何进一步提高有限元分析的准确性和效率,以及如何将其与其他优化技术相结合,为工程实践提供更好的解决方案。
UGNX有限元分析入门-专题典型实例
(3)划分有限元模型网格
单击工具栏中的【3D四面体网格】图标,弹出【3D四面体网格意图
单击确定
1)分析单元质量
o 单击工具栏中的【单元质量】图标,弹出【单元质量】对话框:
设置 相关 参数
(4)创建仿真模型
o 在【仿真导航器】窗口分级树中,右键单击【Diaolan_fem1.fem】节点, 找到【显示仿真】单击选择【Diaolan_sim1.sim】节点,进入仿真模型操 作环境。
创建轴类零件整模型的仿真模型中,划分网格和约束条件定义时宜采用 【圆柱坐标系】,对应在后处理查看结果时必须切换为【圆柱坐标系】, 这也适用于其他轴类、盘套类等对称零件分析结果的查看。
为了说明轴对称分析类型在减少计算规模上具有的优势,本实例还对整 个3D实体模型进行网格划分的方法进行操作和比较,计算后的位移云图 和应力云图分别如下图所示,结果说明:在约束条件和加载条件一致的 前提下,两者最终结果非常接近。
1)自定义材料
单击工具栏中的【材料属性】图标,弹出【指派材料】对话框。
输入名称 及参数
复制材料
单击【确定】
2)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
选择材料
单击【创建】
单击【确定】
3)网格属性定义
单击工具栏中的【网格捕集器】图标,弹出【网格捕集器】对话框。
在轴类零件中,因功能需要或者工艺要求而设置的凹槽、凸台、过渡圆角及倒 角等,如果在承载过程中对结构整体受力分析结果的影响很小,那么,在有限 元分析过程中一般可以忽略,本实例需要对模型的一些小特征进行清理。
2.1.4 操作步骤
创建有限元模型的解算方案 设置有限元模型基本参数 划分有限元模型网格 创建仿真模型 求解及后处理
唐康林UG NX 视频教程目录
第166讲:NX8.5建模之变化的扫掠(可变截面扫掠)命令的用法! 第167讲:NX8.5建模偏差分析命令一[检查分析]! 第168讲:NX8.5建模偏差分析命令二[相邻边分析]! 第169讲:NX8.5建模偏差分析命令三[度量分析]! 第170讲:NX8.5建模之扫掠与变化的扫掠在建模中的应用(全参数化) 第171讲:NX8.5建模之样式扫掠命令的用法! 第172讲:NX8.5建模之剖切曲面命令详解一[端线-顶线-肩线]! 第173讲:NX8.5建模之剖切曲面命令详解二[端线-斜率-肩线]! 第174讲:NX8.5建模之剖切曲面命令详解三[圆角-肩线]! 第175讲:NX8.5建模之剖切曲面命令详解四[端线-顶线-Rho]! 第176讲:NX8.5建模之剖切曲面命令详解五[端线-斜率-Rho]! 第177讲:NX8.5建模之剖切曲面命令详解六[圆角-Rho]! 第178讲:NX8.5建模之剖切曲面命令详解七[端线-顶线-高亮显示]! 第179讲:NX8.5建模之剖切曲面命令详解八[端线-斜率-高亮显示]! 第180讲:NX8.5建模之剖切曲面命令详解九[圆角-高亮显示]! 第181讲:NX8.5建模之剖切曲面命令详解十[四点-斜率]! 第182讲:NX8.5建模之剖切曲面命令详解十一[五点]! 第183讲:NX8.5建模之剖切曲面命令详解十二[三点-圆弧]! 第184讲:NX8.5建模之剖切曲面命令详解十三[二点-半径]! 第185讲:NX8.5建模之剖切曲面命令详解十四[端线-斜率-圆弧]! 第186讲:NX8.5建模之剖切曲面命令详解十五[点-半径-角度-圆弧] 第187讲:NX8.5建模之剖切曲面命令详解十六[圆]! 第188讲:NX8.5建模之剖切曲面命令详解十七[圆相切]! 第189讲:NX8.5建模之剖切曲面命令详解十八[端线-斜率-三次]! 第190讲:NX8.5建模之剖切曲面命令详解十九[圆角-桥接]! 第191讲:NX8.5建模之剖切曲面命令详解二十[线性-相切]! 第192讲:NX8.5建模之剖切曲面命令(20种)的汇总(精品)! 第193讲:NX8.5建模之各种扫掠命令的总结(什么情况下用什么扫掠) 第194讲:NX8.5建模之扫掠与剖切曲面命令在工业设计中的应用! 第195讲:NX8.5建模之面倒圆命令详解一[基本操作&圆形截面]! 第196讲:NX8.5建模之面倒圆命令详解二[二次曲线&完全倒圆角]! 第197讲:NX8.5建模细节特征之软倒圆命令详解! 第198讲:NX8.5建模细节特征之样式圆角命令详解一[规律类型]!
