4.3因式分解复习
八年级数学下册4因式分解4.3公式法
第八页,共八页。
第四章
因式分解(yīn shì fēn jiě)
4.3
公式法
第1课时
第一页,共八页。
1.知道平方差公式(gōngshì)的结构特征,会用平方差公式(gōngshì)进
行因式分解.
2.知道因式分解首先要考虑用提公因式法,再考虑用平方差公式.
第二页,共八页。
仔细观察下面图1与图2中阴影部分的面积,你知道(zhī
第六页,共八页。
要想运用平方差公式分解因式,必须掌握平方差公式的特点:
(1)平方差公式的左边是两个_____次项,两项都能写成______
的(píngfāng)
平方
二
形式,并且符号(fúhào)相反
_______.
(xiāngfǎn)
(2)右边是两个数的_____与______________的积.
能验证哪个公式吗?
第三页,共八页。
dào)它
1.英国(yīnɡ ɡuó)数学家狄摩根在青年时代曾有人问他:“你今年多大年龄
?”狄摩根想了想说:“今年,我的年龄和我弟弟的年龄的平方差是141.”
据此信息,你能算出当年狄摩根的年龄吗?
第四页,共八页。
解:设当年狄摩根的年龄为 x 岁,弟弟的年龄为 y 岁.
解:∵a2c2-b2c2=a4-b4,
∴c2(a2-b2)=(a2+b2)(a2-b2).
移项(yí
xiànɡ),得c2(a2-b2)-(a2+b2)(a2-b2)=0.
提取公因式,得(a2-b2)[c2-(a2+b2)]=0.
∴a2-b2=0或a2+b2=c2.
第四章因式分解4.3 公式法1
2 ( x 5 ) ( x 5 ) 5 x 25 (2) =______________
2
(3 xy ))( ( 3 x 3 x y ) 9x y (3) =______________
2 2
2
问题探究: 这组因式分解的式子,左边有什么共 同特征?右边有什么共同特征?你能用 语言描述一下吗?
.
(2)完全平方公 2 2 2= a 2 a b b ( a ± b ) . 式
回顾 & 思考 ☞ 口算 1)( x 5)( x 5) _______ x 25
2
9x y 2) (3x y)(3x y) ______
2
2
3)
(1 3a)(1 3a)
(1)公式中的a , b可以是单 项式,也可以是多项式。 (2)分解因式时,每个因式 都要分解彻底(即分解到不 能再分解为止)
=(4m+2n)(2m+4n) =4(2m+n)(m+2n)
把下列各式分解因式: (1)a2b2-m2 =(ab+m)(ab-m) (2)(m-a)2-(n+b)2 =(m-a+n+b)(m-a-n-b)
1 2 2 (2)9 a-b 4 1
解:原式=(3a) 2-(
1 1 =(3a+ 2 )
例2、把下列各式分解因式:
2 2 解:原式=[3(m+n)] -(m-n)
(1)
2 2 9(m+n) -(m-n)
=[3(m+n)+(m-n)] [3(m+n)-(m-n)] =(3m+3n+m-n)(3m+3n-m+n)
4.3公式法素养集训1因式分解的常见方法练习课件+2023-2024学年北师大版数学八年级下册
(a2+5b2-4b2)=(a2+9b2)(a2+b2).
1
2
3
4
5
6
7
8
9
10
11
12
添项法
9.分解因式:
(1)【2023·北京东城区期末】x4+4y4;
解:(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+
2y2)2-4x2y2=(x2+2y2+2xy)(x2+2y2-2xy).
+3b(x-y)=(x-y)(2a+3b);
(3)(2x-y)(x+3y)-(x+y)(y-2x).
解:(3)原式=(2x-y)(x+3y)+(x+
y)(2x-y)=(2x-y)·(x+3y+x+y)=
(2x-y)(2x+4y)=2(2x-y)(x+2y).
1
2
3
4
5
6
7
8
9
10
11
12
公式法
直接用公式法
+(mx-nx)=m(m-n)+x(m-n)=
(m-n)(m+x);
1
2
3
4
5
6
7
8
9
10
11
12
(2)x2-2xy+y2-9.
解:(2)x2-2xy+y2-9=(x-y)2-9
=(x-y+3)(x-y-3).
1
2
3
4
5
6
7
8
9
10
11
12
拆项法
8.分解因式:
(1)x2-4x+3;
解:(1)方法一:原式=x2-4x+3+1-1=x2-
八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习
(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.
