八年级数学上册:平面内点的坐标第1课时平面直角坐标系及点的坐标教学课件 沪科版
沪科版数学八年级上册全册教案及单元知识点总结
【知识与技能】
在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系.
【过程与方法】
经历图形在坐标系中的平移过程,培养学生形象思维能力和数形结合意识.
【情感与态度】
调动学生学习的主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值.
【教学重点】
重点是探究点或图形的平移引起的坐标变化的规律,另一个是研究图形上的点的坐标的某种变化引起的图形的平移变换.
选取直角坐标系的方法很多,在让学生充分交流的基础上,引导学生选择最优方案,那就是:选学校所在位置为原点,分别取正东、正北方向为x轴、y轴正方向建立直角坐标系,并取比例尺1:10000(图中1cm相当于实际中10000cm即100m).依题目所给的已知条件,取得小刚家的位置是(150,200),类似地,小强和小敏家的位置分别是(-150,350)和(300,-175).
【教学说明】将上节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
二、范例学习,理解新知
例1在平面直角坐标系中描出下列各组点,并将各组内的点用线段顺次连接起来,说说你得到了什么图形,并计算它们的面积.
(1)A(5,2),B(2,2),C(2,-2).
(2)A(-1,2),B(-2,-1),C(2,-1),D(3,2).
【解】(1)得到的是一个直角三角形,如图①,它的面积是 ×3×4=6.
(2)得到的是一个平行四边形,如图②,它的面积是4×3=12.
【教学说明】教师给出规范解答步骤,学生模仿,便于今后在解决数学问题时有章可循.
例2如图(1),正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出四边形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.
2022年沪科版八年级上册数学全册教案及教学反思
2022年沪科版八年级上册数学全册教案及教学反思第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等.2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标.已知点的坐标,能在平面直角坐标系中描出点.3.能在方格纸中建立适当的平面直角坐标系来描述点的位置.【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用.2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置.【情感、态度与价值观】重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点.【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系.教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说生甲:我在第3排第5个座位.生乙:我在第4行第7列.师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来.二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢生:3排5号.师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的.谁来说说我们应该怎样表示一个物体的位置呢生:用一个有序的实数对来表示.师:对.我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢生:可以.教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合的数轴.水平的数轴叫做某轴或横轴,取向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点.这样就构成了平面直角坐标系,这个平面叫做坐标平面.师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了.现在请大家自己动手画一个平面直角坐标系.学生操作,教师巡视.教师指正学生易犯的错误.教师边操作边讲解:如图,由点P分别向某轴和y轴作垂线,垂足M在某轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标.在某轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向某轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0).教师多媒体出示:师:如图,请同学们写出A、B、C、D这四点的坐标.生甲:A点的坐标是(-5,4).生乙:B点的坐标是(-3,-2).生丙:C点的坐标是(4,0).生丁:D点的坐标是(0,-6).师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,-2),怎样在平面直角坐标系中找到这个点呢教师边操作边讲解:在某轴上找出横坐标是3的点,过这一点向某轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是-2的点,过这一点向y轴作垂线,纵坐标是-2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为-2,所以这就是坐标为(3,-2)的点.下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,-4),B(0,5),C(-2,-3),D(-5,6)这几个点.学生动手作图,教师巡视指导.三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从某轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限.注意:坐标轴不属于任何一个象限.在同一象限内的点,它们的横坐标的符号一样吗纵坐标的符号一样吗生:都一样.师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+.你能说出其他象限内点的坐标的符号吗生:能.第二象限内的点的坐标的符号为(-,+),第三象限内的点的坐标的符号为(-,-),第四象限内的点的坐标的符号为(+,-).