UGNX有限元分析入门–基础实例与结构基础
选取16条刀刃 边使用过滤器
过滤器选项
单击确定
UGNX有限元分析入门–基础实例和结构 基础
4)划分网格
单击工具栏中的【3D四面体网格】图标,弹出【3D四面体网格】对话框
设置相关参数
网格划分后示意图
单击确定
UGNX有限元分析入门–基础实例和结构 基础
(3)分析单元质量
单击工具栏中的【单元质量】图标,弹出【单元质量】对话框:
时需要进行自定义材料的操作。
UGNX有限元分析入门–基础实例和结构 基础
1.1.4 操作步骤
创建有限元模型的解算方案 创建有限元模型 分析单元质量 创建仿真模型 求解仿真模型 后处理,结果查看
UGNX有限元分析入门–基础实例和结构 基础
(1)创建有限元模型的解算方案
调出冲头三维实体主模型。依次左键单击主菜单中的【开始】和【高级仿 真】命令,在【仿真导航器】窗口分级树中进行如下操作:
1.2 UG NX有限元入门实例2—组件受力分析
本小节主要内容: 基础知识 问题描述 问题分析 操作步骤 本节小结
UGNX有限元分析入门–基础实例和结构 基础
1.2.1基础知识
在NX Nastran中定义装配模型中不同部件几何体之间的网格连接和接触方式有: (1)非关联FEM装配模型方法; (2)关联FEM装配模型方法; (3)不管采用非关联FEM装配模型,还是关联FEM装配模型,不同几何体单元之
啮合区域A
啮合区域B
件1
件2
UGNX有限元分析入门–基础实例和结构 基础
材料参数表
UGNX有限元分析入门–基础实例和结构 基础
1.2.3 问题分析
主要分析齿轮啮合区域在承受离心力和扭矩载荷共同作用下的位移及应力情况。 将非线性模拟成线性关系来计算,其计算结果和实际结果有差距。 创建FEM装配及设置面面接触的参数是本实例中整个分析过程的重要内容。 施加边界约束条件操作十分重要,涉及到圆柱坐标系与限制自由度的问题。
UG NX 8.5 有限元分析入门与实例精讲 第6章
单击【创建】
单击【确定】
4)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框
单击【确定】
5)划分有限元模型网格
单击工具栏中的【3D四面体网格】图标,弹出【3D四面体网格】对话框;
设置 相关 参数
单击确定
网格划分 示意图
6)分析单元质量
2)平滑绘图设置
右键单击【云图绘图】中【Post View1】,选择【设置结果】,弹出如图所示的【平滑 绘图】对话框,在【坐标系】下拉菜单中选择【整体(全局)圆柱坐标系】,默认其他 选项参数,单击【确定】按钮,将后处理中模型的坐标系调整为全局圆柱坐标系
本实例在给定过盈配合量的基础上,分析在行星轮上施加的扭矩对接触压力、应 力分布状态的影响,从而为行星轮系统实施过盈联接提供理论和数据支撑。
行星轮系统实 物模型
行星轮结构模型
工况条件
行星轮及行星架都采用Iron_40材料 行星轮与行星架使用过盈装配工艺,过盈量为0.082mm,作用在三个行星轮外圆面
设置相关参数
单击确定
2)定义材料属性
单击工具栏中的【材料属性】图标, 弹出【指定材料】对话框,在图形窗 口选中行星轮系统的4个几何模型,选 择【材料列表】框中【库材料】中的 【Iron_40】; 设置相关参数
单击确定
3)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
划好网格单元后,在仿真导航器窗口中出现4个部件网格体节点。在窗口菜单中选择 【单元质量】命令,出现如图所示的【单元质量】检查窗口
新增网 格节点
选择 对象
单击 命令
(1)创建仿真模型
UG有限元分析教程
UG有限元分析教程有限元分析(Finite Element Analysis,FEA)是一种计算方法,用于求解连续介质力学问题。
UG作为一款常用的三维CAD软件,也提供了相应的有限元分析功能,下面将介绍UG有限元分析的基本流程和步骤。
首先,建立几何模型是有限元分析的第一步。
在UG中,可以通过绘制线与曲线、创建体与表面等操作,构建出所需的几何形状。
在建模过程中,需要注意几何模型的准确性和合理性,以保证模拟结果的可靠性。
然后,进行网格划分。