因式分解复习步骤详解
因式分解复习步骤详解因式分解是数学中常见的一种运算方式,用于将一个多项式拆分成更简单的因子。
以下是因式分解的详细步骤:1. 提取公因数:首先检查多项式中是否存在公共因子,如果有,可将其提取出来。
这样做可以简化表达式,减少计算量。
提取公因数:首先检查多项式中是否存在公共因子,如果有,可将其提取出来。
这样做可以简化表达式,减少计算量。
2. 判定多项式类型:进行因式分解前,需要确定多项式的类型。
常见的类型包括二次多项式、立方多项式等。
不同类型的多项式会使用不同的因式分解方法。
判定多项式类型:进行因式分解前,需要确定多项式的类型。
常见的类型包括二次多项式、立方多项式等。
不同类型的多项式会使用不同的因式分解方法。
3. 观察多项式结构:观察多项式的结构,寻找一些规律或特殊模式。
例如,是否存在平方差、立方差等特点。
这些特点可以帮助我们确定因式分解的起点。
观察多项式结构:观察多项式的结构,寻找一些规律或特殊模式。
例如,是否存在平方差、立方差等特点。
这些特点可以帮助我们确定因式分解的起点。
4. 使用因式分解公式:根据多项式的类型,选择适当的因式分解公式进行分解。
常见的因式分解公式有二次差方公式、立方差方公式等。
使用因式分解公式:根据多项式的类型,选择适当的因式分解公式进行分解。
常见的因式分解公式有二次差方公式、立方差方公式等。
5. 检验分解结果:进行因式分解后,需要检验分解结果是否正确。
可以通过将因子相乘得到原多项式,或借助计算机软件进行验证。
检验分解结果:进行因式分解后,需要检验分解结果是否正确。
可以通过将因子相乘得到原多项式,或借助计算机软件进行验证。
6. 合并同类项:在因式分解完成后,需要合并分解得到的各个因子中的同类项,得到最简形式的多项式。
合并同类项:在因式分解完成后,需要合并分解得到的各个因子中的同类项,得到最简形式的多项式。
通过以上步骤,我们可以在解决数学问题时运用因式分解的方法。
因式分解是数学中的一项基础技能,熟练掌握这一技能可以提高解题的效率。
4.3公式法(1)平方差公式
C. -(2a +1)(2a+1) D.
2. 把下列各式分解因式:
1)18-2b²
2) x4 –1
1)原式=2(9-b2)=2(3+b)(3-b) 2)原式=(x²+1)(x+1)(x-1)
3.x2-64因式分解为( D ). (A)(x-16)(x+4); (B) (x-32)(x+32); (C) (x+16)(x-4); (D) (x-8)(x+8). 4. 64a8-b2因式分解为( C ). (A) (64a4-b)(a4+b); (B) (16a2-b)(4a2+b); (C) (8a4-b)(8a4+b); (D) (8a2-b)(8a4+b).
⑶在乘法公式中,“平方差”是计算结果; 在因式分解中,“平方差”是要分解的多项式。
引例: 对照平方差公式怎样将下面的多项式分解因式 (1)x2-16 (2)9m2-4n2 解:(1) x2-16 x x 44 =x2 - 42 = ( + ) ( - ) ……① a2 - b2 = (a+ b) (a - b) (2) 9m2-4n2 3m 3m 2n 2n =(3m)2 - (2n)2=( + ) (
( 4 ) –9x² + 4m
2 4 (5)x y -9
2
=(2m+3x)(2m-3x)
解:2) 4x² - m² n²
原式=(xy2)2-32 =(xy2+3)(xy2-3)
=(2x)² - (mn)²
=(2x+mn)(2x-mn)
下列多项式可否用平方差公式分解 因式,如果可以应分解成什么式 子?如果不可以请说明理由。
八年级数学上册因式分解公式法
拓展应用
知识小结
评价反馈
3. 如图,在一块边长为a cm的正方形纸片 的四角,各剪去一个边长为b cm的正方形, 求剩余部分的面积.如果a=3.6,b=0.8呢?
解:剩余部分的面积是:a2-4b2=(a+2b)(a-2b) 当a=3.6,b=0.8时,原式=(a+2b)(a-2b) =(3.6+2×0.8)(3.6-2×0.8)
复习巩固
新知学习
拓展应用
公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
知识小结
评价反馈
完全平方式,特征: ①三项式 ②两平方项的符号同正 ③首尾2倍中间项
整式乘法
(a+b)2 因式分解
整式乘法
(a-b)2 因式分解
a2+2ab+b2 a2-2ab+b2
复习巩固
新知学习
拓展应用
第四章 因式分解 4.3.2 公式法
学习目标
1.了解完全平方式及公式法的概念,会用完全平方 公式进行因式分解. 2.综合运用提公因式法和完全平方公式对多项式进
行因式分解.
目录
CONTENTS
1 复习巩固 2 新知学习 3 拓展应用 4 知识小结 5 评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
2.已知4x2+kxy+9y2 是一个完全平式,则k= ±12 .