师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号.同样的,我们由点的坐标也能知道它所在的象限.一点的坐标的符号为(-,+),你能判断这点是在哪个象限吗生:能,在第二象限.四、练习新知师:现在我给出几个点,你们判断一下它们分别在哪个象限.教师写出四个点的坐标:A(-5,-4),B(3,-1),C(0,4),D(5,0).生甲:A点在第三象限.生乙:B点在第四象限.生丙:C点不属于任何一个象限,它在y轴上.生丁:D点不属于任何一个象限,它在某轴上.师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点.学生作图,教师巡视,并予以指导.五、课堂小结师:本节课你学到了哪些新的知识生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征.教师补充完善.教学反思第2课时平面上点的坐标(二)教学目标【知识与技能】进一步学习和应用平面直角坐标系,认识坐标系中的图形.【过程与方法】通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力.【情感、态度与价值观】培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法.重点难点【重点】理解平面上的点连接成的图形,计算围成的图形的面积.【难点】不规则图形面积的求法.教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来.下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,-3)这三个点.学生作图.教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形生甲:三角形.生乙:直角三角形.师:你能计算出它的面积吗生:能.教师挑一名学生:你是怎样算的呢生:AB的长是5-2=3,BC的长是1-(-3)=4,所以三角形ABC的面积是某3某4=6.师:很好!教师边操作边讲解:大家再描出四个点:A(-1,2),B(-2,-1),C(2,-1),D(3,2),并将它们依次连接起来看看形成的是什么图形学生完成操作后回答:平行四边形.师:你能计算它的面积吗生:能.教师挑一名学生:你是怎么计算的呢生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4某3=12.师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:教师多媒体出示下图:师:如果我们取某轴正半轴上的点为起始点,按逆时针顺序,你能说出这个图形是由哪些点顺次连接成的吗生:能.(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)……师:很好!你怎样向另一个同学描述这样一个八角星,让他画出来呢生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),……,然后把它们顺次连接成一个封闭的图形.三、练习新知教师找一名学生板演,其余学生在下面做,然后集体订正得到:由图可知,△ABC的面积S=某5某3=7.5.四、课堂小结师:我们今天学习了哪些新知识有什么收获生:我们今天学了由点连接成的图形,求封闭图形的面积.教师补充完善.教学反思本节课开始时我给出三点的坐标,让学生自己建立平面直角坐标系,并且在其中描出这些点,既复习了上节课的内容,又引出了本节课所要讲的知识.在画出三角形和平行四边形后,我引导学生去利用网格计算封闭图形的面积.通过八角星的例子引导学生自己去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.11.2图形在坐标系中的平移教学目标【知识与技能】研究在同一坐标系中,图形的平移与点的坐标变化之间的关系,发展学生的数形结合思想和意识.【过程与方法】经历图形的平移过程,探究图形的平移与点的坐标变化之间的关系.【情感、态度与价值观】让学生体验探究图形的平移与坐标变化之间的关系,感受数学与图形的平移、物体的运动等有实际意义的事情之间的关联,体会数学在现实生活中的用途.重点难点【重点】经历图形平移和坐标变化的过程,发展学生的数形结合思想和意识.【难点】归纳出图形平移与坐标变化之间的关系.教学过程一、创设情境,导入新知师:在上一节课,我们把平面直角坐标系中的点连接成了封闭的图形,现在已知A(-2,4),B(-4,3),C(1,1),用线段把这三点连接成一个封闭图形,是什么形状的图形生:三角形.师:对.这节课我们把这个图形在同一坐标系中平移,探究平移后的顶点坐标与原顶点坐标之间的关系.教师板书课题.二、合作探究,获取新知教师边操作边讲解:我们把这个三角形在平面直角坐标系中向右平移2个单位,看看得到的图形与原图形的顶点坐标之间会有什么关系.生:横坐标增加了2,纵坐标不变.师:对.若是向左平移2个单位呢坐标会有什么变化生:横坐标减2,纵坐标不变.师:很好!若把这个三角形向上平移3个单位,这个三角形的顶点坐标又有什么改变生:横坐标不变,纵坐标加3.师:对.向下平移3个单位呢生:横坐标不变,纵坐标减3.师:同学们回答得很好!已知一个图形的顶点坐标和它发生的位移,即它移动的方向和距离,我们根据刚才得出的结论,可以写出它位移后的顶点的坐标,画出它位移后的图形.如果已知位移前的图形和位移后的图形,你能写出它的位移过程吗教师边操作边讲解:已知平移前的三角形三个顶点的坐标分别是(-3,4),(-2,7),(1,2),平移后顶点的坐标是(0,2),(1,5),(4,0),请同学们写出它平移的过程.教师找一名学生板演,其余同学在下面写.师:我们可以分别看横、纵坐标的变化,横坐标都增加了3,所以在沿某轴方向上发生了怎样的位移生:向右平移了3个单位.师:对,你们观察一下纵坐标的变化,说一说它在沿y轴方向上发生了怎样的位移生:纵坐标减少了2,向下平移了2个单位.师:对.所以我们得出它位移的过程是先向右平移3个单位再向下平移2个单位,或者是先向下平移2个单位再向右平移3个单位.三、例题讲解【例】如图,将△ABC先向右平移6个单位,再向下平移2个单位得到△A1B1C1.写出各顶点变动前后的坐标.解:用箭头代表平移,则有:A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).教师多媒体出示:点(某,y)向平移a(a>0)个单位平移后的坐标为师:任意一点(某,y)向某一个方向平移后点的坐标会是怎样的呢请同学们思考以上四个小题.