奥数专题——分数、小数四则运算中的巧算(一)(含答案)-
幼儿园奥数分数的巧算练习及答案
幼儿园奥数分数的巧算练习及答案引言幼儿园奥数教育是培养孩子们数学思维和解决问题能力的重要环节。
对于幼儿来说,通过巧妙的算术练和答案,可以培养他们的逻辑思维能力和创造性思维能力。
本文提供一系列幼儿园奥数分数的巧算练及答案,以帮助幼儿在研究过程中更好地理解分数的概念和运算。
1. 练一题目小明有2个苹果,小红有4个苹果,将这些苹果平均分给两个人,请问每个人分到了几个苹果?写出计算过程。
计算过程根据题目描述,小明和小红共有6个苹果。
要平均分给两个人,我们可以按照以下步骤进行计算:1. 先将总数6分成两部分,即6 ÷ 2 = 32. 每个人分到的苹果数为3答案每个人分到了3个苹果。
2. 练二题目小明喝了一杯盖碗茶的三分之一,他妈妈喝了剩下的四分之二,问茶杯里还剩下多少盖碗茶?写出计算过程。
计算过程根据题目描述,小明喝了盖碗茶的三分之一,剩下的四分之二给他妈妈。
我们可以按照以下步骤进行计算:1. 小明喝了三分之一,剩下的茶量为 1 - 1/3 = 2/32. 他妈妈喝了剩下的四分之二,即剩下茶量的四分之二,所以茶量减少了 2/3 × 4/2 = 4/6 = 2/33. 茶杯里还剩下的盖碗茶的量为 2/3答案茶杯里还剩下的盖碗茶的量为2/3。
结论通过以上的练和答案,幼儿可以巩固对分数概念的理解,学会进行基本的分数运算。
希望这些巧算练对幼儿园奥数研究有所帮助,激发他们对数学的兴趣和热爱。
注意事项:本文答案及计算过程仅供参考,可能存在任意数值替换导致结果不同的情况,请根据具体题目进行灵活运用。
六年级下册数学试题-奥数专题01:分数的巧算全国通用(含答案)
一、分数的巧算(一)一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151.12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++.14.计算:⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1001991991981413131212111009910011=-=.5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=.6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=.10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.一、分数的巧算(二)年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数)13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++.14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205.原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=.10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a 2121212122=⎪⎭⎫ ⎝⎛-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=.14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++= ⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯=1999110011100012 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.。
小学五年级奥数练习(分数的综合运算技巧详解 )
小学五年级奥数练习——分数地综合运算技巧详解(分数地复杂运算、分数地混合运算)一、知识点1.混合运算技巧在分数、小数地四则混合运算中,到底是把分数化作小数,还是把小数化作分数,这影响到运算过程地繁琐与简便程度,也影响到运算结果地精确度。
小数化成分数,或分数化成小数’,有如下几种技巧。
(1)在加减法中,有时遇到分数只能化成循环小数时’,不能把分数化成小数,此时要将包括循环小数在内地所有小数都化为分数;(2)在乘除法中,一般情况下,小数化成分数计算则比较简便;(3)一般情况下,在加减法中,分数化成小数比较方便;(4)在运算中,使用假分数还是带分数,需视情况而定;(5)在计算中经常用到除法’、比、分数、小数、百分数互相之间地变换,把这些常用地数互化成数表对学习非常重要。
2.复杂分数地运算注意点先找出分数线,确定分子部分和分母部分,然后这两部分分别进行计算,每部分地计算结果需要约分地要先约分,再改成“分子部分÷分母部分”地形式,最后求出结果。
3.比和比例地技巧化简比地方法:比地前项和后项同时乘以或除以相同地数(0除外’),最后地比值应写成最简整数比。
具体如下:(1)分数比:可以前项除以后项,在根据比值写出最’简单地整数比。
(2)小数比:可以先利用商不’变地性质将其转化为整数比,然后再化简;(3)整数比:可以根据商不变地性质或像分数约分(前后项同时除以它们’地最大公因数)那样进行化简;4.分数拆分从分母M 地约数中’任意找出两个m 和n ,有)()()()(11n m M n n m M m n m M n m M +++=++=B A 11+=;如10地约’数有:1,10,2,5。
如选1和2,有:)21(102)21(101)21(10)21(1101+++=++=151301+=;另外,a ,b ,c 为M 地约数:)()()()()(11c b a M c c b a M b c b a M a c b a M c b a M ++++++++=++++=5.循环小数循环小数与分数地互化,循环小数之间’简单地加、减法运算,涉及循环小数与分数地’运算主要利用运算定律进行简算。
奥数分数巧算方法
奥数分数巧算方法
在奥数学习中,分数的计算是非常常见的题型。
然而,学生们往往在分数的加减乘除运算中遇到困难。
今天我们给大家介绍一些奥数分数巧算方法,希望对大家学习奥数有所帮助。
1. 通分
分数的加减运算,要先将分母通分。
这是因为两个分母不同的分数,没有办法直接计算。
通过通分,将分母相同,就可以将分子相加或相减。
需要注意的是,通分后要将原来的分子和新的分母乘上同一个数,使得分数值不变。
例如,计算5/6+4/9,首先需要将分母通分为18,然后将两个分数的分子改为15和8,计算出15/18+8/18=23/18。
2. 倍数法
在分数的乘法和除法中,经常需要用到倍数法。
倍数法就是将分子和分母同时乘以一个数,使得分数的值不变。
例如,计算2/3*5/6,使用倍数法将分子分母分别乘以5可以得到10/15*5/6=25/18。
3. 分子倒置法
在分数的除法中,很多时候需要进行分子倒置的操作。
分子倒置法就是将被除数的分子和分母颠倒位置,并且将除数改为它的倒数。
例如,计算2/3÷4/5,可以将除数4/5变成5/4,然后将2/3和5/4相乘,得到2/3÷4/5=2/3*5/4=10/12=5/6。
以上三种方法是奥数分数计算中的基本技巧,掌握这些技巧将会对奥数学习有很大的帮助。
当然,还需要进行大量的练习,才能够将这些方法熟练掌握。
【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-分数的巧算(含答案)
