曲线运动与万有引力 (答案)
曲线运动单元检测
《曲线运动、万有引力》单元检测一、选择题:1.做匀速圆周运动的物体,下列哪些物理 量是不变的:( ) A 、速度 B 、速率 C 、角速度 D 、频率2.如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是 A .b a t t >,b a v v < B .b a t t >,b a v v > C .bat t <,bav v <D .bat t <,bav v >3.如图所示的塔吊臂上有一可以沿水平方向运动的小车A ,小车下装有吊着物体的吊钩,在小车A 与物体B 以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B 向上吊起,A 、B 之间的距离以22()d H t S I =-(SI 表示国际单位制,式中H 为吊臂离地面的高度)规律变化,则物体做 ( ) A .速度大小不变的曲线运动 B .速度大小增加的曲线运动C .加速度大小方向均不变的曲线运动D .加速度大小方向均变化的曲线运动4.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于 A .Rgv2arcsin B .Rgv2arctanC .Rgv 22arcsin21 D .Rgvarc2cot5.如图所示,质量为M 的物体穿在离心机的水平光滑滑杆上,M 用绳子与另一质量为m 的物体相连。
当离心机以角速度ω旋转时,M 离转轴轴心的距离是r 。
当ω增大到原来的2倍时,调整M 离转轴的距离,使之达到新的稳定状态,则 A .M 受到的向心力增大 B .M 的线速度增大到原来的2倍 C .M 离转轴的距离是 r/2 D .M 离转轴的距离是r/46.杂技演员表演“水流星”,在长为l.6m 的细绳的一端,系一个总质量为m=O.5kg 的盛水容器。
高考必备物理曲线运动技巧全解及练习题(含答案)及解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
曲线运动万有引力定律
曲线运动万有引力定律(一)圆周运动【例题精选】:例1:在图6(a)的装置中,质量为M的物体与质量为m的物体用细绳连接,物体M与转台一起以角速度ω做匀速圆周运动,试分析M的转动半径R。
解:物体M m与构成连接体,隔离M m与且做受力分析(如图6(b)所示),二者的受力情况中,绳子两端的拉力T大小相等,m处于平衡状态,有T mg=——————①M在水平面做匀速圆周运动,Mg与N相互平衡,而T为向心力即T M R=ω2——————②由①式与②式可得mg M R=ω2·Rmg M =ω2若M的转动半径RmgM>ω2,而m M、与ω不变,则绳子的拉力T mg M=小于所需的向心力,M将要远离圆心,若该桌面是粗糙时此时物体M会受到指向圆心的摩擦力作用。
设最大静摩擦力为f R Mm,'为可能的最大半径.如图7(a),则有T f M R m +=ω2'又因T mgR mg f M m=∴'=+ω2若M 的转动半径R mgM 〈ω2,绳子的拉力T mg M =大于所需的向心力,物体M 将要向圆心运动,此时摩擦力方向背离圆心,此时物体M 会受到背离圆心的摩擦力作用。
设''R M 为物体的最小圆半径.如图7(b), 则有T f M R m -=''ω2同样T mgR mg f M m=∴''=-ω2例2:如图8(a),一根轻杆长L ,两端各固定一个质量为m 的小球A 和B ,在距A 球L 3处有一转轴O ,当杆绕轴在竖直平面内匀速转动时,周期T L g=2π,分析杆转到图示的竖直位置时,两球对杆的作用力及轴对杆的作用力。
解:隔离A 球与B 球,且做受力分析如图8(b),设杆对A 球有向下拉力N 1,杆对B 球有向上拉力N 2,这时因轴对杆可能也有力的作用,所以不能认为N 1与N 2的大小相等。
两球的角速度相同,且ωπ==2T gLA ,球的圆周半径R LB A =3,球的圆周运动半径R L B =23,根据牛顿第二定律列出方程,对A 球有 N mg m L123+=ωN m g L L mg mg 12323=⎛⎝ ⎫⎭⎪-=-·N 1得出负值说明N 1的实际方向与所设方向相反即杆对球是向上的支持力,大小为23mg ,球对杆则是向下压力,大小为23mg .对球有B N mg m L 2223-=ωN m g L L mg mg 222353=⎛⎝ ⎫⎭⎪+=·即杆对球有向上拉力,大小为53mg ,而球对杆的作用力应向下,大小为53mg 。
2006届高三毕业班曲线运动
2006届高三毕业班曲线运动、万有引力定律 练习题一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
1.一个物体以初速度v 0从A 点开始在光滑水平面上运动,一个水平力作用在物体上,物体的运动轨迹如图1中的实线所示,图中B 为轨迹上的一点,虚线是过A 、B 两点并与轨迹相切的直线,虚线和实线将水平面划分5个区域,则关于施力物体的位置,下面说法正确的是( )A .如果这个力是引力,则施力物体一定在④区域B .如果这个力是引力,则施力物体一定在②区域C .如果这个力是斥力,则施力物体可能在②区域D .如果这个力是斥力,则施力物体一定在④区域2.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同3.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足( )A .v >1m/sB .v =1m/sC .v <1m/sD .v =3m/s4.如图2,从光滑的1/4圆弧槽的最高点滑下的小物块,滑出槽口时速度为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,半球的半径为R 2,则R 1与R 2的关系为( )A .R 1≤R 2B .R 1≥R 2C .R 1≤R 2/2D .R 1≥R 2/25.如图3所示,细杆的一端与一小球相连,可绕过O 点的水平轴自转动。
现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对小球的作用力可能是( )图1图2A .a 处为拉力,b 处为拉力B .a 处为拉力,b 处为推力C .a 处为推力,b 处为拉力D .a 处为推力,b 处为推力 6.2003年10月15日,我国成功地发射了“神舟五号”载人飞船,经 过21小时的太 空飞行,返回舱图4所示,飞船在飞行中是无动力飞行,只受到地球的万有引 力作用,在飞船从轨道的A 点沿箭头方向运行到B 点的过程中,有以下说法:①飞船的速度逐渐增大 ②飞船的速度逐渐减小 ③飞船的机械能守恒 ④飞船的机械能逐渐增大。
高考试题选之—曲线运动、万有引力
2007-7-25
5
李小富制作
第4题
高 考 试 题 选 之 ——
2007-7-25
4、已知引力常量G.月球中心到地球中心的距离R 和月球绕地球运行的周期T。仅利用这三个数据, 可以估算出的物理量有(05全国Ⅱ) A、月球的质量 B、地球的质量 C、地球的半径 D、月球绕地球运行速度的大小
6
李小富制作
4 π 2h3 由 G Mm = m 2π h 得 M = 2 h T GT 2
2
⑴请判断上面的结果是否正确,并说明理由。如不正 确,请给出正确的解法和结果。 ⑵请根据已知条件再提出两种估算地球质量的方法并 解得结果。
2007-7-25 15
李小富制作
第11题解答
高 考 试 题 选 之 ——
2007-7-25
17
(2)激光器和探测器沿半径由中心向边缘移动(理由为:由于脉冲宽 度在逐渐变窄,表明光信号能通过狭缝的时间逐渐减少,即圆盘上 对应探测器所在位置的线速度逐渐增加,因此激光器和探测器沿半 径由中心向边缘移动).