3.已知a(a+1)-(a2-b)=-2, 求 a2 b2 ab 的值. 2
解: 由a(a+1)-(a2-b) =a2+a-a2+b
因式分解专题复习及讲解(很详细)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)
4.3 用乘法公式分解因式(二)A 组1.填空:(1)分解因式:x 2-4x +4=(x -2)2.(2)分解因式:4a 2-4a +1=(2a -1)2.(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.(4)分解因式:2x 2-4x +2=2(x -1)2.(5)分解因式:x 3+2x 2+x =x(x +1)2.2.下列多项式中,不能用完全平方公式分解因式的是(C )A. m +1+m 24B. -x 2+2xy -y 2C. -a 2+14ab +49b 2D. n 29-23n +1 3.把多项式x 2-6x +9分解因式,结果正确的是(A )A. (x -3)2B. (x -9)2C. (x +3)(x -3)D. (x +9)(x -9)4.分解因式:(1)x 2-x +14. 【解】原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122 =⎝⎛⎭⎪⎫x -122. (2)a 2-12ab +116b 2.【解】原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2 =⎝⎛⎭⎪⎫a -14b 2. (3)9m 2-6mn +n 2.【解】原式=(3m )2-2·(3m )·n +n 2=(3m -n )2.5.把下列各式分解因式:(1)3x 2-12xy +12y 2.【解】原式=3(x 2-4xy +4y 2)=3(x -2y )2.(2)-2x 3+24x 2-72x .【解】原式=-2x (x 2-12x +36)=-2x (x -6)2.(3)(a +b )2-12(a +b )-36.【解】原式=[(a +b )-6]2=(a +b -6)2.(4)2m 2+2m +12. 【解】原式=2⎝⎛⎭⎪⎫m 2+m +14 =2⎝⎛⎭⎪⎫m +122. 6.用简便方法计算:(1)9992+2×999+1.【解】原式=9992+2×999×1+12=(999+1)2=10002=1000000.(2)552-110×45+452.【解】原式=552-2×55×45+452=(55-45)2=102=100.B组7.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为__4__.【解】∵(x2+y2)(x2+y2-2)=8,∴(x2+y2)2-2(x2+y2)=8,(x2+y2)2-2(x2+y2)+1=9,∴(x2+y2-1)2=9,∴x2+y2-1=3或x2+y2-1=-3,∴x2+y2=4或x2+y2=-2.∵x2+y2≥0,∴x2+y2=4.8.分解因式:(1)(a2+1)2-4a2.【解】原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(2)81+x4-18x2.【解】原式=x4-18x2+81=(x 2)2-2·x 2·9+92=(x 2-9)2=[(x +3)(x -3)]2=(x +3)2(x -3)2.9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.【解】x 2+4x +y 2+2y +5=0,x 2+4x +4+y 2+2y +1=0,(x +2)2+(y +1)2=0,∴x +2=0且y +1=0,∴x =-2,y =-1,∴x y =(-2)-1=-12. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.【解】a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2=2×32=18.10.阅读材料,并回答问题:分解因式:x 2-120x +3456.分析:由于常数项数值较大,可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.解:x 2-120x +3456=x 2-2×60x +3600-3600+3456=(x -60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面方法分解因式:x2-16x-561.【解】x2-16x-561=x2-16x+64-64-561=(x-8)2-625=(x-8)2-252=(x-8+25)(x-8-25)=(x+17)(x-33).11.已知(a+2b)2-2a-4b+1=0,求(a+2b)2018的值.【解】∵(a+2b)2-2a-4b+1=0,∴(a+2b)2-2(a+2b)+1=0,∴(a+2b-1)2=0,∴a+2b-1=0,∴a+2b=1,∴(a+2b)2018=12018=1.数学乐园12.阅读材料,并回答问题:分解因式:x4+4.分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了一项4x2组成完全平方公式,然后将4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)·(x2-2x+2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲·热门的做法,将下面各式分解因式:(1)x4+4y4. (2)x2-2ax-b2-2ab.【解】(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2y2+2xy)(x2+2y2-2xy).(2)x2-2ax-b2-2ab=x2-2ax+a2-a2-2ab-b2=(x-a)2-(a+b)2=[(x-a)+(a+b)][(x-a)-(a+b)]=(x+b)(x-2a-b).。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
