2020年九年级数学中考二轮专项——反比例函数综合题(含详细解答)

合集下载

2020年中考二轮复习:反比例函数实际应用题专题复习(含答案解析)

2020年中考二轮复习:反比例函数实际应用题专题复习(含答案解析)

2020年中考二轮复习:实际问题与反比例函数专题复习一.解答题(共20小题)1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?15.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?16.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)17.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?18.如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.19.六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?20.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.2020年中考二轮复习:实际问题与反比例函数专题复习参考答案与试题解析1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?【分析】(1)反比例函数经过点(10,4),代入反比例函数式,即可求得函数解析式.(2)I≤8时,根据反比例函数的单调递减性质,求电阻R的范围.【解答】解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?【分析】(1)根据题意和函数图象可以求得a的值;根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.【解答】解:(1)观察图象,可知:当x=7(min)时,水温y=100(℃)当0≤x≤7时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤7时,y关于x的函数关系式为y=10x+30,当x>7时,设y=,100=,得a=700,即当x>7时,y关于x的函数关系式为y=,∴y与x的函数关系式为:y=;(2)当y=30时,x=,y与x的函数关系式每分钟重复出现一次,将y=50代入y=10x+30,得x=2,将y=50代入y=,得x=14,∵14﹣2=12,﹣12=(分钟),∴怡萱同学想喝高于50℃的水,她最多需要等待min.3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出y=20时x的值进而得出答案.【解答】解:(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:y=,则a=150×1.5=225,解得:a=225,故y=(x≥1.5),综上所述:y与x之间的两个函数关系式为:y=;(2)在中令y=20得x=11.25,21+11.25﹣24=8.25(小时),所以第二天最早8点(15分)能驾车去上班.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?【分析】(1)根据温度=气体的气压P×气体体积V,求温度,再确定P与V的函数关系式;(2)依题意P≤150,即P=≤150,解不等式即可.【解答】解:(1)设P=,将A(0.5,120)代入求出k=60,∴P=;(2)当P>150KPa时,气球将爆炸,∴P≤150,即P=≤150,解得V≥=0.4(m3).故为了安全起见,气体的体积应不小于0.4(m3).5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).【分析】(1)根据电流I(A)是电阻R(Ω)的反比例函数,设出I=(k≠0)后把(4,9)代入求得k值即可;(2)将R=10Ω代入上题求得的函数关系式后求得电流的值与4比较即可.【解答】解:(1)由电流I(A)是电阻R(Ω)的反比例函数,设I=(k≠0),把(4,9)代入得:k=4×9=36,∴.(2)当R=10Ω时,I=3.6A.6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)利用t=2代入进而得出V的值;(3)把V=4 000代入V=,求出答案.【解答】解:(1)设函数表达式为V=,把(6,3000)代入V=,得3000=.解得:k=18000,所以V与t之间的函数表达式为:V=;(2)把t=2代入V=,得V=9000,答:每小时的排水量应该是9 000 m3;(3)把V=4 000代入V=,得t=4.5,根据反比例函数的性质,V随t的增大而减小,因此水池中的水至少要4.5 h才能排完.7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)【分析】(1)根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题;【解答】解:(1)观察图象,可知:当0≤x≤6.5时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤6.5时,y关于x的函数关系式为y=10x+33,当6.5<x<时,设y=,98=,得a=637,∴6.5<x<时,y关于x的函数关系式为y=;(2)将y=91代入y=10x+33,得x=5.8,将y=91代入y=,得x=7,∵7﹣5.8=1.2,∴若小明准备用不低于91℃的水沏茶,请问他可用水的时间有1.2min;8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?【分析】(1)可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值,然后代入R=6求得I的值即可.(2)限制的电流不超过4A,把I=4代入函数解析式求得最小电阻值.【解答】解:(1)设I=,由图中曲线过(3,2)点,所以2=,解得k=6,即函数关系式为I=;(2)由I=可知I=4时,R=1.5Ω,所以电阻应至少1.5Ω.9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?【分析】(1)从反比例图象上任意找一点向两坐标轴引垂线,形成的矩形面积等于k的绝对值,由图可知1.8×5=9,即可求出解析式.(2)在(1)的基础上,知道自变量,便可求出函数值.(3)知道了自变量的范围,利用解析式即可求出函数的范围.【解答】解:(1)由图象可知y与x成反比例,设y与x的函数关系式为y=,把(5,1.8)代入关系式得1.8=,∴k=9,∴y=,∴12﹣9=3(万元).答:首付款为3万元;(2)当x=20时,y==0.45(万元),答:每月应付0.45万元;(3)当y=0.4时,0.4=,解得:x=,答:他至少23个月才能结清余款.10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y与x的关系式;(2)将y=20代入y=,即可得到a的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;【解答】解:(1)当0≤x≤8时,设y与x之间的函数关系式为y=kx+b(k≠0),将(0,20),(8,100)代入y=kx+b,得:,解得:,∴当0≤x≤8时,y与x之间的函数关系式为y=10x+20;(2)当8≤x≤a时,设y与x之间的函数关系式为:y=(k2≠0),将(8,100)代入y=,得:100=解得:k2=800,∴当8≤x≤a时,y与x之间的函数关系式为:y=;将(a,20)代入y=,得:a=40;(3)依题意,得:≤40,解得:x≥20.∵x≤40,∴20≤x≤40.∴他应在7:40~8:00时间段内接水.11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?【分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可,药物燃烧后,设出y与x之间的解析式(k2>0)代入(6,4)即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,≥9就有效.【解答】解:(1)设药物燃烧时y关于x的函数关系式为:y=k1x(k1>0)代入(6,4)为4=6k1∴k1=,设药物燃烧后y关于x的函数关系式为:(k2>0)代入(6,4)为:4=,∴k2=24,∴药物燃烧时y关于x的函数关系式为:y=x(0≤x≤6),药物燃烧后y关于x的函数关系式为:y=(x>6);(2)令y=中y≤1.6,得:x≥15,即从消毒开始,至少需要15分钟后学生才能进入教室;(3)把y=2代入y=x,得:x=3,把y=2代入y=,得:x=12,∵12﹣3=9,所以这次消毒是有效的.12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【分析】(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v﹣20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.【解答】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?【分析】(1)药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比;药物释放完毕后,含药量y(毫克)与时间x(小时)成反比,用待定系数法可得函数关系式;(2)根据函数值为0.25,利用反比例函数即可得到自变量x的值.【解答】解:(1)药物释放过程中,y与x成正比,设y=kx(k≠0),∵函数图象经过点A(2,1),∴1=2k,即k=,∴y=x;当药物释放结束后,y与x成反比例,设y=(k'≠0),∵函数图象经过点A(2,1),∴k'=2×1=2,∴y=;(2)当y=0.25时,代入反比例函数y=,可得。

2020年中考数学复习专题——反比例函数习题

2020年中考数学复习专题——反比例函数习题

2020年中考数学复习专题反比例函数习题一.选择题(共10 小题)1.已知一次函数y=kx﹣3 与反比例函数y=﹣kx﹣1,那么它们在同一坐标系中的图象可能是()A. B.C. D.2.如图,已知点A 是反比例函数y=图象上一点,过点A 作AB⊥x 轴于点B 交反比例函数y=的图象于点C,连接OA、OC,则△OAC 的面积为()A.2 B.3 C.6 D.83.已知一次函数y=kx﹣1 和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A. B.C.D.4.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0 时,y 随x 的增大而增大C.图象经过点(3,﹣6)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y25.如图所示,点A 是反比例函数y=的图象上的一点,过点A 作AB⊥x 轴,垂足为B,点C 为y 轴上的一点,连接AC、BC.若△ABC 的面积为5,则k 的值为()A.5 B.﹣5 C.10 D.﹣106.如图,已知直线y=﹣2x+5 与x 轴交于点A,与y 轴交于点B,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C,双曲线y=(x>0)经过点C,则k 的值为()A.8 B.6 C.4 D.47.在函数y=(k>0)的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1 >x2>0>x3,则下列各式中,正确的是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y28.如图,点P 在反比例函数y=的图象上,P A⊥x 轴于点A,则△P AO 的面积为()A.1 B.2 C.4 D.69.在反比例函数y=图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值范围是()A.k=2 B.k>0 C.k>2 D.k<210.如图,在平面直角坐标系xOy 中,B 是反比例函数y=(x>0)的图象上的一点,则矩形OABC 的面积为()A.1 B.2 C.3 D.4二.填空题(共10 小题)11.如图,一次函数y=﹣x+1 与反比例函数y=(x<0)的图象交于点A,与x 轴正半轴交于点B,且S△AOB=1,则反比例函数解析式为.12.如图,已知第一象限内的点A 在反比例函数y=的图象上,第二象用内的点B 在反比例数y=的图象上,且OA⊥OB,cos A=.则k 的值为.13.如图所示,点C 在反比例函数y=(x>0)的图象上,过点C 的直线与x 轴、y 轴分别交于点A、B,且AB=BC,已知△AOB 的面积为1,则k 的值为.14.如果一次函数y=2x+3 与反比例函数y=(k≠0)有交点,那么k 的取值范围是.15.如图,以矩形OABC 的顶点O 为原点,OA 为x 轴,OC 为y 轴建立平面直角坐标系,双曲钱y=与AB、BC 分别交于点D、E,沿直线DE 将△DBE 翻折得△DFE,且点F 恰好落在直线OA 上,若AB:BC=4:5,则矩形的面积是.16.已知A(﹣1,2)是反比例函数图象上的一个点,则k 的值为.17.如图所示,点A1、A2、A3 在x 轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3 作y 轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点作x 轴的平行线,分别与y 轴交于点C1、C2、C3,连接OB1、OB2、OB3,那么图中阴影部分的面积之和为.18.如图,已知正比例函数y=kx(k≠0)和反比例函数y=(m≠0)的图象相交于点A (﹣2,1)和点B,则不等式kx<的解集是.19.如图,在平面直角坐标系中,直线y=x 与双曲线y=(k≠0)交于点A,过点C(0,2)作AO 的平行线交双曲线于点B,连接AB 并延长与y 轴交于点D(0,4),则k 的值为.20.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:y =(k≠0),其图象为如图的一段曲线,若这段公路行驶速度不得超过60km/h,则该汽车通过这段公路最少需要h.三.解答题(共10 小题)21.如图,直线y=2x+2 与x 轴,y 轴分别交于A,B 两点,与反比例函数y=(x>0)的图象交于点M,过M 作MH⊥x 轴于点H,且AB=BM,点N(a,1)在反比例函数y=(x>0)的图象上.(1)求k 的值;(2)在x 轴的正半轴上存在一点P,使得PM+PN 的值最小,求点P 的坐标;(3)点N 关于x 轴的对称点为N′,把△ABO 向右平移m 个单位到△A′B′O′的位置,当N′A+N′B 取得最小值时,请你在横线上直接写出m 的值,m=.22.如图,过原点O 的直线与双曲线y=交于上A(m,n)、B,过点A 的直线交x 轴正半轴于点D,交y 轴负半轴于点E,交双曲线y=于点P.(1)当m=2 时,求n 的值;(2)当OD:OE=1:2,且m=3 时,求点P 的坐标;(3)若AD=DE,连接BE,BP,求△PBE 的面积.23.如图,在平面直角坐标系xOy 中,Rt△OCD 的一边OC 在x 轴上,∠OCD=90°,点D 在第一象限,OC=6,DC=4,反比例函数的图象经过OD 的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD 的另一边DC 交于点B,求过A、B 两点的直线的解析式.24.如图,在平面直角坐标系xOy 中,B(3,﹣1)是反比函数y=图象上的一点,过B 点的一次函数y=﹣x+b 与反比例函数交于另一点A.(1)求一次函数和反比例函数的表达式;(2)求△AOB 面积;(3)在A 点左边的反比例函数图象上求点P,使得S△POA:S△AOB=3:2.25.如图,在平面直角坐标系xOy 中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B 两点,与x 轴交于点C,点B 坐标为(m,﹣1),AD⊥x 轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)点E 是x 轴上一点,且△AOE 是等腰三角形,请直接写出所有符合条件的E 点的坐标.26.如图,反比例函数y=(x>0)过点A(3,4),直线AC 与x 轴交于点C(6,0),过点C 作x 轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC 的解析式;(2)求△ABC 的面积;(3)在平面内有点D,使得以A,B,C,D 四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D 点的坐标.27.已知反比例函数y=,若在每个象限内,这个函数的数值y 随x 的增大而减小,求m 的取值范围.28.如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A,B 两点,与y 轴交于点C,过点B 作BM⊥x 轴,垂足为点M,BM=OM =2,点A 的纵坐标为4.(1)求该反比例函数和一次函数的表达式;(2)直线AB 交x 轴于点D,过点D 作直线l⊥x 轴,如果直线l 上存在点P,坐标平面内存在点Q.使四边形OP AQ 是矩形,求出点P 的坐标.29.如图,矩形ABCD 的两边AD,AB 的长分别为3,8,且B,C 在x 轴的负半轴上,E 是DC 的中点,反比例函数y=(x<0)的图象经过点E,与AB 交于点F.(1)若点B 坐标为(﹣6,0),求m 的值;(2)若AF﹣AE=2.且点E 的横坐标为a.则点F 的横坐标为(用含a 的代数式表示),点F 的纵坐标为,反比例函数的表达式为.30.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=的图象交于A、B 两点,与x 轴交于点C,与y 轴交于点D,已知OA=2,点B 的坐标是(m,﹣4).(1)求反比例函数和一次函数的解析式;(2)若点E 在坐标轴上,且使得S△AED=2S△AOB,求点E 的坐标.参考答案与试题解析一.选择题(共10 小题)1.【分析】分别利用k 的取值,进而分析一次函数与反比例函数图象的位置,进而得出答案.【解答】解:当k>0 时,一次函数y=kx﹣3 的图象经过第一、三、四象限,反比例函数y=﹣kx﹣1 图象在第二、四象限,当k<0 时,一次函数y=kx﹣3 的图象经过第二、三、四象限,反比例函数y=﹣kx﹣1 图象在第一、三象限,四个选项中只有D 符合,故选:D.2.【分析】根据反比例函数k 的几何意义即可解决问题.【解答】解:∵AB⊥x 轴,点A 是反比例函数y=的图象上一点,点B 是反比例函数y =的图象上一点,∴S△AOB=4,S△BOC=1,∴S△AOC=S△AOB﹣S△BOC=4﹣1=3,故选:B.3.【分析】先根据k 的符号,得到反比例函数y=与一次函数y=kx﹣1 都经过第一、三象限或第二、四象限,再根据一次函数y=kx﹣1 与y 轴交于负半轴,即可得出结果.【解答】解:当k>0 时,直线从左往右上升,双曲线分别在第一、三象限;∵一次函数y=kx﹣1 与y 轴交于负半轴,∴D 选项正确,故选:D.4.【分析】反比例函数y=﹣中的﹣18<0,所以该函数图象位于第二、四象限,且在每一象限内y 随x 的增大而增大.【解答】解:A、因为y=﹣中的﹣18<0,所以该函数图象位于第二、四象限,故本选项说法正确;B、当x>0 时,y 随x 的增大而增大,故本选项说法正确;C、把点(3,﹣6)代入反比例函数得到﹣6=﹣,等式成立,故本选项说法正确;D、当在每一个象限内,y 随x 的增大而增大,故本选项说法错误;故选:D.5.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=5,再根据反比例函数的比例系数k 的几何意义得到|k|=5,然后去绝对值即可得到满足条件的k 的值.【解答】解:连结OA,如图,∵AB⊥x 轴,∴OC∥AB,∴S△OAB=S△ABC=5,而S△OAB=|k|,∴|k|=5,∵k<0,∴k=﹣10.故选:D.6.【分析】作CD⊥y 轴于D,CE⊥x 轴于E,设C(a,b),依据直线的解析式即可得到点A 和点B 的坐标,进而得出BC=BO=5,AC=AO=,再根据勾股定理即可得到a=2b,进而得出C(4,2),即可得到k 的值.【解答】解:作CD⊥y 轴于D,CE⊥x 轴于E,如图,设C(a,b),当x=0 时,y=﹣2x+5=5,则B(0,5),当y=0 时,﹣2x+5=0,解得x=,则A(,0),∵△AOB 沿直线AB 翻折后,点O 的对应点为点C,∴BC=BO=5,AC=AO=,在Rt△BCD 中,a2+(5﹣b)2=52,①在Rt△ACE 中,(a﹣)2+b2=()2,②①﹣②得a=2b,把a=2b 代入①得b2﹣2b=0,解得b=2,∴a=4,∴C(4,2),∴k=4×2=8.故选:A.7.【分析】根据反比例函数图象上点的坐标特征得到y1=,y2=,y3=,然后根据反比例函数的性质得到y3<0<y1<y2.【解答】解:∵A1(x1,y1)、A2(x2,y2)、A3(x3,y3)在函数y=的图象上,∴y1=,y2=,y3=,∵k>0,∴y3<0<y1<y2.故选:D.8.【分析】据反比例函数系数k 的几何意义可知,△P AO 的面积=|k|,再根据k 的值求得△P AO 的面积即可.【解答】解:依据比例系数k 的几何意义可得,△P AO 的面积=|k|,即△PAO 的面积=×2=1,故选:A.9.【分析】根据反比例函数的性质,可求k 的取值范围.【解答】解:∵反比例函数y=图象的每一条曲线上,y 都随x 的增大而增大,∴2﹣k<0,∴k>2 故选:C.10.【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S =|k|.【解答】解:∵点B 在反比例函数y=(x>0)的图象上,∴矩形OABC 的面积S=|k|=2,故选:B.二.填空题(共10 小题)11.【分析】由一次函数解析式求得B(1,0),根据三角形的面积公式求得点A 的纵坐标,结合一次函数图象上点的坐标特征求得点A 的横坐标,由点A 的坐标求得反比例函数解析式.【解答】解:在y=﹣x+1 中,令y=0,则x=0.即B(1,0).所以OB=1.设A(a,).由S△AOB=1 得到:×1×=1.所以=2,①因为点A(a,)是一次函数y=﹣x+1 与反比例函数y=(x<0)的图象的交点,所以=﹣a+1,②联立①②得到:a=﹣1,k=﹣2.所以,反比例函数解析式为:y=﹣.故答案是:y=﹣.12【.分析】作AN⊥x 轴于N,作AM⊥x 轴于M,证明△ANO∽△OMB,可得,因为 cos A =,所以 ,可得 S △OMB =2,利用反比例函数 k 的几何意义可得出 k 的值. 【解答】解:如图,作 AN ⊥x 轴于 N ,作 AM ⊥x 轴于 M ,∵OA ⊥OB ,∴∠AON =90°﹣∠BOM =∠OBM ,∠ANO =∠OMB =90°,∴△ANO ∽△OMB ,∵cos A =,∴S △OMB =2= , ∴k =. 故答案为:.13.【分析】根据题意可以设出点 A 的坐标,从而以得到点 C 和点 B 的坐标,再根据△AOB的面积为 1,即可求得 k 的值.【解答】解:设点 A 的坐标为(﹣a ,0),∵过点 C 的直线与 x 轴,y 轴分别交于点 A ,B ,且 AB =BC ,△AOB 的面积为 1, ∴点 C (a ,),∴点 B 的坐标为(0,),∴=1, 解得,k =4,∴ ,∴,∴,故答案为:4.14.【分析】由于一次函数y=2x+3 与反比例函数y=(k≠0)有交点,则可知方程2x+3 =有实数根,将方程变形为2x2+3x﹣k=0,利用判别式△≥0 即可求出k 的取值范围.【解答】解:∵一次函数y=2x+3 与反比例函数y=(k≠0)有交点,∴方程2x+3=有实数根,整理,得2x2+3x﹣k=0,∴△=9+8k≥0,解得k≥﹣.故答案为k≥﹣.15.【分析】根据AB:BC=4:5,设AB=4t,BC=5t,表示出A,B 的坐标,根据D、E 分别为反比例函数与BC、AB 的交点,得出D 与E 坐标,根据直线DE 将△DBE 翻折得△DFE,且点F 恰好落在直线OA 上,得到BF 垂直于DE,且BF 中点在DE 上,表示出DE 的斜率,进而确定出直线DE 方程,利用两直线垂直时斜率乘积为﹣1 得出直线BF 斜率,表示出直线BF 方程,进而表示出F 坐标,利用中点坐标公式表示出BF 中点坐标,代入直线DE 中整理表示出t2,即可确定出矩形的面积.【解答】解:根据AB:BC=4:5,设AB=4t,则有BC=5t,即A(5t,0),B(5t,4t),∵E、D 为反比例函数y=与BC、BA 的交点,∴D(5t,),E(,4t),∵直线DE 将△DBE 翻折得△DFE,且点F 恰好落在直线OA 上,∴BF⊥DE,BF 的中点在DE 上,∵直线DE 的斜率为=﹣,方程为y﹣4t=﹣(x﹣),∴直线BF 斜率为,∴直线BF 解析式为y﹣4t=(x﹣5t),即y=x﹣t,令y=0,得到x=t,即F(t,0),∴BF 的中点坐标为(,2t),将中点坐标代入直线DE 解析式得:2t﹣4t=﹣(﹣),整理得:t2=,则S 矩形=5t•4t=20t2=.故答案为:.16.【分析】将点A 坐标代入解析式可求k 的值.【解答】解:∵A(﹣1,2)是反比例函数图象上的一个点,∴k=﹣1×2=﹣2 故答案为:﹣217.【分析】根据反比例函数上的点向x 轴、y 轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=6,再根据相似三角形的面积比等于相似比的平方得到3 个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=|k|=6,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y 轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=|k|=6,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是s1=6,s2=,s3=,∴图中阴影部分的面积之和=6++=8.故答案为:.18.【分析】根据关于原点对称的点的坐标特征求得B(2,﹣1),然后根据函数的图象的交点坐标即可得到结论.【解答】解:∵正比例函数y=kx(k≠0)和反比例函数y=(m≠0)的图象相交于点A(﹣2,1),和点B,∴B(2,﹣1),∴不等式kx<的解集是﹣2<x<0 或x>2,故答案为:﹣2<x<0 或x>2.19.【分析】根据“直线y=x 与双曲线y=(k≠0)交于点A,过点C(0,2)作AO 的平行线交双曲线于点B”,得到BC 的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A 和点B 的坐标,根据点A 和点B 都在双曲线上,得到关于m 的方程,解之,得到点A 的坐标,即可得到k 的值.【解答】解:∵OA 的解析式为:y=,又∵AO∥BC,点C 的坐标为:(0,2),∴BC 的解析式为:y=,设点B 的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A 的坐标为:(2m,m),∵点A 和点B 都在y=上,∴m()=2m•m,解得:m=2,即点A 的坐标为:(4,),k=4×=,故答案为:.20.【分析】直接利用已知图象得出函数解析式进而得出答案.【解答】解:由题意可得:k=xy=40,则y≥=,即该汽车通过这段公路最少需要h.故答案为:.三.解答题(共 10 小题)21.【分析】(1)运用平行线分线段成比例定理可得 M 点坐标,就可求 k 的值;(2)找出 N 点的对称点 N ′,连接 MN ′与 x 轴交点就是点 P ;(3)过点 N ′作 x 轴的平行线,取 A 关于这条平行线的对称点 A ′,连接 A ′B 的直线 经过 N ′,可求 m 的值.【解答】解:(1)把 x =0 代 y =2x +2,得:y =2×0+2=2.∴点 B (0,2),即 BO =2, ∵BO ∥MH ,AB =BM ,∴MH =2BO =4,∵点 M 在 y =2x +2 上,4+2x +2,x =1,∴点 M 的坐标为(1,4),∵M 在反比例函 y =(x >0)的图象上,4=,k =4.(2)如图 2 所示,过点 N 作关于 x 轴的对称点 N ′,连接 M N ′,交 x 轴的正半轴于点 P ,则点 P 即为所求,此时 PM +PN 的值最小.∵点 N (a ,1)是反比例函 y =(x >0)图象上的点,1=,a =4,∴点 N ′的坐标为(4,﹣1),设直线 M N ′的函数表达式 y =kx +b ,=解∴y=x+ ,∴当y=0 时,x,即点P 的坐标为(,0).(3)过点N′作x 轴的平行线,取A 关于这条平行线的对称点A′,连接A′B 的直线经过N′设A′B 的解析式为:y=kx+b,代入平移后的B(m,2)、A′(m﹣1,﹣2)y=4x+2﹣4m把N′(4,﹣1)代入,解得:m=4.75.故答案为:4.75.22.【分析】(1)先得出mn=6,再将m=2 代入即可得出结论;(2)先求出n=2,进而得出点A 的坐标,再设出OD=a,OE=2a,进而求出直线DE 的解析式,最后将点A 坐标代入求出k,最后联立方程组求解即可得出结论;(3)先求出直线DE 的解析式,进而求出点E,坐标,再求出点B 的坐标,即可得出结论.【解答】解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点 D 在 x 轴坐标轴上,点 E 在 y 轴负半轴上,∴D (a ,0),E (0,﹣2a ),∴直线 DE 的解析式为 y =2x ﹣2a ,∵点 A (3,2)在直线 y =2x ﹣2a 上,∴6﹣2a =2,∴a =2,∴直线 DE 的解析式为 y =2x ﹣4①,∵双曲线的解析式为 y =②,联立①②解得,(点 A 的横纵坐标,所以舍去)或,∴P (﹣1,﹣6);(3)∵AD =DE ,点 D 在 x 轴坐标轴上,点 E 在 y 轴负半轴上,A (m ,n ),∴E (0,﹣n ),D (m ,0),∴直线 DE 的解析式为 y =x ﹣n ,∵mn =6,∴m = ,∴y = x ﹣n ③,∵双曲线的解析式为 y =④,联立③④解得,∴(点 A 的横纵坐标,所以舍去)或,∴P (﹣2m ,﹣2n ),∵A (m ,n ),∴直线 AB 的解析式为 y =x ⑤. 联立④⑤解得,(点 A 的横纵坐标,所以舍去)或∴B (﹣m ,﹣n ),∵E (0,﹣n ),∴BE∥x 轴,∴S△PBE=BE×|y E﹣y P|=×m×|﹣n﹣(﹣2n)|=mn=3.23.【分析】(1)先求出点A 的坐标,再利用待定系数法求解可得;(2)先求出点B 的坐标,再利用待定系数法求解可得.【解答】解:(1)∵∠OCD=90°,点D 在第一象限,OC=6,DC=4,∴D(6,4),∵OD 的中点为点A,∴A(3,2);设反比例函数解析式为y=,那么k=3×2=6,∴该反比例函数的解析式为y=;(2)在y=中,当x=6 时,y=1,则点B(6,1),设直线AB 解析式为y=mx+n,则,解得,∴直线AB 解析式为y=﹣x+3.24.【分析】(1)将B 点坐标分别代入y=﹣x+b,y=,即可求出一次函数和反比例函数的表达式;(2)将一次函数和反比例函数的表达式联立组成方程组,求出A 点坐标,再求出直线y =﹣x+2 与y 轴交点C 的坐标,然后根据S△AOB=S△AOC+S△COB,列式计算即可;(3)过点A 作AM⊥x 轴于点M,过点P 作PN⊥x 轴于点N,根据反比例函数比例系数k 的几何意义得出S△AOM=S△PON=.再推出S△POA=S 梯形AMNP,由S△POA:S△AOB=3:2,得到S△POA=S△AOB=6.设P(x,﹣),根据S 梯形AMNP=(NP+AM)•MN=6 列出方程,求解即可.【解答】解:(1)∵一次函数y=﹣x+b 过B(3,﹣1),∴﹣3+b=﹣1,b=2,∴一次函数表达式为y=﹣x+2;∵B(3,﹣1)是反比函数y=图象上的一点,∴k=3×(﹣1)=﹣3,∴反比例函数的表达式为y=﹣;(2)由,解得或,∴A(﹣1,3).如图,设直线y=﹣x+2 与y 轴交于点C,则C(0,2),∴S△AOB=S△AOC+S△COB=×2×1+×2×3=1+3=4;(3)如图,过点A 作AM⊥x 轴于点M,过点P 作PN⊥x 轴于点N,则S△AOM=S△PON =.∵S△POA+S△PON=S 梯形AMNP+S△AOM,∴S△POA=S 梯形AMNP,∵S△POA:S△AOB=3:2,∴S△POA=S△AOB=×4=6.设P(x,﹣),而A(﹣1,3),∴S 梯形AMNP=(NP+AM)•MN=6,∴(﹣+3)•(﹣1﹣x)=6,整理,得x2+4x﹣1=0,解得x=﹣2±,∵点P 在A 点左边,∴x<﹣1,∴x=﹣2﹣,∴P(﹣2﹣,3 ﹣6).25.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB 的面积=×4 ×3=6;(3)分类讨论:当AO 为等腰三角形腰与底时,求出点E 坐标即可.【解答】解:(1)如图,在Rt△OAD 中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y =﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0 时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4 时,由A(﹣2,3),O(0,0),得到直线AO 解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE 是等腰三角形.26.【分析】(1)将A 点的坐标代入反比例函数y=求得k 的值,然后将A,C 坐标代入直线解析式解答即可;(2)把x=6 代入反比例函数解析式求得相应的y 的值,即得点B 的坐标,进而利用三角形面积公式解答即可;(3)使得以A、B、C、D 为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.把A(3,4),C(6,0)代入y=mx+n 中,可得:,解得:,所以直线AC 的解析式为:y=﹣x+8;(2)∵点C(6,0),BC⊥x 轴,∴把x=6 代入反比例函数y=,得y==2.则B(6,2).所以△ABC 的面积=;(3)①如图,当四边形ABCD 为平行四边形时,AD∥BC 且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D 的横坐标为3,y A﹣y D=y B﹣y C 即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB 且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D 的横坐标为3,y D′﹣y A=y B﹣y C 即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B 为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A 即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A 即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).27.【分析】根据反比例函数的性质进行作答,当反比例函数系数k>0 时,它图象所在的每个象限内y 随x 的增大而减小.【解答】解:∵反比例函数y=,若在每个象限内,这个函数的数值y 随x 的增大而减小,∴2m﹣4>0,解得m>2.28.【分析】(1)根据题意得出 B 点坐标,进而得出反比例函数解析式,再利用待定系数法得出一次函数解析式;(2)设 P (﹣1,a ),如图 1,当∠P AO =90°,如图 2,当∠APO =90°,根据勾股定 理列方程即可得到结论.【解答】解:(1)∵BM =OM =2,∴点 B 的坐标为(﹣2,﹣2), 设反比例函数的解析式为 y =,则﹣2=,得 k =4,∴反比例函数的解析式为 y =,∵点 A 的纵坐标是 4,∴4=,得 x =1,∴点 A 的坐标为(1,4),∵一次函数 y =mx +n (m ≠0)的图象过点 A (1,4)、点 B (﹣2,﹣2),即一次函数的解析式为 y =2x +2;(2)存在,∵直线 AB 于 x 轴交于 D ,∴D (﹣1,0),∴OD =1,设 P (﹣1,a ),如图 2,当∠APO =90°,∵OP 2=OA 2﹣P A 2=PD 2+OD 2,∴12+42﹣[(1+1)2+(4﹣a )2]=12+a 2, 解得:a =2±,∴P (﹣1,2+ )或(﹣1,2﹣ ),∴ ,解得: ,综上所述,点P 的坐标为(﹣1,)或(﹣1,2+)或(﹣1,2﹣).29.【分析】(1)依据矩形的性质即可得出E(﹣3,4),再根据反比例函数y=(x<0)的图象经过点E,即可得到m=﹣3×4=﹣12;(2)依据勾股定理可得AE==5,进而得出点F 的纵坐标为1,根据反比例函数经过点E,F,可得a=﹣1,进而得到E(﹣1,4),代入反比例函数可得反比例函数的表达式为.【解答】解:(1)∵AD,AB 的长分别为3,8,E 是DC 的中点,∴BC=3,CD=8,又∵E 是DC 的中点,点B 坐标为(﹣6,0),∴CE=4,CO=6﹣3=3,∴E(﹣3,4),又∵反比例函数y=(x<0)的图象经过点E,∴m=﹣3×4=﹣12;(2)如图,连接AE,∵点E 的横坐标为a,BC=3,∴点F 的横坐标为a﹣3,又∵Rt△ADE 中,AE==5,∴AF=AE+2=7,BF=8﹣7=1,∴点F 的纵坐标为1,∴E(a,4),F(a﹣3,1),∵反比例函数经过点 E ,F ,∴4a =1(a ﹣3),解得 a =﹣1,∴E (﹣1,4),∴k =﹣1×4=﹣4,∴反比例函数的表达式为.30.【分析】(1)作 AH ⊥x 轴于 H .解直角三角形即可求出点 A 坐标以及点 B 的坐标,利用待定系数法即可解决问题;(2)由题意可得:D (0,﹣2),C (﹣2,0),依据点 E 在坐标轴上,设 E (x ,0)或 (0,y ),根据 S △AED =2S △AOB ,即可得到点 E 的坐标.【解答】解:(1)如图,作 AH ⊥x 轴于 H .在 Rt △AOH 中,∵OA =2,tan ∠AOH = ,∴AH =2,OH =4,∴A (﹣4,2),∵A (﹣4,2)在 y =的图象上,∴k =﹣8,∵B (m ,﹣4),在 y =﹣的图象上上,∴m =2,把 A 、B 坐标代入 y =kx +b ,则,故答案为:a ﹣3;1;.解得,∴反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x﹣2.(2)由y=﹣x﹣2,令x=0,则y=﹣2;令y=0,则x=﹣2,∴D(0,﹣2),C(﹣2,0),∴S△AOB=S△AOD+S△BOD=×2×(4+2)=6,若点E 在y 轴上,设E(0,y),则DE=|y﹣(﹣2)|.由S△AED=2S△AOB,可得×|y﹣(﹣2)|×(4+2)=2×6.解得y=2 或﹣6,∴点E 的坐标为(0,2)或(0,﹣6);若点E 在x 轴上,设E(x,0),则CE=|x﹣(﹣2)|.由S△AED=2S△AOB,可得×|x﹣(﹣2)|×4=2×6.解得x=4 或﹣8,∴点E 的坐标为(4,0)或(﹣8,0);综上所述,点E 的坐标为(0,2)或(0,﹣6)或(4,0)或(﹣8,0).第 31 页共 31 页。