李小富制作
第11题(05广东)
高 考 试 题 选 之 —— 11、已知万有引力常量G,地球半径R,月球和地球 之间的距离r,同步卫星距地面的高度h,月球绕地球 的运转周期T1 ,地球的自转周期T2 ,地球表面的重力 加速度g。某同学根据以上条件,提出一种估算地球质 量M的方法:同步卫星绕地球作圆周运动,
2007-7-25
3
李小富制作
第2题解答:
高 考 试 题 选 之 ——
2007-7-25 4
李小富制作
第3题
高 考 试 题 选 之 B、火星和太阳的质量之比 C、火星和地球到太阳的距离之比 D、火星和地球绕太阳运行速度大小之比 —— 3、把火星和地球绕太阳运行的轨道视为圆周。由火 星和地球绕太阳运动的周期之比可求得(05全国Ⅰ) ( ) A、火星和地球的质量之比
曲线运动与万有引力试题
《曲线运动与万有引力定律》基础知识复习一、曲线运动1、曲线运动的性质:(1)曲线运动中运动的方向时刻_______ (改变、不变、),质点在某一时刻(某一点)的速度方向是沿______________ ,并指向运动的凹侧。
(2)曲线运动一定是________ 运动,一定具有_________ 。
2、曲线运动的条件:(1)运动速度方向与加速度的方向共线时,运动轨迹是___________(2)运动速度方向与加速度的方向不共线,且合力为定值,运动为_____ ____运动,如:_________________________ ___(3)运动速度方向与加速度的方向不共线,且合力不为定值,运动为____ _______运动,如:_____________________________________3、曲线运动速度大小、方向的的判定:(1)当力的方向与速度垂直时:速度的大小_______(变、不变、可能变),(2)当力的方向与速度成锐角时:速度的大小________ (变大、不变、变小),(3)力的方向与速度成钝角时:速度的大小___________ (变大、不变、变小),曲线运动轨迹向___________________弯曲;1. 关于物体做曲线运动,下列说法正确的是A. 物体在恒力作用下不可能做曲线运动B. 物体在变力作用下不可能作曲线运动C. 作曲线运动的物体,其速度方向与加速度方向不在同一直线上D. 物体在变力作用下不可能作直线运动2. 下列曲线运动的说法中正确的是A. 速率不变的曲线运动是没有加速度的B. 曲线运动一定是变速运动C. 变速运动一定是曲线运动D. 曲线运动一定有加速度,且一定是匀加速曲线运动3.关于物体做曲线运动的条件,下述说法正确的是A. 物体在恒力作用下不可能做曲线运动B. 物体在变力作用下一定做曲线运动C. 合力的方向与物体速度的方向不相同也不相反时,物体一定做曲线运动D. 做曲线运动的物体所受到的力的方向一定是变化的4. 红蜡块能在玻璃管的水中匀速上升,若红蜡块在A点匀速上升的同时,使玻璃管水平向右做匀加速直线运动,则红蜡块实际运动的轨迹是图中的:A. 直线P B.曲线Q C.曲线R D.无法确定二、平抛运动5. 如图所示,飞机离地面高度为H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20 m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g=10m/s2)6. 关于平抛运动,下列说法中正确的是A. 平抛运动都是加速度不变的运动B. 平抛运动的水平射程只决定于初始位置的高度,而与抛出速度无关;C. 平抛运动的水平射程只决定于初速度的大小,而与抛出高度无关;D. 平抛运动的速度和加速度方向都是在不断变化的。
曲线运动 万有引力 综合练习(一)
曲线运动 万有引力定律 综合练习(一)1.在图中有一个以角速度ω旋转的圆锥摆,则 小球A 受到的力是( )A 重力和弹力B 重力、弹力和向心力C 重力和向心力D 弹力和向心力2.上题中,摆球所受的向心力等于( )A mg + TB mgcos θC mgsin θD mgtg θ3.银河系中有两颗行星环绕某恒星运转,从天文望远镜中观察到它们的运转周期之比为27:1,则它们的轨道半径的比为( )A 3:1B 9:1C 27:1D 1:94.下列关于匀速圆周运动的说法,正确的是( )A 匀速圆周运动是匀速运动B 匀速圆周运动是加速度不变的运动C 匀速圆周运动是变加速运动D 匀速圆周运动是受恒力的运动5.在高度为h 的同一位置上,向水平方向同时抛出两个小球A 和B ,若A 球的初速度v A 大于B 球的初速度v B ,则下列说法错误的是( )A A 球落地时间小于B 球落地时间B 在飞行过程中的任一段时间内,A 球的水平位移总是大于B 球的水平位移C 若两球在飞行过程中遇到一堵竖直的墙,A 球击中墙的高度总是大于B球击中墙的高度D 在空中飞行的任意时刻,A 球的速率总是大于B 球的速率6.机械手表中的分针与秒针可视为匀速转动,分针与秒针从重合至第二次重合,之间经历的时间为( )A 1minB 6059minC 5960minD 6061 min 7.不计空气阻力,一个质量为4kg 的物体,在地球表面的环绕速度为8km/s ,如果物体的质量增加一倍,则环绕速度为A 16km/sB 8 km/sC 4 km/sD 11.2 km/s8.人造地球卫星在圆形轨道上环绕地球运转,它的运动速度、周期和轨道半径的关系是A 半径越大,速度越大,周期越大B 半径越大,速度越小,周期越大C 半径越大,速度越大,周期越小 C 半径越大,速度越小,周期越小9.同步卫星位于赤道上方,相对地面静止不动。
如果地球半径为R ,自转角速度为ω,地球表面的重力加速度为g ,那么,同步卫星绕地球的运行速度为A RgB g R ωC g R ω2D 32g R ω10.汽车沿半径为R 的圆跑道行驶,设跑道的路面是水平的,路面作用与车的摩擦力的最大植是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过 。
曲线运动和万有引力专题
曲线运动、万有引力考点例析本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。
(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。
(3)万有引力定律及其运用。
(4)运动的合成与分解。
注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。
近几年对人造卫星问题考查频率较高,它是对万有引力的考查。
卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。
本章内容常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。
一、夯实基础知识1、深刻理解曲线运动的条件和特点(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:①在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。
②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。
③做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
2、深刻理解运动的合成与分解物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:①分运动的独立性;②运动的等效性(合运动和分运动是等效替代关系,不能并存);③运动的等时性;44运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。
)3.深刻理解平抛物体的运动的规律 (1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。
物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。
(2).平抛运动的处理方法通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