通用版六年级奥数专项精品讲义及常考易错题汇编计算问题-分数的巧算【知识点归纳】分数运算符合的定律.(1)乘法交换律 a×b=b×a(2)乘法结合律 a×(b×c)=(a×b)×c(3)乘法分配律 a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c (4)逆用乘法分配律 a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)(5)互为倒数的两个数乘积为1.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c; a÷c±b÷c=(a±b)÷c.【解题方法点拨】分数巧算就是熟能生巧的过程,综合运用乘法分配律,分数化小数,小数化分数以及带分数化假分数、带分数拆分等方法达到巧算的目的.1、把同分母的分数凑成整数.a.先去括号;b.利用交换律把同分母分数凑在一起;c.利用减法性质把同分母分数凑在一起.2、分数乘法中,利用乘法交换律,交换数的位置,以达到约分的目的;利用乘法结合律,以达到约分的目的,从而简算.3、分数混合运算中有除法,先将除法转化为乘法,然后再利用乘法的分配律的方法来计算以达到凑整的目的.4、懂得拆分.一.选择题1.+++…++的和是()A.1 B.2012 C.10062.的值是多少.()A.B.C.D.3.如果+=×2=;++=×3=;+++=×4=,则+++…+=()A.B.C.D.4.用简便方法计算:的结果是()A.B.C.D.5.若将算式的值化为小数,由小数点后第1个数字是()A.4 B.3 C.2 D.16.计算:(1+)×(1+)×(1+)×…×(1+)=()A.50 B.99 C.100 D.2007.分母为2009的所有真分数相加是多少?()A.1004 B.2008 C.330 D.789二.填空题8.2019×(1﹣)×(1﹣)×(1﹣)×……×(1﹣)=.9.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图:在一个边长为1的正方形纸板上,依次贴上面积为“,,…”的矩形彩色纸片,请你用“数形结合”的思想,依据数形变化的规律,计算+++++…=.10.+++=.11.=.12.+++…+,这个算式结果的整数部分是.13.2006×2008×(+)=.14.=.15.+++++=.三.计算题16.计算我最细心,怎样算简便就怎样算.×+÷(+﹣)×1201999+999×999×(﹣)×0.3÷17.计算题①(9﹣3﹣1)×2②++③8888×58﹣4444×16+44④150﹣120÷1.4×0.84⑤17×37﹣174×1.9+17×82⑥1999×﹣18.运算能力展示.7.8÷[32×(1)+3.6][12×19×()]9 ()×()﹣()×()19.计算 (1)1+12+123+1234+12345+123456 (2)(142857+428571+285714+857142+571428+714285)+9 (3)149×(4)3(5)(10+876+312)×(876+312+918)﹣(10+876+312+918)×(876+312) (6)解方程:13﹣2(2x ﹣3)=5﹣(x ﹣2) 20.计算。
小学奥数:分数四则混合运算综合.专项练习及答案解析
分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1)分数的四则混合运算 (2)分数与小数混合运算,分化小与小化分的选择 (3)复杂分数的化简 (4) 繁分数的计算分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
分数混合运算 【例 1】 0.3÷0.8+0.2= 。
(结果写成分数形式)【考点】分数混合运算 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 310×54+15=38+15=2340。
【答案】2340【例 2】 计算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算知识点拨教学目标例题精讲分数的四则混合运算综合【解析】原式34567 4(5)5(6)6(7)7(8)8(9) 45678 =⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】412114 23167137713⨯+⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【解析】原式4124412347137713=⨯+⨯+⨯412123471313⎛⎫=⨯++⎪⎝⎭=16【答案】16【例 4】计算1488674 3914848149149149⨯+⨯+【考点】分数混合运算【难度】1星【题型】计算【解析】398624398624 148148148148()148 149149149149149149⨯+⨯+=⨯++=【答案】148【巩固】计算:1371 1391371138138⨯+⨯【考点】分数混合运算【难度】2星【题型】计算【关键词】小数报,初赛【解析】原式1371 (1381)137(1)138138 =+⨯+⨯+137137 137137138138=+++113722(1)138=⨯+⨯-12762138=-⨯6827569=【答案】68 27569【例 5】253749517191334455÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【关键词】清华附中【解析】观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式253749 501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭579501701901345=÷++÷++÷+3040503=+++123=【答案】123【巩固】131415314151223344÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆.原式131415 301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭345301401501234=÷++÷++÷+2030403=+++93=【答案】93【巩固】173829728191335577÷+÷+÷=.【考点】分数混合运算【难度】2星【题型】计算【解析】原式173829 702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭789701801901357=÷++÷++÷+3050703=+++153=【答案】153【巩固】计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。
小学奥数---四则运算巧算(含答案解析)
小学奥数---四则运算巧算一.选择题(共6小题)1.下列算式结果为500的是()A.5×99+1 B.100+25×4 C.88×4+37×4 D.100×0×52.173×173×173﹣162×162×162的计算结果为()A.926183 B.936185 C.926187 D.9261893.计算:912÷789×369÷456×789÷123=()A.1 B.2 C.3 D.64.计算:4×24﹢4=()A.96 B.100 C.90 D.865.算式826446281×11×11的计算结果是()A.9090909091 B.909090909091 C.10000000001 D.100000000001 6.计算199×199+1199()A.408000 B.40800 C.19999 D.999000二.填空题(共8小题)8.计算:19×75+23×25=.9.计算:1100÷25×4÷11=.10.计算:34×45﹣45×17=.10.计算:2016×2016﹣2015×2016=.11.计算:1987×2015﹣1986×2016=.13.2016×2014﹣2013×2015+2012×2015﹣2013×2016=.12.计算:19×17+29×17+48×25=.三.解答题(共6小题)15.454+999×999+545.16.计算:9999×2222+3333×3334.17.算式67×67﹣34×34+67+34的计算结果是.18.计算:2017×2071+2077×2017﹣2037×2017﹣2111×2017.19.2012×9+2012×8﹣2012×7=.20.625×4×3×16.小学奥数---四则运算巧算一.选择题(共6小题)1.下列算式结果为500的是(C)A.5×99+1 B.100+25×4 C.88×4+37×4 D.100×0×5【分析】根据乘法的分配律和整数四则混合运算的计算法则算出得数即可判断.