2020年九年级数学中考二轮专项——反比例函数综合题(含详细解答)

2020年九年级数学中考二轮专项——反比例函数综合题(含详细解答)

2020年九年级数学中考二轮专项——反比例函数综合题1. (2019成华区一诊)如图,点A 在反比例函数y =kx (x <0)的图象上,作Rt △ABC ,直角边BC 在x 轴上,点D 为斜边AC 的中点,直线BD 交y 轴于点E ,若△BCE 的面积为8,则k =________.第1题图2. (2018威海)如图,直线AB 与双曲线y =kx (k <0)交于点A ,B ,点P 是直线AB 上一动点,且点P 在第二象限,连接PO 并延长交双曲线于点C.过点P 作PD ⊥y 轴,垂足为点D.过点C 作CE ⊥x 轴,垂足为点E .若点A 的坐标为(-2,3),点B 的坐标为(m ,1),设△POD 的面积为S 1,△COE 的面积为S 2.当 S 1>S 2时,点P 的横坐标x 的取值范围为________.第2题图3. (2019乐山)如图,点P 是双曲线C :y =4x (x >0)上的一点,过点P 作x 轴的垂线交直线 AB :y =12x -2于点Q ,连接OP ,OQ .当点P 在双曲线C 上运动,且点P 在点Q 的上方时,△POQ 面积的最大值是________.第3题图4. (2019成华区二诊)如图,曲线l 是由函数y =6x 在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (-42,42),B (22,22)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为________.第4题图5. (2019成都黑白卷)若点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与三角形ABC 相似,则称点P 为△ABC 的自相似点.如图所示,点M 为反比例函数y =kx 图象上的点,过点M 作MN ⊥x 轴于点N ,点P 是OM 上一点,若点P 为△MON 的自相似点,且P (34,34),则k 的值为________.第5题图6. 定义“[a ]表示不大于a 的最大整数”,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx (m ≠0)的图象交于A (2,1)、B (-1,n )两点,动点P 在直线AB 上,且在反比例函数图象的下方,当点P 横坐标大于0时,其坐标对应的所有有序对([x ],[y ])是________.7. 如图,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2),Q 为双曲线上的两点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别为点A 、B ,当点Q 在第一象限的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,则平行四边形OPCQ 周长的最小值为________.第7题图8. (2019金牛区一诊)如图,在平面直角坐标系中,点A 在反比例函数y 1=kx (x >0)的图象上,点A ′与点A 关于点O 对称,直线AA ′的解析式为y 2=mx ,将直线AA ′绕点A ′顺时针旋转,与反比例函数图象交与点B ,直线A ′B 的解析式为y 3=m2x +n ,若△AA ′B 的面积为3,则k 的值为________.第8题图9. (2019龙泉驿区一诊)如图,在直角坐标系中有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =kx(x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,则点E 的坐标为________.第9题图10. (2019新都区5月监测)如图,已知点A 是反比例函数y =23x 的图象在第一象限上的动点,连接AO并延长交另一分支于点B ,以AB 为边作等边△ABC 使点C 落在第二象限,且边BC 交x 轴于点D ,若△ACD 与△ABD 的面积之比为1∶2,则点C 的坐标为________.第10题图11. (2019成都黑白卷)若一条直线与两坐标轴、反比例函数的图象均有交点,我们称直线与反比例函数图象的交点到直线与x 轴的交点的距离为该点的“横距”,称直线与反比例函数图象的交点到直线与y 轴的交点的距离为该点的“纵距”.如图,一次函数y =k 1x +7(k 1<0)的图象分别与坐标轴交于A 、B 两点,与反比例函数y =k 2x (k 2>0)的图象交于M 、N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1,若点M 的“纵距”与点M 的“横距”的比为1∶4,则反比例函数的解析式为________.第11题图12. (2019武侯区二诊)如图,已知直线AB 交x 轴于点A ,分别与函数y =a x (x >0,a >0)和y =bx (x >0,b>a >0)的图象相交于点B 、C ,过点B 作BD ∥x 轴交函数y =bx 的图象于点D ,过点C 作CE ∥x 轴交函数y=a x 的图象于点E ,连接AD ,BE ,若BC AB =12,S △ABD =2,则S △BCE =________.第12题图13. 两个已知图形G 1、G 2,在G 1上任取一点P ,在G 2上任取一点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1、G 2的“密距”.如图,A (-2,3),B (1,3),C (1,0),则点A 与射线OC 之间的“密距”为13,点B 与射线OC 之间的“密距”为3.如果直线y =x -1和双曲线y =k x 之间的“密距”为522,则k 值为________.第13题图14. (2019都江堰区二诊)如图,在直角坐标系xOy 中,以点O 为圆心,半径为2的圆与反比例函数y =k x (x >0)的图象交于A 、B 两点,若AB ︵的长为13π,则k 的值为________.第14题图15. (2019武侯区一诊)如图,将双曲线y =kx (k <0)在第四象限的一支沿直线y =-x 方向向上平移到点E处,交该双曲线在第二象限的一支于A ,B 两点,连接AB 并延长交x 轴于点C ,双曲线y =mx (m >0)与直线y =x 在第三象限的交点为D ,将双曲线y =mx 在第三象限的一支沿射线OE 方向平移,D 点刚好可以与C 点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分),若C 点坐标为(-5,0),AB =32,则mk 的值为________.第15题图16. (2019福建)如图,菱形ABCD 的顶点A 在函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且过B ,D 两点.若AB =2,∠BAD =30°,则k =________.第16题图17. 已知点A ,B 分别是x 轴,y 轴上的动点,点C ,D 是某函数图象上的点,当四边形ABCD (A ,B ,C ,D 各点依次排列)为正方形时,称这个正方形为此函数图象的“伴侣正方形”.如图,正方形ABCD 是反比例函数y =2x图象上的其中一个伴侣正方形,则这个伴侣正方形的边长是________.第17题图18.如图,反比例函数y =kx 的图象经过点A(-1,4),直线y =-x +b(b ≠0)与双曲线y =kx 在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点.(1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.19.如图,在平面直角坐标系xOy 中,函数y =x +b 的图象与函数y =(x >0)的图象相交于点A (1,6),并与x 轴交于点B .点C 是线段AB 上一点,△OBC 与△OBA 的面积比为2:3.(1)k=,b=;(2)求点C的坐标;(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.20.(2019•河池中考)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案1. 16 【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∵∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,OB BC =OE BA ,即BC ·OE =OB ·BA .又∵S △BEC =8,∴12BC ·OE =8,∴BC ·OE=16=BO ·BA =|k |.∵反比例函数图象在第三象限,∴k >0,∴k =16.2. -6<x <-2 【解析】当点P 在反比例函数图象上时,△POD 和△COE 的面积相等,当直线在双曲线下方时,即当点P 在反比例函数图象内侧时,△POD 比△COE 的面积小,当直线在双曲线上方时,即当点P 在外侧时,△POD 比△COE 的面积大,根据此结论,当S 1>S 2,说明点P 在曲线的外侧,故在线段AB 上,点A ,B 在反比例函数图象上,∴-2×3=m ×1,∴m =-6,∴P 点横坐标的取值范围为-6<x <-2.3. 3 【解析】点P 在双曲线y =4x 上 ,令PQ 与x 轴的交为点G ,P (x ,4x ),则Q (x ,12x -2),则S △OPG=12·x ·4x =2为定值,S △OGQ =12·x ·(2-x 2)=x -x 24=-14(x -2)2+1,当x -2=0即x =2时,S △OGQ 有最大值为1,∴S △POQ =S △OGQ +S △OPG =1+2=3,∴△POQ 面积的最大值是3.4. 8 【解析】∵A (-42,42),B (22,22),∴OA ⊥OB ,建立如解图所示的直角坐标系,OB 为x ′轴,OA 为y ′轴.在坐标系中,A (0,8),B (4,0),∴直线AB 的解析式为y ′=-2x ′+8,联立⎩⎪⎨⎪⎧y ′=-2x ′+8y ′=6x ′,解得⎩⎪⎨⎪⎧x ′=1y ′=6或⎩⎪⎨⎪⎧x ′=3y ′=2,∴M (1,6),N (3,2),∴S △OMN =S △OBM -S △OBN =12×4×6-12×4×2=8.第4题解图5. 33 【解析】∵点P 为△MON 的自相似点,∴△ONP ∽△OMN ,∴NP ⊥OM .如解图,过点P 作PD ⊥x 轴于点D ,由题意,tan ∠POD =PD OD =3434=3,∴∠POD =60°,∴∠OPD =30°,∴OP =2OD =32,在Rt △OPN 中,ON =OPcos60°=3212=3,MN =ON ·tan60°=3×3=3,∴M (3,3),∴k =3×3=3 3.第5题解图6. (0,-1),(1,0) 【解析】将A (2,1)代入反比例函数解析式y 2=mx (m ≠0),得m =2,∴反比例函数解析式为y 2=2x ,∴n =2-1=-2,∴B (-1,-2),∵直线y 1=kx +b (k ≠0)经过A (2,1)、B (-1,-2)两点,∴直线的解析式为y =x -1,∴直线与x 轴交于点(1,0),∵动点P 在直线AB 上,且在反比例函数图象的下方,点P 横坐标大于0,∴0<x <2,-1<y <1,∴坐标对应的所有有序对([x ],[y ])是 (0,-1),(1,0).7. 25+4 【解析】设正比例函数解析式为y =kx ,将点M (-2,-1)代入得k =12,∴正比例函数解析式为y =12x ,同理可得,反比例函数解析式y =2x ,∵四边形OPCQ 是平行四边形,∴OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,∴OP 的长也是定长,∴要求平形四边形OPCQ 周长的最小值就只需求OQ 的最小值,∵点Q 在第一象限中的双曲线上,∴可设点Q 的坐标为Q (n ,2n ),由勾股定理可得OQ 2=n 2+4n 2=(n-2n )2+4,∴当(n -2n )2=0即n -2n =0时,OQ 2有最小值4,又∵OQ 为正值,∴OQ 有最小值2,由勾股定理得OP =5,∴平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.8. 2 【解析】设点A (a ,k a )(a >0),∵点A 和点A ′关于原点对称,∴点A ′的坐标为(-a ,-ka ),∵点A ′在y 2=mx 的图象上,∴点A ′的坐标为(-a ,-am ).∴-ka=-am ,a 2m =k .∵直线AA ′绕点A ′顺时针旋转,与反比例函数图象交于点B ,∴⎩⎨⎧y =a 2m xy =m2x +n,∴点B 的坐标为(2a ,k2a ),如解图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接BO ,∵O 为AA ′中点,∴S △AOB =12S △ABA ′=32,∵点A 、B 在双曲线上,∴S △AOC=S △BOD ,∴S △AOB =S 四边形ACDB =32,由已知点A 、B 坐标分别为(a ,k a )、(2a ,k 2a ),∴12×(k 2a +k a )·a =32,∴k =2.第8题解图9. (4,8) 【解析】如解图,过点C 作CF ⊥x 轴于点F ,∵OB ·AC =160,A 点的坐标为(10,0),OA=AB =BC =OC =10,∴OA ·CF=12OB ·AC =12×160=80,∴CF =8,在Rt △OCF 中,∵OC =10,CF =8,∴OF=OC 2-CF 2=102-82=6,∴C (6,8),∵D 是线段AC 的中点,∴D 点坐标为(10+62,82),即(8,4),∵双曲线y =k x (x >0)经过D 点,∴4=k 8,即k =32,∴双曲线的解析式为y =32x (x >0),∵CF =8,∴直线CB 的解析式为y =8,∴联立⎩⎪⎨⎪⎧y =8y =32x ,解得⎩⎪⎨⎪⎧x =4y =8,∴E 点坐标为(4,8).第9题解图10. (-6,3) 【解析】如解图,过点C 作CM ⊥x 轴于点M ,过点A 作AE ⊥x 轴于点E ,过点D 作DF ⊥AB 于点F ,连接CO ,根据题意得AO =BO ,∵S △ACD ∶S △ADB =1∶2,∴CD ∶DB =1∶2即DB =2CD ,∵△ABC 为等边三角形且AO =BO ,∴∠CBA =60°,CO ⊥AB 且DF ⊥AB ,∴DF ∥CO ,∴DF CO =BF BO =BDBC =23,∴DF =23CO ,BF =23BO ,即FO =13BO .∵∠CBA =60°,CO ⊥AB ,∴CO =3BO ,∴DF =233BO ,∵∠DOF =∠AOE ,∠DFO =∠AEO =90°,∴△DFO ∽△AEO ,∴AE OE =DFOF =233BO 13BO =23,∴AE =23OE ,∵点A是反比例函数y =23x 的图象在第一象限上的动点,∴AE ·OE =23,∴AE =23,OE =1,∵∠COM +∠AOE=90°,∠AOE +∠EAO =90°,∴∠COM =∠EAO ,且∠CMO =∠AEO =90°,∴△COM ∽△OAE ,CM OE =MOEA =COOA=3,∴CM =3,MO =6,且点M 在第二象限,∴C (-6,3).第10题解图11. y =285x 【解析】∵MC ⊥y 轴于点C ,且CM =1,∴M 的横坐标为1,当x =1时,y =k 1+7,∴M (1,k 1+7),∵M 在反比例函数的图象上,∴1×(k 1+7)=k 2,∴k 2-k 1=7,∴k 1=k 2-7;由定义可得AM BM =14,∴BM=4AM .∴AM AB =AM AM +BM =AM AM +4AM =15.∵CM ∥OB ,∵△ACM ∽△AOB .∴CM OB =AM AB =15.∵CM =1,∴OB=5.∴B (5,0).∵点B 在一次函数y =k 1x +7的图象上,∴5k 1+7=0,解得k 1=-75.∴k 2=-75+7=285.∴反比例函数的解析式y =285x.12.23 【解析】如解图,过点A 分别作BD 和EC 的垂线交DB 和CE 的延长线于点G 、F ,∵BC AB =12,∴AG GF =21.∴设D 的坐标为(b m ,m ),则B (a m ,m ),则BD =b m -a m =b -a m ,AG =m ,GF =m 2.设点C 的坐标为(b n,n ),则E (a n ,n ),则CE =b n -a n =b -a n ,FG =n -m =m 2∴m =23n .∴FG =13n ,∵S △ABD =2,∴b -a m ×m ×12=2,∴b -a =4.∴S △BCE =b -a n ×13n ×12=23.第12题解图13. -9 【解析】根据“密距”的定义可知双曲线图象在二、四象限,且直线y =x -1与双曲线离第四象限最近,设双曲线上点D 到直线y =x -1距离最近,如解图,设直线y =x -1与y 轴交于点E ,过D 作直线y =x -1的平行线,交y 轴于点G ,过D 作直线y =x -1的垂线,垂足为F ,过F 作EH ⊥DG ,垂足为H ,则由题意可知DF =EH =522,又∵∠OEF =45°,∴∠EGH =45°,∴EH =HG =522,∴EG =2EH=2×522=5,又∵OE =1,∴OG =6,∴直线DG 的解析式为y =x -6,联立直线DG 和双曲线解析式可得⎩⎪⎨⎪⎧y =k xy =x -6,消去y 整理可得x 2-6x -k =0,∵直线DG 与双曲线只有一个交点,∴方程x 2-6x -k =0有两个相等的实数根,∴b 2-4ac =0,即(-6)2+4k =0,解得k =-9.第13题解图14. 3 【解析】如解图,连接OA 、OB ,∵AB ︵的长度为13π,OA =OB =2,∴nπ×2180°=13π,解得n =30°,即∠AOB =30°,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D ,∵点A 、B 均在反比例函数y =kx 的图象上,∴BD ×OD =AC ×OC =k ,∵OB =OA ,∴点A 和点B 关于直线y =x 对称,∴BD =AC ,OD =OC , ∴△AOC ≌△BOD ,∴∠AOC =90°-∠AOB 2=90°-30°2=30°,设A (a ,b ),则OC =a =OA ·cos30°=2×32=3,AC =b =OA ·sin30°=2×12=1,k =ab =3×1= 3.第14题解图15. -25 【解析】如解图,连接CD ,过点A 作AF ⊥x 轴于点F ,过点D 作DH ⊥x 轴于点H ,设AB与EO 的交点为G ,∵C 点坐标为(-5,0),AB =32,∴OC =5,AG =BG =322,∵直线OE 的解析式为y =-x ,直线OD 的解析式为y =x ,∴∠COE =∠COD =∠ACO =∠DCO =45°,∴DH =OH =52,CG =522,∴D (-52,-52),AC =CG +AG =42,∴AF =CF =22×42=4,∴OF =OC -CF =1,∴A (-1,4),把A (-1,4)代入y =k x 中,得k =-4,把D (-52,-52)代入y =m x 中,得m =254,∴mk =-25.第15题解图16. 6+23 【解析】如解图,连接OC ,过点B 作x 轴的垂线,垂足为点E ,过点A 作AF ⊥BE 于点F ,∵四边形ABCD 为菱形,函数y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B ,D 两点,∴直线AC 的表达式是y =x ,∠CAF =45°,∵∠BAD =30°,∴∠BAC =12∠BAD =15°,∴∠BAF =30°,∵AB =2,∴BF =AB ·sin30°=1,AF =AB ·cos30°=3,∵函数y =3x (x >0)与直线AC 有交点,联立⎩⎪⎨⎪⎧y =x y =3x,解得⎩⎨⎧x =3y =3.∴A (3,3),∴B (23,3+1),将点B 的坐标代入函数y =k x ,得3+1=k 23,∴k =23×(3+1)=6+2 3.第16题解图17. 2 【解析】如解图,过点C 作CF ⊥y 轴于点F ,过点D 作DE ⊥x 轴于点E ,∴∠CFB =∠DEA=∠AOB =90°,∴∠FCB +∠FBC =90°,∠BAO +∠ABO =90°,∠DAE +∠ADE =90°,∵四边形ABCD 为正方形,∴CB =AB =AD ,∠CBA =∠BAD =90°,∴∠FBC +∠ABO =90°,∠BAO +∠DAE =90°,∴∠FCB =∠ABO =∠DAE ,∴△BFC ≌△AOB ≌△DEA ,∴FC =OB =AE ,FB =OA =DE ,由点C ,D 在反比例函数y =2x 图象上,故设C (a ,2a ),D (b ,2b ),∴FC =OB =AE =a ,FB =OA =DE =2b,又∵FB =DE =OA =OE -AE =b -a ,∴2b =b -a ,即b 2-ab =2①,又∵OF =FB +OB =2a ,∴b -a +a =2a,即ab =2②,将②代入①得b 2=4,解得b 1=2,b 2=-2(不合题意,舍去),将b =2代入②得a =1,∴CF =1,FB =b -a =1,在Rt △BCF 中,根据勾股定理得BC =CF 2+BF 2=2,则这个伴侣正方形的边长为 2.第17题解图18解:(1)∵反比例函数y =kx的图象经过点A(-1,4),∴k =-1×4=-4;(2)当b =-2时,直线的解析式为y =-x -2.令y =0,则-x -2=0,解得x =-2,∴C(-2,0).令当x =0,则y =-x -2=-2,∴D(0,-2).∴S △OCD =12×2×2=2; (3)存在.令y =0,则-x +b =0,解得x =b ,则C(b ,0).∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等.而点Q 在第四象限,∴点Q 的横坐标为-b.当x =-b 时,y =-x +b =2b ,则Q(-b ,2b),∵点Q 在反比例函数y =-4x的图象上,∴-b •2b =-4,解得b =-2或b =2(舍去),∴b 的值为- 2.19.解:(1)将A (1,6)代入y =x +b ,得,6=1+b ,∴b =5,将A (1,6)代入y =,得,6=,∴k =6,故答案为:6,5;(2)如图1,过点C作CM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,∵△OBC与△OBA的面积比为2:3,∴=,又∵点A的坐标为(1,6),∴AN=6,∴CM=4,即点C的纵坐标为4,把y=4代入y=x+5中,得,x=﹣1,∴C(﹣1,4);(3)由题意可知,OC'=OC===,如图2,过点B'作B'F⊥x轴,垂足为F,∵S△OBC=S△OB'C′,由一次函数y=x+5可知B(﹣5,0),∴OB•CE=OC'•B'F,即5×4=B'F,∴B'F=,在Rt△OB'F中,∵OF===,∴B'的坐标为(,),∵×≠6,∴点B'不在函数y=的图象上.20.解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.。

2020年九年级数学中考压轴每日一练:《反比例函数综合》(解析版)

2020年九年级数学中考压轴每日一练:《反比例函数综合》(解析版)