学生思考交流后,得到结论:点(某,y)向左平移a(a>0)个单位平移后的坐标为(某-a,y);点(某,y)向右平移a(a>0)个单位平移后的坐标为(某+a,y);点(某,y)向上平移a(a>0)个单位平移后的坐标为(某,y+a);点(某,y)向下平移a(a>0)个单位平移后的坐标为(某,y-a).四、练习新知师:我们现在来做一道题目,练习一下.教师多媒体出示:已知三角形ABC,它的三个顶点A、B、C的坐标分别为(-5,3),(-2,4),(0,2),它平移后的三角形为△A'B'C',A'点的坐标是(3,-1),求B'点和C'点的坐标.教师找一名学生板演,其他同学在下面做,然后集体订正得到:B'点的坐标为(6,0),C'的坐标为(8,-2).五、课堂小结师:你今天学习了哪些新知识有什么收获生:学习了图形的平移和位移变化之间的关系.师:你还有哪些疑问学生提问,教师解答.教学反思图形由静到动,静时我们用顶点坐标来描述它,动后我们也可以描述这个过程.在学生的前置性学习部分,通过让学生观察把一个已知的三角形向右平移后得到新的三角形,并比较平移前后三个顶点的坐标的变化,使学生亲身经历了知识的形成过程,不但改变了学生死记硬背的学习方式,还培养了他们自主探究、合作交流等学习习惯,进一步激发了学生学习数学的兴趣.本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的.主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系以及图形上各个点的坐标变化与图形平移的关系.第12章一次函数12.1函数第1课时函数(一)教学目标【知识与技能】1.掌握常量、变量的概念.2.能辨别一个关系中的常量和变量、自变量和因变量.3.能识别一个关系式是不是函数.【过程与方法】1.经历观察、分析、思考、总结的过程,发展观察推理能力和清晰地表达自己观点的能力.2.感知变量对数学问题的描述、研究的作用.【情感、态度与价值观】1.通过让学生共同思考实际生活中的例子让学生参与到教学活动中来,培养学生的集体意识.2.让学生自己思考贴近生活的例子,激发学生的学习兴趣.3.让学生感受数学与生活息息相关.4.通过变量、常量概念的引入,让学生意识到数学是在不断发展的,意识到事物是不断发展变化的.重点难点【重点】理解常量、变量的概念,判断一个数量关系是否是函数.【难点】理解函数的概念.教学过程一、创设情境,导入新知师:你还记得汽车在匀速行驶时,路程和速度、时间之间的关系吗生:记得,路程=速度某时间.师:好.我们现在来看这样一个问题.教师多媒体出示(问题1):汽车以50千米/时的速度匀速行驶,它行驶的路程用表示,时间用t表示,根据刚才那个公式,你能得到和t的什么数量关系生:=50t.师:对.这里面有哪些量生:路程、速度和时间.师:这道题中,速度是具体的一个量,是多少呢生:50.师:对.这里面有三个量:路程、50和时间.二、合作探究,获取新知教师多媒体出示(问题2):同学们看这个图和相应的表格,上面反映的有几个量学生思考后回答:两个.师:哪两个生甲:时间.生乙:气球上升到达的海拔高度.师:同学们回答得很好!你们再观察一下,热气球在这个上升过程中,平均每分钟上升了多少米生:30米.师:你能计算出当t=3min和t=6min时热气球到达的海拔高度吗生:能,3分钟时为1890米,6分钟时为1980米.师:很好.教师多媒体出示(问题3):师:在这个问题中,有哪几个量生:两个,时间和负荷.师:你能说出这一天中任意一个时刻的负荷是多少吗如果能的话,4.5h 时和20h时的负荷分别是多少学生测量后回答:能.4.5h时是10某103兆瓦,20h时是17某103兆瓦.师:用科学记数法怎样表示生:4.5h时是1.0某104兆瓦,20h时是1.7某104兆瓦.师:同学们回答得很好!你们是怎么找到对应的数据的呢生:根据时间对应的负荷得到的.师:很好!这一天的用电高峰和用电低谷时的负荷分别是多少它们各是在什么时刻达到的学生测量后回答:用电高峰时的负荷是1.8某104兆瓦,在13.5h时达到;用电低谷时的负荷是1.0某104兆瓦,在4.5h时达到.师:我们再来看这样一个例子.教师多媒体出示(问题4):汽车在行驶过程中由于惯性的作用刹车后仍将滑行一段距离才能停住.某型号的汽车在路面上的刹车距离m与车速vkm/h之间有下列经验公式: =这个式子中涉及了哪几个量生甲:刹车距离、车速.生乙:256.师:当车速为60km/h时的刹车距离是多少呢结果保留一位小数.学生计算后回答:14.1km.师:在第一个问题中,速度一直是50千米/时,我们把不变的50称为常量;变化的和t称为变量,其中t是自变量,是随着时间t的变化而变化的,是因变量.下面我们看看其他三个问题中,哪些是常量,哪些是自变量,哪些是因变量生甲:第二个问题中,30是常量,时间是自变量,海拔高度是因变量.生乙:第三个问题中,没有常量,时间是自变量,负荷是因变量.生丙:第四个问题中,256是常量,车速是自变量,刹车距离是因变量.师:很好!自变量和因变量之间有没有对应的关系呢生:有.师:由前面的探究,我们能得出自变量和因变量在数量上有怎样的对应关系生:自变量取一个值,根据它们之间的关系,因变量就有相应的一个值.师:很好!教师板书并口述定义:一般地,设在一个变化过程中有两个变量某、y,如果对于某在它允许的取值范围内的每一个值,y都有唯一确定的值与它对应,那么就称某是自变量,y是某函数.师:在这个定义中,我们要注意“唯一确定”这四个字,“唯一”要求只有一个,“确定”要求它们的关系是确定的,不能是未明确的、模糊的.根据函数的定义,你能说出以上四个问题中哪一个量是哪一个量的函数吗生甲;问题1中行驶路程是行驶时间t的函数.生乙:问题2中热气球到达的海拔高度h是时间t的函数.生丙:问题3中负荷y是时间t的函数.生丁:问题4中刹车距离是车速v的函数.师:大家回答得很好!三、练习新知师:我们现在来看这样一个例子.教师多媒体出示并口述:下列等式中,y是某的函数的有.①某+y=0;②y=;③y=某2;④某=y2;⑤y=|某|;⑥某=|y|;⑦y=;⑧y2=4某.学生思考后回答,然后集体订正.y是某的函数的有①②③⑤⑦.四、课堂小结师:你今天学习了哪些新知识有什么收获生:学习了常量、变量、自变量、因变量、函数.教师补充完善.教学反思课程改革的关键是教师观念的改变,重视学生的主体作用,强调让学生经历学习的过程,让学生真正成为学习的主人.教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者.通过让学生回顾小学学过的一个公式,引入本节课,同时带领学生更深入地认识两个量之间的关系,并引入常量、变量、自变量、因变量等概念.而函数是两个变量之间的关系,它们之间是怎样的一种关系呢对自变量取的一个值,因变量有唯一确定的值与之对应.这点要向学生讲清楚,学生理解了就能判断一个变量是不是另一个变量的函数.第2课时函数(二)教学目标【知识与技能】1.会用列表法表示函数.2.