【解答】解:A、5×99+1=5×(100﹣1)+1=5×100﹣5+1=500﹣4=496B、100+25×4=100﹣100=0C、88×4+37×4=(88+37)×4=125×4=500D、100×0×5=02.173×173×173﹣162×162×162的计算结果为(D)A.926183 B.936185 C.926187 D.926189【分析】选项四个数的尾数各不相同,直接计算各项尾数,3×3×3﹣2×2×2=27﹣8=19;可知,计算结果的尾数应该是9,因此只能选D.【解答】解:计算各项尾数,3×3×3﹣2×2×2=27﹣8=19,因此173×173×173﹣162×162×162的计算结果的尾数是27﹣8=19.因此应是926189.3.计算:912÷789×369÷456×789÷123=(D)A.1 B.2 C.3 D.6【解答】解:根据分析,原式=912÷789×369÷456×789÷123=(912×369×789)÷(789×456×123)==2×3 =6.4.计算:4×24﹢4=(B)A.96 B.100 C.90 D.86【分析】根据乘法分配律进行简算.【解答】解:4×24+4=4×(24+1)=4×25=100.5.算式826446281×11×11的计算结果是(D)A.9090909091 B.909090909091 C.10000000001 D.100000000001【分析】根据11乘法的特征“两边一拉,中间相加”可得到结果D.【解答】解:826446281×11×11=100000000001.6.计算199×199+1199( B )A.408000 B.40800 C.19999 D.999000【分析】把1199看作1000+199,运用乘法分配律计算,变为199×200+1000,把199看作200﹣1,再次运用乘法分配律计算,解决问题.【解答】解:199×199+1199=199×199+1000+199=199×(199+1)+1000=199×200+1000=(200﹣1)×200+1000=200×200﹣200+1000=40000﹣200+1000=40800.二.填空题(共8小题)8.计算:19×75+23×25=2000.【解答】解:19×75+23×25=19×3×25+23×25=57×25+23×25=25×(57+23)=25×80=20009.计算:1100÷25×4÷11=16.【分析】先算1100÷11÷25,得4,再算4×4【解答】解:1100÷25×4÷11=1100÷11÷25×4=100÷25×4=4×4=1610.计算:34×45﹣45×17=765.【分析】根据乘法的分配律简算即可.【解答】解:34×45﹣45×17=45×(34﹣17)=45×17=76511.计算:2016×2016﹣2015×2016=2016.【分析】加法左右两边的算式中都有相同的因数2016,可以根据乘法分配律简算.【解答】解:2016×2016﹣2015×2016=2016×(2016﹣2015)=2016×1=201612.计算:1987×2015﹣1986×2016=29.【分析】根据乘法的分配律简算即可.【解答】解:1987×2015﹣1986×2016=1987×(2016﹣1)﹣1986×2016=1987×2016﹣1987﹣1986×2016=(1987﹣1986)×2016﹣1987=2016﹣1987=29;13.2016×2014﹣2013×2015+2012×2015﹣2013×2016=1.【分析】根据乘法的分配律,提取公因数简算即可.【解答】解:2016×2014﹣2013×2015+2012×2015﹣2013×2016=2016×2014﹣2013×2016﹣2013×2015+2012×2015=2016×(2014﹣2013)﹣(2013﹣2012)×2015=2016×1﹣1×2015=2016﹣2015=114.计算:19×17+29×17+48×25=2016.【分析】根据乘法的分配律简算即可.【解答】解:19×17+29×17+48×25=17×(19+29)+48×25=17×48+48×25=48×(17+25)=48×42=2016三.解答题(共6小题)15.454+999×999+545.【分析】本题先用加法交换律,计算出454+545的运算结果,再运用乘法分配律简算即可.【解答】解:454+999×999+545,=(454+545)+999×999,=999+999×999,=999×(1+999),=999×1000,=999000.16.计算:9999×2222+3333×3334.【分析】把9999变成3333×3,再利用乘法的分配律计算.【解答】解:9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000 =33330000.17.算式67×67﹣34×34+67+34的计算结果是3434.【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=343418.计算:2017×2071+2077×2017﹣2037×2017﹣2111×2017.【分析】这道算式是四个乘积加减而成,每部分都有相同的因数2017,因此可以采用乘法分配律进行计算.【解答】解:2017×2071+2077×2017﹣2037×2017﹣2111×2017=2017×(2071+2077﹣2037﹣2111)=2017×0=019.2012×9+2012×8﹣2012×7=20120.【分析】通过观察,根据数字特点,此题可运用乘法分配律简算.【解答】解:2012×9+2012×8﹣2012×7=2012×(9+8﹣7)=2012×10=20120.20.625×4×3×16.【分析】根据乘法交换律和结合律进行简算.【解答】解:625×4×3×16=(125×5)×4×3×(8×2)=(125×8)×(5×4)×(3×2)=1000×20×6=20000×6=120000.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.。
小学奥数 分数四则混合运算综合 精选练习例题 含答案解析(附知识点拨及考点)
分数的四则混合运算综合教学目标分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1)分数的四则混合运算(2)分数与小数混合运算,分化小与小化分的选择(3)复杂分数的化简(4)繁分数的计算知识点拨分数与小数混合运算的技巧在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
分数混合运算 【例 1】 0.3÷0.8+0.2= 。
(结果写成分数形式)【考点】分数混合运算 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 310×54+15=38+15=2340。
【答案】2340【例 2】 计算:34567455667788945678⨯+⨯+⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算【解析】 原式345674(5)5(6)6(7)7(8)8(9)45678=⨯++⨯++⨯++⨯++⨯+ 453564675786897=⨯++⨯++⨯++⨯++⨯+245=【答案】245【例 3】 41211423167137713⨯+⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算【解析】 原式4124412347137713=⨯+⨯+⨯ 412123471313⎛⎫=⨯++ ⎪⎝⎭=16 【答案】16【例 4】 计算 14886743914848149149149⨯+⨯+ 【考点】分数混合运算 【难度】1星 【题型】计算【解析】 398624398624148148148148()148149149149149149149⨯+⨯+=⨯++= 【答案】148 【巩固】 计算:13711391371138138⨯+⨯ 【考点】分数混合运算 【难度】2星 【题型】计算【关键词】小数报,初赛【解析】 原式1371(1381)137(1)138138=+⨯+⨯+ 137137137137138138=+++ 113722(1)138=⨯+⨯- 12762138=-⨯ 6827569= 例题精讲【答案】6827569【例 5】 253749517191334455÷+÷+÷= . 