三轮压轴每日一练:《反比例函数综合》1.如图,直线y =mx +6与反比例函数y =(x >0)的图象交于点A (,n )与x 轴交于点B (﹣3,0),M 为该图象上任意一点,过M 点作x 轴的平行线交y 轴于点P ,交AB 于点N .(1)求m 、n 的值和反比例函数的表达式;(2)若点P 为MN 中点时,求△AMN 的面积.2.如图直线y 1=﹣x +4,y 2=x +b 都与双曲线y =交于点A (1,3),这两条直线分别与x 轴交于B ,C 两点.(1)求k 的值;(2)直接写出当x >0时,不等式x +b >的解集;(3)若点P 在x 轴上,连接AP ,且AP 把△ABC 的面积分成1:2两部分,则此时点P 的坐标是 .3.如图,直线l1:y=kx+b与双曲线y=(x>0)交于A,B两点,与x轴交于点C,与y 轴交于点E,已知点A(1,3),点C(4,0).(1)求直线l1和双曲线的解析式;(2)将△OCE沿直线l1翻折,点O落在第一象限内的点H处,求点H的坐标;(3)如图,过点E作直线l2:y=3x+4交x轴的负半轴于点F,在直线l2上是否存在点P,使得S△PBC =S△OBC?若存在,请直接写出所有符合条件的点P的坐标;如果不存在,请说明理由.4.如图,在平面直角坐标系中,菱形ABCD的对角线AC与BD交于点P(﹣2,3),AB⊥x 轴于点E,正比例函数y=(m﹣1)x的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求cos∠ABP的值.5.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出不等式的解集.6.如图,反比例函数y=经过点A,且点A的坐标为(1,2).(1)求反比例函数的解析式;(2)点C在y轴的正半轴上,点D在x轴的正半轴上,直线CD经过点A,直线CD交反比例函数图象于另一点B,若OC=OD,求点B的坐标.7.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于第二、四象限内的A、B两点,与y轴交于点C,过点A作AM⊥x轴,垂足为M,OA=4,cos∠AOM=,点B的横坐标为.(1)求该反比例函数和一次函数的解析式;(2)连接MC,在x轴上找一点P,使△PMC的面积与四边形AMCO的面积相等,求P的坐标.8.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于第二、四象限内的A、B两点,与x轴交于C点.点D为x轴负半轴上一点,连接AO,延长AO交反比例函数于点E,连接BE.已知AO=4,tan∠AOD=2,∠ACO=45°.(1)求反比例函数和直线AB的解析式;(2)求△ABE的面积.9.已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E.(1)记S=S△OEF ﹣S△ECF,当S取得最大值时,求k的值;(2)在(1)的条件下,若直线EF与x轴、y轴分别交于点M,N,求EM•FN的值.10.如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?11.如图,一次函数y=kx+b的图象分别交x轴、y轴于C,D两点,交反比例函数y=图象于A(,4),B(3,m)两点.(1)求直线CD的表达式;(2)点E是线段OD上一点,若S△AEB=,求E点的坐标;(3)请你根据图象直接写出不等式kx+b≤的解集.12.九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数y=上任意一点,过点P作x轴、y 轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=.(2)如图(4),点P、Q在反比例函数y=图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG =8,则S△POH=,k=.(3)如图(5)点P、Q是第一象限的点,且在反比例函数y=图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.13.如图,在平面直角坐标系中,菱形ABOD的顶点O与坐标原点重合,点B在y轴的正半轴上,点A在反比例函数的图象上,点D的坐标为(8,6).(1)求反比例函数的表达式;(2)E是x轴正半轴上的动点,过点E作x轴的垂线交线段OA于点M,交双曲线于点P,在E点运动过程中,M点正好是线段EP中点时,求点E的坐标.14.小明在课外研究中,设计如下题目:直线y=kx+b过点A(6,0),B(0,3),直线y =kx+b与曲线y=交于点C(4,n).(1)求直线和曲线的关系式.(2)小明发现曲线y=关于直线y=x对称,他把曲线y=与直线y =x的交点P叫做曲线的顶点(图2),①直接写出P点的坐标.②若点D从P点出发向上运动,运动到PD=PC时停止,求此时△PCD的面积.15.如图,定义:若双曲线y=(k>0)与它的其中一条对称轴y=x相交于M,N两点,则线段MN的长度为双曲线y=(k>0)的对径.(1)双曲线y=的对径是.(2)若双曲线y=(k>0)的对径是4,求k的值.(3)正方形AOCB的边长为4,(2)中双曲线与线段BC交于点D,与线段AB相交于点E,直线y=﹣x+b过点D与线段AB相交于点F,连接OF、OE,探究∠AOF与∠EOC的数量关系,并证明.16.如图,在平面直角坐标系中,点A的坐标为(a,6),AB⊥x轴于点,反比例函数的图象的一支分别交AO,AB于点C,D,延长AO交反比例函数的图象的另一支于点E,已知D的纵坐标为.(1)求反比例函数的解析式及直线OA的解析式;(2)连接BC,已知E(﹣4,﹣3),求S△CEB(3)若在x轴上有两点M(m,0),N(﹣m,0),将直线OA绕点O旋转,仍与交于C,E,能否构成以E,M,C,N为顶点的四边形为菱形,如果能请求出m的值,如果不能说明理由.参考答案1.解:(1)将点B的坐标代入y=mx+6并解得:m=2;故直线的表达式为y=2x+6;将点A的坐标代入上式得:n=2×+6=+3,则点A(,)代入y=得,k=×(+3)=4,故反比例函数表达式为y=;(2)设点M在y=上,则点M(t,),点P为MN中点,点N在直线y=2x+6上,则点N(﹣t,6﹣2t),∵MN∥x轴,故=6﹣2t,解得:t=1或2,当t=1时,点M、N的坐标分别为(1,4)、(﹣1,4),则点P(0,4),则MN=1+1=2,△AMN的面积=×MN×(y A﹣y P)=×2×(+3﹣4)=﹣1,当t=2时,同理可得:△AMN的面积=2+2,故△AMN的面积为﹣1或2+2.2.解:(1)将点A的坐标代入y=得,k=xy=1×3=3;(2)从图象看,x>0,当不等式x+b>时,x>1;(3)将点A的坐标代入y2=x+b得,3=+b,解得:b=,y 2=x+,令y2=0,则x=﹣3,即点C(﹣3,0),y 1=﹣x+4,令y1=0,则x=4,即点B(4,0),则BC=7,AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即PB=BC或BC,即BP=或,设点P的横坐标为x,则4﹣x=或,解得:x=或﹣故点P的坐标为:(﹣,0)或(,0);故答案为:(﹣,0)或(,0).3.解:(1)将A(1,3),C(4,0)代入y=kx+b,得,解得:,∴直线l的解析式为y=﹣x+4.1将A(1,3)代入y=(x>0),得m=3,∴双曲线的解析式为y=(x>0);(2)将x=0代入y=﹣x+4,得y=4,∴E(0,4).∴△COE是等腰直角三角形.∴∠OCE=∠OEC=45°,OC=OE=4.由翻折得△CEH≌△CEO,∴∠COE=∠CHE=∠OCH=90°.∴四边形OCHE是正方形.∴H(4,4);(3)存在,理由:如图,过点O作直线m∥BC交直线l于点P′,2于点P,在x轴取点H,使OC=CH(即等间隔),过点H作直线n∥BC交直线l2S△PBC =S△OBC,根据同底等高的两个三角形面积相等,则点P(P′)为所求点.直线BC表达式中的k值为﹣1,则直线m、n表达式中的k值也为﹣1,故直线m的表达式为:y=﹣x①,直线l2的表达式为:y=3x+4②,联立①②并解得:x=﹣1,y=1,故点P′(﹣1,1);设直线n的表达式为:y=﹣x+s,而点H(8,0),将点H的坐标代入上式并解得:s=8,故直线n的表达式为:y=﹣x+8③,联立②③并解得:x=1,y=7,故点P的坐标为(1,7);综上,点P的坐标为(﹣1,1)或(1,7).4.解:(1)将点P的坐标代入正比例函数y=(m﹣1)x表达式得,3=﹣2(m﹣1),解得:m=﹣;将点P的坐标代入反比例函数y=得,n+1=﹣6,解得:n=﹣7;则正比例函数的表达式为:y=﹣x①,反比例函数表达式为:y=﹣②,联立①②并解得:x=±2(舍去2),故点A(2,﹣3);(2)∵点A(2,﹣3),∴OE=2,AE=3,则OA==,在△AOE中,sin∠EAO===,在Rt△ABP中,cos∠ABP=sin∠BAP=sin∠EAO=.5.解:(1)把A(2,﹣4)的坐标代入得:4﹣2m=﹣8,反比例函数的表达式是y=﹣;把B(n,﹣2)的坐标代入y=﹣得:﹣2=﹣,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b并解得:k=1,b=﹣6,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,0<x<2或x>4.6.解:(1)将点A的坐标代入函数表达式得:2=,解得:k=2,故反比例函数的解析式为:y=;(2)设直线CD的表达式为:y=ax+b,设OD=OC=m,则点C、D的坐标分别为:(0,m)、(m,0),将点C、D的坐标代入一次函数表达式得:,解得:,故直线CD的表达式为:y=﹣x+m,将点A的坐标代入上式得:2=﹣1+m,解得:m=3,故直线CD的表达式为:y=﹣x+3,联立直线CD和反比例函数表达式得:,解得:,,故点B(2,1).7.解:(1)cos∠AOM=,则∠AOM=30°,则点A(﹣2,2),则m=﹣4,故反比例函数的表达式为:y=﹣,点B的横坐标为,则点B(,﹣4),将点A、B的坐标代入一次函数表达式y=kx+b并解得:k=﹣,b=﹣2,故点C(0,﹣2),则一次函数的表达式为:y=﹣x﹣2;(2)AM=2=OC,且AM∥OC,则四边形AMCO为平行四边形,①当点P在x轴右侧时,OP=OM时,△PMC的面积与四边形AMCO的面积相等,故点P(2,0);②当点P在x轴左侧时,OP=2OM时,△PMC的面积与四边形AMCO的面积相等,故点P(﹣4,0);综上,点P(2,0)或(﹣4,0).8.解:(1)tan∠AOD=2,则sin∠AOD=,则AH =AO sin ∠AOD =×=8,同理OH =4,故点A (﹣4,8),则点E (4,﹣8) 故反比例函数表达式为:y =﹣…①;∵∠ACO =45°,则一次函数表达式为:y =﹣x +b , 将点A 的坐标代入上式并解得:b =4, 故直线AB 的表达式为:y =﹣x +4…②;(2)联立①②并解得:x =﹣4或8,故点B (8,﹣4), 令y =﹣x +4=0,则x =4,故点C (4,0),而点E (4,﹣8), 故CE ⊥x 轴,故△ABE 的面积=×CE ×(x B ﹣x A )=×8×(8+4)=48. 9.解:(1)∵OB =4,OA =3,且E 、F 为反比例函数图象上的两点, ∴E ,F 两点坐标分别为E (,3),F (4,), 如图,连接OE 、OF ,∴S △ECF =(3﹣),∴S △EOF =S 矩形AOBC ﹣S △AOE ﹣S △BOF ﹣S △ECF =3×4﹣××3﹣4×﹣S △ECF ,∴S △ECF =12﹣k ﹣S △ECF ,∴S =S △OEF ﹣S △ECF =12﹣k ﹣2S △ECF =12﹣k ﹣2×(3﹣),∴S =﹣k 2+k .当k =﹣=6时,S 有最大值,即S 取得最大值时k =6.(2)∵k=6,∴E(2,3),F(4,),∴EC=2,FC=,EF=,设∠CEF=α,则sinα==,cosα==,∴EM•FN=•=25.10.解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.11.(1)把点A(,4)代入中,得:,解得n=6∴反比例函数的解析式为,将点B(3,m)代入得m=2,∴B(3,2)设直线AB的表达式为y=kx+b,则有,解得∴直线CD的表达式为;(2)设E点的坐标为(0,b)令x=0,则y=6∴D点的坐标为(0,6)DE=6﹣b∵S△DEB ﹣S△DEA=S△AEB∴,解得:b=1,∴E点的坐标为(0,1);(3)不等式kx+b≤的解集是.12.解:(1)连接CF,∵四边形ABCD与四边形CEFG都是正方形,∴CF∥BD,△CBD与△FBD同底等高,∴S△BDF =S△BDC=S正方形ABCD=2;(2)设P(x,y),则k=xy,根据题意,得GQ=﹣2x,PG=2y,∴S△PQG=×GQ×PG=8,即•(﹣2x)•2y=8,解得xy=﹣4,即k=﹣4,S △POH =×OH ×PH =﹣xy =2;(3)PQ ∥MN .理由:作PA ⊥y 轴,QB ⊥x 轴,垂足为A ,B ,连接PN ,MQ , 根据双曲线的性质可知,S 矩形AOMP =S 矩形BONQ =k , ∴S 矩形ANCP =S 矩形BMCQ ,可知S △NCP =S △MCQ , ∴S △NPQ =S △MPQ , ∴PQ ∥MN .故本题答案为:(1)2,(2)2,﹣4. 13.解:(1)过点D 作x 轴的垂线,垂足为F , ∵点D 的坐标为(8,6), ∴OF =8,DF =6, ∴OD =10, ∴AD =10,∴点A 坐标为(8,16), ∴k =xy =8×16=128, ∴反比例函数表达式为;(2)∵点A 坐标为(8,16), ∴OA 的表达式为y =2x ,设E 点坐标为(m ,0),则M 点坐标(m ,2m ),F 点坐标,∵M 点正好是线段EP 中点, ∴P (m ,4m ), ∴,解得:,∴.14.解:(1)将点A、B的坐标代入直线表达式得:,解得:,故直线表达式为:y=﹣x+3,当x=4时,y=﹣x+3=﹣2+3=1=n,故点C(4,1);将点C的坐标代入曲线的表达式得:1=,解得:m=4,故曲线的表达式为:y=;(2)①联立曲线和直线y=x表达式得:解得:,(舍去),故点P(2,2);②设直线CD与y=x交于点H,如下图,曲线y=关于直线y=x对称,且PD=PC,则点C、D关于直线y=x对称,故CD⊥PH,∵直线y=x的倾斜角为45°,则直线CD与直线AO的夹角为45°,故设直线CD的表达式为:y=﹣x+t,将点C的坐标代入上式并解得:t=5,故直线CD的表达式为:y=﹣x+5,联立y=x和y=﹣x+5并解得:x=,y=,故点H(,),则PH==,同理可得:CH=,点C、D关于y=x对称,则CD=2CH=2DH,△PCD的面积=CD×PH=CH×PH=×=.15.解:(1)过A点作AC⊥x轴于C,如图1,解方程组,得:,,∴A点坐标为(1,1),B点坐标为(﹣1,﹣1),∴OC=AC=1,∴OA=OC=,∴AB=2OA=2,∴双曲线y=的对径是2;故答案为:;(2)∵双曲线与对称轴由y=x均关于原点对称,设点M坐标为M(a,a)(a>0),则点N坐标为N(﹣a,﹣a),∴MN=2OM=2a=4,∴a=2,∴点M坐标为.代入得,即k=12.(3)∵正方形ABCD,边长为4,∴A(0,4),C(4,0),B(4,4),∵双曲线与BC交于D,∴D(4,3),∵双曲线与AB交于E点,∴E(3,4),∴,BE=1,∵直线过点D(4,3),∴b=5,∴,∴F(2,4),取BC中点H,连接EH,并延长交x轴于G点,连接OH,在△EBH与△GCH中,∴△EHB≌△GHC(ASA),∴BE=CG=1,∴OE=OG=5,EH=HG,∴∠EOH=∠HOC,∵A(0,4),F(2,4),∴,∵HC=2,OC=4,∴,∴tan∠AOF=tan∠HOC,∴,即.16.解:(1)∵点A的坐标为(a,6),AB⊥x轴于B,∴AB=6,∵,∴OB=8,∴点D在反比例函数的图象上,∴,∴反比例函数的解析式为设直线OA的解析式y=bx,∴8b=6解得:;∴直线OA的解析式为;(2)由(1)知C(4,3),E(﹣4,﹣3),B(8,0)∴=;(3)因为CE所在直线OA不可能与x轴垂直,即CE不能与MN垂直所以E,M,N,C为顶点的四边形不能是菱形;。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)

【中考数学】专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如 (k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数.变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k的集合意义在反比例函数kyx=(k为常数,0k≠)的图象上任取一点,过这个点分别作x轴、y轴的平行线,两平行线与坐标轴围成的矩形的面积的于知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxxy2-=3.如图,一次函数y=-x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.4.如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.5.已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点. (1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?10.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =mx 的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式; (2)若AF -AE =2,求反比例函数的解析式.12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.13.如图,已知点A在反比例函数(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b 的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.14.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.15.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1,y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如ky x=(k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数. 变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k 的集合意义 在反比例函数ky x=(k 为常数,0k ≠)的图象上任取一点,过这个点分别作x 轴、y 轴的平行线,两平行线与坐标轴围成的矩形的面积的于k || .知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=﹣x+k与y=(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项A、B错误,故选C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxkxk xkx xy2-=【答案】C【解析】∵反比例函数2y x=-上两个不同的点关于y 轴对称的点,在一次函数y =–x +m 图象上,∴反比例函数2y x=-与一次函数y =–x +m 有两个不同的交点,联立两个函数解方程22220y x m x mx x x y x m⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩,∵有两个不同的交点,∴有两个不等的根,∴Δ=m 2–8>0,∴m或m <–,故选C .3.如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.【解析】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx,∴k =1×2=2; ∴反比例函数的表达式为y =2x; (2)∵一次函数y =-x +3的图象与x 轴交于点C ,∴C (3,0), 设P (x ,0),∴PC =|3-x |,∴S △APC =12|3-x |×2=5,∴x =-2或x =8, 022=+-mxx∴P 的坐标为(-2,0)或(8,0).【点评】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.4.如图,已知反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =kx上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【解析】(1)∵反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点,∴3=1k,3=﹣1+b ,∴k =3,b =4, ∴反比例函数和一次函数的表达式分别为y =3x,y =﹣x +4; (2)由图象可得:当1<a <3时,PM >PN .【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.5.已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=152.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【解析】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB =AP 时,设P (a ,0), ∵A (9,3),B (5,0),∴AP 2=(9﹣a )2+9,BP 2=(5﹣a )2, ∴(9﹣a )2+9=(5﹣a )2,∴a =658, ∴P (658,0), 即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或(658,0). 【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23, ∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x 上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =m x(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)【解析】:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形,∴AD =BC =2,BC ⊥x 轴.∴AD ⊥x 轴.又∵A(1,0),∴D(1,2).∵D 在反比例函数y =m x的图象上, ∴m =1×2=2.∴反比例函数的解析式为y =2x. (2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3. 归纳:反比例函数中,y 随x 的大小变化的情况,应分x >0与x <0两种情况讨论,而不能笼统地说成“k <0时,y 随x 的增大而增大”.双曲线上的点在每个象限内,y 随x 的变化是一致的.运用反比例函数的性质时,要注意在每一个象限内的要求.9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【点拨】 (1)用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y =10即可.【解答】 解:(1)设线段AB 解析式为y =k 1x +b(k ≠0),∵线段AB 过点(0,10),(2,14),代入,得⎩⎪⎨⎪⎧b =10,2k 1+b =14,解得⎩⎪⎨⎪⎧k 1=2,b =10. ∴AB 解析式为y =2x +10(0≤x <5).∵B 在线段AB 上,当x =5时,y =20.∴B 坐标为(5,20).∴线段BC 的解析式为y =20(5≤x <10). 设双曲线CD 的解析式为y =k 2x(k 2≠0). ∵C(10,20),∴k 2=200.∴双曲线CD 解析式为y =200x(10≤x ≤24). ∴y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧2x +10(0≤x<5),20(5≤x<10),200x (10≤x ≤24).(2)由(1)可知,恒温系统设定恒定温度为20 ℃.(3)把y =10代入y =200x中,解得x =20. ∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.归纳:反比例函数实际应用题是近年中考常见的题型,解题时首先要仔细审读题目(或图象)中给予的信息,挖掘题目(或图象)中隐含的条件,提取有用信息,综合运用所学知识解决问题. 10.如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx+b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx+b 的表达式;(2)直接写出关于x 的不等式>kx+b 的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x ﹣2代入y=﹣,整理得: x 2﹣2x+6=0, ∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b 的解集为x <0.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =m x的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式;(2)若AF -AE =2,求反比例函数的解析式.【解析】:(1)点B 坐标为(-6,0),AD =3,AB =8,E 为CD 的中点,∴点A(-6,8),E(-3,4).∵函数图象经过点E ,∴m =-3×4=-12.设AE 的解析式为y =kx +b ,将点A ,E 坐标代入,得⎩⎪⎨⎪⎧-6k +b =8,-3k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =0.∴一次函数的解析式为y =-43x. (2)AD =3,DE =4,∴AE =AD 2+DE 2=5.∵AF -AE =2,∴AF =7,BF =1.设点E 坐标为(a ,4),则点F 坐标为(a -3,1),∵E ,F 两点在函数y =m x图象上, ∴4a =a -3,解得a =-1.∴E(-1,4).∴m =-1×4=-4.∴反比例函数的解析式为y =-4x. 12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C . (1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.【答案】见解析。

2020-2021学年九年级数学中考数学反比例函数专项训练(含答案)

2020-2021学年九年级数学中考数学反比例函数专项训练(含答案)

2020-2021学年九年级数学中考数学反比例函数专项训练一、选择题(本大题共8道小题,每题5分,共40分)1. 反比例函数y=的图象位于()A.第一、三象限B.第二、三象限C.第一、二象限D.第二、四象限2. 函数y=1x+2中,x的取值范围是()A. x≠0B. x>-2C. x<-2D. x≠-23. 如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,3),(3,0),∠ACB=90°,AC=2BC,函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.9 C.D.4. 在函数y=x+4x中,自变量x的取值范围是()A. x>0B. x≥-4C. x≥-4且x≠0D. x>0且x≠-45. 若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A. mn≥-9B. -9≤mn<0C. mn≥-4D. -4≤mn≤06. 如图,过反比例函数y=kx(k>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A. 2B. 3C. 4D. 57. 如图,A 、B两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( ) A. 4 B. 143 C. 163 D. 68. 如图,☉O 的半径为2,双曲线的解析式分别为y=和y=-,则阴影部分的面积为 ( )A .4πB .3πC .2πD .π二、填空题(本大题共8道小题,每题5分,共40分)9. 已知反比例函数y =kx的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.10. 若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为 .11. 已知反比例函数y =kx (k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是________.12. 如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y=(x>0)的图象上,顶点B 在反比例函数y=(x>0)的图象上,点C 在x 轴的正半轴上,则平行四边形OABC的面积是.13. 如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=(x>0)的图象恰好经过点C,则k 的值为.14. 如图,直线y=-2x+4与双曲线y=kx交于A、B两点,与x轴交于点C,若AB=2BC,则k=________.15. 如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线,与反比例函数y=4 x的图象交于A、B两点,则四边形MAOB的面积为________.16. 如图,已知点A,C在反比例函数y=ax的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,AB与CD间的距离为6,则a-b的值是________.三、解答题(本大题共4道小题,每题10分,共40分)17. 如图,双曲线y=经过点P(2,1),且与直线y=kx-4(k<0)有两个不同的交点.(1)求m的值;(2)求k的取值范围.18. 如图,一次函数y=kx+b(k<0)与反比例函数y=mx的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1).(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.19. 如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y=kx的图象上,一次函数y=x+b的图象经过点A,且与反比例函数图象的另一交点为B.(1)求k和b的值;(2)设反比例函数值为y1,一次函数值为y2,求y1>y2时x的取值范围.20. 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10.你认为圆圆和方方的说法对吗?为什么?答案一、选择题(本大题共8道小题)1. A2. D【解析】要使函数有意义,则x+2≠0,即x≠-2.3. D[解析]过B作BD⊥x轴,垂足为D.∵A,C的坐标分别为(0,3),(3,0),∴OA=OC=3,∠ACO=45°,∴AC=3.∵AC=2BC,∴BC=.∵∠ACB=90°,∴∠BCD=45°,∴BD=CD=,∴点B的坐标为.∵函数y=(k>0,x>0)的图象经过点B,∴k==,故选D.4. C 【解析】综合开平方时被开方数为非负数和分母不为0可得x 取值范围,则x +4≥0且x ≠0,故x ≥-4且x ≠0.5. A【解析】如解图,根据题意,两个函数的图象在第一象限有公共点,则关于x 的方程nx =mx +6有实数根,方程化简为:mx 2+6x -n =0,显然m ≠0,Δ=36+4mn ≥0,所以mn ≥-9,由于一次函数与反比例函数y =nx 在第一象限的图象有公共点,所以n >0,显然当一次函数y 随x 的增大而增大时,两个函数图象在第一象限有交点,即mn ≥-9符合题意.6. C 【解析】 ∵点A 在反比例函数y =kx的图象上,且AB ⊥x 轴于点B ,设点A 坐标为(x ,y ),∴k =xy ,∵点A 在第一象限,∴x 、y 都是正数,∴S △AOB =12OB ·AB =12xy ,∵S △AOB =2,∴k =xy =4.7. A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.8. C [解析]根据反比例函数y=,y=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴S 阴影=π×22=2π.故选C .二、填空题(本大题共8道小题)9. y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x 的增大而增大,∴k <0,∴k 可取-2(答案不唯一).10. y=11. k>0【解析】∵反比例函数y=kx(k≠0),图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.12. 4[解析]设A(a,b),B(a+m,b),依题意得b=,b=,∴=,化简得m=4a.∵b=,∴ab=1,∴S平行四边形OABC=mb=4ab=4×1=4.13. 16[解析]如图,分别过点D,C作x轴的垂线,垂足为E,F,则OE=1,DE=4,OA=4,∴AE=3,AD=5,∴AB=CB=5,∴B(1,0),易得△DAE≌△CBF,可得BF=AE=3,CF=DE=4,∴C(4,4),∴k=16.14.32【解析】设A(x1,kx1),B(x2,kx2),∵直线y=-2x+4与y=kx交于A,B两点,∴-2x+4=kx,即-2x2+4x-k=0,∴x1+x2=2,x1x2=k2,如解图,过点A作AQ⊥x轴于点Q,BP⊥AQ于点P,则PB∥QC,∴APPQ=ABBC=2,即kx1-kx2kx2=2,∴x2=3x1,∴x1=12,x2 =32,∴k=2x1x2=32.15. 10【解析】如解图,设AM与x轴交于点C,MB与y轴交于点D,∵点A、B分别在反比例函数y=4x上,根据反比例函数k的几何意义,可得S△ACO=S△OBD=12×4=2,∵M(-3,2),∴S矩形MCOD=3×2=6,∴S四边形MAOB=S△ACO+S△OBD+S矩形MCOD=2+2+6=10.16. 3【解析】设点A的纵坐标为y1,点C的纵坐标为y2,∵AB∥CD∥x轴,∴点B的纵坐标为y1,点D的纵坐标为y2,∵点A在函数y=ax的图象上,点B在函数y=bx的图象上,且AB=34,∴ay1-by1=34,∴y1=4(a-b)3,同理y2=2(b-a)3,又∵AB与CD间的距离为6,∴y1-y2=4(a-b)3-2(b-a)3=6,解得a-b=3.三、解答题(本大题共4道小题)17.解:(1)把P(2,1)的坐标代入y=,得:1=,m=2.(2)由(1)可知反比例函数解析式为y=,∴=kx-4,整理得:kx2-4x-2=0,∵双曲线与直线有两个不同的交点,∴Δ>0,即(-4)2-4k·(-2)>0,解得:k>-2.又∵k<0,∴k的取值范围为-2<k<0.18.解:(1)把A(4,1)代入y=mx得1=m4.∴m=4,(2分)∴反比例函数的解析式为y=4x.(3分)(2)过点B作BE⊥y轴于点E,如解图,设点B坐标为(n,4n),则OE=4n,BE=n.∴S △BEO =12OE·BE =2,(4分) ∵S △BOC =3, ∴S △BCE =1,∴OE ∶EC =2∶1,∴CE =2n ,OC =6n.(6分)设直线AB 的解析式为y =kx +6n ,把(n ,4n )和(4,1)分别代入得:⎩⎪⎨⎪⎧4n =nk +6n 1=4k +6n ,解得⎩⎪⎨⎪⎧n =2k =-12 ,(7分)∴6n =3,∴一次函数的解析式为y =-12x +3.(8分)19.解:(1)把点A(2,5)代入反比例函数的解析式y =kx ,∴k =xy =10,把(2,5)代入一次函数的解析式y =x +b ,(2分) ∴5=2+b , ∴b =3.(3分)(2)由(1)知k =10,b =3,∴反比例函数的解析式是y =10x , 一次函数的解析式是y =x +3.解方程x +3=10x ,(4分) ∴x 2+3x -10=0,(5分) 解得x 1=2(舍去),x 2=-5, ∴点B 坐标是(-5,-2),∵反比例函数的值大于一次函数值,即反比例函数的图象在一次函数图象上方时,x 的取值范围,∴根据图象可得不等式的解集是x <-5或0<x <2.(6分)20.【思维教练】(1)①由题干条件知矩形的面积相等,可得矩形的长×宽等于定值,所以y 关于x 的函数表达式是反比例函数;②将y 的值带入反比例函数解析式中,求出x 的求值范围即可;(2)设长为x ,用含长的代数式表示出宽,得出关于面积的分式方程,化为一元二次方程,再根据根的判别式即可判断圆圆和方方说法的正误. 解:(1)①由题意得,1×3=xy ,∴y =3x (x>0);(2分) ②∵由已知y≥3, ∴3x ≥3,∴0<x≤1,∴x 的取值范围是0<x≤1;(4分)(2)圆圆的说法不对,方方的说法对.理由:∵圆圆的说矩形的周长为6,∴x +y =3,∴x +3x =3,化简得,x 2-3x +3=0, ∴Δ=(-3)2-4×1×3=-3<0,方程没有实数根, 所以圆圆的说法不对;(6分)方方的说矩形的周长为10,∴x +y =5,∴x +3x =5, 化简得,x 2-5x +3=0,(8分) ∴Δ=(-5)2-4×1×3=13>0,∴x =5±132, ∵x>0,∴x =5+132,y =5-132, 所以方方的说法对.(10分)。

2020年中考数学二轮专项——反比例函数综合题(含答案)

2020年中考数学二轮专项——反比例函数综合题(含答案)