(3).平抛运动的规律以抛出点为坐标原点,水平初速度v 0方向为沿x 轴正方向,竖直向下的方向为y 轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.①位移分位移0x t =v , 212y gt =,合位移s ,0tan gtϕ=v .ϕ为合位移与x 轴夹角.②速度分速度0x =v v ,y gt =v ,合速度v 0tan gtθ=v . θ为合速度v 与x 轴夹角 (4).平抛运动的性质做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。
3.曲线运动、万有引力
3.曲线运动、万有引力【江苏省高淳县漆桥中学整理:马玉明】注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、考生号、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试题卷上.3.考试结束,将本试卷和答题卡一并交回.一:选择题【在每小题给出的四个选项中.有的小题只有一个选项正确。
有的小题有多个选项正确.全部选对的得5分。
选不全的得2分。
选错或不选的得O分.】1.(广州六中2004.9.11)当人造卫星进入轨道作匀速圆周运动后,下列叙述正确的是〖ABD〗A.在任何轨道上运动时,地球球心都在卫星的轨道平面内B.卫星运动速度一定不超过7.9km/sC.卫星内的物体仍受重力作用,并可用弹簧秤直接测出所受重力的大小D.卫星运行时的向心加速度等于卫星轨道所在处的重力加速度2.(南昌市2003—2004学年度高三第一次调研测试卷)2003年10月15日9时整,我国自行研制的“神舟五号”载人飞船顺利升空,飞船升空后,首先沿椭圆轨道运行,其近地点约为200kin,远地点约为340km,绕地球飞行七圈后,地面发出指令,使飞船上的发动机在飞船到达远地点时自动点火,提高了飞船的速度,使得飞船在距地面340km的圆轨道上飞行。
飞船在圆轨道上运行时,需要进行多次轨道维持.轨道维持就是通过控制飞船上的发动机的点火时间和推力,使飞船能保持在同一轨道上稳定运行.如果不进行轨道维持,飞船的轨道高度就会逐渐降低,若出现这种情况〖A〗A.飞船的周期逐渐缩短B.飞船的角速度逐渐减小C.飞船的线速度逐渐减小D.飞船的向心加速度逐渐减小3.〖汕头市2004年普通高校招生模拟考试〗一宇宙飞船原来在地球上空某一圆周轨道上绕地球运动.若飞船点火向后喷出高速气体,过一段时间后飞船进入另一个轨道绕地球做匀速圆周运动。
在新轨道上〖AC〗(A)飞船离地的高度比原来的高(B)飞船运动的速度比原来的大(C)飞船运动的周期比原来的长(D)飞船运动的加速度比原来的大4.【江苏省前黄高级中学高三年级阶段考试物理试卷(2004。
高考物理一轮复习 第四章 曲线运动 万有引力定律(第4课时)课时作业(含解析)-人教版高三全册物理试
课时作业【根底练习】一、天体质量的估算1.(多项选择)我国将于2017年11月发射“嫦娥五号〞探测器,假设“嫦娥五号〞到达月球后,先绕月球外表做匀速圆周运动,然后择机释放登陆器登陆月球.“嫦娥五号〞绕月球飞行的过程中,在较短时间t 内运动的弧长为s ,月球半径为R ,引力常量为G ,如此如下说法正确的答案是( )A .“嫦娥五号〞绕月球运行一周的时间是πRtsB .“嫦娥五号〞的质量为s 2R Gt2C .“嫦娥五号〞绕月球运行的向心加速度为s 2t 2RD .月球的平均密度为3s24πGR 2t2CD 解析:因绕月球外表做匀速圆周运动的“嫦娥五号〞在较短时间t 内运动的弧长为s ,可知其线速度为v =st,所以其运行一周的时间为T =2πRts,选项A 错误;天体运动中只能估算中心天体质量而无法估算环绕天体质量,选项B 错误;由a =v 2R 知a =s 2t 2R,选项C 正确;根据万有引力提供向心力有G Mm R 2=m v 2R ,再结合M =ρ·43πR 3可得ρ=3s24πGR 2t2,选项D 正确. 2.(2018漯河二模)宇航员站在某一星球外表h 高处,以初速度v 0沿水平方向抛出一个小球,经过时间t 后小球落到星球外表,该星球的半径为R ,引力常量为G ,如此该星球的质量为( )A.2hR2Gt 2B.2hR2GtC.2hRGt2D.Gt 22hR2 A 解析:设该星球的质量为M 、外表的重力加速度为g ,在星球外表有mg =GMmR 2,小球在星球外表做平抛运动,如此h =12gt 2.由此得该星球的质量为M =2hR2Gt2.二、卫星运行参量的分析与计算3.(2015山东理综)如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以一样的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1,a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的答案是( )A .a 2>a 3>a 1B .a 2>a 1>a 3C .a 3>a 1>a 2D .a 3>a 2>a 1D 解析:地球同步卫星受月球引力可以忽略不计,地球同步卫星轨道半径r 3、空间站轨道半径r 1、月球轨道半径r 2之间的关系为r 2>r 1>r 3,由GMm r 2=ma 知,a 3=GM r 23,a 2=GMr 22,所以a 3>a 2;由题意知空间站与月球周期相等,由a =(2πT)2r ,得a 2>a 1.因此a 3>a 2>a 1,D 正确.4.(2014浙江理综)长期以来“卡戎星(Charon)〞被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,如此它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天B 解析:由开普勒第三定律可知r 31T 21=r 32T 22,得出T 2=r 32T 21r 31=〔4.8×107〕3×6.392〔1.96×107〕3天≈25天,应当选项B 正确.5.(2017广东华南三校联考,19)(多项选择)石墨烯是目前世界上的强度最高的材料,它的发现使“太空电梯〞的制造成为可能,人类将有望通过“太空电梯〞进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低本钱发射绕地人造卫星.如下列图,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比拟( )A .B 的线速度大于C 的线速度 B .B 的线速度小于C 的线速度C .假设B 突然脱离电梯,B 将做离心运动D .假设B 突然脱离电梯,B 将做近心运动BD 解析:A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,如此ωC >ωB ,又据v =ωr ,r C=r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有GMm C r 2C =m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B>m B ω2B r B ,假设B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.6.(2014江苏卷,2)地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,如此航天器在火星外表附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/sA 解析:由万有引力提供向心力可得:G Mm r 2=m v 2r,在行星外表运行时有r =R ,如此得v=GMR ∝M R ,因此v 火v 地=M 火M 地×R 地R 火 =110×2=55,又由v 地=7.9 km/s ,故v 火≈3.5 km/s ,应当选A 正确.三、卫星变轨问题分析7.(2017湖南长沙三月模拟,20)(多项选择)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空〞的暗物质探测卫星.“悟空〞在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,如此如下说法中正确的答案是( )A .“悟空〞的线速度大于第一宇宙速度B .“悟空〞的向心加速度大于地球同步卫星的向心加速度C .“悟空〞的环绕周期为2πtβD. “悟空〞的质量为s 3Gt 2βBC 解析:“悟空〞的线速度小于第一宇宙速度,A 错误.向心加速度a =GM r2,因r 悟空<r同,如此a 悟空>a 同,B 正确.由ω=βt =2πT ,得“悟空〞的环绕周期T =2πtβ,C 项正确.由题给条件不能求出悟空的质量,D 错误.关键点拨 第一宇宙速度是卫星最小的发射速度,是最大的环绕速度.卫星做匀速圆周运动时ω=2πT =βt.8.(2019哈尔滨师范大学附中)卫星 信号需要通过地球同步卫星传送,地球半径为r ,无线电信号传播速度为c ,月球绕地球运动的轨道半径为60r ,运行周期为27天。