【考点】分数混合运算 【难度】2星 【题型】计算 【关键词】清华附中【解析】 观察发现如果将2513分成50与213的和,那么50是除数53的分子的整数倍,213则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆. 原式253749501701901334455⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 579501701901345=÷++÷++÷+ 3040503=+++123=【答案】123【巩固】 131415314151223344÷+÷+÷= . 【考点】分数混合运算 【难度】2星 【题型】计算【解析】 观察发现如果将1312分成30与112的和,那么30是除数32的分子的整数倍,112则恰好与除数相等.原式中其它两个被除数也可以进行同样的分拆. 原式131415301401501223344⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 345301401501234=÷++÷++÷+ 2030403=+++93=【答案】93【巩固】 173829728191335577÷+÷+÷= . 【考点】分数混合运算 【难度】2星 【题型】计算【解析】 原式173829702801901335577⎛⎫⎛⎫⎛⎫=+÷++÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 789701801901357=÷++÷++÷+ 3050703=+++153=【答案】153【巩固】 计算:1130.42(4.3 1.8)26524⎡⎤⨯÷⨯-⨯=⎢⎥⎣⎦。
幼儿奥数之小数、分数四则运算中的巧算
幼儿奥数之小数、分数四则运算中的巧算一、小数四则运算小数指的是整数之后的数,它包含小数点和小数位。
幼儿在研究小数四则运算时,可以通过一些巧妙的方法来简化计算,提高计算速度和准确性。
1. 相同小数位的小数相加或相减当两个小数具有相同的小数位数时,可以直接将小数位对齐,然后按照整数的相加或相减规则进行计算。
最终的结果的小数位数与原小数的小数位数相同。
2. 小数与整数相加或相减小数与整数相加或相减时,可以将整数看作小数,将小数点后补足零,然后按照小数的加减法规则进行计算。
最终的结果的小数位数与原小数的小数位数相同。
3. 小数乘以整数小数乘以整数时,可以先将整数部分与小数部分分别相乘,再将结果相加。
最终的结果的小数位数与原小数的小数位数相同。
4. 小数除以整数小数除以整数时,可以先将小数的分子与整数相除,再将结果保留与原小数相同的小数位数。
二、分数四则运算分数是数的比,包含分子和分母,分子表示比较的部分,分母表示比较的基准。
幼儿在研究分数四则运算时,可以通过以下的巧算方法来简化计算。
1. 相同分母的分数相加或相减当两个分数的分母相同时,可以直接将分数的分子相加或相减,分母保持不变。
最终的结果为分子之和或差,分母不变。
2. 分数与整数相加或相减分数与整数相加或相减时,可以将整数看作分数,分母为1,然后按照分数的加减法规则进行计算。
最终的结果为分子之和或差,分母不变。
3. 分数乘以整数分数乘以整数时,可以将整数视为分子,分母为1,然后按照分数的乘法规则进行计算。
最终的结果为整数乘以分子,分母不变。
4. 分数除以整数分数除以整数时,可以将分数的分子与整数相除,分母保持不变。
最终的结果为分子除以整数,分母不变。
通过掌握这些巧算方法,幼儿可以在小数、分数四则运算中更加灵活和高效地进行计算,提升数学能力。
奥数专题——分数、小数四则运算中的巧算(一)(含答案)-
奥数专题一一分数、小数四则运算中的巧算(一)同学们好!今天我们重点和同学们研究分数、小数四则运算中的速算与巧算。
在整数 运算中有不少巧算的方法。
如,利用加法的交换律和结合律,乘法的交换律、结合律和分 配律,以及和、差、积、商变化的规律进行巧算,使计算简便。
这些简单规律和方法,同样适用于今天研究的内容, 下面我们共同研究儿例,请石老帅指导。
,‘38 257 例 1. 18- 0.6518 1 7137 13133 28 513解:原式18 -18 0.657 713 1320118 0.65 1731 1401997例 2•计算:199719971998 1997原式 (1997) 1997 19981997 1997 1997199719981 ,1997 1 11998 199711 11998例 3•计算 1997 199719972413 207 7 13 131998119971997 199719981 1997(1997 ) 19971998 1 1 1 1999 1 -1998 1998 1998 1999解:设□为x ,于是此题转化为解关于 x 的方程。
解关于x 的方程1 151—)2 24 53 2 1 (x 1 151—) 245 3丄观察比较例2、例3在解题技巧上有什么不同?例4. x8 x 8例5.5051551 x 3 505 15511x 24 66x 661124x 1441 [(47 □ 700)已知16.2 217]81,那么x 1 x 8 3 x 8 (第12届初赛题)原式转化为41 216.2 [(4 歹 700x) 1 ]811 2(4 700x) 1 81 16.27 7 1 2 1 (4 700x) 177 21 4700x71 700x 3 2x 0.005111 11 1例6.计算1993- 1992-1991- 1990-1 23 23 2 31 原式(1993 — 11992—) 1 (1991 - 11990 — ) (1? 12 32 32 311- 997 61 1163 — 6说说这个题的计算技巧。
小学奥数 计算题库 速算巧算 分数乘除法速算巧算.学生版
分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。
分数基本运算的常考题型有(1) 分数的四则混合运算(2)分数与小数混合运算,分化小与小化分的选择(3) 复杂分数的化简(4) 繁分数的计算分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
知识点拨教学目标分数乘除法速算巧算【例 1】 58的分母扩大到32,要使分数大小不变,分子应该为__________。
【巩固】 小虎是个粗心大意的孩子,在做一道除法算式时,把除数56看成了58来计算,算出的结果是120,这道算式的正确答案是__________ 。
【例 2】 将下列算式的计算结果写成带分数: 0.523659119⨯⨯【例 3】 计算330.245.841.38⨯⨯【巩固】 计算2 2.524231 1.055⨯⨯ 【例 4】 计算 1652585931102173333251223693⨯÷⨯÷⨯【例 5】 计算 448078333÷2193425909÷185********例题精讲【例 6】 计算: 54100 1.231615÷⨯÷⨯=_____【例 7】 计算 1997199719971998÷【巩固】 计算2007200720072008÷【例 8】 1997199719971998÷【巩固】 2009200920092010÷= .【巩固】 2356235623562357÷=【例 9】 计算890919120230303909091919191919191919+++个个【例 10】 一根铁丝,第一次剪去了全长的12,第二次剪去所剩铁丝的13,第三次剪去所剩铁丝的14, 第2008次剪去所剩铁丝的12009,这时量得所剩铁丝为1米,那么原来的铁丝长 米。
分数奥数速算巧算 - 计算结果
分数奥数速算巧算 - 计算结果简介分数奥数速算是一种通过简单的计算技巧快速得出分数运算结果的方法。
这种方法能够提高分数计算的效率和准确性,对于奥数竞赛和日常数学研究都非常有用。
本文主要介绍几种分数奥数速算的巧算方法,并给出相应的计算结果。
速算方法1. 分数加减法速算在分数加减法中,我们可以通过求出分数的通分来实现速算。