会将一个简单的实际应用问题抽象成函数.3.会求函数自变量的取值范围.4.给定自变量,能求出函数值.【过程与方法】1.经历用列表法和解析法表示函数的过程.【情感、态度与价值观】1.通过让学生选用合适的方法表示两个变量之间的关系,让学生发挥主观能动性,独立思考.2.让学生参与到教学活动中来,激发学生的参与感和集体意识.3.让学生观察、描述发现的问题,培养学生表述自己思想和归纳概括、收集信息的能力.4.让学生思考贴近生活的例子,激发学生的学习兴趣.重点难点【重点】用解析法表示函数,求函数自变量的取值范围.【难点】建立一个实际问题的数学模型.教学过程一、创设情境,导入新知师:上节课,我们学习了一个重要的概念——函数,同学们还记得它的内容吗学生回答.师:大家说得很好,函数是一个重要的数学概念,这节课我们将更深入地研究它.二、合作探究,获取新知教师多媒体出示上节课的问题2:上节课我们在问题2中用表格表示热气球上升到的海拔高度与时间数值之间存在的关系,这种通过列出自变量的值与对应的函数值的表格来表示函数关系的方法叫做列表法.学生熟记.。
新版沪科版八年级数学上册第11章《平面直角坐标系》教案
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)
八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)一. 教材分析平面直角坐标系是八年级数学上册第三章第二节的内容,本节课的主要内容有:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法以及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在七年级时已经学习了坐标轴和坐标的初步知识,对本节课的内容有一定的了解。
但是,对于平面直角坐标系的定义,坐标轴和坐标点的概念,以及坐标轴上的点的坐标特征等知识,还需要进一步的讲解和巩固。
此外,学生对于实际问题中的坐标系应用还不够熟悉,需要通过实例来加强理解和运用。
三. 说教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴和坐标点的概念,学会表示坐标,并能判断坐标轴上的点的坐标特征。
2.过程与方法:通过实例和练习,培养学生的空间想象能力,提高学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。
四. 说教学重难点1.重点:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法。
2.难点:坐标轴上的点的坐标特征的判断,以及坐标系在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和合作学习法,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件和教具,直观展示平面直角坐标系,帮助学生理解和记忆。
六. 说教学过程1.导入:通过问题驱动,引导学生回顾七年级学过的坐标轴和坐标点的知识,为新课的学习做好铺垫。
2.新课讲解:讲解平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法,以及坐标轴上的点的坐标特征。
通过实例和练习,让学生加深对知识的理解。
3.课堂互动:学生进行小组讨论,分享学习心得,解答疑难问题。
4.练习巩固:布置一些具有代表性的题目,让学生独立完成,检验学习效果。
【沪科版】八年级数学上册(全书)课件省优PPT(共291张)
3 2
角坐标系中找出点的位置:
D1
A(-2,-1 ) B( 2,1) C( 1,-2 ) D(-1,2)
-4-32
-
o -1
1-2
-3
1 2 B3 4
x
C
-4
方法:根据点在x轴、y轴上的对应值的
位置,分别作x轴、y轴的垂线,
交点就是已知点的位置。
想一想:(2,1)与(1,2)表示同一点吗?
平面内的点与有序实数对一一对应
公共原点O称为坐标原点。
纵轴 y
5
平面直角坐标系
4
3
第二象限 2
平面直角坐标系具有以下特征: ①两条数轴互相垂直 ②原点重合 ③通常取向右、向上为正方向 ④单位长度一般取相同的
第一象限
1
o
-4 -3 -2 -1 -1
原点
-2
第三象限 -3
-4
12345
第四象限
x 横轴
坐标轴不属任何象限
如果A是平面直角坐标系中一点,你能找出相应的
-3
-4 D(0,-4)
-5
坐标平面内的点P(a,b)的 坐标特征:
一、判断:
1、对于坐标平面内的任一点,都有唯 一的一对有
序实数与它对应.(√ )
2、在直角坐标系内,原点的坐标是0.( × )
3、若点A(a ,-b )在第二象限,则点B(-a,b)
在第四象限. (√ )
4、若点P的坐标为(a,b),且a·b=0,则点P一定
【沪科版】八年级数学上册(全书)课 件省优PPT(共291张)
精选各省级优秀课原创获奖课件
如果您现在暂时不需要,记得收藏此网页! 因为再搜索到我的机会为零!
错过我,就意味着永远失去~ 一次下载,终生使用
沪科版八年级上册数学第11章 平面直角坐标系 图形与坐标
解: (1)得到的是一个直角三角形,如图(1).
它的面积是
1 3 4=6. 2
(2)得到的是一个平行四边形,如图(2).
它的面积是4×3=12.
知1-讲
总结
4如图,已知A(3,2),B(5,0),E(4,1), 则三角形AOE的面积为( ) A.5B.2.5C.的坐标的特征: (1)平行于x轴的直线上的点的纵坐标相等;平行于y轴的直线上 的点的横坐标相等. (2)关于x轴对称的点,横坐标相等,纵坐标互为相反数;关于y 轴对称的点,纵坐标相等,横坐标互为相反数. (3)第一、三象限的平分线上的点,横坐标与纵坐标相等;第二、 四象限的平分线上的点,横坐标与纵坐标互为相反数.
3
A′的坐标是________.
2 (中考·绵阳)如图是轰炸机群一个飞行队形, 如果最后两架轰炸机的平面坐标分别是A (-2,1)和B(-2,-3),那么第一架轰炸 机C的平面坐标是________.
知2-练
3 (中考·漳州)如图,在5×4的方格纸中,每个 小正方形边长为1,点O,A,B在方格纸的 交点(格点)上,在第四象限内的格点上找点 C,使三角形ABC的面积为3,则这样的点 C共有( ) A.2个B.3个C.4个D.5个
知1-讲
特殊关系的点的坐标的特征: (1)对称点: ①关于x轴对称的两点坐标:横坐标相等,纵坐标互为相反数; ②关于y轴对称的两点坐标:横坐标互为相反数,纵坐标相等; ③关于原点对称的两点坐标:横、纵坐标都互为相反数. (2)平行(垂直)的点: ①平行于x轴(垂直于y轴)的点:纵坐标相等; ②平行于y轴(垂直于x轴)的点:横坐标相等.