有限元分析将几何模型离散化为多个小单元,每个小单元称为网格,通过将整个模型划分为有限个网格单元,可以更容易地对模型进行数值计算。
在UG中,可以选择不同的网格划分算法和参数设置,以求得较为合适的网格划分结果。
接下来,定义边界条件和加载条件。
在有限元分析中,需要对模型的边界进行约束和加载,以模拟真实的工程环境。
在UG中,可以通过选择特定面或边进行边界条件设置,例如固定边界条件、约束边界条件等。
同时,还可以对特定面或边进行加载条件设置,如施加力、施加压力等。
完成边界条件和加载条件的定义后,即可进行求解。
在UG中,可以通过调用有限元分析求解器进行计算。
求解过程中,UG会对模型进行离散化计算,并得到相应的应力、应变等结果。
求解的时间长短与模型的复杂性、计算机性能等因素有关。
最后,进行后处理。
在有限元分析中,后处理是对求解结果的分析和可视化。
UG提供了丰富的后处理工具,可以对应力、应变等结果进行图形显示和数据分析,并以形式化报告的形式输出结果。
总结而言,UG有限元分析是一项强大的工程分析工具,可以帮助工程师解决各种复杂的力学问题。
通过建立几何模型、网格划分、定义边界条件和加载条件、求解和后处理,可以得到模型的应力、应变等结果,以指导后续的工程设计和优化工作。
UG有限元分析教程
UG有限元分析教程第1章高级仿真入门在本章中,将学习:高级仿真的功能。
由高级仿真使用的文件。
使用高级仿真的基本工作流程。
创建FEM和仿真文件。
用在仿真导航器中的文件。
在高级仿真中有限元分析工作的流程。
1.1综述UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。
高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。
图1-1所示为一连杆分析实例。
图1-1连杆分析实例高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。
例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。
本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。
另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。
高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。
高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM 文件,这有利于在分布式工作环境中开发有限元(FE)模型。
这些数据结构还允许分析师轻松地共享FE数据去执行多种类型分析。
UG NX4高级仿真培训教程2高级仿真提供世界级的网格划分功能。
本软件旨在使用经济的单元计数来产生高质量网格。
结构仿真支持完整的单元类型(1D、2D和3D)。
另外,结构级仿真使分析师能够控制特定网格公差。
例如,这些公差控制着软件如何对复杂几何体(例如圆角)划分网格。
高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。
例如,分析师可以使用这些工具提高其网格的整体质量,方法是消除有问题的几何体(例如微小的边)。
高级仿真中专门包含有新的NX传热解算器和NX流体解算器。
NX传热解算器是一种完全集成的有限差分解算器。
它允许热工程师预测承受热载荷系统中的热流和温度。
UG有限元分析
第1章 有限元分析方法及NX Nastran 的由来专业文档供参考,如有帮助请下载。
0 UG 有限元分析第1章 有限元分析方法及NX Nastran 的由来1.1 有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
1.1.1 有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE (Computer Aided Engineering )。