曲线运动 万有引力试题
曲线运动 万有引力(阶段检测四)(时间90分钟,满分100分)第Ⅰ卷(选择题,共60分)一、选择题(每小题6分,共60分)1.(2010·南京)一质点在xOy 平面内运动的轨迹如图所示,已知质点在x 方向的分运动是匀速运动,则关于质点在y 方向的分运动的描述正确的是( )A .匀速运动B .先匀速运动后加速运动C .先加速运动后减速运动D .先减速运动后加速运动解析:根据曲线运动的特点,合力应指向轨迹的凹侧,而速度方向沿轨迹的切线方向,由此可判断质点先做减速运动后做加速运动.答案:D2.(2010·东北师范大学附属中学)物体在高处以初速度v 0水平抛出,落地时速度大小为v ,忽略空气阻力,那么该物体在空中运动的时间为( )A.v -v 0gB.v +v 0gC.v 2-v 20gD.v 2+v 20g答案:C3.(2010·宣武期末)设质量相等的甲、乙两颗卫星,分别贴近某星球表面和地球表面,环绕其球心做匀速圆周运动,已知该星球和地球的密度相同,其半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r答案:A4.(2010·杭州)如图所示,从地面上A 点发射一枚远程弹道导弹,在引力作用下,沿ACB 椭圆轨道飞行击中地面目标B ,C 为轨道的远地点,距地面高度为h .已知地球半径为R ,地球质量为m 地,引力常量为G .设距地面高度为h 的圆轨道上卫星运动周期为T 0.下列结论正确的是( )A .导弹在C 点的速度大于Gm 地R +hB .导弹在C 点的加速度等于Gm 地(R +h )2C .地球球心为导弹椭圆轨道的一个焦点D .导弹从A 点运动到B 点的时间一定小于T 0解析:根据牛顿第二定律G m 地m (R +h )2=m v 2R +h ,过C 点绕地球做匀速圆周运动的卫星具有的速度v =Gm 地R +h ,因为导弹做椭圆运动,所以v <Gm 地R +h,A 错;根据万有引力定律和牛顿第二定律得G m 地m (R +h )2=ma ,即C 点的加速度a =Gm 地(R +h )2,B 对;根据开普勒第一定律,C 对;根据开普勒第三定律,D 对.答案:BCD5.(2010·湘潭)据报道,我国数据中继卫星“天链一号卫星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号卫星”,下列说法正确的是( )A .运行速度大于7.9 km/sB .离地面高度一定,相对地面静止C .绕地球运行的角速度比月球绕地球运行的角速度大D .向心加速度与静止在赤道上物体的向心加速度大小相等解析:定点后的“天链一号卫星”为同步卫星,离地面的高度一定,相对地面静止,运动速率一定,运行速率小于7.9 km/s.运行的高度小于月球离地面的高度,根据F =G Mm R2=mRω2,ω=GM R 3,所以“天链一号卫星”绕地球运行的角速度比月球绕地球运行的角速度大,“天链一号卫星”与地球赤道上物体角速度相同,向心加速度a =Rω2,所以“天链一号卫星”的向心加速度大,BC 正确.答案:BC6.(2010·3月海淀适应性训练反馈题)一架总质量为M 的飞机,以速率v 在空中的水平面上做半径为r 的匀速圆周运动,重力加速度为g ,则空气对飞机作用力与竖直方向的夹角为( ) A .arcsin v 2gr B .arctan v 2gr C .arccos v 2gr D .arccot v 2gr答案:B7.(2010·朝阳)木星至少有16颗卫星,1610年1月7日伽利略用望远镜发现了其中的4颗. 这4颗卫星被命名为木卫1、木卫2、木卫3和木卫4.他的这个发现对于打破“地心说”提供了重要的依据. 若将木卫1、木卫2绕木星的运动看做匀速圆周运动,已知木卫2的轨道半径大于木卫1的轨道半径,则它们绕木星运行时( )A .木卫2的周期大于木卫1的周期B .木卫2的线速度大于木卫1的线速度C .木卫2的角速度大于木卫1的角速度D .木卫2的向心加速度大于木卫1的向心加速度答案:A8.(2010·3月西城理综)发射通信卫星常用的方法是:先用火箭将卫星送入近地圆形轨道运行,然后再适时开动卫星上的小型喷气发动机,经过过渡轨道将其送入与地球自转同步的圆形运行轨道.比较卫星在两个圆形轨道上的运行状态,在同步轨道上卫星的( )A .机械能大,动能小B .机械能小,动能大C .机械能大,动能也大D .机械能小,动能也小答案:A9.(2010·东北师范大学附属中学)如图所示,a 是地球表面赤道上的一点,随地球一起转动.某时刻在a 的正上方有三颗轨道位于赤道平面的卫星b 、c 、d ,各卫星的运行方向均与地球自转方向(图甲中已标出)相同,其中d 是地球同步卫星.从该时刻起,经过一段时间t (已知在t 时间内三颗卫星都还没有运行一周),各卫星相对a 的位置最接近实际的是图中的( )答案:D10.一根长为L 的轻杆下端固定一个质量为m 的小球,上端连在光滑水平轴上,轻杆可绕水平轴在竖直平面内运动(不计空气阻力).当小球在最低点时给它一个水平初速度v 0,小球刚好能做完整的圆周运动.若小球在最低点的初速度从v 0逐渐增大,则下列判断正确的是( )A .小球能做完整的圆周运动,经过最高点的最小速度为gLB .小球在最高点对轻杆的作用力先减小后增大C .小球在最低点对轻杆的作用力先增大后减小D .小球在运动过程中所受合外力的方向始终指向圆心解析:设轻杆对小球的作用力大小为F ,方向向上,小球做完整的圆周运动经过最高点时,对小球,由牛顿第二定律得mg -F =m v 2L,当轻杆对小球的作用力大小F =mg 时,小球的速度最小,最小值为零,所以A 错.由mg -F =m v 2L ,可得在最高点轻杆对小球的作用力F =mg -m v 2L,若小球在最低点的初速度从v 0逐渐增大,小球经过最高点时的速度v 也逐渐增大,所以轻杆对小球的作用力F 先减小后增大(先为支持力后为拉力).由牛顿第三定律可得小球在最高点对轻杆的作用力先减小后增大,因此选项B 正确.在最低点,由F -mg =m v 2L ,可得轻杆对小球的作用力(拉力)F =mg +m v 2L,若小球在最低点的初速度从v 0逐渐增大,则轻杆对小球的作用力(拉力)一直增大,选项C 错.轻杆绕水平轴在竖直平面内运动,小球不是做匀速圆周运动,所以合外力的方向不是始终指向圆心,只有在最低点和最高点合外力的方向才指向圆心,选项D 错.答案:B 第Ⅱ卷(非选择题,共40分)二、非选择题(共40分)11.(10分)某同学在做“研究平抛物体的运动”实验时,没有记下小球的抛出点O 的位置,于是他根据实验中记录的点描述运动轨迹曲线后,以该段曲线的起点为空间坐标系的原点建立一个直角坐标系,然后在该段曲线上取了三点1、2、3,其坐标分别为(0.100,0.140),(0.200,0.378),(0.300,0.714),单位是m ,重力加速度g 取9.8 m/s 2,根据这些数据计算:(1)小球平抛的初速度;(2)小球抛出点的坐标.解析:(1)相邻各点水平距离相等,故运动时间相等.竖直距离y 1=0.238 m ,y 2=0.336 m ,由y 2-y 1=gT 2得T =0.1 s v 0=x T=1.0 m/s. (2)设抛出点坐标(x 0,y 0),经点2的竖直分速度v y =y 1+y 22T=2.87 m/s 由v y =gt 得t =v y g=0.293 s 故y 0=-12g (t -2T )2=-0.042 m x 0=-v 0(t -2T )=-0.093 m.答案:(1)1.0 m/s (2)(-0.093,-0.042)12.(15分)(2010·朝阳)如图所示,粗糙水平地面与半径为R 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m 的小物块在水平恒力F 的作用下,由静止开始做匀加速直线运动,小物块与水平地面间的动摩擦因数为μ.当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点.求:(1)小物块在水平地面上运动时的加速度;(2)小物块运动到B 点时的速度;(3)小物块离开D 点后落到地面上的点与B 点之间的距离.解析:(1)小物块在水平面上运动时的受力情况如右图所示.