2020年中考数学二轮专项——反比例函数综合题1. (2019成华区一诊)如图,点A 在反比例函数y =kx (x <0)的图象上,作Rt △ABC ,直角边BC 在x 轴上,点D 为斜边AC 的中点,直线BD 交y 轴于点E ,若△BCE 的面积为8,则k =________.第1题图2. (2018威海)如图,直线AB 与双曲线y =kx (k <0)交于点A ,B ,点P 是直线AB 上一动点,且点P 在第二象限,连接PO 并延长交双曲线于点C.过点P 作PD ⊥y 轴,垂足为点D.过点C 作CE ⊥x 轴,垂足为点E .若点A 的坐标为(-2,3),点B 的坐标为(m ,1),设△POD 的面积为S 1,△COE 的面积为S 2.当 S 1>S 2时,点P 的横坐标x 的取值范围为________.第2题图3. (2019乐山)如图,点P 是双曲线C :y =4x (x >0)上的一点,过点P 作x 轴的垂线交直线 AB :y =12x -2于点Q ,连接OP ,OQ .当点P 在双曲线C 上运动,且点P 在点Q 的上方时,△POQ 面积的最大值是________.第3题图4. (2019成华区二诊)如图,曲线l 是由函数y =6x 在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (-42,42),B (22,22)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为________.第4题图5. (2019成都黑白卷)若点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与三角形ABC 相似,则称点P 为△ABC 的自相似点.如图所示,点M 为反比例函数y =kx 图象上的点,过点M 作MN ⊥x 轴于点N ,点P 是OM 上一点,若点P 为△MON 的自相似点,且P (34,34),则k 的值为________.第5题图6. 定义“[a ]表示不大于a 的最大整数”,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx (m ≠0)的图象交于A (2,1)、B (-1,n )两点,动点P 在直线AB 上,且在反比例函数图象的下方,当点P 横坐标大于0时,其坐标对应的所有有序对([x ],[y ])是________.7. 如图,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2),Q 为双曲线上的两点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别为点A 、B ,当点Q 在第一象限的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,则平行四边形OPCQ 周长的最小值为________.第7题图8. (2019金牛区一诊)如图,在平面直角坐标系中,点A 在反比例函数y 1=kx (x >0)的图象上,点A ′与点A 关于点O 对称,直线AA ′的解析式为y 2=mx ,将直线AA ′绕点A ′顺时针旋转,与反比例函数图象交与点B ,直线A ′B 的解析式为y 3=m2x +n ,若△AA ′B 的面积为3,则k 的值为________.第8题图9. (2019龙泉驿区一诊)如图,在直角坐标系中有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =kx(x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,则点E 的坐标为________.第9题图10. (2019新都区5月监测)如图,已知点A 是反比例函数y =23x 的图象在第一象限上的动点,连接AO并延长交另一分支于点B ,以AB 为边作等边△ABC 使点C 落在第二象限,且边BC 交x 轴于点D ,若△ACD 与△ABD 的面积之比为1∶2,则点C 的坐标为________.第10题图11. (2019成都黑白卷)若一条直线与两坐标轴、反比例函数的图象均有交点,我们称直线与反比例函数图象的交点到直线与x 轴的交点的距离为该点的“横距”,称直线与反比例函数图象的交点到直线与y 轴的交点的距离为该点的“纵距”.如图,一次函数y =k 1x +7(k 1<0)的图象分别与坐标轴交于A 、B 两点,与反比例函数y =k 2x (k 2>0)的图象交于M 、N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1,若点M 的“纵距”与点M 的“横距”的比为1∶4,则反比例函数的解析式为________.第11题图12. (2019武侯区二诊)如图,已知直线AB 交x 轴于点A ,分别与函数y =a x (x >0,a >0)和y =bx (x >0,b>a >0)的图象相交于点B 、C ,过点B 作BD ∥x 轴交函数y =bx 的图象于点D ,过点C 作CE ∥x 轴交函数y=a x 的图象于点E ,连接AD ,BE ,若BC AB =12,S △ABD =2,则S △BCE =________.第12题图13. 两个已知图形G 1、G 2,在G 1上任取一点P ,在G 2上任取一点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1、G 2的“密距”.如图,A (-2,3),B (1,3),C (1,0),则点A 与射线OC 之间的“密距”为13,点B 与射线OC 之间的“密距”为3.如果直线y =x -1和双曲线y =k x 之间的“密距”为522,则k 值为________.第13题图14. (2019都江堰区二诊)如图,在直角坐标系xOy 中,以点O 为圆心,半径为2的圆与反比例函数y =k x (x >0)的图象交于A 、B 两点,若AB ︵的长为13π,则k 的值为________.第14题图15. (2019武侯区一诊)如图,将双曲线y =kx (k <0)在第四象限的一支沿直线y =-x 方向向上平移到点E处,交该双曲线在第二象限的一支于A ,B 两点,连接AB 并延长交x 轴于点C ,双曲线y =mx (m >0)与直线y =x 在第三象限的交点为D ,将双曲线y =mx 在第三象限的一支沿射线OE 方向平移,D 点刚好可以与C 点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分),若C 点坐标为(-5,0),AB =32,则mk 的值为________.第15题图16. (2019福建)如图,菱形ABCD 的顶点A 在函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且过B ,D 两点.若AB =2,∠BAD =30°,则k =________.第16题图17. 已知点A ,B 分别是x 轴,y 轴上的动点,点C ,D 是某函数图象上的点,当四边形ABCD (A ,B ,C ,D 各点依次排列)为正方形时,称这个正方形为此函数图象的“伴侣正方形”.如图,正方形ABCD 是反比例函数y =2x图象上的其中一个伴侣正方形,则这个伴侣正方形的边长是________.第17题图参考答案1. 16 【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∵∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,OB BC =OE BA ,即BC ·OE =OB ·BA .又∵S △BEC =8,∴12BC ·OE =8,∴BC ·OE=16=BO ·BA =|k |.∵反比例函数图象在第三象限,∴k >0,∴k =16.2. -6<x <-2 【解析】当点P 在反比例函数图象上时,△POD 和△COE 的面积相等,当直线在双曲线下方时,即当点P 在反比例函数图象内侧时,△POD 比△COE 的面积小,当直线在双曲线上方时,即当点P 在外侧时,△POD 比△COE 的面积大,根据此结论,当S 1>S 2,说明点P 在曲线的外侧,故在线段AB 上,点A ,B 在反比例函数图象上,∴-2×3=m ×1,∴m =-6,∴P 点横坐标的取值范围为-6<x <-2.3. 3 【解析】点P 在双曲线y =4x 上 ,令PQ 与x 轴的交为点G ,P (x ,4x ),则Q (x ,12x -2),则S △OPG=12·x ·4x =2为定值,S △OGQ =12·x ·(2-x 2)=x -x 24=-14(x -2)2+1,当x -2=0即x =2时,S △OGQ 有最大值为1,∴S △POQ =S △OGQ +S △OPG =1+2=3,∴△POQ 面积的最大值是3.4. 8 【解析】∵A (-42,42),B (22,22),∴OA ⊥OB ,建立如解图所示的直角坐标系,OB 为x ′轴,OA 为y ′轴.在坐标系中,A (0,8),B (4,0),∴直线AB 的解析式为y ′=-2x ′+8,联立⎩⎪⎨⎪⎧y ′=-2x ′+8y ′=6x ′,解得⎩⎪⎨⎪⎧x ′=1y ′=6或⎩⎪⎨⎪⎧x ′=3y ′=2,∴M (1,6),N (3,2),∴S △OMN =S △OBM -S △OBN =12×4×6-12×4×2=8.第4题解图5. 33 【解析】∵点P 为△MON 的自相似点,∴△ONP ∽△OMN ,∴NP ⊥OM .如解图,过点P 作PD ⊥x 轴于点D ,由题意,tan ∠POD =PD OD =3434=3,∴∠POD =60°,∴∠OPD =30°,∴OP =2OD =32,在Rt △OPN 中,ON =OPcos60°=3212=3,MN =ON ·tan60°=3×3=3,∴M (3,3),∴k =3×3=3 3.第5题解图6. (0,-1),(1,0) 【解析】将A (2,1)代入反比例函数解析式y 2=mx (m ≠0),得m =2,∴反比例函数解析式为y 2=2x ,∴n =2-1=-2,∴B (-1,-2),∵直线y 1=kx +b (k ≠0)经过A (2,1)、B (-1,-2)两点,∴直线的解析式为y =x -1,∴直线与x 轴交于点(1,0),∵动点P 在直线AB 上,且在反比例函数图象的下方,点P 横坐标大于0,∴0<x <2,-1<y <1,∴坐标对应的所有有序对([x ],[y ])是 (0,-1),(1,0).7. 25+4 【解析】设正比例函数解析式为y =kx ,将点M (-2,-1)代入得k =12,∴正比例函数解析式为y =12x ,同理可得,反比例函数解析式y =2x ,∵四边形OPCQ 是平行四边形,∴OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,∴OP 的长也是定长,∴要求平形四边形OPCQ 周长的最小值就只需求OQ 的最小值,∵点Q 在第一象限中的双曲线上,∴可设点Q 的坐标为Q (n ,2n ),由勾股定理可得OQ 2=n 2+4n 2=(n-2n )2+4,∴当(n -2n )2=0即n -2n =0时,OQ 2有最小值4,又∵OQ 为正值,∴OQ 有最小值2,由勾股定理得OP =5,∴平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.8. 2 【解析】设点A (a ,k a )(a >0),∵点A 和点A ′关于原点对称,∴点A ′的坐标为(-a ,-ka ),∵点A ′在y 2=mx 的图象上,∴点A ′的坐标为(-a ,-am ).∴-ka=-am ,a 2m =k .∵直线AA ′绕点A ′顺时针旋转,与反比例函数图象交于点B ,∴⎩⎨⎧y =a 2m xy =m2x +n,∴点B 的坐标为(2a ,k2a ),如解图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接BO ,∵O 为AA ′中点,∴S △AOB =12S △ABA ′=32,∵点A 、B 在双曲线上,∴S △AOC=S △BOD ,∴S △AOB =S 四边形ACDB =32,由已知点A 、B 坐标分别为(a ,k a )、(2a ,k 2a ),∴12×(k 2a +k a )·a =32,∴k =2.第8题解图9. (4,8) 【解析】如解图,过点C 作CF ⊥x 轴于点F ,∵OB ·AC =160,A 点的坐标为(10,0),OA=AB =BC =OC =10,∴OA ·CF=12OB ·AC =12×160=80,∴CF =8,在Rt △OCF 中,∵OC =10,CF =8,∴OF=OC 2-CF 2=102-82=6,∴C (6,8),∵D 是线段AC 的中点,∴D 点坐标为(10+62,82),即(8,4),∵双曲线y =k x (x >0)经过D 点,∴4=k 8,即k =32,∴双曲线的解析式为y =32x (x >0),∵CF =8,∴直线CB 的解析式为y =8,∴联立⎩⎪⎨⎪⎧y =8y =32x ,解得⎩⎪⎨⎪⎧x =4y =8,∴E 点坐标为(4,8).第9题解图10. (-6,3) 【解析】如解图,过点C 作CM ⊥x 轴于点M ,过点A 作AE ⊥x 轴于点E ,过点D 作DF ⊥AB 于点F ,连接CO ,根据题意得AO =BO ,∵S △ACD ∶S △ADB =1∶2,∴CD ∶DB =1∶2即DB =2CD ,∵△ABC 为等边三角形且AO =BO ,∴∠CBA =60°,CO ⊥AB 且DF ⊥AB ,∴DF ∥CO ,∴DF CO =BF BO =BDBC =23,∴DF =23CO ,BF =23BO ,即FO =13BO .∵∠CBA =60°,CO ⊥AB ,∴CO =3BO ,∴DF =233BO ,∵∠DOF =∠AOE ,∠DFO =∠AEO =90°,∴△DFO ∽△AEO ,∴AE OE =DFOF =233BO 13BO =23,∴AE =23OE ,∵点A是反比例函数y =23x 的图象在第一象限上的动点,∴AE ·OE =23,∴AE =23,OE =1,∵∠COM +∠AOE=90°,∠AOE +∠EAO =90°,∴∠COM =∠EAO ,且∠CMO =∠AEO =90°,∴△COM ∽△OAE ,CM OE =MOEA =COOA=3,∴CM =3,MO =6,且点M 在第二象限,∴C (-6,3).第10题解图11. y =285x 【解析】∵MC ⊥y 轴于点C ,且CM =1,∴M 的横坐标为1,当x =1时,y =k 1+7,∴M (1,k 1+7),∵M 在反比例函数的图象上,∴1×(k 1+7)=k 2,∴k 2-k 1=7,∴k 1=k 2-7;由定义可得AM BM =14,∴BM=4AM .∴AM AB =AM AM +BM =AM AM +4AM =15.∵CM ∥OB ,∵△ACM ∽△AOB .∴CM OB =AM AB =15.∵CM =1,∴OB=5.∴B (5,0).∵点B 在一次函数y =k 1x +7的图象上,∴5k 1+7=0,解得k 1=-75.∴k 2=-75+7=285.∴反比例函数的解析式y =285x.12.23 【解析】如解图,过点A 分别作BD 和EC 的垂线交DB 和CE 的延长线于点G 、F ,∵BC AB =12,∴AG GF =21.∴设D 的坐标为(b m ,m ),则B (a m ,m ),则BD =b m -a m =b -a m ,AG =m ,GF =m 2.设点C 的坐标为(b n,n ),则E (a n ,n ),则CE =b n -a n =b -a n ,FG =n -m =m 2∴m =23n .∴FG =13n ,∵S △ABD =2,∴b -a m ×m ×12=2,∴b -a =4.∴S △BCE =b -a n ×13n ×12=23.第12题解图13. -9 【解析】根据“密距”的定义可知双曲线图象在二、四象限,且直线y =x -1与双曲线离第四象限最近,设双曲线上点D 到直线y =x -1距离最近,如解图,设直线y =x -1与y 轴交于点E ,过D 作直线y =x -1的平行线,交y 轴于点G ,过D 作直线y =x -1的垂线,垂足为F ,过F 作EH ⊥DG ,垂足为H ,则由题意可知DF =EH =522,又∵∠OEF =45°,∴∠EGH =45°,∴EH =HG =522,∴EG =2EH=2×522=5,又∵OE =1,∴OG =6,∴直线DG 的解析式为y =x -6,联立直线DG 和双曲线解析式可得⎩⎪⎨⎪⎧y =k xy =x -6,消去y 整理可得x 2-6x -k =0,∵直线DG 与双曲线只有一个交点,∴方程x 2-6x -k =0有两个相等的实数根,∴b 2-4ac =0,即(-6)2+4k =0,解得k =-9.第13题解图14. 3 【解析】如解图,连接OA 、OB ,∵AB ︵的长度为13π,OA =OB =2,∴nπ×2180°=13π,解得n =30°,即∠AOB =30°,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D ,∵点A 、B 均在反比例函数y =kx 的图象上,∴BD ×OD =AC ×OC =k ,∵OB =OA ,∴点A 和点B 关于直线y =x 对称,∴BD =AC ,OD =OC , ∴△AOC ≌△BOD ,∴∠AOC =90°-∠AOB 2=90°-30°2=30°,设A (a ,b ),则OC =a =OA ·cos30°=2×32=3,AC =b =OA ·sin30°=2×12=1,k =ab =3×1= 3.第14题解图15. -25 【解析】如解图,连接CD ,过点A 作AF ⊥x 轴于点F ,过点D 作DH ⊥x 轴于点H ,设AB 与EO 的交点为G ,∵C 点坐标为(-5,0),AB =32,∴OC =5,AG =BG =322,∵直线OE 的解析式为y =-x ,直线OD 的解析式为y =x ,∴∠COE =∠COD =∠ACO =∠DCO =45°,∴DH =OH =52,CG =522,∴D (-52,-52),AC =CG +AG =42,∴AF =CF =22×42=4,∴OF =OC -CF =1,∴A (-1,4),把A (-1,4)代入y =k x 中,得k =-4,把D (-52,-52)代入y =m x 中,得m =254,∴mk =-25.第15题解图16. 6+23 【解析】如解图,连接OC ,过点B 作x 轴的垂线,垂足为点E ,过点A 作AF ⊥BE 于点F ,∵四边形ABCD 为菱形,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B ,D 两点,∴直线AC 的表达式是y =x ,∠CAF =45°,∵∠BAD =30°,∴∠BAC =12∠BAD =15°,∴∠BAF =30°,∵AB =2,∴BF =AB ·sin30°=1,AF =AB ·cos30°=3,∵函数y =3x(x >0)与直线AC 有交点,联立⎩⎪⎨⎪⎧y =x y =3x,解得⎩⎨⎧x =3y =3.∴A (3,3),∴B (23,3+1),将点B 的坐标代入函数y =k x ,得3+1=k23,∴k =23×(3+1)=6+2 3.第16题解图17. 2 【解析】如解图,过点C 作CF ⊥y 轴于点F ,过点D 作DE ⊥x 轴于点E ,∴∠CFB =∠DEA=∠AOB =90°,∴∠FCB +∠FBC =90°,∠BAO +∠ABO =90°,∠DAE +∠ADE =90°,∵四边形ABCD 为正方形,∴CB =AB =AD ,∠CBA =∠BAD =90°,∴∠FBC +∠ABO =90°,∠BAO +∠DAE =90°,∴∠FCB =∠ABO =∠DAE ,∴△BFC ≌△AOB ≌△DEA ,∴FC =OB =AE ,FB =OA =DE ,由点C ,D 在反比例函数y =2x 图象上,故设C (a ,2a ),D (b ,2b ),∴FC =OB =AE =a ,FB =OA =DE =2b,又∵FB =DE =OA =OE -AE =b -a ,∴2b =b -a ,即b 2-ab =2①,又∵OF =FB +OB =2a ,∴b -a +a =2a,即ab =2②,将②代入①得b 2=4,解得b 1=2,b 2=-2(不合题意,舍去),将b =2代入②得a =1,∴CF =1,FB =b -a =1,在Rt △BCF 中,根据勾股定理得BC =CF 2+BF 2=2,则这个伴侣正方形的边长为 2.第17题解图。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

中考数学压轴题专题复习—反比例函数的综合含答案解析

中考数学压轴题专题复习—反比例函数的综合含答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

2020年中考数学二轮专项——反比例函数与一次函数结合(含答案)

2020年中考数学二轮专项——反比例函数与一次函数结合(含答案)

2020年中考数学二轮专项——反比例函数与一次函数结合1. 如图,一次函数y =kx +3的图象分别交x 轴、y 轴于点C 、D ,与反比例函数y =mx 的图象在第四象限相交于点P ,并且P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,已知B (0,-6)且S △DBP =27.(1)求一次函数与反比例函数的表达式;(2)若反比例函数y =nx的图象与△ABP 总有公共点,直接写出n 的取值范围.第1题图2. (2019金牛区一诊)如图,正比例函数y =kx 与反例函数y =mx (x >0)的图象有一个交点A ,AB ⊥x 轴于点B ,平移正比例函数y =kx 的图象,使其经过点B (2,0),得到直线l ,直线l 与y 轴交于点C (0,-3).(1)求k 和m 的值;(2)点M 是直线OA 上一点,过点M 作MN ∥AB ,交反比例函数y =mx (x >0)的图象于点N ,若线段MN=3,求点M 的坐标.第2题图3. (2019成都黑白卷)一次函数y =ax +b 与反比例函数y =kx (x >0)的图象分别交于点A (1,4)和点B (4,n ),与坐标轴分别交于点C 和点D.(1)求一次函数和反比例函数的表达式;(2)若点P 是x 轴上一动点,当△ABP 为直角三角形时,求点P 的坐标.第3题图4. (2019武侯区一诊)如图,已知一次函数y =mx -4(m ≠0)的图象分别交x 轴,y 轴于A (-4,0),B 两点,与反比例函数y =kx(k ≠0)的图象在第二象限的交点为C (-5,n ).(1)分别求一次函数和反比例函数的表达式;(2)点P 在该反比例函数的图象上,点Q 在x 轴上,且P ,Q 两点在直线AB 的同侧.若以B ,C ,P ,Q 为顶点的四边形是平行四边形,求满足条件的点P 和点Q 的坐标.第4题图5. (2019襄阳)如图,已知一次函数y 1=kx +b 与反比例函数y 2=mx 的图象在第一、第三象限分别交于A (3,4),B (a ,-2)两点,直线AB 与y 轴,x 轴分别交于C , D 两点.(1)求一次函数和反比例函数的解析式; (2)比较大小:AD ____BC (填“>”或“<”或“=”); (3)直接写出y 1<y 2时x 的取值范围.第5题图6. (2019广元)如图,在平面直角坐标系中,直线AB 与y 轴交于点B (0,7),与反比例函数y =-8x 在第二象限内的图象相交于点A (-1,a ).(1)求直线AB 的解析式;(2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E ,与y 轴交于点D ,求△ACD 的面积;(3)设直线CD 的解析式为y =mx +n ,根据图象直接写出不等式mx +n ≤-8x的解集.第6题图7. (2019内江)如图,一次函数y =mx +n (m ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第二、四象限内的点A (a ,4)和点B (8,b ).过点A 作x 轴的垂线,垂足为点C ,△AOC 的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出mx +n <kx的解集;(3)在x 轴上取点P ,使P A -PB 取得最大值时,求出点P 的坐标.第7题图8. (2019青羊区一诊)如图,在平面直角坐标系xOy 中,B (3,-1)是反比例函数y =kx 图象上的一点,过B 点的一次函数y =-x +b 与反比例函数交于另一点A.(1)求一次函数和反比例函数的表达式; (2)求△AOB 面积;(3)在A 点左边的反比例函数图象上求点P ,使得S △POA ∶S △AOB =3∶2.第8题图参考答案1. 解:(1)∵一次函数y =kx +3的图象交y 轴于点D , ∴OD =3, ∵B (0,-6), ∴BD =3+6=9, ∵S △DBP =27, ∴BP =6,∴P 点的坐标是(6,-6),把P (6,-6)代入y =kx +3得k =-32,∴一次函数的表达式是y =-32x +3,把P (6,-6)代入y =mx 得m =-36,∴反比例函数的表达式是y =-36x;(2)∵A (6,0),B (0,-6),P (6,-6),反比例函数y =nx 的图象与△ABP 总有公共点,当反比例函数图象过P 点时,n =-36,∴n 的取值范围是-36≤n <0.第1题解图2. 解:(1)∵平移正比例函数y =kx 的图象,得到直线l ,直线l 与y 轴交于点C (0,-3), ∴直线l 的解析式为y =kx -3, ∵点B (2,0)在直线l 上, ∴2k -3=0,解得k =32,由题意知AB =OC =3, 则点A (2,3), ∴m =2×3=6;(2)由(1)知直线OA 的解析式为y =32x ,反比例函数的解析式为y =6x,设点M (a ,32a ),则N (a ,6a ),∴MN =|32a -6a|=3,解得a =1+5或a =5-1(负值舍去), 则点M 的坐标为(1+5,3+352或(5-1,35-32). 3. 解:(1)∵点A (1,4)在y =kx 的图象上,∴k =1×4=4,∴反比例函数的表达式为y =4x ,∵点B (4,n )在y =4x 的图象上,∴n =1,即A (1,4),B (4,1),把A 、B 两点坐标代入y =ax +b 中得⎩⎪⎨⎪⎧a +b =44a +b =1,解得⎩⎪⎨⎪⎧a =-1b =5,∴一次函数的表达式为y =-x +5; (2)设P (x ,0),①当∠ABP =90°时,AB 2+BP 2=AP 2,即(4-1)2+(1-4)2+(4-x )2+12=(x -1)2+(-4)2, 解得x =3, ∴P (3,0);②当∠P AB =90°时,P A 2+AB 2=PB 2,即(x -1)2+(-4)2 +(4-1)2+(1-4)2=(4-x )2+12, 解得x =-3, ∴P (-3,0);③当∠APB =90°时,P A 2+PB 2=AB 2,即(x -1)2+(-4)2+(4-x )2+12=(4-1)2+(1-4)2, 化简得x 2-5x +8=0, ∵b 2-4ac =-7<0,∴方程无解,故此时P 点不存在.综上所述,点P 的坐标为(3,0)或(-3,0). 4. 解:(1)∵点A 在一次函数y =mx -4的图象上,∴-4m -4=0, ∴m =-1.∴一次函数的解析式为y =-x -4. ∵点C (-5,n )在直线y =-x -4上, ∴n =-(-5)-4=1, ∴C (-5,1).∵点C (-5,1)在反比例函数y =kx (k ≠0)的图象上,∴k =-5×1=-5.∴反比例函数的表达式为y =-5x;(2)由(1)知,C (-5,1),直线AB 的解析式为y =-x -4, ∴B (0,-4).设点Q (q ,0),P (p ,-5p),∵以B ,C ,P ,Q 为顶点的四边形是平行四边形,且P ,Q 两点在直线AB 的同侧, ①当BP 与CQ 是对角线时, ∵BP 与CQ 互相平分, ∴⎩⎪⎨⎪⎧p +02=q -52-5p -42=1+02,解得⎩⎪⎨⎪⎧p =-1q =4,∴P (-1,5),Q (4,0); ②当BQ 与CP 是对角线时, ∵BQ 与CP 互相平分, ∴⎩⎪⎨⎪⎧q +02=p -520-42=-5p +12,解得⎩⎪⎨⎪⎧p =1q =-4,∴P (1,-5),Q (-4,0),此时,点C ,Q ,B ,P 在同一条线上,不符合题意,舍去,即若以B ,C ,P ,Q 为顶点的四边形是平行四边形,则点P (-1,5),点Q (4,0).5. 解:(1)∵点A (3,4)在反比例函数的图象上, ∴m =3×4=12.∴反比例函数的解析式为y 2=12x. ∴点B 的坐标为(-6,-2).将点A (3,4)、B (-6,-2)代入一次函数中得,⎩⎪⎨⎪⎧3k +b =4-6k +b =-2,解得⎩⎪⎨⎪⎧k =23b =2, ∴一次函数的解析式为y 1=23x +2;(2)=;【解法提示】当x =0时,y 1=2.当y 1=0时,x =-3.∴点C 的坐标为(0,2),点D 的坐标为(-3,0).∴AD =42+(3+3)2=213,BC =62+(2+2)2=213.∴AD =BC .(3)x <-6或0<x <3.【解法提示】观察函数图象可知,当x <-6或0<x <3时,反比例函数图象在一次函数图象的上方,即y 1<y 2.6. 解:(1)∵点A (-1,a )在反比例函数y =-8x 的图象上,∴a =-8-1=8,∴A (-1,8), ∵点B (0,7),∴设直线AB 的解析式为y =kx +7, ∵直线AB 过点A (-1,8), ∴8=-k +7,解得k =-1, ∴直线AB 的解析式为y =-x +7;(2)∵将直线AB 向下平移9个单位后得到直线CD 的解析式为y =-x -2, ∴D (0,-2), ∴BD =7+2=9, 联立⎩⎪⎨⎪⎧y =-x -2y =-8x ,解得⎩⎪⎨⎪⎧x =-4y =2或⎩⎪⎨⎪⎧x =2y =-4, ∴C (-4,2),E (2,-4),如解图,连接BC ,则△CBD 的面积=12×9×4=18,由平行线间的距离处处相等可得△ACD 与△CDB 面积相等, ∴△ACD 的面积为18; (3)∵C (-4,2),E (2,-4),∴不等式mx +n ≤-8x的解集是-4≤x <0或x ≥2.第6题解图7. 解:(1)由第二象限的点A (a ,4)及△AOC 的面积为4,易得a =-2. 又∵A (-2,4)在反比例函数y =kx 的图象上,∴k =-8,∴反比例函数的解析式为y =-8x,又∵B (8,b )在反比例函数y =-8x 的图象上,∴b =-1;(2)-2<x <0或x >8;(3)∵A (-2,4)关于x 轴对称的点A ′(-2,-4), 则直线A ′B 与x 轴交点即为所求P 点. ∵ B (8,-1),设直线A ′B 的解析式为y =cx +d (c ≠0),∴⎩⎪⎨⎪⎧-2c +d =-48c +d =-1, 解得⎩⎨⎧c =310d =-175,∴直线A ′B 的解析式为y =310x -175,∴直线A ′B 与x 轴的交点为(343,0),即点P 的坐标为(343,0).8. 解:(1)∵一次函数y =-x +b 过B (3,-1), ∴-3+b =-1,b =2,∴一次函数的表达式为y =-x +2;∵B (3,-1)是反比函数y =kx 图象上的一点,∴k =3×(-1)=-3,∴反比例函数的表达式为y =-3x ;(2)由⎩⎪⎨⎪⎧y =-3xy =-x +2,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =-1y =3,∴A (-1,3).如解图,设直线y =-x +2与y 轴交于点C ,则C (0,2), ∴S △AOB =S △AOC +S △COB =12×2×1+12×2×3=4;(3)如解图,连接P A ,过点A 作AM ⊥x 轴于点M ,过点P 作PN ⊥x 轴于点N ,则S △AOM =S △PON =32.∵S △POA +S △PON =S 四边形AMNP +S △AOM , ∴S △POA =S 四边形AMNP , ∵S △POA ∶S △AOB =3∶2, ∴S △POA =32S △AOB =32×4=6.设P (x ,-3x ),∵A (-1,3),∴S 四边形AMNP =12(NP +AM )·MN =6,∴12(-3x +3)·(-1-x )=6, 解得x =-2± 5, ∵点P 在A 点左边, ∴x <-1, ∴x =-2- 5,∴P (-2- 5,3 5-6).第8题解图。