因式分解知识点归纳
因式分解知识点回顾1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。
因式分解和整式乘法互为逆运算2、常用的因式分解方法:(1)提取公因式法:ma + mb + mc = m(a + b + c)(2)运用公式法:平方差公式:a2—b2 = (a + b)(a—b);完全平方公式:a2土2ab + b2= (a土b)2(3)十字相乘法:x2 + (a + b)x + ab = (x + a)(x + b)因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法5、同底数幂的乘法法则:a m・a n = a m+n( m, n都是正整数)同底数幕相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:(a + b)2•(a + b)3 = (a + b)56、幂的乘方法则:(a m)n = a mn( m, n都是正整数)幕的乘方,底数不变,指数相乘。
如:(-35)2= 310幕的乘方法则可以逆用:即a mn = (a m ) n = (a n ) m如:46 = (42)3 = (43)27、积的乘方法则:(ab)n = a n b n( n是正整数)积的乘方,等于各因数乘方的积。
如:(一 2 x 3 y 2 z )5 = (-2)5 • (x 3)5 • ( y 2)5 • z 5 = -32 x 15 y 10 z 58、同底数幂的除法法则:a m + a n = a m - n ( a牛0, m, n都是正整数,且m n)同底数幕相除,底数不变,指数相减。
如:(ab)4 + (ab) = (ab)3 = a3b39、零指数和负指数;a 0 = 1,即任何不等于零的数的零次方等于1。
1a - p =——(a中0, p是正整数),即一个不等于零的数的-p次方等于这个数的P次方的倒数。
4.3公式法2-利用完全平方公式因式分解
2
这个公式可以用文字表述为: 两个数的平方和加上(或减去) 这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): (a+3)2 ① a2+6a+9 = _________________ (n–5)2 ② n2–10n+25 = _______________ 4(t–1)2 ③ 4t2–8t+4 = _________________ (2x–3y)2 ④ 4x2–12xy+9y2 = _____________
a 2ab b
2
2
完全平方式的特点:
1、必须是三项式(或可以看成三项的)
2、有两个同号的平方项 3、有一个乘积项(等于平方项底数的±2倍)
简记口诀:
首平方,尾平方,首尾两倍在中央。
① 16x2 + 24x + 9 = (4x+3)2 ② – 4x2 + 4xy – y2 = – (4x2–4xy+y2) = – (2x–y)2
做一做
①a 2 18a 81 2 1 ②x x 3 9 2 2 ③ s t 2st
2
用完全平方公式进行因式分解。
运用公式法分解因式 要有整体思想正确 套用公式!
④m 4 n 2 2 m 2 n 1 ⑤a 2b 2 c 2 4abc 4 ⑥ 25x 2 20x 4
2 2
添项减项公式来
2 、已知 x y a,z y 10 , 4 、 则代数式 x 2 y 2 z 2 xy xz yz的最小值为 ___。
新课引入
此处运用了什么公式? 逆用 完全平方公式
999×1 + 1 试计算:9992 +
北师大版八年级数学下册4.3 第2课时 完全平方公式
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
课外作业
1.练闯考P57(预习导学、课内精 炼1-10题)
2.课本P102-103(随堂练习第1、2 题,习题 4.5第1、2题,做到作业 本上)
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
典例精析
例3 如果x2-6x+N是一个完全平方式,那么N是( B )
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
练习
把下列各式分解因式
① ax4 ax2
解:原式=ax2(x2-1) =ax2(x+1)(x-1)
② x4-16
解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式) (因式分解要彻底。)
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
课堂小结
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2
因式分解期末知识点专项复习
第三章因式分解复习1.因式分解定义(①左边是多项式;②右边是积的形式;③右边的因式是整式)要点梳理:1. 把一个多项式化成几个整式的的形式,叫做多项式的_________,也叫将多项式__________;2. 因式分解的过程和的过程正好______:前者是把一个多项式化为几个整式的______,后者是把几个整式的______化为一个________.命题角度1 因式分解的概念例1、下列从左到右的变形中是因式分解的有例2、①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).针对训练:下列各式从左边到右边是因式分解的 .①x2-x=x(x-1) ② a(a-b)=a2-ab ② (a+3)(a-3)=a2-9② a2-2a+1=a(a-2)+1② x2-4x+4=(x-2)2针对训练:检验下列因式分解是否正确.(1)a3-ab=a(a2-b); (2)x2-x-6=(x-2)(x-3);(3)2a2-3ab-2b2=(2a+b)(a-2b); (4)9m2-6mn+4n2=(3m-2n)2.命题角度2 因式分解与整式乘法的关系例1.