沪科版八年级上平面直角坐标系课件
圆的方程是(x-a)^2+(y-b)^2=r^2, 其中(a,b)是圆心,r是半径。圆心是固 定点,半径是固定长度。
利用坐标研究图形的性质
直线性质
通过直线的方程,可以研究直线的斜率、倾斜角、与坐标轴的交点等性质。
圆性质
通过圆的方程,可以研究圆心、半径、面积、周长等性质。
05
实际应用举例
利用平面直角坐标系解决实际问题
线性代数
平面直角坐标系是线性代数中向 量和矩阵运算的基础,通过坐标 系可以将向量表示为具有实际意
义的数。
函数图像
在平面直角坐标系中,可以绘制 各种函数的图像,帮助理解函数
的性质和变化规律。
Hale Waihona Puke 几何学平面直角坐标系是几何学中研究 图形形状、大小和位置关系的重 要工具,可以方便地进行几何计
算和证明。
平面直角坐标系在物理学中的应用
感谢观看
气候变化等。
02
坐标表示与点的位置
点的坐标表示
点的横坐标
表示点在x轴上的位置,记 作x。
点的纵坐标
表示点在y轴上的位置,记 作y。
点的坐标
表示点的位置,记作(x, y)。
点的位置确定
根据坐标确定点的位置
通过给定的坐标(x, y),可以在平面直角坐标系中找到对应的点。
根据点的位置确定坐标
通过给定的点在平面直角坐标系中的位置,可以确定该点的 坐标(x, y)。
沪科版八年级上平面直角 坐标系课件
• 平面直角坐标系简介 • 坐标表示与点的位置 • 点的平移与坐标变化 • 图形与坐标 • 实际应用举例
01
平面直角坐标系简介
平面直角坐标系的定义
平面直角坐标系是一种在平面上表示点位置的数学工具,由两条垂直相交的数轴 构成,其中水平数轴称为x轴,竖直数轴称为y轴。
沪科版数学八年级上册第11章平面直角坐标系复习课件
2.象限:两坐标轴把平面分成_四__个__象__限_,坐标轴上的点不属于 _任_何__一__个__象__限__。
3. 可用有序数对(a,b)表示平面内任一点P的坐标。a表示横坐 标,b表示纵坐标。
知识要点
4. 各象限内点的坐标符号特点:第一象限(_+_,__+_)_,第二象限 (_-_,__+_), 第三象限(__-,__-_)_,第四象限(__+_,__-_)_。 5. 坐标轴上点的坐标特点: 横轴上的点纵坐标为_零__,纵轴上的
特殊点的坐标 y
(0,y)
在平平面行直于角x坐轴标的系 内描直出线(上-2,的2各)点,的(0, 2),纵(坐2标,相2)同,,(横4, 2),坐依标次不连同接。各点,从 中你发现了什么?
1
-1 0 1 -1
在平平行面于直y轴角的坐直 标线系上内的描各出点(的-2横,坐 x 3标)相,同(,-2纵,坐2)标,不 (x,0)(2同)-2。,,依0)次,连(接-各2,点-, 从中你发现了什么?
(- ,-) (X,0) (-,+)
• F(2,-3)
第四象限 (+,-)
每个象限内的点都有自已的符号特征。
2.已知点A(m,-2),点B(3,m-1),且直线 AB∥x轴,则m的值为 -1 。 3.在平面直角坐标系中,有一点P(-4,2),若将P: (1)向左平移2个单位长度,所得点的坐标为 (_-6_,__2_)_;
5.点A(-1,-3)关于x轴对称点的坐标是_____,关 于原点对称的点坐标是_____。 6.若点A(m,-2),B(1,n)关于原点对称,则 m=_____,n=_____。
谢谢
沪科版初中数学八年级上册教学课件 11-1 第1课时 平面直角坐标系及点的坐标
-40
-50
3
1
4
2
5
-2
-4
-1
-3
o
1
2
3
4
5
-4
-3
-2
-1
x
横轴
y
纵轴
原点
平面直角坐标系具有以下特征: ①两条数轴互相垂直 ②原点重合 ③通常取向右、向上为正方向 ④单位长度一般取相同的
平面直角坐标系
坐标轴不属任何象限
第一象限
第二象限
第三象限
第四象限
y
-5
-6
横坐标
纵坐标
B点在y轴上的坐标为-2
C
C
B
A
本节课我们学习了平面直角坐标系。学习本节我们要掌握以下三方面的知识内容: 1、能够正确画出直角坐标系。 2、能在直角坐标系中,根据坐标找出点,由点求出坐标。坐标平面内的点和有序实数对是一一对应的。 3、掌握象限点、x轴及y轴上点的坐标的特征: 第一象限:(+,+)第二象限:(-,+) 第三象限:(-,-)第四象限:(+,-) x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
北
西
30)
北京路
平面上有公共原点且互相垂直 的2条数轴构成平面直角坐标系, 简称直角坐标系。 水平方向的数轴称为x轴或横轴。 竖直方向的数轴称为y轴或纵轴。 (它们统称坐标轴) 公共原点10
10
-10
-20
-30
20
30
-20
-10
11.1平面内点的坐标(1)
1、什么是数轴?