2020年九年级数学中考压轴题专项综合训练:《反比例函数》含答案

2020年九年级数学中考压轴题专项综合训练:《反比例函数》含答案

2020年九年级数学中考压轴题专项综合训练:《反比例函数》1.如图,四边形ABCD是以坐标原点O为对称中心的矩形,A(1,3),B(﹣3,﹣1),该矩形的边与坐标轴分别交于点E、F、G、H,连接EC.(1)直接写出点C的坐标;(2)判断点(1,﹣1.2)在矩形ABCD的内部还是外部;(3)求四边形ECHO的面积;(4)如果反比例函数的图象过点A,那么它是否一定过点D?请说明理由.解:(1)∵A、C关于原点对称,A(1,3),∴C(﹣1,﹣3).(2)∵B、D关于原点对称,B(﹣3,﹣1),∴D(3,1),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣2,∵x=1时,y=﹣1,﹣12<﹣1,∴点(1,﹣1.2)在直线CD的下方,∴点(1,﹣1.2)在矩形ABCD的外部.(3)∵直线CD的解析式为y=x﹣2,∴H(0,﹣2),F(2,0),∵E 、F 关于原点对称,∴E (﹣2,0),连接OC ,∴S 四边形ECHO =S △EOC +S △OHC =×2×3+×2×1=4.(4)一定过点D .理由:∵过点A (1,3)的反比例函数的解析式为y =,∵x =3时,y =1,∴D (3,1)也在反比例函数的图象上.2.如图,直线y 1═﹣x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=(x <0)的图象交于点P ,过点P ,作PB ⊥x 轴于点B ,且AC =BC(1)求反比例函数y 2的解析式;(2)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.解:(1)∵一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点C,1∴A(4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O是AB的中点,即OA=OB=4,且BP=2OC=2,∴P的坐标是(﹣4,2),将P(﹣4,2)代入y=,得m=﹣8,2=﹣;即反比例函数的解析式为y2(2)假设存在这样的点D,使四边形BCPD为菱形,如图,连接DC,与PB交于点E.∵四边形BCPD是菱形,∴CE=DE=4,∴CD=8,将x=﹣8代入反比例函数解析式y=﹣,得y=1,∴D的坐标是(﹣8,1),即反比例函数的图象上存在点D使四边形BCPD是菱形,此时D的坐标是(﹣8,1).3.如图,一次函数y 1=﹣x +b 的图象与反比例函数y 2=(k ≠0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点.已知:点B 的坐标为(,﹣2).(1)求该反比例函数的解析式和点D 的坐标;(2)点M 在CA 延长线上,且AM =AC ,连接OM ,OB ,求△MOB 的面积.解:(1)∵反比例函数y 2=(k ≠0)的图象经过点B (,﹣2).∴k =﹣2×=﹣3,∴反比例函数为y 2=﹣;∵一次函数y 1=﹣x +b 的图象经过点B (,﹣2),∴﹣2=﹣×+b ,解得b =﹣1,∴y 1=﹣x ﹣1,当x =0时,y =﹣1,∴D (0,﹣1);(2)连接OM ,OB , 解方程组,可得,,∴A (﹣3,1),B (,﹣2),∵直线AB :y 1=﹣x ﹣1,当y =0时,x =﹣,∴C(﹣,0),∴S△COD =S△BOD,∵MA=AC,∴S△MAO =S△ACO,∴S△MOB =2S△AOD=2××|y D|×|x A|=2××1×3=3.4.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)求正比例函数和反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3过点M作直线MN∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM 的面积为6时,请判断线段BM与DM的大小关系,并说明理由.解:(1)∵正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).∴2=3a,2=∴a=,k=6∴正比例函数表达式:y =x ,反比例函数的表达式:y =(2)BM =MD∵直线MN ∥x 轴,直线AC ∥y 轴∴四边形BDCO 是平行四边形且∠BOC =90°∴▱BDCO 为矩形∴BD =OC =3∵M (m ,n )是反比例函数图象上的一动点∴mn =6即S △BMO =3∵S △AOC =OC ×AC =3,且S OADM =6∴S BDCO =S △AOC +S △BMO +S OADM =12且S BDCO =OC ×BO∴12=3×OB∴OB =4∴n =4即m =∴BM =且BD =3∴DM =∴BM =DM5.如图,已知,点O 为坐标原点,点C 在x 轴的正半轴上.在▱AOCB 中,边AO =2,OC =4,∠AOC =60°,∠AOC 的角平分线交AB 于点D .点P 从点O 出发,以每秒个单位长度的速度沿射线OD 方向移动:同时点Q 从点O 出发,以每秒2个单位长度的速度沿射线OC 方向移动,连结QP ,BQ ,BP ,设移动时间t 秒.(1)求B ,D 两点的坐标;(2)若反比例函数y =(k ≠0)的图象的一个分支过点P ,且经过BQ 的中点,求k 的值;(3)当t 为何值时,△PQB 是直角三角形.解:(1)如图1中,作AH⊥OC于H.在Rt△AOH中,∵OA=2,∠AOH=60°,∴OH=OA=1,AH=,∴A(1,),∵四边形ABCD是平行四边形,∴AB=OC=4,AB∥OC,∴∠ADO=∠DOC,∵∠AOD=∠DOC,∴∠AOD=∠ADO,∴AO=AD=2,∴D(3,),B(5,).(2)如图2中,设BQ的中点为T,作BM⊥x轴于M,TN⊥x轴于N.由题意P(t,t),BM=,∵QT=TB,TN∥BM,∴QN=NM,∴TM=BM=,∵P、T在y=上,根据横坐标与纵坐标的乘积相等可得T(t2,),∴(2t+5)=t2∴3t2﹣2t﹣5=0,∴t=或﹣1(舍弃),∴T(,),∴k=.(3)由题意P(t,t),Q(2t,0),B(5,),∴PB2=(t﹣5)2+(t﹣)2,BQ2=(5﹣2t)2+3,PQ2=(t)2+(t)2,①当PB为斜边时,(t﹣5)2+(t﹣)2=(5﹣2t)2+3+(t)2+(t)2,解得t=1或0(舍弃).②当PQ为斜边时,(t﹣5)2+(t﹣)2+(5﹣2t)2+3=(t)2+(t)2,解得t=4或.③当BQ为斜边时,(t﹣5)2+(t﹣)2+(t)2+(t)2=(5﹣2t)2+3,解得t=0(不合题意)综上所述,满足条件的t的值为1或4或.6.如图,在平面直角坐标系中,点B在x轴正半轴上,以OB为对角线作正方形OABC,一次函数y=kx+b的图象过A、B两点,反比例函数y=(x>0)的图象过线段AB的中点M,点M的坐标为(3,1).(1)求一次函数和反比例函数的表达式;(2)设反比例函数的图象与直线AB的另一个交点为N,点D是线段MN上一点,过点D 作DE⊥x轴于点E,连接OD,若△ODE的面积为S,求S的取值范围.解:(1)设A(a,b)∵OABC是正方形,OB为对角线∴B(2a,0)∵M(3,1)是AB的中点∴b=2,a=2∴解得:∴解析式y=﹣x+4∵反比例函数y=(x>0)的图象过M点∴m=3×1=3∴反比例函数解析式:y=(2)∵反比例函数的图象与直线AB的另一个交点为N,∴∴x1=1,x2=3(舍去)∴N(1,3)设D(x,﹣x+4)∴S△ODE=×x×(﹣x+4)=﹣x2+2x(1≤x≤3)∴≤S△ODE≤27.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).8.如图所示,一次函数y=kx+b交y轴于点D,交x轴于点E,且与反比例函数y=的图象交于A(2,3).B(﹣3,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴于点C,过点A作AF⊥y轴于点F,求四边形AFCB的面积S;(3)当kx+b<时,x的取值范围是x<﹣3或0<x<2..解:(1)∵点A(2,3)在y=上,∴m=6,∴y=,∵B(﹣3,n)在y=上,∴n=﹣2,∴B(﹣3,﹣2),把A、B两点坐标代入y=kx+b,则有,解得,∴y=x+1.(2)连接CD.由题意F(0,3),D(0,1),C(﹣3,0),∴S△AFCB =S△ADF+S△CDF+S△BCD=×3×2+×2×3+×2×3=8.(3)观察图象可知,当kx+b<时,x的取值范围是x<﹣3或0<x<2.故答案为x<﹣3或0<x<2.9.如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.解:(1)∵直线y=x经过A(2,m),∴m=2,∴A(2,2),∵A在y=的图象上,∴k=4.(2)设B(0,n),由题意:×(﹣n)×2=2,∴n=﹣2,∴B(0,﹣2),设直线AB的解析式为y=k′x+b,则有,∴,∴直线AB的解析式为y=2x﹣2.(3)当点O'恰好落在反比例函数y=的图象上时,点A'的坐标(2+,2+2).10.如图1,在平面直角坐标系中,A点的坐标为(m,3),AB⊥x轴于点B,tan∠OAB=,反比例函数y1=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)设直线OA的解析式为y2=nx,请直接写出y1<y2时,自变量x的取值范围﹣2<x<0或x>2 .(3)如图2,若函数y=3x与y1=的图象的另一支交于点M,求△OMB与四边形OCDB的面积的比值.解:(1)在Rt △AOB 中,∵AB =3,∠ABO =90°,∴tan ∠OAB ==,∴OB =4,∴点A (4,3),∵点C 是OA 中点,∴点C 坐标(2,),∵反比例函数y 1=的图象的一支经过点C ,∴k =3,∴反比例函数解析式为y 1=.(2)如图1,由反比例函数图象的对称性质得到点C 关于原点对称的C ′的坐标为(﹣2,﹣),结合图象得到:当y 1<y 2时,自变量x 的取值范围是﹣2<x <0或x >2.故答案是:﹣2<x <0或x >2.(3)由解得或, ∵点M 在第三象限,∴点M 坐标(﹣1,﹣3),∵点D 坐标(4,),∴S△OBM =×4×3=6,S四边形OBDC=S△AOB﹣S△ACD=×4×3﹣×2×=,∴三角形OMB与四边形OCDB的面积的比=6:=8:5.11.如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB 先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=﹣2.∴直线的解析式为y=﹣2x+2.将x=0代入上式,得y=2.∴b=2.(2)由(1)知,b=2,∴B(0,2),由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得∴.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).如图1,连接BC、AD.∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥AD.=×BC×AD=×2×4=4.∴S四边形ABDC(3)①当∠NCM=90°、CM=CN时,如图2,过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠ENC.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM(AAS).∴CF=EN=2,FM=CE.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=,得y=1.∴点M(4,1);②当∠NMC =90°、MC =MN 时,如图3,过点C 作直线l ⊥y 轴与点F ,则CF =x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2. ∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°.∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN (AAS ).∴CE =MG ,EM =NG .设CE =MG =n ,则y M =n ,x M =CF +CE =2+n .∴点M (2+n ,n ).将点M (2+n ,n )代入y =,得n =. 解得n 1=﹣1,n 2=﹣﹣1(因为点M 在第一象限,所以n 大于0,所以舍去). ∴x M =2+n =+1. ∴点M (+1,﹣1).综合①②可知:点M 的坐标为(4,1)或(+1,﹣1).12.如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′(﹣3,3),B′(﹣6,0);(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.解:(1)∵△OA′B′与△OAB关于原点O成中心对称,且A(3,﹣3)、B(6,0),∴A'(﹣3,3),B'(﹣6,0)故答案为(﹣3,3),(﹣6,0)(2)∵将△OAB沿x轴向左平移m个单位,∴点A平移后的坐标为(3﹣m,﹣3)∴﹣3=m=5(3)①设点B逆时针旋转30°后对应点为B1.如图:过点B1作B1C⊥OB∵旋转∴OB1=6,∠COB1=30°∴B1C=3,OC=OB1=3∴B1(3,3)∴3=∴k=9∴解析式为y=②α=60°如图2,过点A作AD⊥OB,∵A(3,﹣3)∴OD=3,DA=3∵tan∠BOA==∴∠AOB =30°设点A 逆时针旋转60°后对应点为A 1.∴∠A 1OB =30°,且OA =OB =6=OA 1.∴A 1(3,3)设点B 逆时针旋转60°后对应点为B 2.∴∠B 2OB =60°,且OB 2=OB =6∴B 2(3,3) 当x =3时,y ==3,当x =3时,y ==3∴点A 1,点B 2在反比例y =的图象上 ∴将△OAB 绕点O 按逆时针方向旋转60°时,点A 、B 能同时落在反比例函数的图象上.13.阅读理解:若点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的相似特征点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的相似特征点.问题解决:在平面直角坐标系中,点M 是双曲线C :y =(x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,在Rt △ONM 中,∠ONM =90°,点N (,0)点P 是△ONM 内一点,且∠PON =∠M ,NP ⊥OP ,垂足为P ,试说明点P 是△ONM 的相似特征点,并求出点P 的坐标;(2)如图3,点N 的坐标是(2,0)时,且∠MON =30°,连接MN ,求△MON 的相似特征点的坐标;(3)当△MON 无相似持征点时,请直接写出这两点M ,N 的坐标;(4)在△MON 中,点M 的横坐标为m (m >0),点N 的模坐标为n ,点P 在线段OM 上,且∠PNO =∠M ,试用含m ,n 的式子表示点P 的坐标.解:(1)∵∠PON=∠M,∠OPN=∠MNO=90°,∴△OPN∽△MNO,∴点P是△MON的自相似点;如图2中,过P作PD⊥x轴于D,则tan∠POD=tan∠OMN==,∴∠POD=∠OMN=30°,∴OP=ON×cos30°=,∴OD=OP cos30°=,PD=OP•sin30°,∴P(,);(2)作MH⊥x轴于H,如图3所示:由题意点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴=,即=,解得:PN=,即P的纵坐标为,代入y=x得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2 ,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.(4)如图5中,作PH⊥x轴于H,MF⊥x轴于F.∵M(m,),N(n,0),∴ON=n,OM=,∵∠PON=∠ONP=∠OMN,∴△ONP∽△OMN,∴ON2=OP•OM,∴OP=,∵PH∥MF,∴==,∴PH=,OH=,∴P(,).14.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,OA=2,OC=4,直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA =BC =2,将y =2代入y =﹣x +3得:x =2, ∴M (2,2),把M 的坐标代入y =得:k =4, ∴反比例函数的解析式是y =;(2)把x =4代入y =得:y =1, 即CN =1,∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得:OP ×AM =4, ∵AM =2, ∴OP =4,∴点P 的坐标是(0,4)或(0,﹣4).15.已知点P 的坐标为(m ,0),点Q 在x 轴上(不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =﹣的图象上.(1)如图所示,若点P 的坐标为(1,0),求出图中点M 的坐标;(2)当P (1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN ,请您在原图上画出另一个符合条件的菱形PQ 1M 1N 1,并求点M 1的坐标;(3)随着m 的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,请直接写出点M 的坐标.解:(1)如图,∵四边形PQMN 是菱形, ∴PN ∥QM ,MN ∥PQ , ∴∠OPN =∠PQM =60°, ∵P (1,0),∴OP =1,PN =PQ =MN =2OP =2,OM =OP =∴M (2,﹣).(2)如下图中,∵四边形PQ 1M 1N 1是菱形, ∴Q 1P =Q 1M 1, ∵∠PQ 1M 1=60°, ∴△PQ 1M 1是等边三角形, ∴∠Q 1PM 1=60°, ∴直线PM 1的解析式为y =﹣x +,由解得或,∴M1(﹣1,2).(3)如下图,当过点P与x轴的夹角为60°的直线与反比例函数的交点的个数只有3个时,满足条件的菱形只有3个.设直线PM1的解析式为y=x+b,由,消去y得到:x2+bx+2=0,由题意:△=0,∴b=±2,当b=﹣2时,可得y=x﹣2,由:,解得,∴M1(,﹣),由解得或,∴M2(+2,﹣2),M2(﹣2,+2),当b=2时,同法可得满足条件的点M的坐标为(﹣,)或(﹣﹣2,2﹣)或(﹣+2,﹣2﹣).16.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x >0,m≠0)的图象交于点C,与x轴、y轴分别交于点D、B,已知OB=3,点C的横坐标为4,cos∠0BD=(1)求一次函数及反比例函数的表达式;(2)将一次函数图象向下平移,使其经过原点O,与反比例函数图象在第四象限内的交点为A,连接AC,求四边形OACB的面积.解:(1)∵OB=3,∴B(0,3),∵cos∠0BD=,∴∠OBD=45°,∴△OBD是等腰直角三角形,∴OD=OD=3,∴D(3,0),将点D,B代入y=kx+b得,,解得:,∴一次函数的表达式为:y=﹣x+3;∴C(4,﹣1),∵点C在反比例函数y=(x>0,m≠0)的图象上,∴m=﹣1×4=﹣4,∴反比例函数的解析式为:y=﹣;(2)由平移可得直线OA的解析式为:y=﹣x,∴,解得:,,∴A(2,﹣2),过A 作AE ⊥x 轴交BC 于E ,则AE =OB =3,∴S 四边形OACB =S 四边形OAEB +S △ACE =OB •x A +AE •(x C ﹣x A )=3×2+(4﹣2)=9.17.如图,在平面直角坐标系xOy 内,函数y =x 的图象与反比例函数y =(k ≠0)图象有公共点A ,点A 的坐标为(4,a ),AB ⊥x 轴,垂足为点B . (1)求反比例函数的解析式;(2)点C 是第一象限内直线OA 上一点,过点C 作直线CD ∥AB ,与反比例函数y =(k ≠0)的图象交于点D ,且点C 在点D 的上方,CD =AB ,求点D 的坐标.解:(1)∵点A 在函数y =的图象上,点A 的坐标为(4,a ),∴a =2,∴点A 坐标为(4,2).∵点A 在反比例函数y =(k ≠0)的图象上, ∴2=,解得k =8.∴反比例函数的解析式为y =. (2)∵AB ⊥x 轴,点A 坐标为(4,2), ∴AB =2.∵点C 为第一象限内直线y =x 上一点,∴设点C坐标为(m,m)(m>0).又∵CD∥AB,且点D在反比例函数y=的图象上,∴设点D坐标为(m,).∵点C在点D的上方,可得CD=m﹣.∵CD=AB,∴m﹣=×2,∴解得m=8或m=﹣2.∵m>0,∴m=8.∴点D的坐标为(8,1).18.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(﹣,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴的正半轴上存在一点P,使得S△AOP =S△AOB,求点P的坐标;(3)若将△AOB绕点B按顺时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,并说明理由.解:(1)把A(﹣,1)代入反比例函数y=,则k=﹣,∴反比例函数y=﹣;(2)设P(m,0),m>0,从点A(﹣,1)的坐标,tan∠AOC=,∴∠AOC=30°,∵OA⊥OB,AB⊥x轴,∴∠ABO=30°,∴OB=2OC=2,S△AOP=•OP•AC=m,S△AOB=AO•BO=×2=2,S△AOP =S△AOB,∴m=4,∴点P的坐标为(4,0);(3)△AOB绕点B按顺时针方向旋转60°得到△BDE,∴∠OBE=60°﹣30°=30°,如下图,连接OE,∵AB=BE,BO=BO,∠BOA=∠BOE=30°,∴△BOA≌△BOE,∴AO=EO,而OA⊥OB,∴A、O、E在一条直线上,∴点E是点A关于原点的对称点,∴E(,﹣1),也在反比例函数上.19.如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(1,3).已知点A (3,0),B(0,2),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的解析式;(3)直接写出线段AB扫过的面积.解:(1)将点P(1,3)代入直线y=k1x得,k1=3,将P(1,3)代入双曲线y=得,k2=1×3=3,(2)∵A(3,0),B(0,2),∴AO=3,BO=2,由平移知,A'(4,3),B'(1,5),∵A'C∥y轴交双曲线于点C,∴C点的横坐标为1+3=4,当x=4时,y=,∴C(4,),设直线PC的解析式为y=kx+b,把点P(1,3),C(4,)代入得,,∴,(3)如图,延长A'C交x轴于D,过点B'作B'E⊥y轴于E,∴A'D=3,B'E=1,由平移得,△AOB≌△A'PB',∴线段AB扫过的面积为S▱POBB'+S▱AOPA'=BO×B'E+AO×A'D=2×1+3×3=11.20.如图,一次函数y=kx﹣2(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(3,b).点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线CD交这个反比例函数的图象于点D,O为坐标原点.(1)求△OCD面积为时,点D的坐标;(2)求△OCD面积的最大值;(3)当△OCD面积最大时,以点O为圆心,r为半径画⊙O,是否存在r的值,使得A、B、C、D四个点中恰好有2个在圆内?如果存在,求出r的取值范围;如果不存在,请说明理由.解:(1)∵点B(3,b)在反比例函数y=的图象上,∴3b=3,∴b=1,∴B(3,1),∵点B(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,∴k=1,∴直线AB的解析式为y=x﹣2,设点C的坐标为(m,m﹣2)(0<m<3),∵C且平行于y轴的直线CD交这个反比例函数的图象于点D,∴D(m,),∴CD=﹣(m﹣2)=+2﹣m,=CD•m=(+2﹣m)×m=﹣(m2﹣2m﹣3),∴S△OCD∵△OCD面积为,∴﹣(m2﹣2m﹣3)=,∴m=0(舍)或m=2,∴D(2,),(2)由(1)知,S=﹣(m2﹣2m﹣3)=﹣(m﹣1)2+2,△OCD∵0<m<3,∴m=1时,△OCD面积的最大值为2.(3)存在,理由:∵直线AB的解析式为y=x﹣2,∴A(0,﹣2),∴OA=2,由(1)知,B(3,1),∴OB==由(2)知,m=1,∴C(1,﹣1),D(1,3),∴OC==,OD==,∴OC<OA<OB=OD,∵以点O为圆心,r为半径画⊙O,使得A、B、C、D四个点中恰好有2个在圆内.∴2<r≤.。

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:《反比例函数》1.如图,在平面直角坐标系中,矩形ABCO的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(4,2),AC的垂直平分线分别交BC,OA于点D,E,过点D的反比例函数的图象交AB于点F.(1)求反比例函数的表示式;(2)判断DF与AC的位置关系,并说明理由;(3)连接OD,在反比例函数图象上存在点G,使∠ODG=90°,直接写出点G的坐标.解:(1)连接AD,∵DE垂直平分AC,∴AD=CD,∵B(4,2),∴AB=2,BC=4.设AD=CD=x,则BD=4﹣x,∵四边形OABC矩形,∴BC∥OA,∠B=90°.在Rt△ABD中,AD2=BD2+AB2.即x2=(4﹣x)2+22.解得.∴点.将点的坐标代入中,解得:.∴所求反比例函数表达式为;(2)DF∥AC.将x=4代入得,,∴点.∵B(4,2),A(4,0),C(0,2),,∴AB=2,,BC=4,.∴,.∴.∵∠B=∠B,∴△BDF∽△BCA,∴∠BDF=∠BCA.∴DF∥AC;(3)存在,∵,∴OC=2,CD=,如图,∵G点在反比例函数图象上,∴设G(m,),过G作GH⊥BC于H,∴GH=﹣2,DH=﹣m,∵∠ODG=90°,∴∠GDH+∠CDO=90°,∵∠CDO+∠COD=90°,∴∠GDH=∠COD,∴△DHG∽△OCD,∴=,∴=,解得:m=,m=(不合题意舍去),∴.2.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6, b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;3.如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x 轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P 的坐标.解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.4.如图,A、D、B、C分别为反比例函数y=与y=(x>0,0<n <x)图象上的点,且AC∥x轴,BD∥y轴,AC与BD相交于点P,连接AD、BC.(1)若点A坐标A(1,2),点B坐标B(2,5),请直接写出点C、点D、点P的坐标;(2)连接AB、CD,若四边形ABCD是菱形,且点P的坐标为(3,2),请直接写出m、n之间的数量关系式;(3)若A、B为动点,△APD与△CPB是否相似?为什么?解:(1)∵点A坐标A(1,2)反比例函数y=上的点,点B坐标B(2,5)反比例函数y=上的点,∴m=1×2=2,n=2×5=10,∵AC∥x轴,BD∥y轴,∴点C的纵坐标为2,点D的横坐标为2,点P坐标(2,2)∴点C(5,2),点D(2,1);(2)∵点P的坐标为(3,2),∴点A,点C纵坐标为2,点B,点D的横坐标为3,∵四边形ABCD是菱形,∴AP=PC,BP=PD,设点A(x,2),则点C(6﹣x,2),∴m=2x,点D(,3),n=12﹣2x,点B(,3),∵BP=PD,∴2﹣=﹣2,∴m+n=12;(3)△APD∽△CPB,理由如下:设点P的坐标为(a,b),则点A的坐标为(,b)、点D的坐标为(a,),点B的坐标为(a,)、点C的坐标为(,b),∴PA=a﹣=,PC=,PD=b﹣=,PB=,∴,,即,且∠APD=∠CPB,∴△APD∽△CPB.5.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n的值和k的值以及点B的坐标;(2)观察反比例函数y=的图象,当y≥﹣3时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(4)在y轴上是否存在点P,使PA+PB的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),(2)当y=﹣3时,﹣3=,解得x=﹣4.故当y≥﹣3时,自变量x的取值范围是x≤﹣4或x>0.(2)如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=B C=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(4)存在,如图2,作点B(2,0)关于y轴的对称点Q的坐标为(﹣2,0),∴直线AQ的关系式为y=x+1,∴直线AQ与y轴的交点为P(0,1).6.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN 是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数y=(x>0)图象上的一个动点,过点C 的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OM sinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴=∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).7.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)a=﹣1 ,b=﹣2 ;(2)求D点的坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:.故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2).∴t=2t﹣4.∴t=4.∴D(1,4);(3)∵D(1,4)在双曲线y=上,∴k=xy=1×4=4.∴反比例函数的解析式为y=,∵点P在双曲线y=上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示:若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示:当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);综上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如图4,连接NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TN H=360°﹣180°﹣90°=90°.∴MN=HT,∴=.即的定值为.8.已知:一次函数y=mx+10(m<0)的图象与反比例函数y=(k >0)的图象相交于A、B两点(A在B的右侧).(1)当A(8,2)时,求这个一次函数和反比例函数的解析式,以及B点的坐标;(2)在(1)的条件下,平面内存在点P,使得以A、B、O、P为顶点的四边形为平行四边形,请直接写出所有符合条件的点P的坐标;(3)当m=﹣2时,设A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.解:(1)把A(8,2)代入y=,得k=8×2=16.∴反比例函数的解析式为y=,把A(8,2)代入y=mx+10,得到m=﹣1,∴一次函数的解析式为y=﹣x+10,解方程组,得或,∴点B的坐标为(2,8)(2)如图1,设P的坐标为(x,y),∵四边形AP1BO是平行四边形,∴AB、OP1互相平分,∵A(8,2),B(2,8),O(0,0),∴=,=,∴x=10,y=10,∴P1(10,10),同理求得,P2(﹣6,6),P3(6,﹣6);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴=,∵=,∴==,∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即b=a.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函数y=的图象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=a(﹣2×a+10).∵a≠0,∴﹣2a+10=(﹣2×a+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).设直线BC的解析式为y=px+q,则有,解得:,∴直线BC的解析式为y=2x+2.当x=0时,y=2,则点D(0,2),OD=2,∴S△COB=S△ODC+S△ODB=OD•CT+OD•BS=×2×3+×2×2=5.∵OA=OC,∴S△AOB=S△COB,∴S△ABC=2S△COB=10.9.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点,点A与点B不重合,直线AB与x轴交于点P(x0,0),与y轴交于点C(1)若A、B两点坐标分别为(1,4),(4,y2),求点P的坐标;(2)若b=y1+1,x0=6,且y1=2y2,求A,B两点的坐标;(3)若将(1)中的点A,B绕原点O顺时针旋转90°,A点对应的点为A′,B点的对应点为B′点,连接AB′,A′B′,动点M 从A点出发沿线段AB′以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB′为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,4)∴k=1×4=4,∴y=,∵B(4,y2)在反比例函数的图象上,∴y2==1,∴B(4,1),∵直线y=ax+b经过A、B两点,∴,解得,∴直线为y=﹣x+5,令y=0,则x=5,∴P(5,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y 轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,y1=2y2,∴=,==,∴B(, y1),∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1);(3)存在,如图2,∵A、B两点坐标分别为(1,4),(4,1),将B绕原点O顺时针旋转90°,∴B′(1,﹣4),∴AB′=8,由题意得:AM=BN=t,∴B′M=8﹣t,∵△MNB′为等腰直角三角形,∴①当∠B′N1M1=90°,即B′M1=B′N1,∴8﹣t=t,解得:t=8﹣8;②当∠B′M2N2=90°,即B′N2=B′M2,∴t=(8﹣t),解得:t=16﹣8;综上所述,t的值为8﹣8或16﹣8.10.平面直角坐标系中,A(,0)、B(,3).(1)如图1,C点在y轴上,AC⊥AB,请直接写出C点的坐标.(2)如图2,以AB为边作矩形ABDE,D、E在第一象限内,且D、E两点均在双曲线的图象上,求k的值.(3)将(2)中求得的线段DE在(2)中的双曲线(x>0)的图象上滑动(D点始终在E点左边),作DM⊥y轴于M,EN⊥x轴于N.若MN=,请直接写出DM•EN的值.解:(1)过B作BD⊥x轴于D,∵A(,0)、B(,3),∴BD=3,AD=2,OA=,∵AC⊥AB,∴∠ADB=∠BAC=∠AOC=90°,∴∠BAD+∠ABD=∠BAD+∠CAO=90°,∴∠ABD=∠CAO,∴△ABD∽△CAO,∴,∴,∴OC=,∴C(0,);(2)∵四边形ABDE是矩形,∵A(,0)、B(,3),设E(m,n),则D(m﹣2,n+3),∵D、E均在双曲线上∴mn=(m﹣2)(n+3),过点B作BF⊥x轴于F,过点E作EG⊥x轴于G,由(1)证得△ABF∽△EAG,∴,∴,得2m+1=3n,联立,解得,∴k=mn=12;(3)∵DE=AB=,∵MN=,∴延长MD,NE交于G,则四边形MONG是矩形,设M(0,m)、N(n,0)∴D(,m)、E(n,)、G(n,m),∴直线MN的解析式为y=﹣x+m;直线DE的解析式为:y=﹣x+m+,∴MN∥DE,∴,∴,得mn=4∴DM•EN=.11.综合与探究:如图所示,在平面直角坐标系中,直线y=x+2与反比例函数y=(k>0)的图象交于A(a,3),B(﹣3,b)两点,过点A作AC ⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的函数表达式;(2)若点P在线段AB上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)小颖在探索中发现:在x轴正半轴上存在点M,使得△MAB是以∠A为顶角的等腰三角形.请你直接写出点M的坐标.解:(1)∵直线y=x+2与反比例函数y=(k>0)的图象交于A (a,3),B(﹣3,b)两点,∴a+2=3,﹣3+2=b,∴a=1,b=﹣1.∴A(1,3),B(﹣3,﹣1),∵点A(1,3)在反比例函数y=上,∴k=1×3=3,∴反比例函数的函数表达式为y=,(2)设点P(x P,y P),∵A(1,3),∴C(1,0).∴AC=3.∵B(﹣3,﹣1),∴D(﹣3,0),∴BD=1,∴AC(1﹣x P)=DB(x P+3),解得:x P=0,∴y P=2,∴点P的坐标为(0,2);(3)∵△MAB是以∠A为顶角的等腰三角形,∴AB=AM,∵AB==4,∵AC⊥x轴,∴CM===,∴OM=1+,∴M(1+,0).12.如图1,在矩形中,OA=4,OC=3,分别以OC,OA所在的直线为x轴、y轴,建立如图所示的平面直角坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=ax+b经过点E和点F.(1)连接OE、OF,求△OEF的面积;(2)如图2,将线段OB绕点O顺时针旋转﹣定角度,使得点B的对应点H好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求的最小值.解:(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,∴B(3,4),∵OD=DB,∴D(,2),∵y=经过D(,2),∴k=3,∴反比例函数的解析式为y=,∴y=4时,x=,∴E(,4),当x=3时,y=1,∴F(3,1),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=3×4﹣×4×﹣×3×1﹣×(3﹣)(4﹣1)=12﹣﹣﹣=;(2)作NJ⊥BO于J,HK⊥BO于K,如图2所示:OB===5,由旋转的性质得:OB=OH=5,∴CH=OH﹣OC=5﹣3=2,∴BH═==2,∴sin∠CBH═==,∵OM⊥BH,∴∠OMH=∠BCH=90°,∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,∴∠MOH=∠CBH,∵OB=OH,OM⊥BH,∴∠MOB=∠MOH=∠CBH,∴sin∠NOJ=,∴NJ=ON•sin∠NOJ=ON,∴NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H三点共线,且与HK重合时,HN+ON 的值最小,最小值为HK的长,∵OB=OH, BC•OH=HK•OB,∴HK=BC=4,∴HN+ON是最小值为4.13.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=14.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函数为y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函数为y=﹣x+5.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,),由一次函数y=﹣x+5可知C(5,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=5,∴|5﹣m|•=5,解得m=或m=﹣(舍去),∴P(,).15.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y=(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.。