把多项式x2+mx+6因式分解得(x-3)(x+n),则m=.【针对训练】如果多项式x2-mx-35因式分解为(x-5)(x+7),那么m的值为2.提公因式(把多项式ma+mb+mc分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是a+b+c,即ma+mb+mc=m(a+b+c))要点梳理:1. 一般地,多项式的各项都含有的因式,叫做这个多项式各项的________,简称多项式的________.2. 公因式的确定:(1)系数:取多项式各项整数系数的;(2)字母:取多项式各项的字母;(3)各字母的指数:取次数最的.命题角度1 公因式的识别(几个多项式的公共的因式)例1.多项式15m3n2+5m2n-20m2n3的公因式是【针对训练】下列各组多项式中,没有公因式的是( )A.ax-bx和by-ay B.3-9y和6y2-2yC.x2+y2和x+y D.a-b和2a2-2ab命题角度2 提单项式公因式法因式分解(从系数、字母以及指数等方面确定公因式)例2.将多项式m2-m因式分解,结果正确的是( )A.m(m-1) B.(m+1)(m-1) C.m(m+1)(m-1) D.-m(m-1)【针对训练】1把下列各式因式分解:(1)ab+ac=; (2)a2b-2ab2+ab=.2.边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为.3.因式分解:3a2b-6ab+9b=.4.把多项式-16x3+40x2y提出一个公因式-8x2后,另一个因式是.5.把下列多项式因式分解:(1)ab2+ab; (2)3x2-6xy+x;(3)12a2b3-8a3b2-16ab4;(4)-24x3-12x2+28x.命题角度3 多项式公因式(整体思想)例1.将3x(a-b)-9y(b-a)因式分解,应提的公因式是( ) A.3x-9y B.3x+9y C.a-b D.3(a-b)针对训练:1.将多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是命题角度2 提多项式公因式因式分解2.将m2(a-2)+m(a-2)因式分解的结果是( )A.(a-2)(m2-m) B.m(a-2)(m-1) C.m(a-2)(m+1) D.m(2-a)(m-1) 【针对训练】:把下列多项式因式分解:(1)7(a-1)+x(a-1);(2)3(a-b)2+6(b-a);(3)18(a-b)2-12b(b-a)2;(4)(2a+b)(2a-b)-3a(2a+b).命题角度3 提公因式法因式分解的应用例1.把多项式18m3n2(m+n2)+24m2n3(m+n2)因式分解的结果是.针对训练:1.已知(2x-21)(3x-7)-(3x-7)(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b的值为.2.先将代数式因式分解,再求值:(x-2)2-6(2-x),其中x=-2.3.已知x+y=5,x-y=-3,则x(x-y)-y(y-x)=.4.若9a2(x-y)2-3a(y-x)3=M·(3a+x-y),则M等于.3.公式法(平方差)含有两项,且这两项异号平方项a2-b2=(a+b)(a-b)命题角度1 判断用平方差公式进行因式分解例1.下列多项式能使用平方差公式进行因式分解的是()A.4x2+1 B.-m2+1 C.-a2-b2D.a2-b3针对训练:1.下列各式中,不能用平方差公式因式分解的是()A.-a2-4b2B.-1+25a2 C.116-9a2D.-a4+1命题角度2 平方差公式因式分解3.因式分解:(1)a3-4a; (2)a4-116b4;(3)9(m+n)2-(m-n)2 (4)9a2(x-y)+4b2(y-x).(5)25x2y2-1; (6)x4-16.命题角度3 利用平方差公式因式分解解决实际问题4.已知x2-y2=16,x+y=2,则x-y=.5.在一个边长为12.75 cm的正方形内剪去一个边长为7.25 cm的正方形,求剩余部分的面积.3.公式法(完全平方公式)特点:(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.a2 +2ab+b2=(a+b)2命题角度1 用完全平方公式进行因式分解1.下列各式中,能用完全平方公式因式分解的是( )A.4x2-1 B.4x2+4x-1 C.x2-xy+y2D.x2-x+1 42.若多项式x2+mx+4能用完全平方公式因式分解,则常数m的值是.3.若多项式x2-mxy+9y2能因式分解成(a±b)2的形式,则m的值是 . 2.计算:1252-50×125+252=3.因式分解:(1)m2-10m+25;(2)4x2-2x+14;(3)(x-y)2-6(x-y)+9.(4)81a2+16b2-72ab;(5)-a2+6ab-9b2;(6)a2b2-4ab+4;(7)a2-2a(b+c)+(b+c)2.命题角度2 先提公因式后运用完全平方公式因式分解1.因式分解:(1)-2a3+12a2-18a; (2)6xy2-9x2y-y3.命题角度3 综合运用平方差公式和完全平方公式因式分解1.因式分解:(1)(x2+9)2-36x2; (2)y2+2y+1-x2(3)9x2-3x+14; (4)-4x2+12xy-9y2 ;(5)a 4+2a 2b +b 2 ; (6)x 4-2x 2+1;(7)-3a 2x 2+24a 2x -48a 2; (8)(a 2+4)2-16a 2.专项练习1、 下列各式的变形中,是否是因式分解,为什么?(1)221()()1x y x y x y -+=+-+; (2)2(2)(1)2x x x x -+=--;(3)232632x y xy xy =⋅; (4)29696x y xy y xy x x ⎛⎫++=++ ⎪⎝⎭. 2、判断下列各式从等号左边到右边的变形,哪些是整式乘法,哪些是因式分解.(1)a 2-9b 2=(a +3b)(a -3b); (2)3y(x +2y)=3xy +6y 2;(3)(3a -1)2=9a 2-6a +1; (4)4y 2+12y +9=(2y +3)2;3.