2、数轴上的点与 ?一一对应
实数
o
1
2
3
4
沪科版2019年秋八年级数学上册全一册教案
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.第2课时坐标平面内的图形◇教学目标◇【知识与技能】1.能正确地画出平面直角坐标系;2.在给定的平面直角坐标系中,会根据坐标描出点的位置.【过程与方法】1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.【情感、态度与价值观】将现实的题材呈现给学生,揭示平面直角坐标系与现实世界的联系.◇教学重难点◇【教学重点】能够根据点的坐标确定平面内点的位置.【教学难点】体会点的坐标与点到坐标轴的距离之间的关系.◇教学过程◇一、情境导入由点找坐标是已知点在平面直角坐标系中的位置,根据这点在方格纸上对应的x轴、y 轴上的数字写出它的坐标,反过来,已知坐标,在平面直角坐标系中找点,你能找到吗?二、合作探究典例在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).观察所得的图形,你觉得它像什么?[解析]如图所示,这个图形像一栋“房子”,旁边还有一棵“大树”.变式训练1在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.观察所得的图形,看一看像什么?(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);(2)(1,3),(2,2),(4,2),(5,3);(3)(1,4),(2,4),(2,5),(1,5),(1,4);(4)(4,4),(5,4),(5,5),(4,5),(4,4);(5)(3,3).[解析]如图所示,看起来像“猫脸”.变式训练2在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来,观察所得的图形,看一看像什么?(1)(0,0),(1,3),(2,0),(3,3),(4,0);(2)(0,3),(1,0),(2,3),(3,0),(4,3).[解析]如图所示,观察所得的图形,分别像字母“M”和“W”,合起来看像“活动门”.【归纳总结】在平面直角坐标系中,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容.三、板书设计坐标平面内的图形坐标平面内的图形◇教学反思◇引导学生去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.11.2图形在坐标系中的平移◇教学目标◇【知识与技能】1.能在平面直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的平移实质上就是点坐标的对应变换;2.运用图形在平面直角坐标系中平移的点坐标的变化规律进行简单的平移作图.【过程与方法】经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程.【情感、态度与价值观】让学生发现数学与图形的平移、物体的运动等有实际意义的事情之间的关系,体会数学在现实生活中的用途.◇教学重难点◇【教学重点】掌握用坐标系的变化规律来描述平移的过程.【教学难点】根据图形的平移过程,探索、归纳出坐标的变化规律.◇教学过程◇一、情境导入(1)平移的概念是什么?(2)下象棋时,棋子的移动,什么在变,什么不变?在棋盘上推动棋子是否可以看成图形在平面上的平移?二、合作探究1.探究点的平移与坐标的变化:2.探究图形的平移与其坐标变化的关系:(1)左、右平移:原图形上的点(x,y)(x a,y);原图形上的点(x,y)(x a,y).(2)上、下平移:原图形上的点(x,y)(x,y b);原图形上的点(x,y)(x,y b).3.归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的.(2)在平面直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记为“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记为“上加下减”.(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则横(纵)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量.典例1如图,将三角形ABC先向右平移6个单位,再向下平移2个单位得到三角形A1B1C1,写出各顶点变动前后的坐标.[解析]用箭头代表平移,有A(-2,6)→(4,6)→A1(4,4),B(-4,4)→(2,4)→B1(2,2),C(1,1)→(7,1)→C1(7,-1).变式训练将三角形ABC先向左移动3个单位,再向上移动2个单位,得到三角形A2B2C2,写出三角形A2B2C2的各顶点坐标.[解析]点A2(-5,8),点B2(-7,6),点C(-2,3).典例2说一说,下列由点A到点B是怎样平移的?(1)A(x,y)→B(x-1,y+2);(2)A(x,y)→B(x+3,y-2);(3)A(x+3,y-2)→B(x,y).[解析](1)将点A先向左平移1个单位,再向上平移2个单位,即可得到点B.(2)将点A先向右平移3个单位,再向下平移2个单位,即可得到点B.(3)将点A先向左平移3个单位,再向上平移2个单位,即可得到点B.【技巧点拨】由坐标的变化确定平移的过程:横坐标变大(小)向右(左)移,纵坐标变大(小)向上(下)移.平移的距离,是平移前后相应坐标差的绝对值.三、板书设计图形在坐标系中的平移1.点的平移与坐标的变化.2.图形的平移与其坐标变化的关系.3.平移规律.◇教学反思◇本节课的主要内容是平移的变化规律“左减右加”“上加下减”,让学生在理解的基础上加以消化掌握,不能死记硬背,只要正确作出图形即可知道变化情况.方位角和距离的讲解要补充并强化.教学时注重与中考知识点链接,训练学生的逆向思维能力.第十二章一次函数12.1函数第1课时函数及其相关概念◇教学目标◇【知识与技能】1.使学生了解函数的意义,会举出函数的实例,并能写出简单的函数表达式;2.了解常量、变量,能分清实例中出现的常量、变量、自变量与因变量.【过程与方法】1.通过常量、变量、函数概念的学习,培养学生会运用运动、变化的观点思考问题;2.通过函数的教学,培养学生观察、分析的能力.【情感、态度与价值观】通过例题向学生进行生动具体的“知识来源于实践,反过来又作用于实践”的辩证唯物主义教育.◇教学重难点◇【教学重点】了解函数、常量、变量,能指出实例中的常量、变量,并能写出简单的函数表达式.【教学难点】对函数意义的正确理解.◇教学过程◇一、情境导入某粮店在一段时间内出售同一种大米,在整个的售米过程中出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?结论:共出现了米的千克数、每千克米的价格、总价三个量,其中千克数和总价是变化的,但每千克米的价钱即单价是不变的.二、合作探究从上面的例子我们可以看到,在某一具体变化过程中,有些量是可以取不同的数值的,如上例中的大米的千克数、总价,我们称之为变量;而有些量在整个过程中都保持不变,例如米的单价,我们称之为常量.注意:常量和变量并不是绝对的,而是相对的.问题1:从大连到北京,如果乘坐火车,且火车的速度保持不变,在这一过程中,哪些量是变量?哪些量是常量?结论:随着时间的不同,距北京的距离不同;但速度是不变的.问题2:从大连到北京,如果我们一部分人坐火车,一部分人乘飞机,在这一过程中,哪些量是变量,哪些量是常量?结论:距离不变,但随着两种交通工具速度的不同,到北京的时间也不同.在日常生活中,工农业生产和科学实验中,常量和变量是普遍存在的,但数学所要研究的是某一变化过程中的两个量之间的关系,即它们是怎样互相制约、互相联系的.例如:大米的千克数与总价,圆的半径与面积之间的关系,这就是数学中一个很重要的基本概念——函数.问题3:若每千克大米售价2.40元,用字母n表示大米的千克数,字母m表示总价,那么n 与m之间有怎样的关系式?结论:对于每一个n的值,总价m都有唯一的确定值与它相对应.m=2.4n.问题4:若已知圆的半径为r,半径r与面积S有怎样的关系?结论:对于每一个半径r的值,面积S都有唯一的确定值与它相对应.S=πr2.。
11.1第1课时平面直角坐标系课件沪科版数学八年级上册
预习导学
1.点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为 (2,0) .