这些商品化的CAE 软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE 在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE 工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE 分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE 仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑ CAE 仿真可有效缩短新产品的开发研究周期。
❑ 虚拟样机的引入减少了实物样机的试验次数。
❑ 大幅度地降低产品研发成本。
❑ 在精确的分析结果指导下制造出高质量的产品。
❑ 能够快速对设计变更作出反应。
❑ 能充分和CAD 模型相结合并对不同类型的问题进行分析。
❑ 能够精确预测出产品的性能。
❑ 增加产品和工程的可靠性。
❑ 采用优化设计,降低材料的消耗或成本。
❑ 在产品制造或工程施工前预先发现潜在的问题。
❑ 模拟各种试验方案,减少试验时间和经费。
第1章 有限元分析方法及NX Nastran 的由来专业文档供参考,如有帮助请下载。
UG NX 8.5 有限元分析入门与实例精讲 第13章
本章节主要内容:
基础知识 问题描述 问题分析 操作步骤 本节小结
13.1 基础知识
在12章中介绍了热传递分析的一些基本知识,在本章实例中将使用12章中使用的 发热率、对流和辐射,除此之外,本章还将在热载荷中使用热通量,在热约束中 将使用温度作为约束条件: (1) 热通量简介 (2) 热约束简介
定义PCB材料 的力学性能
定义PCB材料 的热学性能
b) 创建SiC材料材料
按照上述方法,在【选择体】中选中电路板上15个发热元件实体模型,在【材料 列表】中选择【本地材料】图标,单击【新建材料】,如图所示;
定义SiC材料 的力学性能
定义SiC材料 的热学性能
3)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框,如图所示, 依次定义PCB材料、SiC材料的物理属性
单击工具栏中的【单元】图 标,弹出【模型检查】对话 框,如图所示;
设置相 关参数
单击该命令
(3)创建仿真模型
单击【仿真导航器】窗口分级树的【Board_fem 1.fem】节点,右键弹出快捷菜单, 单击【新建仿真】并进行相关操作;弹出【创建解算方案】对话框,在【名称】中默 认名称为【Solution 1】,【分析类型】选取【热】,【解算方案类型】选取为 【SOL 153 Steady State Nonlinear Heat Transfer】,单击【确定】按钮,同时 注意到【仿真导航器】窗口的分级树中,新出现了相关的节点,如图所示。
编辑FEM对 话框
单击确定
分析类型选 择为热
2)新建PCB与SiC材料;a) 创建PCB材料:
单击工具栏中的【材料属性】图标右侧黑色的倒三角,弹出【指派材料】对话框; 在图形窗口的【选择体】中选中电路板的板实体模型,在【材料列表】中选择 【本地材料】图标,单击【新建材料】,【类型】中选择【各向同性】,单击 【创建】图标;
UG有限元分析
8.4 操作步骤
8.4.1 曲轴结构自由模态的计算 创建有限元模型 优化(理想化)模型 创建有限元模型 创建仿真模型 求解自由模态 后处理及其动画演示
8.4.2 曲轴结构约束模态的计算 施加约束条件 求解约束模态 后处理及其动画演示
8.4.3 曲轴结构模态计算精度的对比
8.4.1 曲轴结构自由模态的计算
1)定义材料属性
单击工具栏中的【指派材料】图标,弹出【指派材料】对话框; 设置相关参数
单击该命令
2)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
选择材料
单击【创建】
单击【确定】
3)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框
2020/3/23
1)理想化几何体
在工具栏上单击【理想化几何体】命令,弹出【理想化几何体】对话框;
油孔1
油孔2
设置相 关参数
删除曲轴上两 个贯通的油孔
2)移除几何特征
删除模型上的油孔后会发现,在油孔删除部位处还残留有前面的断线,选择【移 除几何特征】命令,