以下是一个例子:问题:计算 2/3 + 5/6 - 1/4 的结果。
2/3 + 5/6 - 1/4的结果。
解答:首先找到这三个分数的最小公倍数为12,然后按照通分的原则进行转换:2/3 = 8/12 = 8/125/6 = 10/12 = 10/121/4 = 3/12 = 3/12那么,原问题可以转换为:8/12 + 10/12 - 3/12 = (8 + 10 - 3)/12 = 15/12 = 1 1/4 = (8 + 10 - 3)/12 = 15/12 = 1 1/4因此,原问题的计算结果为 1 1/4。
1 1/4。
2. 分数乘法速算在分数乘法中,我们可以通过简化分数的乘法表达式来实现速算。
以下是一个例子:问题:计算 2/3 × 3/5 × 5/7 的结果。
2/3 × 3/5 × 5/7的结果。
解答:可以根据乘法交换律,按照任意顺序进行乘法运算。
我们选择将分母中的5和3相乘,并将分子中的2和7相乘,得到:(2 × 7)/(3 × 5) × (5/1) = 14/15 × 5/1 = 14/3 = 14/15 × 5/1 = 14/3因此,原问题的计算结果为 14/3。
14/3。
3. 分数除法速算在分数除法中,我们可以通过简化分数的除法表达式来实现速算。
以下是一个例子:问题:计算 3/4 ÷ (2/5) 的结果。
3/4 ÷ (2/5)的结果。
解答:可以根据除法的逆运算,转换为乘法运算。
最新小学奥数 分数的速算与巧算(含详解)
最新小学奥数 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
高中奥数之小数、小数四则运算中的巧算
高中奥数之小数、小数四则运算中的巧算简介本文介绍了在高中奥数中,如何利用巧算技巧来解决小数和小数四则运算的问题。
通过掌握这些技巧,学生可以更加高效地解决相关数学题目。
一、小数的简化在小数的运算中,我们经常需要对小数进行简化。
以下是一些常用的小数简化技巧:1.分离整数部分和小数部分:将小数部分单独提取出来,方便进行运算;2.化简小数:如果小数部分可以化简为最简形式,则可以简化计算步骤;3.使用科学计数法:对于过大或过小的小数,可以使用科学计数法来简化计算。
二、小数的四则运算小数的四则运算包括加法、减法、乘法和除法。
以下是一些在小数四则运算中常用的巧算技巧:1.对齐小数点:在进行小数加减运算时,需要将小数点对齐,便于计算;2.补齐位数:对于不足位数的小数,可以在末尾补零,使得两个小数位数相同,方便计算;3.提取整数部分:在进行小数除法运算时,可以先提取整数部分,再进行运算,再用余数进行下一步计算;4.移位运算:对于小数乘法的计算,可以通过移位运算来简化乘法步骤;5.分数化小数:在有理数的四则运算中,可以将分数化为小数进行计算,便于得到更精确的结果。
三、小数的相关注意事项在进行小数运算时,需要注意以下一些事项:1.精确位数:在结果要求精确到一定位数时,需要根据题目要求进行四舍五入,或按照给定的位数进行截断;2.单位转换:在涉及到单位转换的小数运算中,需要将不同单位统一转换成相同单位再进行计算;3.题目条件:在解决小数运算题目时,需要仔细阅读题目条件,理解问题的要求和限制。
结论掌握小数的巧算技巧是进行高中奥数的基础。
通过熟练掌握小数的简化和四则运算的技巧,学生可以更加高效地解决小数相关的数学问题。
同时,需要注意问题的条件和精确要求,确保计算结果的正确性。
常外奥数专题四则运算的巧算答案解析
第 15 讲 . 四则运算的巧算一.选择题(共12 小题)1.(2015?创新杯)计算: 912÷ 789×369÷456× 789÷123=()A.1B.2C.3D.6【剖析】能够将原式化简,化成分数的形式,而后再约分,不难求得结果.【解答】解:依据剖析,原式 =912÷789× 369÷456×789÷123=(912× 369×789)÷( 789×456×123)==2×3=6.故答案是: 6.【评论】本题考察了四则运算的巧算,打破点是:运用四则运算的巧算,不难求得原式结果.2.(2014?迎春杯)下边计算结果等于9 的是()A.3×3÷3+3 B.3÷3+3×3 C.3×3﹣3+3 D.3÷3+3÷3【剖析】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.据此解答即可.【解答】解: A、3×3÷3+3 =3+3=6;B、3÷3+3×3=1+9=10;C、3×3﹣3+3第 1页(共 19页)=9﹣3+3=9;D、3÷3+3÷3=1+1=2;应选: C.【评论】本题考察了整数的四则混淆运算,属于基础题,注意不要错用了运算定律.3.(2014?迎春杯)算式 826446281× 11×11 的计算结果是()A.9090909091 B.909090909091 C.D.【剖析】依据 11 乘法的特色“两边一拉,中间相加”可获得结果 D.【解答】解: 826446281×11×.应选: D.【评论】本题考察了奥数中的巧算问题,要点是记着11 乘法的特色,这样能快速解决复杂的计算.4.(2014?迎春杯)计算: 2014÷( 2× 2+2×3+3×3)=()A.53 B.56C.103 D.106【剖析】先算括号里的乘法,再算加法,最后算括号外面的除法.【解答】解: 2014÷( 2×2+2× 3+3×3)=2014÷( 4+6+9)=2014÷19=106应选: D.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.能简算的要简算.第 2页(共 19页)5.(2014?迎春杯)以下算式结果为500 的是()A.5×99+1 B.100+25×4 C.88×4+37×4D.100×0×5【剖析】依据乘法的分派律和整数四则混淆运算的计算法例算出得数即可判断.【解答】解: A、5×99+1=5×( 100﹣ 1)+1=5×100﹣5+1=500﹣4=496B、100+25× 4=100﹣100=0C、88×4+37×4=(88+37)× 4=125×4=500D、100× 0× 5=0应选: C.【评论】本题联合详细算式考察了乘法分派律的理解和对整数四则混淆运算的计算法例掌握.6.(2014?迎春杯)在算式 2014×(﹣)的计算结果是()A.34 B.68C.144 D.72【剖析】依据乘法的分派律简算即可.【解答】解: 2014×(﹣)=2014×﹣×2014=106﹣38=68第 3页(共 19页)应选: B.【评论】本题主要考察的是乘法分派律在简算中的灵巧应用.7.(2013?走美杯) 183× 279×361﹣182× 278×360 的计算结果是()A.217017 B.207217 C.207216 D.217016【剖析】把 361 看作 360+1,原式变为 =(182+1)×(278+1)×(360+1)﹣182×278×360,而后把括号睁开,经过互相抵消,把剩下的部分作进一步计算,得出结果.【解答】解: 183×279× 361﹣182×278× 360=(182+1)×( 278+1)×( 360+1)﹣ 182×278×360=182×( 278+1)×( 360+1)﹣ 182×278×360+279×361=(182× 278+182)×( 360+1)﹣ 182×278× 360+279× 361=182×278× 360+182× 278+182×360+182﹣182× 278×360+279×361=182×278+182×360+182+279×361=182×( 278+360+1)+279× 361=182×278+182×361+279×361=50596+(182+279)× 361=50596+461×361=50596+166421=217017.应选: A【评论】经过数字拆分,运用运算技巧或运算定律,进行简算.8.(2013?华罗庚金杯)×﹣×2015.75=()A.5B.6C.7D.8【剖析】把 2012.25 看作 2010.25+2 , 2015.75 看作 2013.75+2 ,原式变为(2010.25+2)×﹣×( 2013.75+2),进一步计算为 2×﹣×2,再运用乘法分派律简算.【解答】解:×﹣×,第 4页(共 19页)=(2010.25+2)×﹣×( 2013.75+2),× 2013.75+2×﹣×﹣×2,=2×﹣×2,=(﹣)× 2,×2,=7;应选: C.