根据牛顿第二定律有 F -F 摩=maF N -mg =0又因为F 摩=μF N所以a =F -μmg m(2)因为小物块恰好能通过D 点,所以在D 点小物块所受重力等于向心力,即:mg =m v 2D R 所以v D =gR因为小物块由B 点运动到D 点的过程中机械能守恒,则有12m v 2B =12m v 2D +2mgR 所以v B =5gR(3)设小物块落地点距B 点之间的距离为x ,下落时间为t根据平抛运动的规律x =v D t2R =12gt 2所以x =2R答案:(1)F -μmg m(2)5gR (3)2R 13.(15分)(2009·全国Ⅱ)如图,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离,重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数G .(1)设球形空腔体积为V ,球心深度为d (远小于地球 半径),PQ =x ,求空腔所引起的Q 点处的重力加速度反常.(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k >1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.解析:(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力G Mm r 2=mΔg ① 来计算,式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量,M =ρV ②而r 是球形空腔中心O 至Q 点的距离r =d 2+x 2③Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小.Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg ′是这一改变在竖直方向上的投影Δg ′=d rΔg ④ 联立①②③④式得Δg ′=GρVd (d 2+x 2)32⑤(2)由⑤式得,重力加速度反常Δg ′的最大值和最小值分别为(Δg ′)max =GρV d 2 (Δg ′)min =GρVd (d 2+L 2)32⑦由题设有(Δg ′)max =kδ,(Δg ′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为d =L k 32-1⑨ V =L 2kδGρ(k 23-1)⑩ 答案:(1)GρVd (d 2+r 2)32 (2)L k 23-1 L 2kδGρ(k 23-1)。
2011走向高考,贾凤山,高中总复习,物理,4-2
首页
上页
下页
末页
第4章
考
曲线运动 万有引力
(1)从子弹由枪口射出开始计时 , 经多长时间子弹击 从子弹由枪口射出开始计时, 从子弹由枪口射出开始计时 中目标靶? 中目标靶? (2)目标靶由静止开始释放到被子弹击中 , 下落的距 目标靶由静止开始释放到被子弹击中, 目标靶由静止开始释放到被子弹击中 为多少? 离h为多少? 为多少 [解析 [解析] 解析] (1)子弹做平抛运动 (1)子弹做平抛运动,它在水平方向的分运动 子弹做平抛运动, 是匀速直线运动,设子弹经 时间击中目标靶 时间击中目标靶, 是匀速直线运动,设子弹经t时间击中目标靶,则 代入数据得 t=0.5s =
首页
上页
下页
末页
第4章
考
曲线运动 万有引力
[考例 考例2] 考例
(2009福建 如图所示 , 射击枪水平放置 , 福建)如图所示 射击枪水平放置, 福建 如图所示,
《走 向 高 考 》 高 考 总 复 习
射击枪与目标靶中心位于离地面足够高的同一水平线上, 射击枪与目标靶中心位于离地面足够高的同一水平线上, 枪口与目标靶之间的距离s= 枪口与目标靶之间的距离 =100m,子弹射出的水平速度 , v=200m/s,子弹从枪口射出的瞬间目标靶由静止开始释 = , 不计空气阻力,取重力加速度g为 放,不计空气阻力,取重力加速度g为10m/s2,求:
首页 上页 下页 末页
》 高 考 总 复 习
第4章
考
曲线运动 万有引力
考点精析 对平抛运动和斜抛运动的几个物理量的讨论(设斜抛 对平抛运动和斜抛运动的几个物理量的讨论 设斜抛 物体抛出点和落地点位于同一水平面) 物体抛出点和落地点位于同一水平面
高一物理下册曲线运动万有引力与航天测试题及答案(WORD版)
曲线运动万有引力与航天1、如图所示,足够长的斜面静止在水平地面上。
将质量为m 的小球从斜面底端以初速度v 0抛出,初速度的方向与斜面间夹角为θ,小球恰好沿水平方向撞到斜面上。
不计空气阻力。
若仍从斜面底端抛出,改变以下条件仍能使小球水平撞到斜面上的是 A .仅增大速度v 0 B .仅适当增大θ C .将m 和θ都适当减小 D .将v 0和θ都适当增大2、从同一高度水平抛出的物体,在空中运动一段时间,落到同一水平地面上。
在不计空气阻力的条件下,由平抛运动规律可知 ( ) A .水平初速度越大,物体在空中运动的时间越长 B .水平初速度越大,物体在空中运动的时间越短 C .质量越大,物体在空中运动的时间越短 D .水平初速度越大,物体落地时的速度越大3、如图所示,两根长度不同的细线上端固定在天花板上的同一点,下端分别系着完全相同的小钢球1,2。
现使小钢球在同一水平面内做匀速圆周运动。
下列说法正确的是 A .球1收到的拉力比球2受到的拉力小 B .球1的向心力比球2的向心力小 C .球1的运动周期比球2的运动周期大 D .球1的线速度比球2的线速度大4、“嫦娥二号”月球探测器升空后,先在地球表面附近以速率v 环绕地球飞行,再调整速度进入地月转移轨道,最后以速率v ′在月球表面附近环绕月球飞行.若认为地球和月球都是质量分布均匀的球体,已知月球与地球的半径之比为1∶4,密度之比为64∶81。
设月球与地球表面的重力加速度分别为g ′和g ,下列结论正确的是A .g ′∶g =92 B .g ′∶g =92 C .v ′∶v =92 D .v ′∶v =925、2019 年 10 月 11 日,中国火星探测器首次公开亮相,暂命名为“火星一号”,计划于2020年发射,并实现火星的着陆巡视。
已知火星的直径约为地球的 53%,质量约为地球的 11%,请通过估算判断以下说法正确的是A.火星表面的重力加速度小于9.8m/s2B.探测器在火星表面所受重力等于在地球表面所受重力C.探测器在火星表面附近的环绕速度等于7.9km/sD.火星的第一宇宙速度大于地球的第一宇宙速度6、北京时间2019年4月10日,人类历史上首张黑洞“照片”(如图)被正式披露,引起世界轰动;2020年4月7日“事件视界望远镜(EHT)”项目组公布了第二张黑洞“照片”,呈现了更多有关黑洞的信息。
新高考物理第四章 曲线运动 万有引力与航天4-7 实验:探究影响向心力大小的因素
2. 用如图所示的装置可以探究做匀速圆周运动的物体需要的向心力的大小与哪 些因素有关。
(1)本实验采用的科学方法是________。
A.控制变量法
B.累积法
C.微元法
D.放大法
(2)图示情景正在探究的是_____
B.向心力的大小与线速度大小的关系
C.向心力的大小与角速度大小的关系
①作出F-v2图线;
② 若 圆 柱 体 运 动 半 径 r = 0.2 m , 由 作 出 的 F-v2 图 线 可 得 圆 柱 体 的 质 量 m = ____kg(保留两位有效数字)。
解析:(1)实验中探究向心力和速度的关系,保持圆柱体质量和运动半径不变, 采用的实验方法是控制变量法,B 正确。 (2)①作出 F-v2 图线,如图所示。 ②根据 F=mrv2知,图线的斜率 k=mr ,则有:mr =7.990, 代入数据计算得出:m≈0.18 kg。
操作三:手握绳结点A,使杯在水平方向每秒运动二周,体会向心力的大小。 操作四:手握绳结点A,再向杯中添加30 mL的水,使杯在水平方向每秒运动一周, 体会向心力的大小。 则:①操作二与一相比较:质量、角速度相同,向心力的大小与转动半径大小有关; 操作三与一相比较:质量、转动半径相同,向心力的大小与角速度的大小有关; 操作四与一相比较:____________________相同,向心力大小与________有关; ②物理学中此种实验方法叫________法。 ③小组总结阶段,在空中甩动,使杯在水平面内做圆周运动的同学谈感受时说: “感觉手腕发酸,感觉力的方向不是指向圆心的向心力而是背离圆心的离心力,跟 书上说的不一样。”你认为该同学的说法是否正确,为什么?