选取相应 的对象
移除几何特征 操作后示意图
(3)创建有限元模型
设置参数
单击确定
4)仿真导航器新增节点
单击【创建解算方案】对话框的【确定】 按钮,注意到【仿真导航器】窗口分级树 中新出现了相关的数据节点,如图所示。
单击工具栏中的【保存】按钮,将上述操 作成功的仿真模型和数据及时保存起来。
仿真导航器 新增节点
(5)求解自由模态
在【仿真导航器】窗口分级树中单击【Crank Shaft_sim1.sim】节点,单击求解, 待求解完成关闭相应的窗口,如图所示。双击【结果】命令窗口,出现模态后处理结 果。 后处理导航 器新增节点
UG NX 8.5 有限元分析入门与实例精讲 第4章
Y向位移云图及 最大最小值
2)查看Von-Mises应力云图
依次展开【Solution 1】、【应力-单元节点】和【Von-Mises】节点,双击 【Von-Mises】节点并在工具栏中打开【标记开/关】命令,得到该模型的 Von-Mises应力分布情况;
Von-Mises应 力云图及最大 最小值
3)退出【后处理】显示模式
单击工具栏中的【返回到模型】命令,退出【后处理】显示模式,单击工具 栏中的【保存】图标,将上述成功的操作结果保存下来;切换到【仿真导航 器】窗口界面,完成计算结果的分析,也为后续优化设计操作提供了约束条 件合理的基准值。
2019/12/25
4.4.2 结构优化分析操作步骤 (1)建立优化解算方案
在仿真窗口中单击【Solution 1】节点,右键单击弹出的【求解】命令,弹出【求解】 对话框,单击【确定】按钮,稍等后完成分析作业,,关闭各个信息窗口,双击出现 的【结果】节点,即可进入后处理分析环境。
待显示完成, 关闭各窗口
1)查看Y向位移云图
在【后处理导航器】窗口依次展开【Solution 1】、【位移-节点的】和【Y】 节点,双击【Y】节点,结合优化设计的要求以及该值大小,初步确定模型变 形位移的约束条件。
逐个定义
设置相 关参数
4.4.2 结构优化分析操作步骤
建立优化解算方案 优化求解及其结果查看
4.4.1 结构静力学分析操作步骤
打开随书光盘part源文件所在的文件夹路径: Book_CD\Part\Part_CAE_Unfinish\Ch04_Bracket_support,选中 文件Bracket_support.prt,调出主模型。在三维建模环境中,预先查看 一下和本次优化过程设计变量有关的特征内容和相应尺寸。
UG NX 8.5 有限元分析入门与实例精讲 第5章
本章内容简介 本实例首先利用UG NX高级仿真中的静力学【SOL 101 Linear Statics -
Global Constraints】解算模块,以叶轮叶片为分析对象,依次创建有限元模型 和仿真模型,计算出该模型的位移和应力值,以此作为疲劳分析的名义值,通过 创建耐久性仿真方案,依次选取应力准则、应力类型和疲劳寿命准则,分别计算 了两种工作转速下的结构疲劳寿命,通过查看结构的疲劳寿命、疲劳损伤程度、 疲劳安全系数及强度安全系数等指标来评判该结构的疲劳性能。
本章节主要内容:
基础知识 问题描述 问题分析 操作步骤 本节小结
5.1基础知识
主要内容大致分为四个部分: 疲劳分析概述 疲劳分析主要参数 疲劳分析操作流程
操作流程
5.2 问题描述
如图为某大型离心压缩机叶轮叶片的实际模型,压缩机叶轮叶片的主要破坏形式 是疲劳破坏,该叶轮叶片的特点是叶片是整体压铸或采用焊接的联结方式,首先 计算该结构线性静力学中的Von-Mises应力和应变值,判断结构在此工况下是否处 于弹变阶段,然后按照最大应力值的工况根据一般的疲劳寿命准则,计算以下条 件的疲劳寿命:
算模块分析模型在工况下的疲劳性能。
(1)创建有限元模型
1)依次左键单击【开始】和【高级仿真】命令, 在【仿真导航器】窗口的分级树中,单击 【Impeller.prt】节点,进行新建FEM相关操作;
弹出的【新建FEM】对话框,默认【求解器】和 【分析类型】中的选项,单击【确定】按钮即 可进入了创建有限元模型的环境,注意在【仿 真导航器】窗口分级树上出现了相关的数据节 点。