2.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P标是 (-9,2) .
合作探究
平面直角坐标系中点的坐标 1.如图,点A与点B的纵坐标( B ) A.相同 B.相隔3个单位长度 C.相隔1个单位长度 D.无法确定 【变式训练】已知点A(3,2)、B(3,-1),则直线AB与y 轴的关系是 平行 .
合作探究
解:答案不唯一,如:以平安大道所在的直线为x轴, 过D点垂直于平安大道为y轴建立平面直角坐标系,A(10, 4),B(6,-4),C(-2,2.5),D(0,-3).
合作探究
符号与象限 4.点M(3a-9,1-a)在第三象限,则a的取值范围是 1<a <3 . 【方法归纳交流】由点的位置确定字母取值,一般是根据 点所在的象限列出不等式(组)求解,有些题目还能根据条件确 定字母的具体取值.
学法指点:横坐标为0的点(0,a)一定在y轴上,纵坐标为0 的点(b,0)一定在x轴上,(0,0)就是原点.
预习导学
象限及其坐标特点 阅读教材本课时“操作”之后的内容,解决下列问题. 视察教材“图11-5”,说一说各象限内的点的坐标符号有 什么特点. 第一、二、三、四象限内的点的坐标符号分别是(+,+)、 (-,+)、(-,-)、(+,-).
预习导学
2.思考:在坐标系中,点(2,3)与(3,2)代表的是同一个点 吗?
不是同一个点,它们的位置并不相同.
预习导学
归纳总结:通过平面直角坐标系的建立,我们把平面内的 点 与 有序实数对 一一对应起来.即对于坐标平面内任意一 点P,都有 唯一 的有序实数对(x,y)和它对应,反之,对 于任意一个有序实数对(x,y),在平面内都有 唯一 的P与 它对应.
11.1 平面内点的坐标 第1课时 课件(共21张PPT) 沪科版八年级数学上册
学习目标
活动探究
当堂检测
课堂总结
有序数对与平面坐标系内点的关系
平面上的点 的位置确定
有序数对
-2
点A的坐标为(4,3)
-3
学习目标
活动探究
当堂检测
问题2:在平面直角坐标系中找点A(3,-2).
课堂总结 y
2 1
-3 -2 -1 O -1
由坐标找点的方法: -2
(1)先找到表示横坐标与纵坐标的点; -3
(2)然后过这两点分别作x轴与y轴的垂线;
(3)垂线的交点就是该坐标对应的点.
1 2 3x A
学习目标
活动探究
当堂检测
课堂总结
任务二:用平面直角坐标系表示点的位置.
活动1:和同伴交流,完成下列问题,并归纳相应解题方法.
问题1:找出点A的坐标.
y
A (4,3)
3
(1)过点A作x轴的垂线,垂足
2
1 在x轴上对应的数是4;
(2)过点A作y轴的垂线,垂足
-2 -1 O 1 2 3 4 -1
x
在y轴上对应的数是3;
(1)如果将“6排3号”简记作(6,3),那么“3排6号”如何表 示?(5,6)表示什么含义? (6,5)呢? (2) 在只有一层的电影院内,确定一个座位一般需要几个数据?
两个数据:排数和号数.
思考:联想问题1,怎 样确定一个点在平面内
的位置呢?
最新沪科版八年级数学上册《平面上点的坐标》教学设计
沪科版八年级数学(上册)课题:11.1 平面上点的坐标(第1课时)[教材分析]1、本节教材的地位与作用:学生已学习了数轴,垂线和实数有关概念,本节课在此基础上进一步认识数与点的对应,为今后学习函数等知识埋下了伏笔.本节内容着重介绍了平面直角坐标系,教材从学生已有认知出发,从数轴入手,利用图形,给点在数轴上的坐标、点在平面内的坐标作了具体定义,使学生了解平面内点的坐标如何确定,进而引出各象限内点的坐标的特征。
2、教学重点:正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点3、教学难点:各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
[教学目标]基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标:(1)知识与技能目标:1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;观察、归纳象限内点的坐标特点。
(2)过程与方法目标:经历由实物到数对的过程,进一步渗透抽象的数学思想;经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;经历观察象限内三五个点的特征到联想所有点坐标特征的过程,进一步渗透观察、类比、特殊到一般的数学思想;(3)情感与态度目标:通过对问题的解决,使学生有成就感,树立学好数学的信心,培养学生的自主探究与合作交流的学习习惯.[教学思路]本节课按照“创设情境,引入新课”——“自学勤思,探求新知”——“例题选讲,巩固新知”——“合作交流,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.[教学方法]自学、合作、探讨[教学过程]:(一)创设情境,引入新课:1、一个苹果、一头大象、一个算珠……小学时抽象出数字1,七年级时为了把实数形象地反映,学习了数轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面内的点与有序实数对一一对应
探究3 各象限内点的坐标有何特征?
y
(-,+)C(-3,3)45 3
(+,+)
B(2,3)
F(-7,2)
2
A(3,2)
1
- 9 - 8- 7 - 6 - 5 - 4 - 3 - 2 - 1-1 o 1 2 3 4 5 6 7 8 9 x
(-,-)
-2 -3
(+,-)
G(-5,-4) -4
二、若点P(x,y)在第四象限,|x|=2,
|y|=3,则P点的坐标为(2,-3).