分解因式8ab(a -b)3-12a(a -b)2时,应提取的公因式是( )A.8aB.4ab(a-b)3C.4ab(a-b)2D.4a(a-b)24.下列四个多项式中,能因式分解的是( ) A.a 2+1 B.a 2-6a+9 C.x 5+5y D.x 2-5y5.添加一项,能使多项式9x 2+1构成完全平方式的是( ) A.9x B.-9x C.9x4 D.-6x6.计算:852-152=( )A.70B.700C.4 900D.7 0007. a 4b -6a 3b+9a 2b 分解因式的正确结果是( )A.a 2b(a 2-6a+9)B.a 2b(a+3)(a -3)C.b(a 2-3)2D.a 2b(a -3)28.某同学粗心大意,分解因式时,把等式x 4-■=(x 2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.16,2B.8,1C.24,3D.64,89、已知2ab =时,3a b -=-时,则2332a b a b -的值为( )A .12-B .12C .6-D .610.若多项式x 2﹣3(m ﹣2)x+36能用完全平方公式分解因式,则m 的值为( )A .6或﹣2B .﹣2C .6D .﹣6或2 二、填空题9.多项式9x 2y -15xy -6y 的公因式是_____________.10.一个多项式因式分解的结果是(x+2)(x -3),那么这个多项式是_____________.11.已知x 、y 是二元一次方程组23,245x y x y -=+=⎧⎨⎩的解,则代数式x 2-4y 2的值为_____________. 三、解答题12、把下列各式因式分解: (1)()()32x a b y b a --- ; (2)()()242252y x x y -+-;(3)4x 2-16 ; (4) 16 - 125 m 2(5)a 3b -ab 3; (6) a 4- b 4;(7)()()22324a b a b +-- (8)2ax 2-8a ;(9)2221x xy y -+- ; (10)16x 2 + 24x + 9;(11)-x 2 + 4xy - 4y 2 (12) 3ax 2 + 6axy + 3ay 2;(13) (a + b)2 - 12(a + b) + 36; (14) 342 + 34×32 + 162.13、n 为整数,证明:(2n +1)2-1能被8整除.14.已知a-2b=12,ab=2,求-a4b2+4a3b3-4a2b4的值.15、a,b,c是ABC的三边,且有2241029a b a b+=+-(1)若c为整数,求c的值.(2)若ABC是等腰三角形,直接写出这个三角形的周长.16.下面是某同学对多项式(a2-4a+2)(a2-4a+6)+4进行因式分解的过程.解:设a2-4a=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(a2-4a+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?___________;(填“彻底”或“不彻底”)(2)若不彻底,请直接写出因式分解的最后结果___________;(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.17.分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2﹣3x ﹣2=_____. (1)232x x --; (2)210218x x ++;18.阅读材料对式子223x x +-可以变化如下:原式2222113(21)4(1)4x x x x x =++--=++-=+-此种变化抓住了完全平方公式的特点,先加一项,使这三项成为完全平方式,再减去加的项,我们把这种变化叫配方.请仔细体会配方的特点,然后尝试用配方解决下列问题:(1)分解因式:243x x -+(2)无论x 取何值,代数式222019x x -+总有一个最小值,请尝试用配方求出它的最小值.。
2019年春七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式课件浙教版
4.3 用乘法公式分解因式
勤反思
小结
完 全 平 方 公 式
特征
运用完全平方公式分解因式
运用完全平方公式简化运算
4.3 用乘法公式分解因式
反思
判断下面分解因式的过程是否正确,若不正确,请改正.
a3b-2a2b+ab=ab(a2-2a+1).
解:不正确.改正:a3b-2a2b+ab=ab(a2-2a+1)=ab(a-1)2.
4.3 用乘法公式分解因式
筑方法
类型一 用完全平方公式分解因式
例1 教材例3变式题用完全平方公式进行因式分解:
(1)9m2+24mn+16n2;(2)(x2-4x+4)-4(x-2)+4.
解: (1)9m2+24mn+16n2=(3m+4n)2.
(2)(x2-4x+4)-4(x-2)+4=(x-2)2-4(x-2)+4=(x-2-2)2=(x-4)2.
解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2. (2)16a4-8a2+1=(4a2)2-2×4a2×1+12=(4a2-1)2=(2a+1)2(2a-1)2.
4.3 用乘法公式分解因式
【归纳总结】因式分解的一般步骤 (1)观察多项式是否存在公因式; (2)若提取公因式后的式子是两项或三项,则考虑是否符合平 方差公式或完全平方公式的特点; (3)检查每个因式是否分解彻底.
第4章
4.3
分解因式
用乘法公式分解因式
第4章 因式分解
第2课时
用完全平方公式 分解因式
学知识 筑方法
勤反思
4.3 用乘法公式分解因式
学知识
知识2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
平方和 ,加上(或者减去)这两数的积的2倍,等于这两数 即两数的________
浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)
2.