5.4.1 结构静力学分析操作步骤 创建有限元模型 创建仿真模型 求解及其解算参数的设置 5.4.2 单个载荷变量疲劳分析的操作 创建工况1的疲劳分析解算方案 查看疲劳分析结果 创建工况2的疲劳分析解算方案并查看分析结果 查看工况2的疲劳分析结果
UG NX 8.5 有限元分析入门与实例精讲 第11章
(2)创建仿真模型
1)单击【仿真导航器】窗口分级树的【Assem1_Non _fem1.fem】节点,右键弹 出快捷菜单,单击【新建仿真】,新建相关操作,【解算方案类型】选取为【SOL 601,106 Advanced Nonlinear Statics】,如图所示,单击【确定】按钮。同时 注意到【仿真导航器】窗口分级树中,新出现了相关的数据节点。 设置相关 参数
钢套
轴瓦
静压轴承装 配主模型
工况条件
轴瓦使用锡青铜(ZQSn3-7-5-1),钢套使用40Cr,工作时钢套不动,将轴瓦沿轴向 压入10mm,压入过程中轴瓦与钢套的摩擦系数取0.05。
为进一步的压入装配工艺优化设计(提取约束反力)提供数据支撑,需要考虑的问题如 下: (1)封油面近油腔边切向变形的确定 (2)弹性轴瓦弹变钢套最大许用应力的确定 轴瓦使用的材料为锡青铜(ZQSn3-7-5-1),屈服强度为260 MPa,抗拉强度极限为 1000 MPa;钢套的材料为40Cr,屈服强度为1178MPa,抗拉强度极限为1240 MPa, 这些材料的抗拉强度极限、屈服极限均为已知,一般由设计手册和产品设计规范分别查 询这两类材料在工况下的许用应力。要避免压入装配过程中出现较大的塑性变形。 (3)确定装配压入力 (4)非线性解算中的其他规定
单击工具栏中的【材料属性】图标,弹出【指派材料】对话框;在图形窗口单击 选中轴瓦模型,单击【新建材料】的【创建】命令,如图所示; 设置相关 参数
单击该命令
3)指派材料:钢套
按照上述的方法,在图形窗口单击选中钢套模型,单击【新建材料】的【创建】 命令,弹出创建各向同性材料对话框,在【名称】中输入【40Cr】,在【属性】 的【质量密度(RHO)】中输入【7.85e-6】,【单位】默认为【kg/mm^3】,在 【弹性常数】的【杨氏模量(E)】中输入【193000】,【单位】选择 【N/mm^2(MPa)】,在【泊松比(NU)】中输入【0.284】;点击【强度】按钮,在 【屈服强度】中输入【1178】,【单位】选择【N/mm^2(MPa)】,在【极限抗拉强 度】中输入【1240】,【单位】选择【N/mm^2(MPa)】,单击【确定】按钮,完成 钢套材料的创建,选择刚才创建好的材料,单击【确定】命令。
UGNX8.5中文版基础教程第十二章模具设计
模 具 设 计注塑模设计基础模具设计初始设置工件设计和型腔布局产品分型 型芯和型腔本章主要介绍了注塑模设计基础、模具设计初始设置、工件设计和型腔布局、产品分型方面的相关知识,同时还介绍了型心和型腔的相关知识与操作技巧,通过本章的学习,读者可以掌握模具设计方面的知识,为深入学习UG NX8.5中文版知识奠定基础。
第 章12UG NX 8.5中文版基础教程12.1 注塑模设计基础注塑模向导是一个非常好的工具,它能使模具设计中耗时、烦琐的操作变得更精确、更便捷,使模具设计完成后的产品更改自动更新相应的模具零件,大大提高了模具设计师的工作效率。
本节将详细介绍一些注塑模设计基础知识。
12.1.1 模具设计常用术语UG的模具设计过程使用了很多术语来描述设计步骤,这些是模具设计所独有的,熟练掌握这些术语,对理解UG模具设计有很大的帮助。
1. 设计模型模具设计必须有一个设计模型,也就是模具将要制造的产品原型。
设计模型决定了模具型腔形状、成型过程是否要利用砂芯、销、镶块等模具元件,以及浇注系统、冷却水线系统的布置。
2. 参照模型参照模型是设计模型在模具模型的影像,如果在零件设计模块中编辑更改了设计模型,那么包含在模具模型的参照模型也将发生相应的变化,然而在模具模型中对参照模型进行编辑,修改了其特征,则不影响设计模型。
3. 工件工件表示直接参与熔料(如顶部和底部嵌入物成型)的模具元件的总体积,使用分型面分隔工件,可以得到型腔、型芯等元件,工件的体积应该包围所有参考模型、模穴、浇口、流道和模口等。
4. 分型面分型面由一个或多个曲面特征组成,可以分割工件或者已存在的模具体积块。