【评论】达成本题,注意剖析数据,经过对数字拆分,运用运算定律,灵巧简算.9.(2012?华罗庚金杯)计算:0[.8()× 24+6.6]﹣7.6=()A.30 B.40 C.50D.60【剖析】先算小括号内的,再算中括号内的乘法,而后算中括号内的加法,最后算括号外的除法和减法.【解答】解: [ ()× 24+6.6]﹣=[ ()× 24+6.6] ﹣=[ 1× 24+6.6]﹣﹣×﹣﹣=40.应选: B.【评论】本题考察了分数的四则混淆运算,注意运算次序和运算法例.10.( 2007?华罗庚金杯)算式等于()A.1020B.204 C. 273 D.747【剖析】把带分数化成小数,先算乘法、再算加法.【解答】解: 2××20,第 5页(共 19页)××,,=204.故应选: B.【评论】既有加减、又有乘除法,先算乘除法、再算加减.11.( 2007?走美杯) 173×173× 173﹣162×162× 162 的计算结果为()A.926183 B.936185 C.926187 D.926189【剖析】选项四个数的尾数各不同样,直接计算各项尾数, 3×3×3﹣2×2×2=27﹣8=19;可知,计算结果的尾数应当是 9,所以只好选 D.【解答】解:计算各项尾数, 3× 3× 3﹣ 2×2× 2=27﹣8=19,所以 173×173× 173﹣162×162×162 的计算结果的尾数是 27﹣8=19.所以应是 926189.应选: D.【评论】本题直接计算,计算量很大,并且简单算错.考虑到选项中各项尾数均不同样,所以考虑使用尾数法.12.( 2006?迎春杯)假如 347×81+21×925+472×19 的计算结果等于 A,那么,A 的各位数字之和等于()A.12 B.15 C.16D.27【剖析】本题可选据式中数字的特色将式中数字分解,而后再据分派律进行巧算:347× 81+21×925+472× 19=347×81+21×( 800+125) +(347+125)× 19,得出积以后就能求出 A 的各位数字之和是多少.【解答】解: 347×81+21×925+472×19=347×81+21×( 800+125) +(347+125)× 19;=347×81+21×800+21×125+347×19+125×19;=347×( 81+19)+21× 800+125×( 21+19);=34700+16800+5000;=56500;所以 A 的各位数字之和等于: 5+6+5=16;第 6页(共 19页)应选: C.【评论】达成本题的关健是发现式中数据的内在联系后进行分解巧算.二.填空题(共28 小题)13.( 2017?华罗庚金杯)计算:(888+777)÷( 666+555+444) = 1.【剖析】先提取公因数 111,而后再依据乘法的联合律简算即可.【解答】解:(888+777)÷( 666+555+444)=111×( 8+7)÷[111×( 6+5+4)]=111×15÷111÷15=(111÷ 111)×( 15÷15)=1故答案为: 1.【评论】达成本题要注意剖析式中数据,运用适合的简易方法计算.14.( 2017?希望杯)计算: 19× 75+23×25= 2000.【剖析】将 75 拆分红 3×25,而后利用乘法的分派律,把后边的23 加在一同,恰好是 80×25【解答】解: 19×75+23×25=19× 3× 25+23×25=57× 25+23×25=25×( 57+23)=25× 80=2000故答案是: 2000【评论】本题考察了四则运算的巧算,本题打破点是:将 75 拆分红 3× 25,而后利用乘法的分派律求出答案15.( 2017?希望杯)计算: 1100÷25× 4÷ 11= 16.【剖析】先算 1100÷11÷25,得 4,再算 4×4第 7页(共 19页)【解答】解: 1100÷25× 4÷ 11=1100÷11÷ 25×4=100÷25×4=4×4=16故答案是: 16【评论】本题考察了乘除的混淆运算,本题打破点:互换乘除数的地点,即碰巧算出结果16.( 2017?走美杯) 17× 19﹣1001÷77= 310.【剖析】能够将 1001 分解质因数,再运算,最后得出原式的结果.【解答】解:依据剖析,原式 =17× 19﹣1001÷77=17×( 20﹣ 1)﹣ 7× 11×13÷77=17× 20﹣17﹣77×13÷77=340﹣17﹣13=340﹣( 17+13)=340﹣30=310.故答案是: 310.【评论】本题考察了四则运算的巧算,打破点是:分解质因数,四则运算巧算,最后求得结果.17.( 2017?中环杯)计算: 325×337+650×330+975= 325000.【剖析】把原式变为 325× 337+325×( 2× 330)+325×3,再依据乘法的分派律简算即可.【解答】解: 325×337+650×330+975=325×337+325×( 2× 330)+325× 3=325×( 337+2×330+3)=325×1000第 8页(共 19页)=325000故答案为: 325000.【评论】本题利用详细的算式考察了学生关于乘法分派律的理解.18.( 2017?创新杯)能简算的要简算.×49+50××( 1÷﹣÷1)+ 24×(+ +)9999×2222+3333× 3334.【剖析】(1)依据乘法的分派律简算.(2)先算括号里面的,再算括号外面的.(3)依据乘法的分派律简算.(4)先把算式变形为 3333×(3×2222)+3333× 3334,再依据乘法的分派律简算.【解答】解:(1)×49+50××( 1+49+50)× 100=351(2)×(1÷﹣÷1)+=×(﹣)+=× +=+=(3)24×(+ +)第 9页(共 19页)=24×+24×+24×=12+2+1=15(4) 9999× 2222+3333×3334=3333×( 3×2222)+3333×3334 =3333×( 3×2222+3334)=3333×( 6666+3334)=3333×10000=33330000【评论】达成本题要注意剖析式中数据,运用适合的简易方法计算.19.(2017?希望杯)计算:(2.016+201)×﹣×(20.17+2010)=.【剖析】先察看一下,能够把201.7 分红×10,与前方括号里的数相乘后,就能够获得和后边括号里两个位数同样的数的和,这样就能够抵消两项,结果不难算出.【解答】解:原式 =( 20.16+2010)×﹣×﹣×2010×20.17+2010×﹣×﹣×2010×﹣× 20.17+2010×(﹣)=2010×故答案为:【评论】本题考察了四则运算的巧算,打破点在于:把 201.7 分红×10,再进行其余运算,减少运输的过程20.( 2016?育苗杯)计算×××﹣×2= .【剖析】依据数字特色,把15.4 看作×2,运用乘法分派律简算.【解答】解:×××﹣×2×××﹣×2×2第 10页(共 19页)=(×﹣ 4)×=(﹣ 4)×=6×.故答案为:.【评论】本题主要考察学生可否依据数字特色,经过转变的数学思想,奇妙灵巧地运用运算定律,进行简算.21.( 2016?走美杯)计算: 109×92479+6×109× 15413= 20160313.【剖析】先依据依据乘法的分派律和联合律变形为109× 92479+109×92478,然后依据乘法的分派律简算即可.【解答】解: 109×92479+6×109× 15413=109×92479+109× 92478=109×( 92479+92478)=109×184957=20160313故答案为: 20160313.【评论】本题要点考察了学生对运算定律的掌握与运用状况,要联合数据的特色,灵巧选择简算方法.22.( 2016?华罗庚金杯)计算: 2016× 2016﹣ 2015× 2016= 2016.【剖析】加法左右两边的算式中都有同样的因数2016,能够依据乘法分派律简算.【解答】解: 2016×2016﹣2015×2016=2016×( 2016﹣2015)=2016×1=2016故答案为: 2016.【评论】乘法分派律是最常用的简易运算的方法,要娴熟掌握,灵巧运用.第 11页(共 19页)23.( 2016?走美杯)( 2016÷ 7+9)÷ 11= 27.