2020年九年级数学典型中考压轴题训练:《反比例函数综合》(含答案解析)

2020年九年级数学典型中考压轴题训练:《反比例函数综合》(含答案解析)

2020年九年级数学典型中考压轴题训练:《反比例函数综合》1.如图,已知C 、D 是双曲线y =在第一象限分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点.设C (x 1,y 1)、D (x 2,y 2),连接OC 、OD (O 是坐标有点),若∠BOC =∠AOD =α,且tan α=,OC =.(1)求C 、D 的坐标和m 的值;(2)双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明,若不存在,说明理由.解:(1)过点C 作CG ⊥x 轴于G ,则CG =y 1,OG =x 1,在Rt △OCG 中,∠GCO =∠BOC =α,∵tan α=, ∴=,即y 1=3x 1,又∵OC =,∴x 12+y 12=10,即x 12+(3x 1)2=10,解得:x 1=1或x 1=﹣1(不合题意舍去)∴x 1=1,y 1=3,∴点C 的坐标为C (1,3).又∵点C 在双曲线上,可得:m =3,过D 作DH ⊥x 轴于H ,则DH =y 2,OH =x 2在Rt △ODH 中,tan α=, ∴,即x 2=3y 2,又∵x 2y 2=3,∴y 2=1或y 2=﹣1(不合舍去),∴x 2=3,y 2=1,∴点D 的坐标为D (3,1);(2)双曲线上存在点P ,使得S △POC =S △POD ,这个点就是∠COD 的平分线与双曲线的交点∵点D (3,1),∴OD =, ∴OD =OC ,∴点P 在∠COD 的平分线上,则∠COP =∠POD ,又OP =OP∴△POC ≌△POD ,∴S △POC =S △POD .2.已知:在矩形AOBC 中,OB =4,OA =3.分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B ,C 重合),过F 点的反比例函数(k >0)的图象与AC 边交于点E .(1)求证:△AOE 与△BOF 的面积相等;(2)记S =S △OEF ﹣S △ECF ,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.(1)证明:设E (x 1,y 1),F (x 2,y 2),△AOE 与△FOB 的面积分别为S 1,S 2, 由题意得y 1=,y 2=,∴S 1=x 1y 1=k ,S 2=x 2y 2=k ,∴S 1=S 2,即△AOE 与△FOB 的面积相等;(2)解:由题意知E ,F 两点坐标分别为E (,3),F (4,),∴S △ECF =EC •CF =(4﹣k )(3﹣k ),∴S △EOF =S 矩形AOBC ﹣S △AOE ﹣S △BOF ﹣S △ECF=12﹣k ﹣k ﹣S △ECF=12﹣k ﹣S △ECF∴S =S △OEF ﹣S △ECF =12﹣k ﹣2S △ECF =12﹣k ﹣2×(4﹣k )(3﹣k ).∴S =﹣k 2+k ,即S =﹣(k ﹣6)2+3,当k =6时,S 有最大值.S 最大值=3;(3)解:设存在这样的点F,将△CEF沿EF对折后,C点恰好落在OB边上的M点,过点E作EN⊥OB,垂足为N.由题意得:EN=AO=3,EM=EC=4﹣k,MF=CF=3﹣k,∵∠EMN+∠FMB=∠FMB+∠MFB=90°,∴∠EMN=∠MFB.又∵∠ENM=∠MBF=90°,∴△EMN∽△MFB.∴,∴,∴MB=.∵MB2+BF2=MF2,∴,解得k=.∴BF=.∴存在符合条件的点F,它的坐标为(4,).3.如图,将一矩形OABC放在直角坐标系中,O为坐标原点,点A在y轴正半轴上,OA=2,OC=4,过点E的反比例函数y=(x>0)的图象与边BC交于点F.(1)若△OAE的面积为1,求反比例函数的解析式;(2)若点E是边AB上的一个动点(不与点A、B重合),当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?解:(1)∵在矩形ABCD中,∠OAE=90°,∵S△OAE=OA•AE=×2AE=1,∴AE=1,即点E的坐标为(1,2),∵点E在反比例函数y=上,把E(1,2)代入y=得,k=2,∴反比例函数的解析式为y=;(2)根据四边形OABC为矩形,OA=2,OC=4,设E(,2),F(4,),∴BE=4﹣,BF=2﹣,∴S△BEF=(4﹣)(2﹣)=k2﹣k+4,∵S△OCF =×4×=,S矩形OABC=8,∴S四边形OAEF =S矩形OABC﹣S△BEF﹣S△OCF=8﹣(k2﹣k+4)﹣=﹣k2++4=﹣(k﹣4)2+5,∴当k=4时,S四边形OAEF=5,此时AE=2,当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5.4.如图,在平面直角坐标系中,一次函数y=kx+1的图象交y轴于点D,与反比例函数y =的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足分别为点B、C.(1)点D的坐标为(0,1);(2)当AB=4AC时,求k的值;(3)当四边形OBAC是正方形时,直接写出四边形ABCD与△ACD面积的比.解:(1)由于点D是一次函数y=kx+1的图象与y轴的交点,当x=0时,kx+1=1所以点D的坐标为(0,1);故答案为:(0,1);(2)设AC=x,则AB=4x,所以点A(x,4x)由于点A在反比例函数y=上,所以16=x•4x,整理,得x2=4,所以x=2或x=﹣2(舍去),所以点A(2,8),因为A在一次函数y=kx+1的图象上,所以8=2k+1,解得:k=3.5;(3)由于点A在反比例函数y=上,所以AB•AC=16∵四边形OBAC是正方形,∴OB=AB=AC=OC=4,∵OD=1,∴CD=3,∵S==(3+4)×4=14四边形ABDCS=AC•CD=×4×3=6△ACD∴则四边形ABDC与△ACD面积的比7:3.5.已知:如图,一次函数y=﹣2x的图象与反比例函数y=的图象交于A、B两点,且点B的坐标为(1,m).(1)求反比例函数y=的表达式;(2)点C(n,1)在反比例函数y=的图象上,求△AOC的面积;(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.解:(1)把B(1,m)代入y=﹣2x得m=﹣2,∴B点坐标为(1,﹣2),把B(1,﹣2)代入y=得k=﹣2×1=﹣2,∴反比例函数解析式为y=﹣;(2)作CE⊥x轴于E,AD⊥x轴于D,如图,∵点A与B点是一次函数y=﹣2x的图象与反比例函数y=的图象交点,∴点A与点B关于原点对称,∴点A的坐标为(﹣1,2),把C(n,1)代入y=﹣得n=﹣2,∴C点坐标为(﹣2,1),∴S△AOC =S梯形ADEC+S△ADO﹣S△CEO=×(1+2)×1+×2×1﹣×1×2=;(3)如图,P点坐标为(0,1)、(0,0)、(﹣1,0).6.如图,将矩形OABC放置在平面直角坐标系xOy中,点A、C分别在x轴、y轴上,点B 的坐标为(2,1),将矩形OABC绕着A点顺时针旋转90°得到矩形FADE.双曲线y=经过点B,且交DE于点M.(1)求k的值和直线MF的解析式;(2)若直线MF交y轴于点N,连接BM,BN,求△BMN的面积.解:(1)把B(2,1)代入y=得k=2×1=2,∴反比例函数解析式为y=,∵矩形OABC 绕着A 点顺时针旋转90°得到矩形FADE ,∴FA =OA =2,AD =AB =1,∴F 点坐标为(2,2),D 点坐标为(3,0),把x =3代入y =得y =,∴M 点的坐标为(3,)设直线MF 的解析式为y =ax +b ,把F (2,2),M (3,)代入得,解得,∴直线MF 的解析式为y =﹣x +;(2)S △BMN =S △BFN +S △BFM =×(2﹣1)×2+×(2﹣1)×1 =.7.如图,已知直线y =4﹣x 与反比例函数y =(m >0,x >0)的图象交于A ,B 两点,与x 轴,y 轴分别相交于C ,D 两点.(1)如果点A 的横坐标为1,利用函数图象求关于x 的不等式4﹣x <的解集;(2)是否存在以AB 为直径的圆经过点P (1,0)?若存在,求出m 的值;若不存在,请说明理由.解:(1)将x =1代入直线y =4﹣x 得,y =4﹣1=3,则A 点坐标为(1,3),将A (1,3)代入y =(m >0,x >0)得,m =3,则反比例函数解析式为y=,组成方程组得,解得,y=1,x=3,则B点坐标为(3,1).当不等式4﹣x<时,0<x<1或x>3.(2)存在.点A、B在直线y=4﹣x上,则可设A(a,4﹣a),B(b,4﹣b).如右图所示,过点A作AM⊥x轴于点M,则AM=4﹣a,PM=1﹣a;过点B作BE⊥x轴于点E,则BE=4﹣b,PE=b﹣1.∵点P在以AB为直径的圆上,∴∠APB=90°(圆周角定理).易证Rt△AMP∽Rt△PEB,∴=,即,整理得:5(a+b)﹣2ab=17 ①∵点A、B在双曲线y=上,∴a(4﹣a)=m,b(4﹣b)=m,∴a2﹣4a+m=0,b2﹣4b+m=0,∴a、b是一元二次方程x2﹣4x+m=0的两个根,∴a+b=4,ab=m.代入①式得:5×4﹣2m=17,解得:m=.∴存在以AB为直径的圆经过点P(1,0),此时m=.8.直线y=x+b与双曲线y=(x<0)交于点A(﹣1,﹣5),并分别与x轴、y轴交于点C、B.(1)直接写出b=﹣4 ,m= 5 .(2)根据图象直接写出不等式x+b<的解集为x<﹣1 .(3)连接OA,求∠OAB的正弦值.(4)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.解:(1)将A(﹣1,﹣5)代入直线y=x+b中,得:﹣5=﹣1+b,即b=﹣4,将A(﹣1,﹣5)代入双曲线解析式得:﹣5=,即m=5;(2)由图象可得:不等式x+b<的解集为x<﹣1;故答案为:(1)﹣6;5;(2)x<﹣1;(3)过O作OH⊥BC,垂足为H,对于直线y=x﹣4,令y=0求出x=4,即C(4,0),令x=0求出y=﹣4,即B(0,﹣4),∴OB=OC=4,即△BOC为等腰直角三角形,∴BC==4,∴OH=BC=2,由点O(0,0),A(﹣1,﹣5),得:OA=,在Rt△OAH中,sin∠OAB==;(4)由(3)可知,△OBC为等腰直角三角形,OH=BH=2,在Rt△AOH中,根据勾股定理得:AH===3,∴AB=AH﹣BH=,∴当点D在C点右侧时,∠OBA=∠DCB=135°,①当=,即=时,解得CD=2,∵C(4,0),即OC=4,∴OD=OC+CD=2+4=6,此时D坐标为(6,0);②当=,即=时,解得CD=16,∵C(4,0),即OC=4,∴OD=OC+CD=16+4=20,此时D坐标为(20,0),综上所述,若△BCD与△ABO相似,此时D坐标为(6,0)或(20,0).9.如图,点P是双曲线y=(x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y 轴于A 、B 两点,交双曲线y =于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= 18 ; (2)图2中,设P 点坐标为(﹣4,3). ①判断EF 与AB 的位置关系,并证明你的结论; ②记S 2=S △PEF ﹣S △OEF ,求S 2.解:(1)四边形PEOF 的面积S 1=四边形PAOB 的面积+△OAE 的面积+△OBF 的面积=|k 1|+k 2=k 2+k 1=12+6=18(2)①EF 与AB 的位置关系为平行,即EF ∥AB . 证明:如图,由题意可得:A (﹣4,0),B (0,3),E (﹣4,﹣),F (2,3),∴PA =3,PE =3+=,PB =4,PF =4+2=6,∴==,==,∴=,又∵∠APB =∠EPF , ∴△APB ∽△EPF , ∴∠PAB =∠PEF , ∴EF ∥AB ;②S 2没有最小值,理由如下:过E 作EM ⊥y 轴于点M ,过F 作FN ⊥x 轴于点N ,两线交于点Q ,由上知M(0,﹣),N(2,0),Q(2,﹣),而S△EFQ =S△PEF,则S2=S△PEF﹣S△OEF=S△EFQ﹣S△OEF=S△EOM +S△FON+S矩形OMQN=12×+6×+2×=6+3+3=12.故答案为12.10.如图,已知反比例函数(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a ≠0),其中一次函数与x轴,y轴的交点分别是A(﹣4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.解:(1)∵一次函数y=ax+b与x轴,y轴的交点分别是A(﹣4,0),B(0,2),∴﹣4a+b=0,b=2,∴a=,∴一次函数的关系式为:y=x+2;(2)设P(﹣4,n),∴=,解得:n=±1,由题意知n=﹣1,n=1(舍去),∴把P(﹣4,﹣1)代入反比例函数,∴m=4,反比例函数的关系式为:y=;(3)∵P(﹣4,﹣1),∴关于原点的对称点Q的坐标为Q(4,1),把Q(4,1)代入反比例函数关系式符合题意,∴Q在该反比例函数的图象上.11.如图,在直角坐标平面内,反比例函数(x>0,m是常数)的图象经过点A(1,8).(1)求m的值;(2)过点A的直线l与反比例函数图象相交于另一点B(a,b),其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,BD与AC相交于P点,连接AD,DC,CB.①如果直线l与反比例函数图象的交点B的横坐标为8,求△ABD的面积;②是否存在点B(a,b),使得四边形ABCD为平行四边形;若存在,试求直线l的函数解析式;若不存在,请说明理由.解:(1)∵反比例函数(x>0,m是常数)的图象经过点A(1,8).∴m=8;(2)①将x=8代入y=,得y=1,∴点B的坐标为(8,1),S=BD•AP=×8×(8﹣1)=28,△ABD②假设存在.根据平行四边形的性质,AC与BD互相平分,∴点P(a,b),∴a=1,b=4,∴a=2,点B(2,4),将点A、B坐标代入直线l的函数解析式y=kx+b,则,即得k=﹣4,b=12,∴直线l的函数解析式y=﹣4x+12.12.如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为9 ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.解:∵OA=6,OC=3,点D为BC的中点,∴D(3,3).∴k =3×3=9, 故答案为9;(2)S △OCD =S △OBE ,理由是:∵点D ,E 在函数的图象上, ∴S △OCD =S △OAE =, ∵S △OAB =×6×3=9, ∴S △OBE =9﹣=, ∴S △OCD =S △OBE .13.如图1,反比例函数y =(x >0)的图象经过点A (2,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D .(1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.解:(1)把A (2,1)代入y = 得k =2×1=2;(2)作BH ⊥AD 于H ,如图1, 把B (1,a )代入反比例函数解析式y =得a =2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S=•t•(﹣t+1)△CMN=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.14.如图,一次函数y=ax+b与反比例函数的图象交于A、B两点.过A点分别作x 轴、y轴的垂线,E、F为垂足.(1)请直接写出矩形AEOF的面积;(2)设一次函数y=ax+b与x轴、y轴的交点分别为C、D,当OC=3OE时.①试求△OCD的面积;②当OE=1时,以BD为直径作⊙N,与x轴相交于P点,请求出P点的坐标.解:(1)如图1,∵点A在反比例函数的图象上,且AE⊥x轴,AF⊥y轴,∴S=|﹣2|=2.矩形AEOF∴矩形AEOF的面积为2.(2)①如图1,设OE=m(m>0),则E(﹣m,0).∴C(3m,0),A(﹣m,).∴OC=3m,CE=4m,AE=.∵AE⊥x轴、AF⊥y轴,∴∠DOC=∠AEC=90°.又∵∠DCO=∠ACE,∴△DOC∽△AEC.∴.∴=.∴OD=.=OC•DO=×3m×=.∴S△OCD∴△OCD的面积为.②过点N作NG⊥y轴,垂足为G,过点B作BH⊥y轴,垂足为H,过点N作NM⊥x轴,垂足为M,连接NP,如图2所示.∵OE=1,∴m=1.∴A(﹣1,2),C(3,0).∵点A、点C在直线y=ax+b上,∴解得:.∴.当x=0时,y=.∴OD=.∵A、B是直线与反比例函数图象的交点,∴.解得:x1=﹣1,x2=4.当x1=﹣1时,y1=2;当x2=4时,.∴点B的坐标为(4,).∴BH=4,OH=.∴DH=2.∵∠BHD=90°,∴.∴PN=.∵NG⊥y轴,BH⊥y轴∴NG∥BH∴△DGN∽△DHB.∴==.∵DN=DB,∴DG=DH,.∵点N在直线上,∴点.∴NM=.∵NM⊥PP′,∴PM=P′M,∠NMP=90°.∵PN=,NM=,∴.∴.∴P′M=.∴P点的坐标为(,0)或(,0).15.如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为 6 ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.解:(1)将A(1,6)代入反比例解析式得:k=6;故答案为:6;(2)将x =3代入反比例解析式y =得:y =2,即M (3,2),设直线AM 解析式为y =ax +b ,把A 与M 代入得:,解得:a =﹣2,b =8,∴直线AM 解析式为y =﹣2x +8;(3)直线BP 与直线AM 的位置关系为平行,理由为:当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,∵A (1,6),M (m ,n ),且mn =6,即n =,∴B (0,6),P (m ,0),∴k 直线AM ====﹣=﹣, k 直线BP ==﹣,即k 直线AM =k 直线BP ,则BP ∥AM .16.如图,将透明三角形纸片PAB 的直角顶点P 落在第四象限,顶点A 、B 分别落在反比例函数y =图象的两支上,且PB ⊥x 于点C ,PA ⊥y 于点D ,AB 分别与x 轴,y 轴相交于点E 、F .已知B (1,3).(1)k = 3 ;(2)试说明AE =BF ;(3)当四边形ABCD 的面积为时,求点P 的坐标.解:(1)把B (1,3)代入y =得k =1×3=3;故答案为:3;(2)反比例函数解析式为y =,设A 点坐标为(a ,),∵PB ⊥x 于点C ,PA ⊥y 于点D ,∴D 点坐标为(0,),P 点坐标为(1,),C 点坐标为(1,0),∴PB =3﹣,PC =﹣,PA =1﹣a ,PD =1, ∴==,=, ∴=,而∠CPD =∠BPA ,∴△PCD ∽△PBA ,∴∠PCD =∠PBA ,∴CD ∥BA ,而BC ∥DF ,AD ∥EC ,∴四边形BCDF 、ADCE 都是平行四边形,∴BF =CD ,AE =CD ,∴BF =AE ,(3)∵四边形ABCD 的面积=S △PAB ﹣S △PCD ,∴•(3﹣)•(1﹣a)﹣•1•(﹣)=,整理得a+=0,解得a=﹣,∴P点坐标为(1,﹣2).17.如图,将一块腰长为的等腰直角三角板ABC放在平面直角坐标系中,点A在y轴正半轴上,直角顶点C的坐标为(﹣2,0),点B在第二象限.(1)求点A,点B的坐标.(2)将△ABC沿x轴正方向平移后得到△A′B′C′,点A′,B′恰好落在反比例函数y =的图象上,求平移的距离和反比例函数的解析式.解:(1)过B点作BH⊥x轴于H,如图,∵C的坐标为(﹣2,0),∴OC=2,在Rt△AOC中,AC=,∴OA==1,∴A点坐标为(0,1);∵△ACB为等腰直角三角形,∴CB=CA,∠ACB=90°,∴∠BCH+∠ACO=90°,而∠BCH+∠HBC=90°,∴∠ACO=∠HBC,在△BCH和△CAO中,,∴△BCH≌△CAO(AAS),∴CH=OA=1,BH=OC=2,∴OH=HC+OC=3,∴B点为(﹣3,2);(2)设将△ABC沿x轴正方向平移a个单位后得到△A′B′C′,则B′的坐标为(﹣3+a,2),C′点的坐标为(a,1),∵点A′,B′恰好落在反比例函数y=的图象上,∴2×(﹣3+a)=1×a,解得a=6,∴k=1×6=6,∴反比例函数的解析式为y=.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

2020年九年级数学中考专题复习过关检测——反比例函数(Word版附答案)

2020年九年级数学中考专题复习过关检测——反比例函数(Word版附答案)

《反比例函数》一、选择题(本大题共10小题,每题3分,共30分)1.下列函数中,y是x的反比例函数的是()A.y=1x B.y=x-1 C.y=2x+3D.x+y=22.若反比例函数y=kx的图象经过点P(-2,3),则该函数的图象不经过的点是() A.(1,6) B.(3,-2) C.(6,-1) D.(2,-3)3.对于三个反比例函数y=3x ,y=-12x,y=23x,下列说法错误的是()A.它们的图象都在相同的象限内B.它们的自变量x的取值范围相同C.它们的图象都不与坐标轴相交D.它们图象的两个分支都分别关于原点对称4.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-a 2-1x的图象上的点,且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y35.反比例函数y=kx与一次函数y=kx-k+2在同一平面直角坐标系中的图象可能是()A B C D6.某学校要种植一块面积为100 m2的长方形草坪,要求两边长均不小于5 m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A B C D的图象经过点A(-2,-5),则当1<x<2时,y的取值范围7.已知反比例函数y=kx是() A.-10<y<-5 B.-2<y<-1 C.5<y<10 D.y>10(x>0)交于A,B两点,P是线段AB上的点(不与8.如图,直线l和双曲线y=kxA,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC的面积是S1,△BOD的面积是S2,△POE的面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3第8题图第9题图第10题图9.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5 min的集中药物喷洒,再封闭宿舍10 min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间存在函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例函数,如图所示.下面四个选项中错误的是()A.经过5 min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11 minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35 min,才能有效杀灭某种传染病毒,此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59 min后,学生才能进入室内10.如图,点A(a,3),B(b,1)都在双曲线y=3x上,点C,D分别是x轴、y轴上的动点(C,D不同时与原点重合),则四边形ABCD的周长的最小值为()A.5√2B.6√2C.2 √10+2√2D.8√2二、填空题(本大题共8小题,每题3分,共24分)11.已知一个反比例函数的图象经过点(-2,-3),则这个反比例函数的表达式为.12.已知反比例函数y=(m+2)x m2-5,则它的图象位于第象限.13.设函数y=3x 与y=-2x-6的图象的交点坐标为(a,b),则1a+2b的值是.14.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2= .第14题图第15题图第16题图的图象相交于A,B两点,与x轴相15.如图,一次函数y=x+m与反比例函数y=kx交于点C,已知点A的坐标为(2,1),则不等式组0<x+m≤k的解集x为.16.如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C的图象上,且在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kxOA=1,OC=6,则正方形ADEF的边长为.交于A(x1, y1),B(x2, y2)两点,则17.如图,直线y=kx(k<0)与双曲线y=-2x3x1y2-8x2y1的值为.第17题图第18题图(x>0,k>0)的图象经过点A, 18.如图,△AOB的边OB在x轴上,反比例函数y=kx且交AB边于点C,过点A,C分别作x轴的垂线,垂足分别为D,E,若△AOB的面积为6,OD=DE=EB,则反比例函数的表达式为.三、解答题(本大题共5小题,共46分)19.(8分)某汽车油箱的容积为70 L,小王把油箱加满油后准备驾驶汽车从县城到300 km外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱加满油后,汽车能够行使的总路程y(单位:km)与平均耗油量x(单位:L/km)之间有怎样的函数关系?(2)如果小王以平均每千米耗油0.1 L的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1 km的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?20.(8分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的表达式;(2)若双曲线上点C(2,n)沿OA方向平移√5个单位长度得到点B,判断四边形OABC的形状,并证明你的结论.21.(8分)如图,反比例函数y=2的图象与一次函数y=kx+b的图象交于xA(1,m),B(-2,n)两点,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的表达式;>kx+b时自变量x的取值范围;(2)观察图象,写出2x(3)连接OA,在第三象限的反比例函数图象上是否存在一点P,使得S△OCP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.22.(10分)某玩具厂生产一种玩具,本着控制固定成本、降价促销的原则,使生产的玩具能够全部售出.据市场调查,若每个玩具按280元销售,每月可销售300个;若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q (元)与月销售量y (个)满足如下关系.月销售量y/个… 160 200 240 300 …每个玩具的固定成本Q/元… 60 48 40 32 …(1)写出月销售量y (个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q (元)与月销售量y (个)之间的函数关系式; (3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月销售量不超过400个,则每个玩具的固定成本至少为多少元? 销售单价最低为多少元?23.(12分)如图1,反比例函数y=2x(x>0)和y=kx(k<0,x<0)的图象分别是l 1和l 2.射线OM 交l 1于点A (1,a ),射线ON 交l 2于点B ,∠MON=90°,连接AB 交y轴于点P ,AB ∥x 轴. (1)求k 的值;(2)如图2,将∠MON 绕点O 旋转,射线OM 始终在第一象限,且交l 1于点C ,射线ON 在第二象限,且交l 2于点D ,连接CD 交y 轴于点Q ,在旋转的过程中,DO CO的值是否发生变化?若不变化,求出DO CO的值;若变化,请说明理由.(3)在(2)的旋转过程中,当点Q 为CD 的中点时,问点(43,32)是不是直线CD 与l 1的另一个交点?请说明理由.图1图2参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 B A A B A C C D C B12.一、三13.-214.415.1<x≤211.y=6x16.217.-1018.y=4x19. (1)由题意,得xy=70,故油箱注满油后,汽车能够行驶的总路程y与平(x>0).均耗油量x之间的函数关系式为y=70x(2)∵0.1×300=30(L),0.2×300=60(L),30+60=90>70,∴油箱里的油不够用.30+60-70=20(L).答:油箱里的油不够回到县城,至少还需加20 L 油. 20. (1)设反比例函数的表达式为y=kx (k ≠0).∵点A (m ,-2)在直线y=2x 上,∴-2=2m , ∴m=-1,∴A (-1,-2).又∵点A 在y=kx的图象上,∴-2=k-1,∴k=2,∴反比例函数的表达式为y=2x .(2)四边形OABC 是菱形.证明如下:∵A (-1,-2),∴OA=2+22=√5.由题意知,CB ∥OA 且CB=√∴CB=OA ,∴四边形OABC 是平行四边形. ∵点C (2,n )在y=2x 的图象上,∴n=22=1, ∴C (2,1),∴OC=2+12=√5, ∴OC=OA ,∴四边形OABC 是菱形.21. (1)∵反比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A ,B ,点A ,B 的横坐标分别为1,-2, ∴A (1,2),B (-2,-1).把A ,B 的坐标代入y=kx+b ,得{k +b =2,-2k +b =−1,解得{k =1,b =1,∴一次函数的表达式为y=x+1.(2)由题中图象可得,2x >kx+b 时自变量x 的取值范围是x<-2或0<x<1.(3)存在.设点P (a ,2a ),由题意可得点C (0,1), ∵S △OCP =2S △OCA ,∴12×(-a )×1=2×12×1×1,解得a=-2,∴P (-2,-1).22. (1)由题意得y=300+2×(280-x )=-2x+860,即月销售量y (个)与销售单价x (元)之间的函数关系式为y=-2x+860.(2)观察题中表格中的数据,可知两个变量的乘积为定值,因此固定成本Q 与月销售量y 之间存在反比例函数关系.设Q=k y (k ≠0), 将(160,60)代入,得k=9 600,∴固定成本Q (元)与月销售量y (个)之间的函数关系式为Q=9600y . (3)将Q=30代入Q=9600y ,得y=320.将y=320代入y=-2x+860,得x=270.∵30÷270=19,∴每个玩具的固定成本为30元时,它占销售单价的19.(4)由(2)知Q=9600y (y>0),∵k=9 600>0,∴其图象在第一象限,且Q 随y 的增大而减小.∴当y=400时,Q 取最小值,最小值为9600400=24.即当这种玩具的月销售量不超过400个时,每个玩具的固定成本至少为24元. 由(1)知y=-2x+860,∵-2<0,∴y随x的增大而减小.∴当y=400时,x取最小值,最小值为230.即当这种玩具的月销售量不超过400个时,销售单价最低为230元.23. (1)将A(1,a)代入y=2x,得a=2,∴点A的坐标为(1,2),∵AB∥x轴,∴AB⊥OP,∴OP=2,AP=1.易证△OPA∽△BPO,∴OPBP =APOP,即BP=OP2AP=4.∵点B在第二象限,∴点B的坐标为(-4,2).将B(-4,2)代入y=kx,得k=-8.(2)DOCO的值不变.由(1)可知,l2的函数表达式为y=-8x.如图,过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F.设OE=m,OF=n,则C(m,2m ),D(-n,8n),∴CE=2m ,DF=8n.易证△DFO∽△OEC,∴DFOE =OFCE=DOOC,∴8nm=n2m,∴m2n2=16.∵m>0,n>0,∴mn=4,∴n=4m ,即OF=4m,∴DOOC =4m÷2m=2.(3)点(43,32)是直线CD 与l 1的另一个交点.理由如下: 当点Q 为CD 的中点时,OE=OF ,∴m=4m .∵m>0,∴m=2,∴C (2,1),D (-2,4),设直线CD 的表达式为y=k 1x+b ,则{2k 1+b =1,-2k 1+b =4,解得{k 1=−34,b =52, ∴直线CD 的表达式为y=-34x+52.把x=43分别代入y=2x 和y=-34x+52,可得y 都等于32, ∴点(43,32)是直线CD 与l 1的另一个交点.。