2
当 x= 156,y= 144 时,
原式=
1 2×(156+ 144)
2 =45000.
[ 点评 ]
本题应先把
x2 的系数
1 2提出来,使其他各项的系数均为整数.
并且分解因式要分解到每个因
7
16.解:- a4b2+ 4a3b3- 4a2 b4=- a2b2(a 2- 4ab+4b2) =- a2b2(a - 2b) 2.
4.3 用乘法公式分解因式
第 2 课时 用完全平方公式分解因式
知识点 1 完全平方公式分解因式 由完全平方公式可得: a2+ 2ab+b2= (a + b) 2, a2- 2ab+ b2=(a - b) 2. 即两数的平方和,加上 ( 或者减去 ) 这两数的积的 2 倍,等于这两数和 ( 或者差 ) 的平方. 1.把下列各式分解因式: (1)a 2- 8a+ 16;
分解因式: x 4+4.
4
解: x + 4
=x 4+4x 2+ 4- 4x2
=(x 2+ 2) 2- 4x2
=(x 2+ 2x+ 2)(x 2- 2x+ 2) .
以上解法中,在 x 4+ 4 的中间加上一项,使得三项组成一个完全平方式,为了使原式的值保持不变,必须减
去同样的一项.按照这个思路,试把多项式
2
=(x - y- 5) . (4)(x 2+ 4) 2- 16x2 =(x 2+ 4+ 4x)(x 2+ 4- 4x) =(x + 2) 2(x -2) 2. (5) 原式= (x 2-2x+ 1) 2 =[(x - 1) 2] 2 =(x - 1) 4. 14.解: (1)96 2+96×8+ 16 =962+2×96×4+ 42 =(96 + 4) 2
学生版《因式分解》全章复习与巩固(提高)知识讲解
《因式分解》全章复习与巩固(提高)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系;2.掌握提公因式法分解因式,理解添括号法则;3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题.【知识网络】【要点梳理】 要点一、因式分解 把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、 分解因式:(1)222284a bc ac abc +-;(2)32()()()()m m n m m n m m n m n +++-+-.2、利用分解因式证明:712255-能被120整除.类型二、公式法分解因式3、放学时,王老师布置了一道分解因式题:()()()222244x y x y x y ++---,小明思考了半天,没有答案,就打电话给小华,小华在电话里讲了一句,小明就恍然大悟了,你知道小华说了句什么话吗?小明是怎样分解因式的.举一反三:【变式】下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程. 解:设24x x y -=原式=()()264y y +++(第一步)=2816y y ++(第二步)=()24y +(第三步)=22(44)x x -+(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( ).A 、提取公因式B .平方差公式C 、两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式()()222221x xx x --++进行因式分解.4、计算:(1-212)(1-213)(1-214)…(1-212004)(1-212005)举一反三:【变式】设22131a =-,22253a =-,…,()()222121n a n n =+--(n 为大于0的自然数).(1)探究n a 是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出1a ,2a ,…,n a ,…这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,n a 为完全平方数(不必说明理由).类型三、十字相乘法和分组分解法分解因式5、分解因式:(1)()()222222x x ---- (2)()2224420x x x x +--- (3)2244634a ab b a b -+-+-举一反三:【变式】下列何者是765228321x x x -+的因式?( )A .2x +3B .2(117)x x -C .()5113x x -D .()627x x +6、已知长方形周长为300厘米,两邻边分别为x 厘米、y 厘米,且322344x x y xy y +--=0,求长方形的面积.举一反三:【变式】因式分解:221448x y xy --+,正确的分组是( )A .22(14)(84)x xy y -+-B .22(144)8x y xy --+C .22(18)(44)xy x y +-+ D .221(448)x y xy -+-【巩固练习】一.选择题1. 下列式子变形是因式分解的是( )A .()25656x x x x -+=-+B .()()25623x x x x -+=--C .()()22356x x x x --=-+D .()()25623x x x x -+=++2. 已知:△ABC 的三边长分别为a b c 、、,那么代数式2222b c ac a -+-的值( )A.大于零B.等于零C.小于零 D 不能确定3.已知31216x x -+有一个因式是4x +,把它分解因式后应当是( )A .2(4)(2)x x +-B .2(4)(1)x x x +++C .2(4)(2)x x ++D .2(4)(1)x x x +-+4.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大 5. 下列因式分解错误的是( )A .()()22x y x y x y -=+-B .()22693x x x ++=+ C .()2x xy x x y +=+ D .()222x y x y +=+6.将下述多项式分解后,有相同因式1x -的多项式有 ( )①; ②; ③; ④;⑤; ⑥ A .2个 B .3个 C .4个 D .5个7. 已知()()()()1931131713171123x x x x -----可因式分解成()()8ax b x c ++,其中,,a b c 均为整数,则a b c ++=( )A .-12B .-32C .38D .728. 