解析:(1)从球第 1 次到第 n 次通过 A 位置,转动圈数为 n-1,时间为 t,周期 T=n-t 1,A 错误;小球的线速度大小为 v=2πTR=2πn-t 1R,B 正确;小球 受重力和拉力,合力提供向心力,设细绳与竖直方向的夹角为 α,有 FTcos α =mg,FTsin α=Fn,则 Fn=mgtan α=mgR-h r,C 错误;若电动机的转速增 加,则转动半径增加,激光笔 1、2 应分别左移、上移,D 正确。 (2)小球做圆周运动的周期 T=n-t 1=2.00 s,向心力 Fn=mgR-h r=mR4Tπ22,解 得 g=R4-π2RrhT2≈9.86 m/s2。
复习5_曲线运动和万有引力
B.匀加速曲线运动 D.变加速运
例题
7.决定平抛物体在空中运动时间的因素是( B ) A.初速度 B.抛出时物体的高度 C.抛出时物体的高度和初速度 D.以上说法都不正确 8.一物体在距地面高5m处以5m/s的速度水平抛出下落到 地面,不计空气阻力,g取10m/s2。求: ⑴下落时间; ⑵小球落地点与抛出点的水平距离; ⑶物体刚接触到地面时速度大小。
例题
11.如图所示,质量相等的A、B两物块置于绕竖直轴匀速 转动的水平圆盘上,两物块始终相对于圆盘静止,则 两物块( B ) A.线速度相同 B.角速度相同 C.向心加速度相同 D.向心力相同 12.如图为皮带传动示意图,假设皮带没有打滑,R > r, 则下列说法中正确的是( C ) A.大轮边缘的线速度大于小轮边缘的线速度 B.大轮边缘的线速度小于小轮边缘的线速度 R C.大轮边缘的线速度等于小轮边缘的线速度 D.大轮的角速度较大
6
人造地球卫星
⑴卫星绕地球做匀速圆周运动的向心力由 ________提供。
Mm v2 GM G 2 m v r r r
Mm GM 2 G 2 m r r r3
Mm 4 2 r3 G 2 m 2 r T 2 r T GM
卫星的轨道半径越小,其绕行速度_____、 角速度______、周期______。
4
匀速圆周运动
⑴线速度v : ⑵角速度ω: ⑶周期T: 2r 2 v v r T ⑷三者关系: ________, ________, ________。 T ⑸ 匀速圆周运动:物体沿____运动,且____大小 圆周 线速度 处处相等。 变速 ⑹匀速圆周运动是____运动,各点线速度方向沿 切线 指向 ____方向,但____不变;加速度方向____圆心, 大小 大小 ____也不变,它是变速运动,是变加速运动。 2 2 v2 2 ( ) r ⑺向心加速度a =____=____=____ r T r 方向:________ 指向圆心
(精)曲线运动 万有引力检测题
曲线运动 万有引力定律 检测题一、选择题:本题共12小题,每小题4分,共计48分,每小题有多个选项符合题意对的得4分,选对但不全的得2分,错选或不答的得0分。
1.质点仅在恒力F 的作用下,由O 点运动到A 点的轨迹如图所示,在A 点时速度的方向与x 轴平行,则恒力F 的方向可能沿( ) A .x 轴正方向 B .x 轴负方向 C .y 轴正方向 D .y 轴负方向2.从“神舟六号”载人飞船的发射成功可以预见,随着航天员在轨道舱内停留时间的增加,体育锻炼成了一个必不可少的环节,下列器材适宜航天员在轨道舱中进行锻炼的是 ( ) A .哑铃 B .弹簧拉力器 C .单杠 D .跑步机3.火车以0982./m s 的加速度在平直轨道上加速行驶,车厢中一乘客把手伸出窗外从距地面高2.5m 处自由释放一物体,不计空气阻力,物体落地时与乘客的水平距离为:( ) A 、0 B 、0.25m C 、0.50m D 、因不知火车速度无法判断 4.关于物体的运动,以下说法正确的是 ( )A .物体做平抛运动时,加速度不变B .物体做匀速圆周运动时,加速度不变C .物体做曲线运动时,加速度一定改变D .物体做曲线运动时,加速度可能变也可能不变 5.如图所示是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子,其半径均为r 。
在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径为R ,且R =3r 。
现在进行倒带,使磁带绕到A 轮上。
倒带时A 轮是主动轮,其角速度是恒定的,B 轮是从动轮。
经测定磁带全部绕到A轮上需要的时间为t 。
则从开始倒带到A 、B 两轮的角速度相等所需要的时间 ( ) A 、等于2t B 、大于2tC 、小于2tD 、无法确定6.飞机在高空沿水平方向匀速飞行,相隔1s 先后落下两个小球,则在小球落地前,下列说法错误的是( )A .两个小球的连线为一条直线,且连线与水平地面垂直.B .两个小球间的距离随时间的增大而增大.C .人在飞机上观察每个小球的做平抛运动.D .人在地面上观察每个小球的的运动轨迹为一条曲线7.绳系卫星是由一根绳索栓在一个航天器上的卫星,可以在这个航天器的下方或上方一起绕地球运行。
2009-2013五年高校自主招生试题物理精选分类解析 专题03 曲线运动和万有引力 Word版含解析
一. 2013年1.(2013北约自主招生)将地球半径 R 、自转周期 T 、地面重力加速度 g 取为已知量,则地球同步卫星的轨道半径为___________R ,轨道速度对第一宇宙速度的比值为____________。
二.2012年1.(2012卓越自主招生).我国于2011年发射的“天宫一号”目标飞行器与“神舟八号”飞船顺利实现了对接。
在对接过程中,“天宫一号”与“神舟八号”的相对速度非常小,可以认为具有相同速率。
它们的运动可以看作绕地球的匀速圆周运动,设“神舟八号”的质量为m ,对接处距离地球中心为r ,地球的半径为R ,地球表面处的重力加速度为g ,不考虑地球自转的影响,“神舟八号”在对接时A .向心加速度为gRrBC .周期为2D .动能为22mgR r2.(2012年北约)两质量相同的卫星绕地球做匀速圆周运动,运动半径之比R1∶R2= 1∶2 ,则关于两卫星的下列说法正确的是()A.向心加速度之比为a1∶a2= 1∶2B.线速度之比为v1∶v2= 2∶1C.动能之比为E k1∶E k2= 2∶1D.运动周期之比为T1∶T2= 1∶23. (2012清华保送生测试)运用合适的原理和可以测得的数据估测地球的质量和太阳的质量。
说明你的方法。
解析:估测地球质量的方法:4.(2012华约自主招生)小球从台阶上以一定初速度水平抛出,恰落到第一级台阶边缘,反弹后再次落下经0.3s恰落至第 3 级台阶边界,已知每级台阶宽度及高度均为18cm,取g=10m/s2。
且小球反弹时水平速度不变,竖直速度反向,但变为原速度的1/4 。
(1)求小球抛出时的高度及距第一级台阶边缘的水平距离。
(2)问小球是否会落到第5级台阶上?说明理由。
三.2011年1、(2011年卓越自主招生)一质量为m 的质点以速度v 0运动,在t=0时开始受到恒力F 0作用,速度大小先减小后增大,其最小值为v 1=12v 0。
质点从开始受到恒力作用到速度最小的过程中的位移为( )A .2038mv FB .28FC D .208F2. (2011华约自主招生)如图所示,AB杆以恒定角速度绕A点转动,并带动套在水平杆OC上的小环M运动。
专项练习4 绳(杆)端速度分解模型-高三物理一轮复习曲线运动与万有引力版块(含答案)