2020年中考(通用版)二轮复习:反比例函数解答题专题(含答案及解析)

2020年中考(通用版)二轮复习:反比例函数解答题专题(含答案及解析)

2020年中考(通用版)二轮复习:反比例函数解答题专题1.如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B(﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.2.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.3.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.4.如图,四边形ABCD是矩形,点A在第四象限y1=﹣的图象上,点B在第一象限y2=的图象上,AB交x轴于点E,点C与点D在y轴上,AD=,S矩形OCBE=S矩形ODAE.(1)求点B的坐标.(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.5.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.6.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?7.如图,在平面直角坐标系中,⊙M与x轴的正半轴交于A、B两点,与y轴的正半轴相切于点C,连接MA、MC,已知⊙M半径为2,∠AMC=60°,双曲线y=(x>0)经过圆心M.(1)求双曲线y=的解析式;(2)求直线BC的解析式.8.如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4)(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.9.如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.10.如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.11.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当P A+PB的值最小时,求出点P的坐标.12.如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限内的点A(a,4)和点B(8,b).过点A作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n<的解集;(3)在x轴上取点P,使P A﹣PB取得最大值时,求出点P的坐标.13.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB 的两条外角平分线交于点P,P在反比例函数y=的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.14.如图,已知平行四边形OABC中,点O为坐标原点,点A(3,0),C(1,2),函数y =(k≠0)的图象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.15.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.16.如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是;(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m>0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.17.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A 顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB 距离最短时的坐标.18.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D (0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y =与AD交于点P.当△AEP为等腰三角形时,求m的值.19.如图,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点D(4,4)在反比例函数y=(x>0)的图象上,直线y=x+b经过点C,与y轴交于点E,连接AC,AE.(1)求k,b的值;(2)求△ACE的面积.20.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.21.如图,在平闻直角坐标系中,直线AB与y轴交于点B(0,7),与反比例函数y=在第二象限内的图象相交于点A(﹣1,a).(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求△ACD的面积;(3)设直线CD的解析式为y=mx+n,根据图象直接写出不等式mx+n≤的解集.22.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.23.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.24.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.25.如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.26.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.27.如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.28.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.29.如图,在平面直角坐标系xOy中,函数y=﹣x+b的图象与函数y=(x<0)的图象相交于点A(﹣1,6),并与x轴交于点C.点D是线段AC上一点,△ODC与△OAC 的面积比为2:3.(1)k=,b=;(2)求点D的坐标;(3)若将△ODC绕点O逆时针旋转,得到△OD'C',其中点D'落在x轴负半轴上,判断点C'是否落在函数y=(x<0)的图象上,并说明理由.30.如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m ≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.参考答案与试题解析1.如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B(﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.【分析】(1)把B(﹣3,a)代入反比例函数y=﹣即可求得a的值,分别过点A、B 作AD⊥x轴于D,BE⊥x轴于E,易证得△BOE∽△OAD,根据相似三角形的性质即可求得A点的坐标,然后代入反比例函数y=(x>0),根据待定系数法即可求得k的值;(2)由B的纵坐标求得C的纵坐标,根据图象上点的坐标特征求得C的坐标,然后根据S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF求得即可.【解答】解:(1)∵比例函数y=﹣(x<0)的图象过点B(﹣3,a),∴a=﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD∴===,∴AD=•OE==3,OD=•BE==∴A(,3),∵反比例函数y=(x>0)的图象过点A,∴k=×=9;(2)由(1)可知AD=3,OD=,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y=上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.2.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.【分析】(1)先将点A坐标代入直线AB的解析式中,求出a,进而求出点B坐标,再将点B坐标代入反比例函数解析式中即可得出结论;(2)①先确定出点D(5,4),进而求出点E坐标,进而求出DE,EF,即可得出结论;②先表示出点C,D坐标,再分两种情况:Ⅰ、当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论;Ⅱ、当BC=BD时,先表示出BC,用BC=BD建立方程求解即可得出结论.【解答】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.3.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,从而可以求得四边形MBOC是平行四边形,根据面积公式即可求得.【解答】解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y=(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.4.如图,四边形ABCD是矩形,点A在第四象限y1=﹣的图象上,点B在第一象限y2=的图象上,AB交x轴于点E,点C与点D在y轴上,AD=,S矩形OCBE=S矩形ODAE.(1)求点B的坐标.(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.【分析】(1)根据反比例函数系数k的几何意义求得k=3,得出y2=,由题意可知B 的横坐标为,代入即可求得B的坐标;(2)设P(a,0),根据三角形面积求得P的坐标,然后根据待定系数法即可求得直线BP的解析式.【解答】解:(1)∵S矩形OCBE=S矩形ODAE,点B在第一象限y2=的图象上,∵点A在第四象限y1=﹣的图象上,∴S矩形ODEA=2∴S矩形OCBE=×2=3,∴k=3,∴y2=,∵OE=AD=,∴B的横坐标为,代入y2=得,y==2,∴B(,2);(2)设P(a,0),∵S△BPE=PE•BE=×|﹣a|×2=3,解得a=﹣或,∴点P(﹣,0)或(,0),设直线BP的解析式为y=mx+n(m≠0),①若直线过(,2),(﹣,0),则,解得,∴直线BP的解析式为y=x+1;②若直线过(,2),(,0),则,解得,∴直线BP的解析式为y=﹣x+3;综上,直线BP的解析式是y=x+1或y=﹣x+3.5.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围.【解答】解:(1)∵点C(2,4)在反比例函数y=的图象上,∴k2=2×4=8,∴y2=;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由,解得或,∴D(﹣4,﹣2),∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<.6.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?【分析】(1)根据题意和函数图象可以求得a的值;根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题;【解答】解:(1)观察图象,可知:当x=7(min)时,水温y=100(℃)当0≤x≤7时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤7时,y关于x的函数关系式为y=10x+30,当x>7时,设y=,100=,得a=700,即当x>7时,y关于x的函数关系式为y=,当y=30时,x=,∴y与x的函数关系式为:y=,y与x的函数关系式每分钟重复出现一次;(2)将y=50代入y=10x+30,得x=2,将y=50代入y=,得x=14,∵14﹣2=12,﹣12=∴怡萱同学想喝高于50℃的水,她最多需要等待min;7.如图,在平面直角坐标系中,⊙M与x轴的正半轴交于A、B两点,与y轴的正半轴相切于点C,连接MA、MC,已知⊙M半径为2,∠AMC=60°,双曲线y=(x>0)经过圆心M.(1)求双曲线y=的解析式;(2)求直线BC的解析式.【分析】(1)先求出CM=2,再判断出四边形OCMN是矩形,得出MN,进而求出点M 的坐标,即可得出结论;(2)先求出点C的坐标,再用三角函数求出AN,进而求出点B的坐标,即可得出结论.【解答】解:(1)如图,过点M作MN⊥x轴于N,∴∠MNO=90°,∵⊙M切y轴于C,∴∠OCM=90°,∵∠CON=90°,∴∠CON=∠OCM=∠ONM=90°,∴四边形OCMN是矩形,∴AM=CM=2,∠CMN=90°,∵∠AMC=60°,∴∠AMN=30°,在Rt△ANM中,MN=AM•cos∠AMN=2×=,∴M(2,),∵双曲线y=(x>0)经过圆心M,∴k=2×=2,∴双曲线的解析式为y=(x>0);(2)如图,过点B,C作直线,由(1)知,四边形OCMN是矩形,∴CM=ON=2,OC=MN=,∴C(0,),在Rt△ANM中,∠AMN=30°,AM=2,∴AN=1,∵MN⊥AB,∴BN=AN=1,OB=ON+BN=3,∴B(3,0),设直线BC的解析式为y=k'x+b,∴,∴,∴直线BC的解析式为y=﹣x+.8.如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4)(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.【分析】(1)由点A的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立方程,解方程组即可求得;(3)求出直线与y轴的交点坐标后,即可求出S△AOD和S△BOD,继而求出△AOB的面积.【解答】解:(1)将A(2,4)代入y=﹣x+m与y=(x>0)中得4=﹣2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=﹣x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=﹣x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB﹣S△AOD=×6×4﹣×6×2=6.9.如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.【分析】(1)把A(m,2m)代入y=,求得A的坐标为(1,2),然后代入一次函数y=kx﹣1中即可得出其解析式;(2)联立方程求得交点B的坐标,然后根据函数图象即可得出结论.【解答】解:(1)∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.(2)由解得或,∴B(﹣,﹣3)∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.10.如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.【分析】(1)把点A(3,2)代入反比例函数y=,即可求出函数解析式;(2)直线OA的关系式可求,由于点C(a,0),可以表示点B、D的坐标,根据S△ACD =,建立方程可以解出a的值,进而求出BD的长.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.11.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当P A+PB的值最小时,求出点P的坐标.【分析】(1)根据矩形和AB=BD可得△ABD为等腰直角三角形,进而得出△OAD也是等腰直角三角形,从而确定点A的坐标,求出反比例函数的解析式;(2)根据对称,过点A与点B关于y轴的对称点B1的直线与y轴的交点就是所求的点P,于是求出点B的坐标,得到点B1的坐标,求出直线AB1的关系式,求出它与y轴的交点坐标即可.【解答】解:(1)∵OABC是矩形,∴∠B=∠OAB=90°,∵AB=DB,∴∠BAD=∠ADB=45°,∴∠OAD=45°,又∵AD⊥x轴,∴∠OAD=∠DOA=45°,∴OD=AD,∵D(3,0)∴OD=AD=3,即A(3,3)把点A(3,3)代入的y=得,k=9∴反比例函数的解析式为:y=.答:反比例函数的解析式为:y=.(2)过点B作BE⊥AD垂足为E,∵∠B=90°,AB=BD,BE⊥AD∴AE=ED=AD=,∴OD+BE=3+=,∴B(,),则点B关于y轴的对称点B1(﹣,),直线AB1与y轴的交点就是所求点P,此时P A+PB 最小,设直线AB1的关系式为y=kx+b,将A(3,3)B1(﹣,),代入得,解得:k=,b=,∴直线AB1的关系式为y=x+,当x=0时,y=,∴点P(0,)答:点P的坐标为(0,).12.如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限内的点A(a,4)和点B(8,b).过点A作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n<的解集;(3)在x轴上取点P,使P A﹣PB取得最大值时,求出点P的坐标.【分析】(1)由△AOC的面积为4,可求出a的值,确定反比例函数的关系式,把点B 坐标代入可求b的值.(2)根据图象观察当自变量x取何值时,一次函数图象位于反比例函数图象的下方即可,注意由两部分.(3)由对称点B关于x轴的对称点B′,直线AB′与x轴交点就是所求的点P,求出直线与x轴的交点坐标即可.【解答】解:(1)∵点A(a,4),∴AC=4,∵S△AOC=4,即,∴OC=2,∵点A(a,4)在第二象限,∴a=﹣2 A(﹣2,4),将A(﹣2,4)代入y=得:k=﹣8,∴反比例函数的关系式为:y=,把B(8,b)代入得:b=﹣1,∴B(8,﹣1)因此a=﹣2,b=﹣1;(2)由图象可以看出mx+n<的解集为:﹣2<x<0或x>8;(3)如图,作点B关于x轴的对称点B′,直线AB′与x轴交于P,此时P A﹣PB最大(P A﹣PB=P A﹣PB′≤AB′,共线时差最大)∵B(8,﹣1)∴B′(8,1)设直线AP的关系式为y=kx+b,将A(﹣2,4),B′(8,1)代入得:解得:k=,b=,∴直线AP的关系式为y=x+,当y=0时,即x+=0,解得x=,∴P(,0)13.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB 的两条外角平分线交于点P,P在反比例函数y=的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b 之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB=6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠P AM=∠P AH,P A=P A,∴△P AM≌△P AH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=6a+6b﹣18,∴3a+3b﹣9=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO=•=•=•=9.解法二:证明△COP∽△POD,得OC•OD=OP2=18,可求△COD的面积等于9.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.14.如图,已知平行四边形OABC中,点O为坐标原点,点A(3,0),C(1,2),函数y =(k≠0)的图象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.【分析】(1)根据函数y=(k≠0)的图象经过点C,可以求得k的值,再根据平行四边形的性质即可求得点B的坐标,从而可以求得直线OB的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.【解答】解:(1)依题意有:点C(1,2)在反比例函数y=(k≠0)的图象上,∴k=xy=2,∵A(3,0)∴CB=OA=3,又CB∥x轴,∴B(4,2),设直线OB的函数表达式为y=ax,∴2=4a,∴a=,∴直线OB的函数表达式为y=x;(2)作CD⊥OA于点D,∵C(1,2),∴OC=,在平行四边形OABC中,CB=OA=3,AB=OC=,∴四边形OABC的周长为:3+3+=6+2,即四边形OABC的周长为6+2.15.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.【分析】(1)根据题意得出A,B点坐标进而利用待定系数法得出一次函数解析式;(2)求出一次函数与x轴交点,进而利用三角形面积求法得出答案;(3)直接利用函数图象结合其交点得出不等式的解集.【解答】解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.16.如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是(2,4);(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m>0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.【分析】(1)将一次函数解析式与反比例函数解析式组成方程组,求解即可;(2)先求出点M坐标,再求出点C和点M平移后的对应点的坐标,列出方程可求m和k的值.【解答】解:(1)∵一次函数y=﹣2x+8的图象与反比例函数y=的图象相切于点C ∴﹣2x+8=∴x=2,∴点C坐标为(2,4)故答案为:(2,4);(2)∵一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,∴点B(4,0)∵点M为线段BC的中点,∴点M(3,2)∴点C和点M平移后的对应点坐标分别为(2﹣m,4),(3﹣m,2)∴k=4(2﹣m)=2(3﹣m)∴m=1∴k=417.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A 顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB 距离最短时的坐标.【分析】(1)将点A(1,0),点B(0,2),代入y=mx+b,可求直线解析式;过点C 作CD⊥x轴,根据三角形全等可求C(3,1),进而确定k;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,当△=h2﹣24=0时,点P到直线AB距离最短;【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2或﹣2(舍弃),此时点P到直线AB距离最短;∴P(,);18.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D (0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y =与AD交于点P.当△AEP为等腰三角形时,求m的值.【分析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,证明三角形相似可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然P A≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.。

2020人教版中考数学《反比例函数》专题及答案详解

2020人教版中考数学《反比例函数》专题及答案详解
4
4 x (a> 0)中,得 a=2,
把( 4+ b, b)代入函数解析式得 b= 4 b ,解得 b= 2 2 ﹣ 2,
∴y2 =2 2 ﹣2,
∴A2 的坐标是( 4 2 ,0),
设 C3 的纵坐标是 c(c>0),则 C3 横坐标为 4 2 +c,把( 4 2 + c, c)代入函数解析式得 c 4
(3)直接写出当 y1> y2 时, x 的取值范围 .
【思路分析】
(1)将 A 点坐标代入反比例函数解析式求出 m,即可得到反比例函数解析式;把 y=-3 代入反
比例函数解析式求出 a 的值,得到 B 点坐标,再将 A, B 坐标代入一次函数解析式求出 k, b,
即可求出一次函数解析式;
(2)利用 A 、B 坐标求出直线 AB 解析式,由解析式求出 C、D 两点坐标;分别对 B、 C、 P 三
1
A. y
1 B.
x1
【答案】 C.
1
1
1
y
1 C. y
1 D. y
1
x1
x1
x1
【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.
∵将 y
1 的图象向右平移 1 个单位长度后所得函数关系式为
y
1,
x
x1
∴将 y
1 的图象向右平移
1 个单位长度,再向上平移
x
1 个单位长度所得图象的解析式为
= 4 2 c,
解得 c= 2 3 ﹣ 2 2 ,
∴y3 =2 3 ﹣ 2 2 .
∵y1 =2 1 ﹣ 2 0 ,y2 =2 2 ﹣2 1 ,y3 =2 3 ﹣ 2 2 ,…
∴y100= 2 100 ﹣ 2 99 ,