三、细心选一选,你准对
1.下列点中位于第四象限的是( A )
A.(2,-3)B.(-2,-3) C.(2,3)D.(-2,3)
2.如xy>0,且x+y<0,那么P(x,y)在(
C)
A.第一象限 B.第二象限 C.第三象限 D.第四象限
探究 1
找出图中各 点的坐标:
A ( -2 , 2) B ( -3 ,-)2 C ( 2 ,-)3 D ( 3 , 1)
y
3 A2
1
D
-3 -2 -1 O -1
B
-2
-3
12 3 4 x C
方法:过点作x轴垂线,垂足表示的数就是
横坐标的值,作y轴的垂线,垂足表示的数就 是纵坐标的值.
探究 2
y
4
标原点. ( )×
分别说出下列各点在坐标平面内的位置
(-1,2); (-2,-3);(1,-5);(0.2,1.85) (-2,0); (0,-2.5);(0,0)
一、已知P点坐标为(a-1,a-5) ①点P在x轴上,则a= 5 ; ②点P在y轴上,则a= 1 ; ③若a=-3 ,则P在第 三象限内; ④若a=3,则点P在第 象四限内.
11.1平面内点的坐标(1)
复习
1、什么是数轴? 2、数轴上的点与 ?一一对应
实数 3、写出数轴上A、B、C各点所对
应的数.
CA
B
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6
上电影院看电影,电影票上至少要有 几个数据才能确定你的位置?
想一想
在教室里,怎样确定一个同学的位置?
自学
1、能够正确画出直角坐标系. 2、能在直角坐标系中,根据坐标找出点,由点求出坐标.坐 标平面内的点和有序实数对是一一对应的. 3、掌握象限点、x轴及y轴上点的坐标的特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
北
.
音乐喷泉
西
中 路山
北
北京西路
北京东路
中 路山
南
小丽能根据小明的
提示从左图中找出音 乐喷泉的位置吗?
小明:音乐喷泉在中山北路 西边50米,北京西路北边30米.
想 一 想:
1、小明是怎样描述音乐喷泉的位置的?
2、小明可以省去“西边”和“北边” 这几个字吗?
3、如果小明说在“中山北路西边、北 京西路北边”,你能找到音乐喷泉吗?
3.如点P(a,2)在第二象限,那么点Q(-3,a)
在( C )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.M(-1,0)、N(0,-1)、P(-2,-1)、Q(5,0)、R(0,-5)、
S(-3,2),其中在x轴上 的点的个数是( B )
A.1 B.2 C.3 D.4
本节小结
本节课我们学习了平面直角坐标系.学习 本节我们要掌握以下三方面的知识内容:
公共原点O称为坐标原点.
纵轴 y
5
平面直角坐标系
4
3
第二象限 2
平面直角坐标系具有以下特征: ①两条数轴互相垂直 ②原点重合 ③通常取向右、向上为正方向 ④单位长度一般取相同的
第一象限
1
o
-4 -3 -2 -1 -1
原点
-2
第三象限 -3
-4
12345
第四象限
x 横轴
坐标轴不属任何象限
如果A是平面直角坐标系中一点,你能找出相应的
4、如果小明只说在“中山北路西边50 米”,或只说在“北京西路北边30米”, 你能找到音乐喷泉吗?
合作交北流,解读探究
西
(-50, 30)
-80 -70 -60 -50 -40 -30 -20 -10
北京路
y
30
若将中山路与北
20
京路看着两条互
10
相垂直的数轴,十
o 10
-10
20
x
字路口为它们的
有序实数对吗?
y
纵坐标 5
4
.
A( 3 , 4 )
B点在x轴上的坐标为-4 3
B点在y轴上的坐标为-2
2 1
-6 -5 -4 -3 -2 -1-01
B (-4, -2 ) -2 -3
记作:B(-4,-2)
-4 -5
-6
12345
x
横坐标
有序实数对(-4,-2)就 叫做 B点在平面直角坐标系中的 坐标
E(5,-4)
D (-7,-5)
-5
H (3,-5)
探究4
坐标轴上点有何特征?
在y轴上的点,
Байду номын сангаас
横坐标等于0.
y
5 C(0,5)
在x轴上的点,
4
3
纵坐标等于0.
2
B(-4,0)1
A(3,0)
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1-1(o 01,0)2 3 4 5 6 7 8 9 x
已知三点A(0,4)、B(-3,0)、C(3,0) 现以A、B、C为顶点画平行四边形,写出 符合条件的D点坐标.
-2
-3
-4 D(0,-4)
-5
坐标平面内的点P(a,b)的 坐标特征:
一、判断:
1、对于坐标平面内的任一点,都有唯 一的一对有序
实数与它对应.( √)
2、在直角坐标系内,原点的坐标是0.( ×)
3、若点A(a ,-b )在第二象限,则点B(-a,b)在第
四象限. ( √)
4、若点P的坐标为(a,b),且a·b=0,则点P一定在坐
已知各点的坐标,请在直
3 2
角坐标系中找出点的位置:
D1
A(-2,-1 ) B( 2,1) C( 1,-2 ) D(-1,2)
-4-3 2
-
o -1
1-2
-3
1 2 B3 4
x
C
-4
方法:根据点在x轴、y轴上的对应值的
位置,分别作x轴、y轴的垂线,
交点就是已知点的位置.
想一想:(2,1)与(1,2)表示同一点吗?
-20
公共原点,这样就
-30
-40
形成了一个平面
-50
直角坐标系.
y
20
10
o x -20 -10
10 20 30
平面上有公共原点且互相垂直
-10
-20
的2条数轴构成平面直角坐标系,
-30
简称直角坐标系.
-40
-50
水平方向的数轴称为x轴或横轴.
竖直方向的数轴称为y轴或纵轴.
(它们统称坐标轴)