专题4 绳(杆)端速度分解模型一、单选题1.人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当人以速度v 0竖直向下匀速拉绳使质量为m 物体A 到达如图所示位置时,此时绳与竖直杆的夹角为θ,则物体A 的动能为( )A.2022cos mv θ B.2022tan mv θC.2012mv D.2201sin 2mv θ⋅ 【答案】A【解析】将A 的速度分解为沿绳子方向和垂直于绳子方向,如上图所示。
拉绳子的速度等于A 沿绳子方向的分速度,根据平行四边形定则得,实际速度0cos v v θ=根据2k 12E mv =代入计算得到2k 22cos mv E θ=故A 正确,BCD 错误。
故选A 。
2.如图所示,沿竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,当细绳与竖直杆间的夹角为θ时,物体B 的速度为( )A.v/cosθB.vcosθC.vD.vsinθ 【答案】B【解析】物体A 以速度v 匀速下滑,把物体A 的速度沿着绳子方向和垂直绳子方向进行分解后可得绳子的速度,B 对;3.如图所示,沿光滑竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,细绳与竖直杆间的夹角为θ,则以下说法正确的是( )A.物体B 向右匀速运动B.物体B 向右加速运动C.细绳对A 的拉力逐渐变大D.细绳对B 的拉力不变【答案】B【解析】物体A 以速度v 沿竖直杆匀速下滑,绳子的速率等于物体B 的速率,将A 物体的速度分解为沿绳子方向和垂直于绳子方向,沿绳子方向的分速度等于绳速,由几何知识求解B 的速率,再讨论B 的运动情况以及绳子的拉力变化.将A 物体的速度按图示两个方向分解,如图所示,由绳子速率cos v v 绳θ=,而绳子速率等于物体B 的速率,则有物体B 的速率cos B v v v θ==绳.因θ减小,则B 物体向右做变加速运动,对公式求导,得出B 的加速度sin a v θ=,随着θ的加速度,B 的加速度在减小,故绳子对B 的拉力减小,同一条绳子上的拉力相等,所以绳子对A 的拉力减小,B 正确.4.如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α,船的速率为( )A.sin v αB.sin vα C.cos v α D.cos v α【答案】C 【解析】将人的运动速度v 沿着绳子方向和垂直绳子方向正交分解,如图,由于绳子始终处于绷紧状态,因而小船的速度等于人沿着绳子方向的分速度根据此图得:v 船=vcosα;故选C.点睛:本题关键找到人的合运动和分运动,然后根据正交分解法将人的速度分解即可;本题容易把v 船分解而错选D ,要分清楚谁是合速度,谁是分速度.5.一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m 的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H.车由静止开始向左做匀加速运动,经过时间t 绳子与水平方向的夹角为θ,如图所示,则( )A.车向左运动的加速度的大小为22tan Ha t θ= B.车向左运动的加速度的大小为22tan Ha t θ=C. 重物m 在t 时刻速度的大小为2cos Hv tθ= D.重物m 在t 时刻速度的大小为2sin Hv tθ= 【答案】A【解析】汽车在时间t 内向左走的位移:tan Hx θ= 又汽车匀加速运动21x at 2=,所以2222a tan x Ht t θ==,A 正确,B 错误;由运动的分解知识可知,汽车速度v 汽沿绳的分速度与重物m 的速度相等,即v v cos θ物汽=得v 物=,CD 错误;故选A6.水平面上两物体A 、B 通过一根跨过定滑轮的轻绳相连,现物体A 以v 1的速度向右匀速运动,当绳被拉成与水平面夹角分别是、时(如图所示),物体B 的运动速度为(绳始终有拉力)( )A. B. C. D.【答案】D【解析】当绳被拉成与水平面夹角分别是α、β时,将物体A 、B 的速度如下图分解,因绳不可伸长,则1cos cos B v v αβ=,可得1cos cos B v v αβ=.故选D7.一个半径为R 的半圆柱体沿水平方向向右以速度v 0匀速运动,在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高 三 物 理 专 题 讲 义-1-曲线运动与万有引力1. 线速度、角速度、周期和频率、向心加速度的关系:v2 r 2 f r= ar T二.圆周运动中的向心力 1. 作用效果:产生向心加速度,以不断改变物体的速度方向,维持物体做圆周运动。
v2 2 2 2. 大小: F ma m m 2 r m r m 2 f r mv r T 三、圆周运动运动学问题 皮带传动和摩擦传动问题 1.如图所示装置中,三个轮的半径分别为 r、2r、4r,b 点到圆心的距离为 r,求图中 a、b、c、d 各点的 线速度之比、角速度之比、加速度之比。
a、b、c、d 点的线速度之比=2:1:2:4 a、b、c、d 点的角速度之比=2:1:1:1 a、b、c、d 点的加速度之比=4:1:2:422.如图所示,一种向自行车车灯供电的小发电机的上端有一半径 r0=1.0cm 的摩擦小轮,小轮与自行车车 轮的边缘接触。
当车轮转动时, 因摩擦而带动小轮转动, 从而为发电机提供动力。
自行车车轮的半径 R1=35cm, 小齿轮的半径 R2=4.0cm,大齿轮的半径 R3=10.0cm。
求大齿轮的转速 n1 和摩擦小轮的转速 n2 之比。
(假定 摩擦小轮与自行车轮之间无相对滑动)n1:n2=2:1753.如图 5-5-5 所示,一绳系一球在光滑的桌面上做匀速圆周运动.绳长 L=0.1m,当角速度为ω =20 π rad/s 时,绳断开,试分析绳断开后: (1)小球在桌面上运动的速度; (2)若桌子高 1.00m,小球离开桌子后运动的时间.高 三 物 理 专 题 讲 义4.如图 12 所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当 圆筒的角速度增大以后,下列说法正确的是( D A、物体所受弹力增大,摩擦力也增大了 B、物体所受弹力增大,摩擦力减小了 C、物体所受弹力和摩擦力都减小了 D、物体所受弹力增大,摩擦力不变 5、如图 16 所示,一个固定的漏斗壁光滑,有两个完全相同的小球 A 和 B 在漏斗内 两个不同的水平面上做匀速周运动,则两小球的线速度 v,角速度ω ,向心加 速度 a 和球对漏斗的压力 F 的大小有: ( A )A、 A-2-)V <VBB、ω A<ω BC、aA<aBD、FA<FB6 、电子(质量为 m 电量为 e)绕原子核做匀速圆周运动,若在垂直于电子运动的轨道平面加一磁感强度为 B 的匀强磁场,设电子受到的电场力是磁场力的三倍,那么电子运动的角速度为( BD A )eB mB2eB mC3eB mD4eB mf=mvw7、在匀速转动的水平盘上,沿半径方向放着三个物体 A、B、C,MA=MC=2MB,它们与盘面间的摩擦因数相等, 它们到转轴的距离的关系为 RA <RB<RC,当转盘的转速逐渐增大时哪个物体先开始滑动,相对盘向哪个方向 滑? C B、B 先滑动,沿半径向内。
D、C 先滑动,沿半径向内。