【剖析】先把括号里的数算出来,再算最后的结果【解答】解:(2016÷ 7+9)÷ 11=(288+9)÷ 11=27故答案是: 27【评论】本题考察了四则运算的巧算,按四则运算的运算法例即可算出答案24.( 2016?迎春杯)计算: 12× 25+16×15,所得结果是540.【剖析】先算乘法,后算加法,据此解答即可.【解答】解: 12×25+16×15=300+240=540.故答案为: 540.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的.25.( 2016?迎春杯)计算: 12+34× 15﹣78,所得的结果是444.【剖析】先算乘法,再按从左到右的运算次序计算即可.【解答】解: 12+34× 15﹣78=12+510﹣78=522﹣78=444故答案为: 444.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的.26.( 2016?迎春杯)计算:( 18×23﹣24× 17)÷ 3+5,所得结果是7.第 12页(共 19页)【剖析】先把算式变形为( 6×3×23﹣ 6× 4× 17)÷ 3+5,而后依据乘法的分派律简算即可.【解答】解:(18×23﹣24× 17)÷ 3+5=(6×3×23﹣6×4× 17)÷ 3+5=6×( 3×23﹣4×17)÷ 3+5=6×( 69﹣68)÷ 3+5=6÷3+5=7故答案为: 7.【评论】本题要点考察了学生对运算定律的掌握与运用状况,要联合数据的特色,灵巧选择简算方法.27.( 2016?迎春杯)算式 210×6﹣52×5 的计算结果是1000.【剖析】先算乘法,再算减法;据此解答即可.【解答】解: 210×6﹣52×5=1260﹣260=1000故答案为: 1000.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.28.( 2016?走美杯) 20× 16+1﹣ 10= 311.【剖析】按从左到右的运算次序计算即可.【解答】解: 20×16+1﹣ 10=320+1﹣ 10=321﹣10=311故答案为: 311.第 13页(共 19页)【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.能简算的要简算.29.(2016?希望杯)2016×2014﹣2013×2015+2012×2015﹣2013×2016= 1.【剖析】依据乘法的分派律,提取公因数简算即可.【解答】解: 2016×2014﹣2013×2015+2012×2015﹣2013×2016=2016×2014﹣2013×2016﹣ 2013× 2015+2012×2015=2016×( 2014﹣2013)﹣( 2013﹣ 2012)× 2015=2016×1﹣1×2015=2016﹣2015=1故答案为: 1.【评论】本题考察了学生对整数四则混淆运题目进行计算的能力.达成本题要注意剖析式中数据,运用适合的简易方法计算.30.( 2016?迎春杯)算式( 11× 24﹣23×9)÷ 3+3 的计算结果是22.【剖析】依据乘法分派律把括号内的两个乘法算式先同时除以3,再进一步求解.【解答】解:(11×24﹣23× 9)÷ 3+3=11×( 24÷ 3)﹣ 23×( 9÷ 3)+3=11× 8﹣ 23×3+3=88﹣ 69+3=22故答案为: 22.【评论】乘法分派律是最常用的简易运算的方法,要娴熟掌握,灵巧运用.31.( 2016?华罗庚金杯)计算: 1987× 2015﹣ 1986× 2016= 29.【剖析】依据乘法的分派律简算即可.【解答】解: 1987×2015﹣1986×2016第 14页(共 19页)=1987×( 2016﹣1)﹣ 1986×2016=1987×2016﹣1987﹣1986× 2016=(1987﹣1986)× 2016﹣1987=2016﹣1987=29;故答案为: 29【评论】达成本题要注意剖析式中数据,运用适合的简易方法计算.32.( 2016?华罗庚金杯)计算: 7﹣(2.4+1×4)÷ 1= 2.【剖析】先算小括号里面的乘法,再算小括号里面的加法,而后算括号外的除法,最后算括号外的减法.【解答】解: 7﹣( 2.4+1×4)÷ 1=7﹣(2.4+)÷ 1=7﹣÷1=7﹣=2故答案为: 2.【评论】本题考察了分数的四则混淆运算,计算时先理清楚运算次序,依据运算次序逐渐求解即可.33.( 2016?华罗庚金杯)计算:(98×76﹣ 679×8)÷( 24×6+25×25×3﹣ 3)= 1 .【剖析】有括号,所以先算括号里面的,再算括号外面的,据此解答即可.【解答】解:(98×76﹣679×8)÷( 24× 6+25× 25×3﹣3)=(7448﹣5432)÷( 144+1875﹣3)=2016÷2016=1;故答案为: 1.第 15页(共 19页)【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.34.( 2016?中环杯)计算: 45× 21+17×63= 2016.【剖析】把 17× 63 变形为 17×21×3=51×21,再依据乘法的分派律简算即可.【解答】解: 45×21+17×63=45× 21+17×21×3=45× 21+51×21=21×( 45+51)=21× 96=21×( 100﹣4)=21× 100﹣21× 4=2100﹣84=2016故答案为: 2016.【评论】本题要点考察了学生对运算定律的掌握与运用状况,要联合数据的特色,灵巧选择简算方法.35.( 2016?中环杯)计算: 23× 10﹣18×7+8÷2= 108.【剖析】依据运算次序,先算乘除,后算加减.【解答】解: 23×10﹣18×7+8÷2=230﹣126+4=108故答案为: 108.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.能简算的要简算.第 16页(共 19页)36.( 2015?华罗庚金杯)计算: 3752÷( 39× 2)+5030÷( 39×10) = 61.【剖析】依据除法的性质,原式=3752÷ 2÷ 39+5030÷ 10÷39=1876÷ 39+503÷39=( 1876+503)÷ 39=2379÷39=61,据此解答即可.【解答】解: 3752÷( 39×2)+5030÷( 39× 10)=3752÷2÷39+5030÷10÷39=1876÷39+503÷39=(1876+503)÷ 39=2379÷39=61;故答案为: 61.【评论】本题考察的目的是理解掌握整数四则混淆运算的次序以及它们的计算法例,依据式中数据的特色灵巧进行简算.37.( 2015?奥林匹克)[11 +(2﹣)× 1] ÷3 = 4.【剖析】先算小括号里的减法,再算中括号里的乘法和加法,最后算中括号外面的除法.【解答】解:[11 +( 2 ﹣)×1 ] ÷3=[ 11 + ×1 ]÷3=[ 11 +2] ÷3=13 ÷3=4;故答案为: 4.【评论】本题主要考察了分数、小数的四则混淆运算的次序.38.( 2015?走美杯)计算: 2×( 999999+5×379×4789)= 20150308.【剖析】先算括号里的乘法,把 999999 看作 1000000﹣ 1 简算,最后算括号外面的乘法.【解答】解: 2×( 999999+5×379×4789)第 17页(共 19页)=2×( 999999+9075155)=2×( 1000000+9075155﹣1)=2×10075154=20150308故答案为: 20150308.【评论】计算四则混淆运算时,要依据运算次序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,假如既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.能简算的要简算.39.( 2015?中环杯)计算:()×()﹣()2=.【剖析】先提取公因数(),而后依据乘法的分派律简算.【解答】解:()×()﹣()2 =(﹣﹣)×()×()×故答案为:.【评论】达成本题要注意剖析式中数据,运用适合的简易方法计算.40.( 2015?华罗庚金杯)计算:( 1000+15+314)×( 201+360+110) +(1000﹣201﹣ 360﹣110)×( 15+314)= 1000000.