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

精选文档6662020 年数学中考压轴题专项训练:反比率函数的综合1.已知一次函数y= kx﹣(2k+1)的图象与x 轴和 y 轴分别交于A、 B两点,与反比率函数y=﹣的图象分别交于C、 D两点.(1)如图 1,当k= 1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为 M、 N.当矩形 OMPN的面积为2时,求出点 P 的地点;( 2)如图 2,当k= 1 时,在x轴上能否存在点E,使得以 A、B、E 为极点的三角形与△BOC相像?若存在,求出点E的坐标;若不存在,说明原因;(3)若某个等腰三角形的一条边长为 5,另两条边长恰巧是两个函数图象的交点横坐标,求k 的值.解:( 1)当k= 1,则一次函数分析式为:y=x﹣ 3,反比率函数分析式为:y=﹣,∵点 P在线段 AB上∴设点 P( a, a﹣3), a>0, a﹣3<0,∴PN=a, PM=3﹣ a,∵矩形 OMPN的面积为2,∴a×(3﹣ a)=2,∴a=1或2,∴点 P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3 与x轴和y轴分别交于A、B两点,∴点 A(3,0),点 B(0,﹣3)∴ OA=3= OB,∴∠ OAB=∠ OBA=45°, AB=3,∵ x﹣3=﹣∴ x=1或2,∴点 C(1,﹣2),点 D(2,﹣1)∴BC==,设点 E( x,0),∵以 A、 B、 E 为极点的三角形与△BOC相像,且∠ CBO=∠ BAE=45°,∴,或,∴,或=,∴ x=1,或 x=﹣6,∴点 E(1,0)或(﹣6,0)( 3)∵﹣=kx﹣(2k+1),∴ x=1, x =,∴两个函数图象的交点横坐标分别为 1,,∵某个等腰三角形的一条边长为5,另两条边长恰巧是两个函数图象的交点横坐标,∴1=,或5=∴k=2.如图,已知直线y= kx+b 与反比率函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与 x 轴交于 C点.(1)求一次函数与反比率函数的分析式;(2)依据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比率函数值?( 3)点P 是y=(> 0)图象上的一个动点,作⊥轴于Q点,连结,当x PQ x PCS△CPQ=S△CAO时,求点 P 的坐标.解:( 1)把A( 1, 4)代入y=(x>0),得m=1×4=4,∴反比率函数为y=;把(1, 4)和( 4, 1)代入y =+b得,A B kx解得:,∴一次函数为y=﹣ x+5.(2)依据图象得:当 1<x< 4 时,一次函数值大于反比率函数值;(3)设P(m,),由一次函数y=﹣ x+5可知 C(5,0),∴S==10,△CAO∵S△CPQ= S△CAO,∴S△CPQ=5,∴|5 ﹣m| ? = 5,解得 m=或m=﹣(舍去),∴P(,).3.如图,直线y =+ (>0)与抛物线y=2订交于点(,y1),(,y2)两点,kx b b x A x1 B x2与x 轴正半轴订交于点,于y轴订交于点,设△的面积为,且+8= 0.D C OCD S kS(1)求b的值.(2)求证:点(y1,y2)在反比率函数y=的图象上.(1)解:∵直线y=kx +b(b> 0)与x轴正半轴订交于点D,于y轴订交于点C,∴ D(0, b), C(﹣,0)∴由题意得 OD=b, OC=﹣,∴ S=∴k(?)+8=0,∴b=4( b>0);( 2)证明:∵,∴,∴ x1?x2=﹣16∴,∴点( y1, y2)在反比率函数y=的图象上.AB⊥x 轴于点B,连结4.如图,双曲线y=上的一点A( m,n),此中n> m>0,过点A作OA.(1)已知△AOB的面积是 3,求k的值;(2)将△AOB绕点A逆时针旋转 90°获得△ACD,且点O的对应点C恰巧落在该双曲线上,求的值.解:( 1)∵双曲线y=上的一点A( m, n),过点 A作 AB⊥ x 轴于点 B,∴AB=n, OB= m,又∵△ AOB的面积是3,∴mn=3,∴mn=6,∵点 A在双曲线 y=上,∴k= mn=6;(2)如图,延伸DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴ AD=AB= n, CD= OB= m,∠ADC=90°,∵ AB⊥x 轴,∴∠ ABE=90°,∴四边形 ABED是矩形,∴∠ DEB=90°,∴ DE=AB= n, CE= n﹣ m,OE= m+n,∴ C( m+n, n﹣ m),∵点 A, C都在双曲线上,∴ mn=( m+n)(n﹣ m),2 2即 m+mn﹣ n =0,方程两边同时除以 n2,得+﹣1=0,解得=,∵ n> m>0,∴=.5.在平面直角坐标系xOy 中,对于点(,)和实数k(> 0),给出以下定义:当+ P a b k ka b> 0 时,将以点P为圆心,ka+b为半径的圆,称为点P 的 k 倍有关圆.比如,在如图 1 中,点P( 1, 1)的 1 倍有关圆为以点P 为圆心,2为半径的圆.( 1)在点P1(2,1), P2(1,﹣3)中,存在1倍有关圆的点是P1,该点的 1 倍有关圆半径为3.( 2)如图 2,若是x 轴正半轴上的动点,点N在第一象限内,且知足∠=30°,判M MON断直线与点的倍有关圆的地点关系,并证明.ON M( 3)如图 3,已知点 A 的(0,3), B(1,m),反比率函数y=的图象经过点B,直线l与直线AB对于y 轴对称.①若点C在直线l上,则点C的3 倍有关圆的半径为3.②点D在直线AB上,点D的倍有关圆的半径为R,若点D在运动过程中,以点D为圆心, hR为半径的圆与反比率函数y=的图象最多有两个公共点,直接写出h 的最大值.解:( 1)由题意知,k=1,针对于 P1(2,1), a=2, b=1,∴ka+b=2+1=3>0,∴点 P1(2,1)的1倍有关圆为以点P 为圆心,3为半径的圆,针对于 P2(1,﹣3),a=1, b=﹣3,∴ ka+b=1﹣3=﹣2<0,∴点 P2(1,﹣3)不存在1倍有关圆故答案为: P1;3;( 2)如图 2 中,结论:直线ON与点 M的倍有关圆的地点关系是相切.原因:设点M的坐标为( n,0),过 M点作 MP⊥ ON于点 P,∴点 M的倍有关圆半径为n.∴OM=n.∵MP⊥ON,∴∠ OPM=90°,∵∠ MON=30°,∴ MP= OM= n,∴点 M的倍有关圆的半径为 MP,∴直线 ON与点 M的倍有关圆相切;( 3)①如图 3 中,记直线AB与 x 轴的交点为E,直线 l 与 x 轴的交点为 F,∵ B(1, m)在反比率函数y=的图象上,∴m=6,∴B(1,6)∵ A(0,3),∴直线 AB的分析式为 y=3x+3,令 y=0,则3x+3=0,∴x=﹣1,∴E(﹣1,0),∵直线 l 是直线 AB对于 y 轴对称,∴点 F 与点 E 对于 y 轴对称,∴ F(1,0),∴直线 l 的分析式为y=﹣3x+3,∵点 C在直线 l 上,∴设 C( c,﹣3c+3),由题意知, k=3,∴3c+(﹣ 3c+3)= 3,∴点 C的3倍有关圆的半径是3,故答案为: 3;②∵点 D在直线 AB上,设 D( d,3d+3),由题意知, k=,∴ R= d+(3d +3)=d+3>0,∴ d>﹣.6.如图,在平面直角坐标系中,直线y=2x+2与 x 轴、 y 轴分别交于A,B 两点,与反比率函数 y=( 1)求反比率函数的图象交于点y=M,且 B为的表达式;AM的中点.( 2)过 B 做x 轴的平行线,交反比率函数 y=图象于点C,连结MC, AC.求△ AMC的面积.解:( 1)过点M作MH⊥y轴,垂足为H.∵AB=MB,∠ MHB=∠ AOB,∠ MBH=∠ABO,∴△ ABO≌△ MBH( AAS),∴BH=BO, MH=AO,∵直线 y=2x+2与 x 轴, y 轴分别交于A, B两点,∴当 y=0时, x=﹣1.当 x=0时, y=2.∴A(﹣1,0),B(0,2).∴BH=BO=2, MH= AO=1.∴M(1,4).把 M(1,4)代入中,得k=4.∴反比率函数的分析式为.( 2)∵AB=BM,∴S△ABC= S△BCM.∵点 C在反比率函数图象上,且BC∥ x 轴,∴点 C纵坐标为2.把 y=2代入,得x=2.∴点 C坐标为(2,2),∴,∴S△AMC=4.7.已知:如图,在平面直角坐标系xOy 中,点(0, 2),正方形的极点B在函数yA OABC=( k≠0,x<0)的图象上,直线 l:y=﹣ x+b 与函数 y=( k≠0,x<0)的图象交于点 D,与 x 轴交于点 E.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.①当一次函数y =﹣ + b 的图象经过点 A 时,直接写出△ 内的整点的坐标;xDCE②若△内的整点个数恰有6 个,联合图象,求b 的取值范围.DCE解:( 1)依题意知: B (﹣ 2, 2),∴反比率函数分析式为y =﹣ .∴ k 的值为﹣ 4;( 2)①∵一次函数 y =﹣ x +b 的图象经过点 A , ∴b = 2,∴一次函数的分析式为y =﹣ x +2,解得,, ,∴D (1﹣ ,1+ ),E ( 2, 0),∴△ DCE 内的整点的坐标为(﹣ 1, 1),(﹣ 1, 2),( 0,1);②当 =2 时,△内有 3 个整点,当 =3 时,△ 内有 6 个整点,bDCEbDCE∴b 的取值范围是 2< ≤3.b8.如图,在平面直角坐标系xOy 中,函数 y = ( <0)的图象经过点 (﹣ 1, 6).xA( 1)求 k 的值;( 2)已知点 ( ,﹣ 2 )( < 0),过点P 作平行于 x 轴的直线,交直线 y =﹣ 2 ﹣ 2 于P a a a x点 M ,交函数 y = ( x <0)的图象于点 N .①当 a =﹣ 1 时,求线段 PM 和 PN 的长;②若 PN ≥ 2PM ,联合函数的图象,直接写出 a 的取值范围.解:( 1)∵函数y=(x<0)的图象经过点A(﹣1,6).∴ k=﹣1×6=﹣6.( 2)①当a=﹣ 1 时,点P的坐标为(﹣1, 2).∵直线 y=﹣2x﹣2,反比率函数的分析式为y=﹣,PN∥ x轴,∴把 y=2代入 y=﹣2x﹣2,求得 x=﹣2,代入 y=﹣求得x=﹣3,∴ M(﹣2,2),N(﹣3,2),∴ PM=1, PN=2.②∵当 a=﹣1或 a=﹣3时, PN=2PM,∴依据图象PN≥2PM, a 的取值范围为a≤﹣3或﹣1≤a<0.9.如图,已知点D在反比率函数 y=的图象上,过点D作 DB⊥ y 轴,垂足为B(0,3),直线 y= kx+b 经过点 A(5,0),与 y 轴交于点 C,且 BD= OC,OC: OA=2:5.( 1)求反比率函数y=和一次函数y= kx+b 的表达式;( 2)连结AD,求∠DAC的正弦值.解:( 1)∵BD=OC,OC:OA= 2: 5,点A(5, 0),点B( 0, 3),∴OA=5, OC= BD=2, OB=3,又∵点 C在 y 轴负半轴,点 D在第二象限,∴点 C的坐标为(0,﹣2),点 D的坐标为(﹣2, 3).∵点 D(﹣2,3)在反比率函数的图象上,∴ a=﹣2×3=﹣6,∴反比率函数的表达式为.将 A(5,0)、 C(0,﹣2)代入 y= kx+b,得,解得:,∴一次函数的表达式为.(2)∵OA=BC= 5,OC=BD= 2,∠DBC=∠AOC=90°,∴△ BDC≌△ OCA( SAS),∴∠ DCB=∠ OAC, DC= CA,∴∠ DCA=90°,∴△DCA是等腰直角三角形,∴∠ DAC=45°,∴.10.如图,A为反比率函数y=(此中x>0)图象上的一点,在x 轴正半轴上有一点B,OB=4.连结 OA、 AB,且 OA= AB=2.( 1)求k的值;(2)过点B作BC⊥OB,交反比率函数y=(x> 0)的图象于点C.①连结 AC,求△ ABC的面积;②在图上连结OC交 AB于点 D,求的值.解:( 1)过点A作AH⊥x轴,垂足为点H, AH交 OC于点 M,以下图.∵OA=AB, AH⊥OB,∴ OH=BH= OB=2,∴AH===6,∴点 A的坐标为(2,6).∵A 为反比率函数 y=图象上的一点,∴ k=2×6=12;( 2)①∵BC⊥x轴,OB=4,点C在反比率函数y=上,∴BC==3.∵AH⊥OB,∴ AH∥BC,∴点 A到 BC的距离= BH=2,∴S=×3×2=3;△ABC②∵ BC⊥ x 轴, OB=4,点 C在反比率函数y=上,∴BC==3.∵AH∥BC, OH=BH,∴ MH= BC=,∴AM=AH﹣ MH=.∵AM∥BC,∴△ ADM∽△ BDC,∴=.11.如图,反比率函数y =的图象与一次函数y=+1 的图象订交于点(2, 3)和点.x A B(1)求反比率函数的分析式和点B 的坐标;(2)连结OA,OB,求△AOB的面积.( 3)联合图象,请直接写出使反比率函数值小于一次函数值的自变量x 的取值范围.解:( 1)把A( 2, 3)代入得,∴ k=6.∴反比率函数的分析式为.联立解得或,∴点 B的坐标为(﹣3,﹣2).(2)设直线AB与y轴交于点C.可知 C点的坐标为(0,1),∴ OC=1.∴.( 3)当﹣ 3<x< 0 或x>2 时,反比率函数值小于一次函数值.12.如图1,直线y= x 与双曲线y=交于A,B 两点,依据中心对称性能够得悉OA= OB.( 1)如图2,直线y=2x+1与双曲线y=交于A, B 两点,与坐标轴交点C, D 两点,试证明:AC= BD;( 2)如图3,直线y= ax+b 与双曲线y=交于A, B 两点,与坐标轴交点C, D 两点,试问: AC= BD还建立吗?( 3)假如直线y=x+3与双曲线y=交于 A,B两点,与坐标轴交点C,D两点,若DB+DC≤ 5,求出k 的取值范围.解:( 1)如图 1 中,作AE⊥x轴于E,BF⊥y轴于F,连结EF,AF,BE.∵AE∥y 轴,∴S=S=,△AOE△ AEF∵BF∥x 轴,∴S=S=,△BEF△ OBF∴S=S,△AEF△ BEF∴AB∥EF,∴四边形 ACFE,四边形 BDEF都是平行四边形,∴AC=EF, BD=EF,∴AC=BD.(2)如图 1 中,如图 1 中,作AE⊥x轴于E,BF⊥y轴于F,连结EF,AF,BE.∵ AE∥y 轴,∴S△=S△=,AOE AEF∵BF∥x 轴,∴S△=S△=,BEF OBF∴S△=S△,AEF BEF∴AB∥EF,∴四边形 ACFE,四边形 BDEF都是平行四边形,∴AC=EF, BD=EF,∴AC=BD.( 3)如图 2 中,∵直线 y = x +3 与坐标轴交于C ,D ,∴ C ( 0, 3), D ( 3, 0),∴ OC =OD = 3, CD = 3 , ∵ CD +BD ≤ 5 ,∴ BD ≤2 ,当 BD =2 时,∵∠ CDO = 45°, ∴ B ( 1, 2),此时 k = 2,察看图象可知,当 k ≤ 2 时, CD +BD ≤ 5 ,13.综合与研究如图 1,平面直角坐标系中,直线l : y= 2 +4 分别与 x 轴、 y 轴交于点 , .双曲线yxA B= ( x > 0)与直线l 交于点( ,6).E n( 1)求 k 的值;( 2)在图 1 中以线段为边作矩形,使极点在第一象限、极点 D 在 y 轴负半轴ABABCDC上.线段交 x 轴于点 .直接写出点, , 的坐标;CDGA D G( 3)如图 2,在( 2)题的条件下,已知点 P 是双曲线 y =( x > 0)上的一个动点,过点P 作 x 轴的平行线分别交线段 ,于点,.AB CD M N请从以下 A , B 两组题中任选一组题作答.我选择 ① 组题.A .①当四边形 AGNM 的面积为 5 时,求点 P 的坐标;②在①的条件下,连结PB , PD .坐标平面内能否存在点 Q (不与点 P 重合),使以 B , D ,Q 为极点的三角形与△ PBD 全等?若存在,直接写出点Q 的坐标;若不存在,说明原因.B .①当四边形 AGNM 成为菱形时,求点 P 的坐标;②在①的条件下,连结PB, PD.坐标平面内能否存在点Q(不与点 P 重合),使以 B, D,Q为极点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明原因.解:( 1)由已知可得A(﹣2,0), B(0,4), E(1,6),∴ k=6;( 2)∵AB⊥BC,∴ BC的分析式为 y=﹣x+4,联立,∴ C(2,3),∵CD=AB=2,∴ D(0,﹣1),∴ CD的分析式为 y=2x﹣1,∴G(,0);(3)A①设P(m,),∵ MN∥x 轴,∴M(﹣2,),N(+,),∴MN=,∵四边形 AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);② Q(3,1)、 Q(﹣3,1)、 Q(﹣3,2)时 B, D, Q为极点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN= AM,∴=∴ m=∴ P(,,);② Q(﹣,)、Q(, 3﹣)、Q(﹣, 3﹣)时B, D, Q 为极点的三角形与△PBD全等.14.如图,直线AB与反比率函数y=(x>0)的图象交于点A,已知点A(3,4), B(0,﹣ 2),点C是反比率函数y=( x>0)的图象上的一个动点,过点C作x 轴的垂线,交直线 AB于点 D.(1)求反比率函数的分析式;(2),求△ ABC的面积;(3)在点C运动的过程中,能否存在点C,使BC=AC?若存在,恳求出点C的坐标;若不存在,请说明原因.解:( 1)∵反比率函数y=(x>0)的图象经过点A(3,4),∴k= xy=3×4=12,∴反比率函数的分析式为: y=;(2)作AE⊥y轴于点E,交CD于点F,则 BE∥CD,∴==,∵点 A的坐标为(3,4),∴EF=1, FA=2,∴点 F 的横坐标为1,∴点 C的坐标为(1,12),设直线 AB的分析式为: y= kx+b,则,解得,,∴直线 AB的分析式为: y=2x﹣2,则点 D的坐标为:(1,0),即 CD=12,∴△ ABC的面积=× 12× 1+× 12× 2=18;( 3)不存在,原因以下:设点C的坐标为( m,),∵BC=AC,222+(2,∴ m+(+2)=( 3﹣m)﹣ 4)2整理得, 6m﹣ 21m+144= 0,△= 212﹣ 4× 6× 144<0,则此方程无解,∴点 C不存在.15.如图,在平面直角坐标系第一象限中,已知点 A 坐标为(1,0),点 D坐标为(1, 3),点G 坐标为( 1,1),动点E从点出发,以每秒 1 个单位长度的速度匀速向点D方向运G动,与此同时, x 轴上动点 B 从点 A出发,以同样的速度向右运动,两动点运动时间为t( 0<t< 2),以AD、AB分别为边作矩形ABCD,过点 E 作双曲线交线段BC于点 F,作 CD中点 M,连结 BE、 EF、 EM、 FM.(1)当t= 1 时,求点F的坐标.(2)若BE均分∠AEF,则t的值为多少?(3)若∠EMF为直角,则t的值为多少?解:( 1)当t= 1 时,EG=1×1=1= AB∴点 E(1,2)设双曲线分析式:y=∴ k=1×2=2∴双曲线分析式:y=∵OB=OA+AB=2,∴当x=2时,y=1,∴点 F(2,1)( 2)∵EG=AB=t,∴点 E(1,1+t ),点 B(1+t ,0)设双曲线分析式: y=∴ m=1+t∴双曲线分析式:y=当 x=1+t 时, y=1∴点 F(1+t ,1)∵BE均分∠ AEF∴∠ AEB=∠ BEF,∵AD∥BC∴∠ AEB=∠ EBF=∠ BEF∴EF=BF=1∴=t =1∴t =( 3)延伸EM,BC交于点N,∵EG=AB= t ,∴点 E(1,1+t ),点 B(1+t ,0)∴DE=AD﹣ AE=3﹣(1+t )=2﹣ t ,设双曲线分析式: y=∴n=1+t∴双曲线分析式:y=当 x=1+t 时, y=1∴点 F(1+t ,1)∵AD∥BC,∴∠ ADC=∠ NCD,∠ DEM=∠ MNC,且 DM= CM,∴△ DEM≌△ CNM( AAS)∴EM=MN, DE=CN=2﹣ t ,∵ CF=BC﹣ BF=2∴NF=CF+CN=2﹣ t +2=4﹣ t ,∵∠ EMF为直角,∴∠ EMF=∠ NMF=90°,且 EM= MN, MF= MF,∴△ EMF≌△ NMF( SAS),∴EF=NF,∴t =4﹣ t∴ t =4﹣4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级数学中考二轮专项——反比例函数综合题1. (2019成华区一诊)如图,点A 在反比例函数y =kx (x <0)的图象上,作Rt △ABC ,直角边BC 在x 轴上,点D 为斜边AC 的中点,直线BD 交y 轴于点E ,若△BCE 的面积为8,则k =________.第1题图2. (2018威海)如图,直线AB 与双曲线y =kx (k <0)交于点A ,B ,点P 是直线AB 上一动点,且点P 在第二象限,连接PO 并延长交双曲线于点C.过点P 作PD ⊥y 轴,垂足为点D.过点C 作CE ⊥x 轴,垂足为点E .若点A 的坐标为(-2,3),点B 的坐标为(m ,1),设△POD 的面积为S 1,△COE 的面积为S 2.当 S 1>S 2时,点P 的横坐标x 的取值范围为________.第2题图3. (2019乐山)如图,点P 是双曲线C :y =4x (x >0)上的一点,过点P 作x 轴的垂线交直线 AB :y =12x -2于点Q ,连接OP ,OQ .当点P 在双曲线C 上运动,且点P 在点Q 的上方时,△POQ 面积的最大值是________.第3题图4. (2019成华区二诊)如图,曲线l 是由函数y =6x 在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (-42,42),B (22,22)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为________.第4题图5. (2019成都黑白卷)若点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与三角形ABC 相似,则称点P 为△ABC 的自相似点.如图所示,点M 为反比例函数y =kx 图象上的点,过点M 作MN ⊥x 轴于点N ,点P 是OM 上一点,若点P 为△MON 的自相似点,且P (34,34),则k 的值为________.第5题图6. 定义“[a ]表示不大于a 的最大整数”,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx (m ≠0)的图象交于A (2,1)、B (-1,n )两点,动点P 在直线AB 上,且在反比例函数图象的下方,当点P 横坐标大于0时,其坐标对应的所有有序对([x ],[y ])是________.7. 如图,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2),Q 为双曲线上的两点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别为点A 、B ,当点Q 在第一象限的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,则平行四边形OPCQ 周长的最小值为________.第7题图8. (2019金牛区一诊)如图,在平面直角坐标系中,点A 在反比例函数y 1=kx (x >0)的图象上,点A ′与点A 关于点O 对称,直线AA ′的解析式为y 2=mx ,将直线AA ′绕点A ′顺时针旋转,与反比例函数图象交与点B ,直线A ′B 的解析式为y 3=m2x +n ,若△AA ′B 的面积为3,则k 的值为________.第8题图9. (2019龙泉驿区一诊)如图,在直角坐标系中有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =kx(x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,则点E 的坐标为________.第9题图10. (2019新都区5月监测)如图,已知点A 是反比例函数y =23x 的图象在第一象限上的动点,连接AO并延长交另一分支于点B ,以AB 为边作等边△ABC 使点C 落在第二象限,且边BC 交x 轴于点D ,若△ACD 与△ABD 的面积之比为1∶2,则点C 的坐标为________.第10题图11. (2019成都黑白卷)若一条直线与两坐标轴、反比例函数的图象均有交点,我们称直线与反比例函数图象的交点到直线与x 轴的交点的距离为该点的“横距”,称直线与反比例函数图象的交点到直线与y 轴的交点的距离为该点的“纵距”.如图,一次函数y =k 1x +7(k 1<0)的图象分别与坐标轴交于A 、B 两点,与反比例函数y =k 2x (k 2>0)的图象交于M 、N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1,若点M 的“纵距”与点M 的“横距”的比为1∶4,则反比例函数的解析式为________.第11题图12. (2019武侯区二诊)如图,已知直线AB 交x 轴于点A ,分别与函数y =a x (x >0,a >0)和y =bx (x >0,b>a >0)的图象相交于点B 、C ,过点B 作BD ∥x 轴交函数y =bx 的图象于点D ,过点C 作CE ∥x 轴交函数y=a x 的图象于点E ,连接AD ,BE ,若BC AB =12,S △ABD =2,则S △BCE =________.第12题图13. 两个已知图形G 1、G 2,在G 1上任取一点P ,在G 2上任取一点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1、G 2的“密距”.如图,A (-2,3),B (1,3),C (1,0),则点A 与射线OC 之间的“密距”为13,点B 与射线OC 之间的“密距”为3.如果直线y =x -1和双曲线y =k x 之间的“密距”为522,则k 值为________.第13题图14. (2019都江堰区二诊)如图,在直角坐标系xOy 中,以点O 为圆心,半径为2的圆与反比例函数y =k x (x >0)的图象交于A 、B 两点,若AB ︵的长为13π,则k 的值为________.第14题图15. (2019武侯区一诊)如图,将双曲线y =kx (k <0)在第四象限的一支沿直线y =-x 方向向上平移到点E处,交该双曲线在第二象限的一支于A ,B 两点,连接AB 并延长交x 轴于点C ,双曲线y =mx (m >0)与直线y =x 在第三象限的交点为D ,将双曲线y =mx 在第三象限的一支沿射线OE 方向平移,D 点刚好可以与C 点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分),若C 点坐标为(-5,0),AB =32,则mk 的值为________.第15题图16. (2019福建)如图,菱形ABCD 的顶点A 在函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且过B ,D 两点.若AB =2,∠BAD =30°,则k =________.第16题图17. 已知点A ,B 分别是x 轴,y 轴上的动点,点C ,D 是某函数图象上的点,当四边形ABCD (A ,B ,C ,D 各点依次排列)为正方形时,称这个正方形为此函数图象的“伴侣正方形”.如图,正方形ABCD 是反比例函数y =2x图象上的其中一个伴侣正方形,则这个伴侣正方形的边长是________.第17题图18.如图,反比例函数y =kx 的图象经过点A(-1,4),直线y =-x +b(b ≠0)与双曲线y =kx 在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点.(1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.19.如图,在平面直角坐标系xOy 中,函数y =x +b 的图象与函数y =(x >0)的图象相交于点A (1,6),并与x 轴交于点B .点C 是线段AB 上一点,△OBC 与△OBA 的面积比为2:3.(1)k=,b=;(2)求点C的坐标;(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.20.(2019•河池中考)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案1. 16 【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∵∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,OB BC =OE BA ,即BC ·OE =OB ·BA .又∵S △BEC =8,∴12BC ·OE =8,∴BC ·OE=16=BO ·BA =|k |.∵反比例函数图象在第三象限,∴k >0,∴k =16.2. -6<x <-2 【解析】当点P 在反比例函数图象上时,△POD 和△COE 的面积相等,当直线在双曲线下方时,即当点P 在反比例函数图象内侧时,△POD 比△COE 的面积小,当直线在双曲线上方时,即当点P 在外侧时,△POD 比△COE 的面积大,根据此结论,当S 1>S 2,说明点P 在曲线的外侧,故在线段AB 上,点A ,B 在反比例函数图象上,∴-2×3=m ×1,∴m =-6,∴P 点横坐标的取值范围为-6<x <-2.3. 3 【解析】点P 在双曲线y =4x 上 ,令PQ 与x 轴的交为点G ,P (x ,4x ),则Q (x ,12x -2),则S △OPG=12·x ·4x =2为定值,S △OGQ =12·x ·(2-x 2)=x -x 24=-14(x -2)2+1,当x -2=0即x =2时,S △OGQ 有最大值为1,∴S △POQ =S △OGQ +S △OPG =1+2=3,∴△POQ 面积的最大值是3.4. 8 【解析】∵A (-42,42),B (22,22),∴OA ⊥OB ,建立如解图所示的直角坐标系,OB 为x ′轴,OA 为y ′轴.在坐标系中,A (0,8),B (4,0),∴直线AB 的解析式为y ′=-2x ′+8,联立⎩⎪⎨⎪⎧y ′=-2x ′+8y ′=6x ′,解得⎩⎪⎨⎪⎧x ′=1y ′=6或⎩⎪⎨⎪⎧x ′=3y ′=2,∴M (1,6),N (3,2),∴S △OMN =S △OBM -S △OBN =12×4×6-12×4×2=8.第4题解图5. 33 【解析】∵点P 为△MON 的自相似点,∴△ONP ∽△OMN ,∴NP ⊥OM .如解图,过点P 作PD ⊥x 轴于点D ,由题意,tan ∠POD =PD OD =3434=3,∴∠POD =60°,∴∠OPD =30°,∴OP =2OD =32,在Rt △OPN 中,ON =OPcos60°=3212=3,MN =ON ·tan60°=3×3=3,∴M (3,3),∴k =3×3=3 3.第5题解图6. (0,-1),(1,0) 【解析】将A (2,1)代入反比例函数解析式y 2=mx (m ≠0),得m =2,∴反比例函数解析式为y 2=2x ,∴n =2-1=-2,∴B (-1,-2),∵直线y 1=kx +b (k ≠0)经过A (2,1)、B (-1,-2)两点,∴直线的解析式为y =x -1,∴直线与x 轴交于点(1,0),∵动点P 在直线AB 上,且在反比例函数图象的下方,点P 横坐标大于0,∴0<x <2,-1<y <1,∴坐标对应的所有有序对([x ],[y ])是 (0,-1),(1,0).7. 25+4 【解析】设正比例函数解析式为y =kx ,将点M (-2,-1)代入得k =12,∴正比例函数解析式为y =12x ,同理可得,反比例函数解析式y =2x ,∵四边形OPCQ 是平行四边形,∴OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,∴OP 的长也是定长,∴要求平形四边形OPCQ 周长的最小值就只需求OQ 的最小值,∵点Q 在第一象限中的双曲线上,∴可设点Q 的坐标为Q (n ,2n ),由勾股定理可得OQ 2=n 2+4n 2=(n-2n )2+4,∴当(n -2n )2=0即n -2n =0时,OQ 2有最小值4,又∵OQ 为正值,∴OQ 有最小值2,由勾股定理得OP =5,∴平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.8. 2 【解析】设点A (a ,k a )(a >0),∵点A 和点A ′关于原点对称,∴点A ′的坐标为(-a ,-ka ),∵点A ′在y 2=mx 的图象上,∴点A ′的坐标为(-a ,-am ).∴-ka=-am ,a 2m =k .∵直线AA ′绕点A ′顺时针旋转,与反比例函数图象交于点B ,∴⎩⎨⎧y =a 2m xy =m2x +n,∴点B 的坐标为(2a ,k2a ),如解图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接BO ,∵O 为AA ′中点,∴S △AOB =12S △ABA ′=32,∵点A 、B 在双曲线上,∴S △AOC=S △BOD ,∴S △AOB =S 四边形ACDB =32,由已知点A 、B 坐标分别为(a ,k a )、(2a ,k 2a ),∴12×(k 2a +k a )·a =32,∴k =2.第8题解图9. (4,8) 【解析】如解图,过点C 作CF ⊥x 轴于点F ,∵OB ·AC =160,A 点的坐标为(10,0),OA=AB =BC =OC =10,∴OA ·CF=12OB ·AC =12×160=80,∴CF =8,在Rt △OCF 中,∵OC =10,CF =8,∴OF=OC 2-CF 2=102-82=6,∴C (6,8),∵D 是线段AC 的中点,∴D 点坐标为(10+62,82),即(8,4),∵双曲线y =k x (x >0)经过D 点,∴4=k 8,即k =32,∴双曲线的解析式为y =32x (x >0),∵CF =8,∴直线CB 的解析式为y =8,∴联立⎩⎪⎨⎪⎧y =8y =32x ,解得⎩⎪⎨⎪⎧x =4y =8,∴E 点坐标为(4,8).第9题解图10. (-6,3) 【解析】如解图,过点C 作CM ⊥x 轴于点M ,过点A 作AE ⊥x 轴于点E ,过点D 作DF ⊥AB 于点F ,连接CO ,根据题意得AO =BO ,∵S △ACD ∶S △ADB =1∶2,∴CD ∶DB =1∶2即DB =2CD ,∵△ABC 为等边三角形且AO =BO ,∴∠CBA =60°,CO ⊥AB 且DF ⊥AB ,∴DF ∥CO ,∴DF CO =BF BO =BDBC =23,∴DF =23CO ,BF =23BO ,即FO =13BO .∵∠CBA =60°,CO ⊥AB ,∴CO =3BO ,∴DF =233BO ,∵∠DOF =∠AOE ,∠DFO =∠AEO =90°,∴△DFO ∽△AEO ,∴AE OE =DFOF =233BO 13BO =23,∴AE =23OE ,∵点A是反比例函数y =23x 的图象在第一象限上的动点,∴AE ·OE =23,∴AE =23,OE =1,∵∠COM +∠AOE=90°,∠AOE +∠EAO =90°,∴∠COM =∠EAO ,且∠CMO =∠AEO =90°,∴△COM ∽△OAE ,CM OE =MOEA =COOA=3,∴CM =3,MO =6,且点M 在第二象限,∴C (-6,3).第10题解图11. y =285x 【解析】∵MC ⊥y 轴于点C ,且CM =1,∴M 的横坐标为1,当x =1时,y =k 1+7,∴M (1,k 1+7),∵M 在反比例函数的图象上,∴1×(k 1+7)=k 2,∴k 2-k 1=7,∴k 1=k 2-7;由定义可得AM BM =14,∴BM=4AM .∴AM AB =AM AM +BM =AM AM +4AM =15.∵CM ∥OB ,∵△ACM ∽△AOB .∴CM OB =AM AB =15.∵CM =1,∴OB=5.∴B (5,0).∵点B 在一次函数y =k 1x +7的图象上,∴5k 1+7=0,解得k 1=-75.∴k 2=-75+7=285.∴反比例函数的解析式y =285x.12.23 【解析】如解图,过点A 分别作BD 和EC 的垂线交DB 和CE 的延长线于点G 、F ,∵BC AB =12,∴AG GF =21.∴设D 的坐标为(b m ,m ),则B (a m ,m ),则BD =b m -a m =b -a m ,AG =m ,GF =m 2.设点C 的坐标为(b n,n ),则E (a n ,n ),则CE =b n -a n =b -a n ,FG =n -m =m 2∴m =23n .∴FG =13n ,∵S △ABD =2,∴b -a m ×m ×12=2,∴b -a =4.∴S △BCE =b -a n ×13n ×12=23.第12题解图13. -9 【解析】根据“密距”的定义可知双曲线图象在二、四象限,且直线y =x -1与双曲线离第四象限最近,设双曲线上点D 到直线y =x -1距离最近,如解图,设直线y =x -1与y 轴交于点E ,过D 作直线y =x -1的平行线,交y 轴于点G ,过D 作直线y =x -1的垂线,垂足为F ,过F 作EH ⊥DG ,垂足为H ,则由题意可知DF =EH =522,又∵∠OEF =45°,∴∠EGH =45°,∴EH =HG =522,∴EG =2EH=2×522=5,又∵OE =1,∴OG =6,∴直线DG 的解析式为y =x -6,联立直线DG 和双曲线解析式可得⎩⎪⎨⎪⎧y =k xy =x -6,消去y 整理可得x 2-6x -k =0,∵直线DG 与双曲线只有一个交点,∴方程x 2-6x -k =0有两个相等的实数根,∴b 2-4ac =0,即(-6)2+4k =0,解得k =-9.第13题解图14. 3 【解析】如解图,连接OA 、OB ,∵AB ︵的长度为13π,OA =OB =2,∴nπ×2180°=13π,解得n =30°,即∠AOB =30°,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D ,∵点A 、B 均在反比例函数y =kx 的图象上,∴BD ×OD =AC ×OC =k ,∵OB =OA ,∴点A 和点B 关于直线y =x 对称,∴BD =AC ,OD =OC , ∴△AOC ≌△BOD ,∴∠AOC =90°-∠AOB 2=90°-30°2=30°,设A (a ,b ),则OC =a =OA ·cos30°=2×32=3,AC =b =OA ·sin30°=2×12=1,k =ab =3×1= 3.第14题解图15. -25 【解析】如解图,连接CD ,过点A 作AF ⊥x 轴于点F ,过点D 作DH ⊥x 轴于点H ,设AB与EO 的交点为G ,∵C 点坐标为(-5,0),AB =32,∴OC =5,AG =BG =322,∵直线OE 的解析式为y =-x ,直线OD 的解析式为y =x ,∴∠COE =∠COD =∠ACO =∠DCO =45°,∴DH =OH =52,CG =522,∴D (-52,-52),AC =CG +AG =42,∴AF =CF =22×42=4,∴OF =OC -CF =1,∴A (-1,4),把A (-1,4)代入y =k x 中,得k =-4,把D (-52,-52)代入y =m x 中,得m =254,∴mk =-25.第15题解图16. 6+23 【解析】如解图,连接OC ,过点B 作x 轴的垂线,垂足为点E ,过点A 作AF ⊥BE 于点F ,∵四边形ABCD 为菱形,函数y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B ,D 两点,∴直线AC 的表达式是y =x ,∠CAF =45°,∵∠BAD =30°,∴∠BAC =12∠BAD =15°,∴∠BAF =30°,∵AB =2,∴BF =AB ·sin30°=1,AF =AB ·cos30°=3,∵函数y =3x (x >0)与直线AC 有交点,联立⎩⎪⎨⎪⎧y =x y =3x,解得⎩⎨⎧x =3y =3.∴A (3,3),∴B (23,3+1),将点B 的坐标代入函数y =k x ,得3+1=k 23,∴k =23×(3+1)=6+2 3.第16题解图17. 2 【解析】如解图,过点C 作CF ⊥y 轴于点F ,过点D 作DE ⊥x 轴于点E ,∴∠CFB =∠DEA=∠AOB =90°,∴∠FCB +∠FBC =90°,∠BAO +∠ABO =90°,∠DAE +∠ADE =90°,∵四边形ABCD 为正方形,∴CB =AB =AD ,∠CBA =∠BAD =90°,∴∠FBC +∠ABO =90°,∠BAO +∠DAE =90°,∴∠FCB =∠ABO =∠DAE ,∴△BFC ≌△AOB ≌△DEA ,∴FC =OB =AE ,FB =OA =DE ,由点C ,D 在反比例函数y =2x 图象上,故设C (a ,2a ),D (b ,2b ),∴FC =OB =AE =a ,FB =OA =DE =2b,又∵FB =DE =OA =OE -AE =b -a ,∴2b =b -a ,即b 2-ab =2①,又∵OF =FB +OB =2a ,∴b -a +a =2a,即ab =2②,将②代入①得b 2=4,解得b 1=2,b 2=-2(不合题意,舍去),将b =2代入②得a =1,∴CF =1,FB =b -a =1,在Rt △BCF 中,根据勾股定理得BC =CF 2+BF 2=2,则这个伴侣正方形的边长为 2.第17题解图18解:(1)∵反比例函数y =kx的图象经过点A(-1,4),∴k =-1×4=-4;(2)当b =-2时,直线的解析式为y =-x -2.令y =0,则-x -2=0,解得x =-2,∴C(-2,0).令当x =0,则y =-x -2=-2,∴D(0,-2).∴S △OCD =12×2×2=2; (3)存在.令y =0,则-x +b =0,解得x =b ,则C(b ,0).∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等.而点Q 在第四象限,∴点Q 的横坐标为-b.当x =-b 时,y =-x +b =2b ,则Q(-b ,2b),∵点Q 在反比例函数y =-4x的图象上,∴-b •2b =-4,解得b =-2或b =2(舍去),∴b 的值为- 2.19.解:(1)将A (1,6)代入y =x +b ,得,6=1+b ,∴b =5,将A (1,6)代入y =,得,6=,∴k =6,故答案为:6,5;(2)如图1,过点C作CM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,∵△OBC与△OBA的面积比为2:3,∴=,又∵点A的坐标为(1,6),∴AN=6,∴CM=4,即点C的纵坐标为4,把y=4代入y=x+5中,得,x=﹣1,∴C(﹣1,4);(3)由题意可知,OC'=OC===,如图2,过点B'作B'F⊥x轴,垂足为F,∵S△OBC=S△OB'C′,由一次函数y=x+5可知B(﹣5,0),∴OB•CE=OC'•B'F,即5×4=B'F,∴B'F=,在Rt△OB'F中,∵OF===,∴B'的坐标为(,),∵×≠6,∴点B'不在函数y=的图象上.20.解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.。

相关文档
最新文档