A、B 先滑动,沿半径向外。
C、C 先滑动,沿半径向外8 如图所示,杆长为 L,球的质量为 m,杆连球在竖直平面内绕轴 O 自由转动,已知在最高点处,杆对球 的弹力大小为 F=0.5mg,求这时小球的瞬时速度大小。
9.质量相等的两小球 A、B 分别固定在轻杆的中点及端点,杆在光滑的水平面上绕另一端点 O 匀速转动,高 三 物 理 专 题 讲 义如图所示,求杆的 OA 段及 AB 段对球的拉力之比。
对 B 球:F2=mω 2•2r ① 对 A 球:F1-F2=mω 2r ② 由①:②得,F2=2(F1-F2)解得,F1:F2=3:2-3-10.如图所示,有一根长为 2L 的轻质细线,它的两端固定在一根长为 L 的竖直转轴 AB 上,线上套一个可以自由移动的质量为 m 的小球。
当转轴转动时,小球正好以 B 为圆心, 在水平面内做匀速圆周运动。
求细线的张力和小球的线速度。
(2L-r) =r +L ,解得 r= 3/4 L.则斜线与水平方向的夹角θ =53° F+Fcosθ =mv /r Fsinθ =mg2 2 2 211.如图 1-5-3 所示,两半径不同而内壁光滑的半圆轨道固定于地面,一个小球分别从与球 心在同一水平高度的 A、BA.①④ C.①③B. D. 圆周运动的临界问题1.普通临界问题 ⑴仅由细线系着的物体或沿圆环内壁运动的物体在通过最高点时,如图所示有:F+mg = mv2 R∵F≧0∴v≧ gR ,即物体通过最高点的速度的临界值为 v 临 =gR当 v≧ gR 时,物体能通过最高点;当 v﹤ gR 时,物体还没有到最高点时就脱离了运动轨道。
高 三 物 理 专 题 讲 义-4-⑵受杆或管约束的物体做圆周运动,当它通过最高点时,如图所示, 有: F+mg = mv2 R因这种情况 F 既可为正,也可为负或为零,故物体通过最高点的速度可以为任意值,即 v≧0. 当 v﹥ gR 时, 杆或管对物体的作用力 F﹥0,即 F 力方向指向圆心,F 为拉力; 当 0﹤v﹤ gR 时,F﹤0,即 F 方向背离圆心,F 为支持力; 当v =gR 时,F = 0。
1.一内壁光滑的环形细圆管,位于竖直平面内,环的半径为 R(比细管的半径大得多) 。
在管中有两个直 径与细管内径相同的小球(可视为质点) ,A 球的质量为 m1,B 球的质量为 m2,它们沿环形圆管顺时针运动, 经过最低点时的速度都为 v0。
设 A 球运动到最低点时,B 球恰好运动到最高点。
若要此时两球作用于圆管 的合外力为零,那么样 m1、m2、R 与 v0 的关系式是 。
2.长为 L 的细线一端固定于 O 点,如图所示,另一端拴一质量为 m 的小球,把线拉至最高点 A 以 v0 水平 抛出,求当 v0 为下列值时,小球运动到最低点 C 时线中的张力大小。
(1)v0=2 gL (2)v0= gL / 2高 三 物 理 专 题 讲 义-5-3. 如图所示细绳一端系着质量为 M=0.6Kg 的物体 , 静止在水平面上,另一端通过光滑小孔吊着质量为 m=0.3Kg 的物体,M 的重心与圆孔距离为 r=0.2m,并知 M 和小平面的最大静摩擦力为 Fm=2N。
现使此平面绕 中心轴线转动,问角速度ω 在什么范围内 m 处于静止状态?(g=10m/s ) 解:设物体 M 和水平面保持相对静止,当ω 具有最小值时,M 有着向着圆心 O 运动的趋势,故水平面对 M 的摩擦力方向背向圆心,且等于最大静摩擦力 Fm=2 N. 对于 M 有 FT-Fm=Mrω 1 则 当ω 具有最大值时, M 有离开圆心 O 的趋势, 水平面对 M 摩擦力的方向指向圆心, Fm=2 N. 对 M 有 FT+ Fm=Mr ω 2 。
则 =6.5 rad/s. 故ω 的范围为 2.9 rad/s≤ω ≤6.5 rad/s. 4、甲、乙两物体都做匀速圆周运动,其质量之比为 1:2,转动半径之比为 1:2,角速度之比为 2:1,则 它们所受外力的合力之比为 A、1:1 B、1:2 ( C、2:1 ) D、1:42 225、做匀速圆周运动的物体,当质量不变,线速度大小不变,角速度大小增大到 2 倍时,其向心力大小是 原来的多少倍 A、1/2 B、2 C、4 ( ) D、1/46、如图所示,在倾角为α 的斜面顶点 A 以初速 v0 水平抛出一小球,最后落在斜面上 B 点,不计空气阻力, 求小球在空中运动时间 t 及达 B 点的速度大小υ t.7、如图所示,M 和 N 是两块相互平行的光滑竖直弹性板.两板之间的距 离为 L,高度为 H.现从 M 板的顶端 O 以垂直板面的水平速度 V0 抛出一 个小球.小球在飞行中与 M 板和 N 板,分别在 A 点和 B 点相碰,并最终 在两板间的中点 C 处落地.求: (1)小球抛出的速度 V0 与 L 和 H 之间满足的关系;高 三 物 理 专 题 讲 义(2)OA、AB、BC 在竖直方向上距离之比.-6-8、用 m 表示地球同步卫星的质量,h 表示它离开地面的高度,R0 表示地球半径,g0 表示地球表面处的重力 加速度, 0 表示地球自转的角速度,则地球对同步卫星的万有引力大小 A.等于零 B.等于 m BCR02 g 0 ( R0 h) 2C.等于 m34 R02 g 0 w0D.以上结果都不正确9、已知地球质量为 M,半径为 R,自转周期为 T0,地球表面重力加速度为 g0,人造地球通讯卫星高度为 h, 万有引力恒量为 G,则在地球表面附近运行,高度不计的人造卫星的周期为 BCD A.T0 R 2 B. T R h 03C. 2R g0D. 2RR GM10、月球表面的重力加速度是地球表面重力加速度的 1/6,地球半径是月球半径的 4 倍,那么登月舱靠近 月球表面环绕月球运行的速度是多少?已知人造地球卫星的第一宇宙速度为 v1。
2 倍根号 6 v1 11:两颗人造卫星绕地球作匀速圆周运动,周期之比为 TA∶TB = 1∶8,则轨道半径之比和运动速度之比分 别为 BC B.RA∶RB = 1∶4 D.VA∶VB = 2∶1A.RA∶RB = 4∶1 C.VA∶VB = 1∶212:地球赤道上的物体重力加速度为 g,物体在赤道上随地球自转的向心加速度为 a,要使赤道上的物体 “飘”起来,则地球转动的角速度应为原来的( D ) 倍 A.a gB.ga aC.g a aD.g a13:已知引力常量 G 和以下各组数据,能够计算出地球质量的是: BCD A. 地球绕太阳运行的周期和地球与太阳间的距离 B. 月球绕地球运行的周期和月球与地球间的距离 C. 人造地球卫星在地面附近处绕行的速度与周期 D. 若不考虑地球的自转,已知地球的半径与地面的重力加速度 14:设同步卫星离地心距离为 r,运行速率为 v1,加速度为 al,地球赤道上的物体随地球自转的向心加速高 三 物 理 专 题 讲 义度为 a2,第一宇宙速度为 v2,地球半径为 R,下列关系中正确的有( AC )。
A、-7-a1 r = a2 RB、a1 R2 = a2 r2C、V1 R = r V2D、V1 =R/r V215:假如一个作匀速圆周运动的人造地球卫星的轨道半径增大到原来的 2 倍,仍作匀速圆周运动,则:D(A)根据公式,可知卫星运动的线速度将增大到原来的 2 倍。
(B)根据公式,可知卫星所需的向心力将减小到原来的。
(C)根据公式,可知地球提供的向心力将减小到原来的。
(D)根据上述(B)和(C)中给出的公式,可知卫星运动的线速度将减小到原来的。