【剖析】第一依据乘法分派律,把(1000+15+314)×( 201+360+110)化成 1000 ×( 201+360+110)+( 15+314)×( 201+360+110),而后再应用乘法分派律,求出算式( 15+314)×(201+360+110)+(1000﹣ 201﹣360﹣110)×(15+314)的值是多少;最后用所求的结果和1000×(201+360+110)乞降,求出算式的值是多少即可.【解答】解:(1000+15+314)×( 201+360+110)+( 1000﹣ 201﹣360﹣110)×(15+314)第 18页(共 19页)=1000×( 201+360+110) +(15+314)×( 201+360+110)) +(1000﹣ 201﹣ 360 ﹣110)×( 15+314)=1000×( 201+360+110) +(15+314)× [ (201+360+110)) +(1000﹣201﹣ 360 ﹣110)]=1000×671+329×1000=1000×( 671+329)=1000×1000=1000000故答案为: 1000000.【评论】本题主要考察了四则混淆运算中的巧算问题,要娴熟掌握,注意运算顺序,注意加法运算定律、乘法分派律的应用.第 19页(共 19页)。
三年级奥数小学奥数分数加减法中的巧算(含答案)
分数加减法中的巧算(2)同学们!在上一讲中,我们一起研究了一些分数加减法中的巧算方法,在这一讲中,我们继续来研究相关知识。
(一)阅读思考:1. 什么是拆分?拆分就是把一个分数写成几个分数的和或差的形式。
例如:16115110=+161213=- 学会了拆分,有时就可以不通分,也能较简便地解决上面的问题。
2. 观察思考161231213=⨯=-1121341314=⨯=- 1201451415=⨯=-1301561516=⨯=- 1421671617=⨯=-21553351315=-⨯=- 42173371317=-⨯=- 当一个分数,分母是两个数的乘积,分子是这两个数的差时,就可以拆成这两个数分别作分母,1作分子的分数的差。
也就是d n n d n n dn d ⨯+=-+≠≠()1100(,) 例1. 计算:113135157119931995119951997⨯+⨯+⨯++⨯+⨯… 因为前面讲过,d n n d n n d ⨯+=-+()11 当n d ==12,时,有2131113⨯=- 当n d ==32,时,有2351315⨯=-当n d ==52,时,有2571517⨯=- …… 当n d ==19932,时,有2199319951199311995⨯=- 当n d ==19952,时,有2199519971199511997⨯=- 所以:113135157119931995119951997⨯+⨯+⨯++⨯+⨯… =-+-+11131315…11993119951199511997-+- =-1111997 =199619976. 求下面所有分数的和:11122212132333231314243444342414;,,;,,,,;,,,,,,;…; 1199121991198919911990199119911991199019911989199111991,,…,,,,,,…,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…
奥数专题——分数、小数四则运算中的巧算(一)
同学们好!今天我们重点和同学们研究分数、小数四则运算中的速算与巧算。
在整数运算中有不少巧算的方法。
如,利用加法的交换律和结合律,乘法的交换律、结合律和分配律,以及和、差、积、商变化的规律进行巧算,使计算简便。
这些简单规律和方法,同样适用于今天研究的内容,下面我们共同研究几例,请石老师指导。
例1. 183706581327185131713
⨯+⨯-⨯+÷. 解:原式=⨯
-⨯+⨯+⨯183727180658135131320. =⨯-+⨯+183727065813513
().() =⨯
+⨯=+=1817
06512471320
331140.
]
例2. 计算:1997
19971998
1997÷ 原式=+÷()1997199719981997
=÷+÷=+⨯=1997199719971998
19971199711998119971
111998
例3. 计算19971997
19971998
÷ 原式转化为=÷11997199719981997 =
+÷=+==1
199719971998
19971111998119991998
19981999() 观察比较例2、例3在解题技巧上有什么不同
…
例4. 解关于x 的方程
x x x x x x x x 81315112245312
81315112245312813
505155813
505155+⨯-=⨯++⨯-=⨯++-=+=+().() (1124)
66661124
144x x x ==÷
=
例5. 已知162417700127
81.[()].⨯-⨯÷=□,那么□=________。
(第12届初赛题) 解:设□为x ,于是此题转化为解关于x 的方程。
162417700127
81417700127
8116241770012712
.[()].()..()⨯-÷=-÷=÷-÷=x x x (
417700914
700312
0005
-===x x x .
例6. 计算1993
1219921319911219901311213-+-++- 原式=-+-++-()()()19931219921319911219901311213
=⨯=116997116316
说说这个题的计算技巧。
例7. 计算:
96891993110324251993
.⨯+⨯⨯ 、 原式=⨯
+⨯9689199324251103
1993. =⨯
+⨯=⨯+⨯9689199309611031993096890199309611031993....
=⨯+=⨯=096890199311031993
0961096
.(
)..
二. 尝试体验,合作交流
下面是杨迪和韩军合作完成的,你能做出正确计算吗
计算:8
16315102251759
3351232363293⨯÷⨯÷⨯ 这道题的特点是:分子、分母又含有分数,我们把这样的分数称之为繁分数,较长的分数线称之为主分数线。
!
这道繁分数计算题中只含有乘除法运算,并且分子和分母都含有分数,在计算中需要注意的是不必先分别算出分子和分母各是多少,而是采用整体思考,先约分再计算的方法。
这样可以使计算简便。
原式=⨯⨯⨯⨯⨯←264315102172559
3351223633293
这一步做了怎样的变换。
=⨯⨯⨯⨯⨯÷⨯⨯⨯⨯←2645175931102253323632512393
根据分数与除法关系变换
=⨯/⨯⨯⨯⨯⨯⨯⨯/⨯⨯←264331511715913111023425551232393313312361321转化为乘法约分4
=
⨯⨯=323
25935
[答题时间:30分钟]
)
三. 认真观察,独立完成。
1. 计算:99
99100
999999⨯+. 2. 计算:[(.)](.)65233121815
719510-÷-⨯+=□ 3. 计算:()6117665811121995131133131741221
+÷++ 4. 计算:144855183661533555412
⨯÷-+⨯+-(...)(.) 5. 计算:()()()()()112113114115111998
-⨯+⨯-⨯+⨯⨯- 6. 计算:11102105455
54021415⨯⨯⨯⨯⨯...
@
【试题答案】
三. 认真观察,独立完成。
1. 计算:99
99100
999999⨯+.=9999 2. 计算:[(.)](.)65233121815
719510-÷-⨯+=□ □=3120
3. 计算:()6117665811121995131133131741221
+÷++=133 4. 计算:144855183661533555412
⨯÷-+⨯+-(...)(.)=10 5. 计算:()()()()()112113114115111998-⨯+⨯-⨯+⨯⨯- =12
6. 计算:1110210545554021415⨯⨯⨯⨯⨯...=184。