分型面在UG模具设计中占据着极为重要和最为关键的地位,应当合理地选择分型面的位置。
5. 收缩率注塑件从模具中取出冷却至室温尺寸会缩小变化的特性称为收缩件,衡量塑件收缩程度大小的参数称为收缩率。
对高精度塑件,必须考虑收缩给塑件尺寸形状带来的误差。
6. 拔模斜度塑料冷却后会产生收缩,使塑料制件紧紧地抱住模具型芯或型腔突出部分,造成脱模困难,为了便于塑料制件从模具中取出或使从塑料制件中抽出型芯,防止塑料制件与模具成型表面黏附,以防止产生塑件制件表面被划伤、擦毛等问题,塑料制件的内、外表面沿脱模方向都应该有倾斜的角度,即脱模斜度,又称为拔模斜度。
UG NX 8.5 有限元分析入门与实例精讲 第10章
(4)本例中采用模态频率响应解算器SOL111,使用FREQ1载荷频率的求解方法,频率步长为 2Hz,进行扫频分析。载荷施加点使用刚性连接方式,创建载荷施加于作用点。
单击确定
2)指派材料
单击工具栏中的【指派材料】图标,弹出【指派材料】对话框;
设置相关 参数
单击确定
3)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
选择材料
单击【创建】
单击【确定】
4)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框
单击该命令
12)创建1D连接
击工具栏中的【1D连接】图标,弹出【1D连接】的对话框; 设置相 关参数
单击该命令
(2)创建仿真模型
1)单击【仿真导航器】窗口分级树的 【robot arm_fem1.fem】节点,右键弹 出快捷菜单,单击【新建仿真】,弹出 【新建部件文件】对话框,在【名称】 中修改为【robot arm_sim1.sim】,选择 合适的存放路径,单击【确定】按钮, 弹出【新建仿真】对话框,默认所有的 选项,单击【确定】按钮,如图所示。
打开随书光盘part源文件所在的文件夹: Book_CD\Part\Part_CAE_Unfinish\Ch10_Robot arm\robot arm.prt模 型,调出如图所示的骨架连接件主模型
1)建立骨架联接系统的FEM模型
依次左键单击【开始】和【高级仿真】命令,在【仿真导航器】窗口分级树中单 击【robot arm.prt】节点,右键单击弹出的【新建FEM】选项,新建FEM,并 进行其他操作,单击【确定】按钮即可进入了创建有限元模型的环境。 设置相关 参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)创建有限元模型
1)依次左键单击【开始】,在【应用所有模块】中找到【高级仿真】命令,在 【仿真导航器】窗口分级树中,单击【SpotLight.prt】节点,右键弹出菜单并单 击出现的【新建FEM和仿真】选项,并进行相关操作;设置【解算方案类型】选 取为【SOL 153 Steady State Nonlinear Heat Transfer】,默认【预览解算 方案设置】中的其它选项,单击【确定】按钮;
新建FEM和 仿真对话框
解算方案设 置对话框
2)几何体简化
将理想化模型设为显示部件,进行几何模型的简化处理,在图形窗口中选择射灯 的14个部件对模型进行提升;单击工具栏中的【理想化几何体】图标,选择【移 除几何特征】命令,如图所示;
提升体命 令操作
设置相关参数
简化后的散 热器几何体
3)创建模型部件材料,创建LED灯珠材料
(a)LED轨 道的实物图
LED轨道射灯 内部结构图
工况条件
使用压铸铝ALDC12材料进行散热器设计,散热器进行电泳表面处理,辐射率为0.5。不 考虑灯具电源的热影响及导热胶、导热硅脂,测试的环境温度为28.5℃,要求散热器设 计的温度在65℃以下,结温在90℃以下;
LED轨道射灯的各部件材料如表所示;
12.3 问题分析
由于LED灯珠的内部结构比较复杂,用LED灯珠的铜衬底作为LED灯珠的材料,仅把 LED灯珠作为发热源,不考察LED灯珠的内部发热与传热情况,属于产品级的传热 问题。