将3223x x y xy y --+分组分解,下列的分组方法不恰当的是( )A. 3223()()x x y xy y -+-+B. 3223()()x xy x y y -+-+C. 3322()()x y x y xy ++--D. 3223()x x y xy y --+二.填空题9. ()()2154304x y x y +-+=_________,其中x =2,y =-2.10. 分解因式:()()229a b a b +--=_____________.11.已知2226100m m n n ++-+=,则mn = .12.分解因式:()()223a a a +-+=__________.13.若32213x x x k --+有一个因式为21x +,则k 的值应当是_________.14.把多项式22ac bc a b -+-分解因式的结果是__________.15.已知5,3a b ab +==,则32232a b a b ab -+= .16.分解因式:(1)4254x x -+=________;(2)3322a m a m am +--=________. 三.解答题17.求证:791381279--能被45整除.18. 把下列各式分解因式:(1)349x x - (2)()228x x -+-.19.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:________.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出22252a ab b ++因式分解的结果,画出你的拼图.20.下面是某同学对多项式()()642422+-+-x x x x +4进行因式分解的过程: 解:设y x x =-42原式=()()264y y +++ (第一步)=2816y y ++ (第二步)=()24+y (第三步) =()2244+-x x (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果_______________.(3)请你模仿以上方法尝试对多项式()()122222++--x x x x 进行因式分解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾与思考
知识与技能目标:
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式。
2.熟悉本章的知识结构图。
过程与方法目标:
1.通过知识结构图的教学,培养学生归纳总结能力。
2.在例题的教学过程中培养学生分析问题和解决问题的能力.
情感态度与价值观目标:
1.通过因式分解综合练习,提高学生观察、分析能力。
2.通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识。
教学重点
复习综合应用提公因式法,运用公式法分解因式.
教学难点
利用分解因式进行计算及讨论.
教学方法
师生共同讨论法.
教师引导,主要由学生分组讨论得出结果.
教具准备
教学过程
Ⅰ.创设问题情境,引入新课
前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.Ⅱ.讲授新课
(一)讨论推导本章知识结构图
请大家先回忆一下我们这一章所学的内容有哪些?
(1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.
能否把本章的知识结构图绘出来呢?(若学生有困难,给予帮助)
(二)重点知识讲解
1.举例说明什么是分解因式.
如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)
把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.学习因式分解的概念应注意以下几点:
(1)因式分解是一种恒等变形,即变形前后的两式恒等.
(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.
2.分解因式与整式乘法有什么关系?
分解因式与整式乘法是两种方向相反的变形.如:ma +mb +mc =m(a +b +c),从左到右是因式分解,从右到左是整式乘法.
3.分解因式常用的方法有哪些?
提公因式法和运用公式法.
4.例题讲解
例1 下列各式的变形中,哪些是因式分解?哪些不是?说明理由.
(1)x2+3x +4=(x +2)(x +1)+2;(2)6x2y3=3xy·2xy2;
(3)(3x -2)(2x +1)=6x2-x -2;(4)4ab +2ac =2a(2b +c)。
例2 将下列各式分解因式.
(1)8a4b3-4a3b4+2a2b5;(2)-9ab +18a2b2-27a3b3;
(3)41-91
x2;(4)9(x +y)2-4(x -y)2;
(5)x4-25x2y2;(6)4x2-20xy +25y2;
(7)(a +b)2+10c(a +b)+25c2.
例3 把下列各式分解因式:
(1)x7y3-x3y3;(2)16x4-72x2y2+81y4。
从上面的例题中,大家能否总结一下分解因式的步骤呢?
分解因式的一般步骤为:
(1)若多项式各项有公因式,则先提取公因式.
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.
(3)每一个多项式都要分解到不能再分解为止.
Ⅲ.课堂练习
1.把下列各式分解因式
(1)16a2-9b2;(2)(x2+4)2-(x +3)2;
(3)-4a2-9b2+12ab ;(4)(x +y)2+25-10(x +y)
2.利用因式分解进行计算
(1)9x2+12xy +4y2,其中x =34
,y =-21;
(2)(2b a +)2-(2b
a -)2,其中a =-81,
b =2.
Ⅳ.课时小结
1.共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.
2.利用因式分解简化某些计算.
Ⅴ.课后作业
复习题A组
求满足4x2-9y2=31的正整数解.
VI板书设计
回顾与思考
一、1.讨论推导本章知识结构图
2.重点知识讲解
(1)举例说明什么是因式分解.
(2)分解因式与整式乘法有什么关系?
(3)分解因式常用的方法有哪些?
(4)例题讲解(例1、例2、例3)
(5)分解因式的一般步骤
二、课堂练习
四、课后作业。