铝基板结构基本上由电路层、绝缘层和基体三部分组成,导热性能在同一个平面 内是均匀相同的,由于结构为铺层结构,且每层结构的导热性能相差很大,铝基 板在法向导热性能呈现差异较大(和平面内导热系数相差数百倍),根据行业内 现有的水平来看,铝基板的法向导热系数一般只有2,所以要使用正交各向异性材 料来模拟铝基板的导热性能;同时,如果考虑导热胶及导热硅脂的影响,也可以 使用正交异向材料来模拟。如果使用各向同性材料会导致基板及灯具的温度偏高 很多,与实际情况不符。
设置相 关参数
单击确定
c)散热器网格的建立
单击工具栏中的【3D四面体网格】图标,弹出【3D四面体网格】对话框;
设置相 关参数
单击确定
LED灯具3D网 格划分结果
(2)模型检查和修改参数
单击工具栏中的【单元】图标,弹出【模型检查】对话框,如图所示; 设置相 关参数
b) 创建铝基板材料
选择【指派材料】图标,进入【指派材料】窗口,如图所示,在图形窗口中选择 中间的铝基板实体作为【选择体】,在【新建材料】的【类型】中选择【各向异 性】,单击【创建材料】命令,创建铝基板的材料;
设置相 关参数
单击确定
c)创建散热器材料
选择【指派材料】图标,进入【指派材料】窗口,如图所示。在图形窗口中 选择下面的散热器实体作为【选择体】,在【新建材料】的【类型】中选择 【各向同性】,单击【创建材料】命令,创建散热器的材料;
本例中首先演算自然对流与辐射散热的方式,看产品性能是否满足要求;若不满 足要求,再考虑其他的散热方式。
12.4 操作步骤
创建有限元模型 模型检查和修改参数 施加载荷和约束 建立LED灯具部件的接触关系 计算求解 结果分析 后处理及其动画演示
12.5 操作步骤
新建一个项目,打开随书光盘part源文件所在的文件夹,导入 Book_CD\Part\Part_CAE_Unfinish\Ch12_LED\SpotLight.prt 模型,调出如图所示的LED灯具主模型。。
LED灯珠的网 格收集器创建
铝基板的网格 收集器创建
6)划分单元网格;a) LED灯珠网格的建立
a)单击工具栏中的【3D四面体网格】图标右侧小三角的网格下拉菜单,选 择【3D扫略网格】;
设置相 关参数
单击确定
b)铝基板的网格的建立
单击工具栏中的【3D四面体网格】图标右侧小三角的网格下拉菜单,选择 【3D扫略网格】;
本章节主要内容:
基础知识 问题描述 问题分析 操作步骤 本节小结
12.1 基础知识
简单介绍热分析相关基础知识及流程;
介绍热分析的常用术语及基础知识;
NX热分析是NX Nastran功能中的一个特色, 完全集成在NX高级仿真环境中,热分析结果可以 用作NX Nastran解算器中热应力和挠曲分析的边 界条件。
设置参数
单击确定
4)设置物理属性参数
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框,如图所示, 依次建立灯珠、铝基板及散热器的物理属性
物理属性设 置窗口
LED灯珠的物 理属性创建
散热器的物理 属性创建
铝基板物理属 性的创建
5)建立网格收集器
单击工具栏中的【网格收集器】图标,弹出【网格收集器】对话框;依次建立灯珠、 铝基板及散热器的网格属性;
第12章 结构热传递分析实例精讲——LED灯具热分析
本章内容简介 本实例利用UG NX高级仿真结构热分析中的【SOL 153 Steady State
Nonlinear Heat Transfer(稳态非线性热传递)】模块,介绍了如何应用NX的热 仿真对LED灯具进行结构热传递分析的操作流程和操作要点,包括创建热分析模型、 加载及约束的设置、热分析常用参数的选取方法及热传递分析的应用技巧和使用 场合。
应用热仿真的 产品设计流程
12.2问题描述
如图所示为LED轨道射灯、轨道射灯的灯具内部结构,灯具功率为20W,共有12颗 LED灯珠排布在铝基板(基体AL2014)上,灯珠的光热转化率为80%(行业内热仿 真计算的默认转化率);找出散热器设计的薄弱部位,并进行改进和优化设计, 仿真结果与实测数据进行对比,以指导实测;
a)单击工具栏中的【指派材料】图标右侧的黑色倒三角图标,选择【指派材料】 图标,进入【指派材料】窗口命令;
创建LED灯珠材料:在图形窗口中选择12颗LED灯珠实体作为【选择体】,在【材 料列表】的【库材料】中选择【Copper_C10100】,单击【确定】,如图所示
设置相关参数
灯珠材料创建 对话框