第五章弯曲应力力习题

合集下载

材料力学简明教程(景荣春)课后答案第五章

材料力学简明教程(景荣春)课后答案第五章

第5章 弯曲应力思考题5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答 不一定。

最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。

5-2 矩形截面简支梁承受均布载荷q 作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答 若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。

5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。

设钢木之间胶合牢固不会错动,已知弹性模量,则该梁沿高度方向正应力分布为图a ,b ,c ,d 中哪一种。

w E E s >思考题5-3图答 (b)5-4 受力相同的两根梁,截面分别如图,图a 中的截面由两矩形截面并列而成(未粘接),图b 中的截面由两矩形截面上下叠合而成(未粘接)。

从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答 (a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值AW来衡量截面形状的合理性和经济性。

比值AW较大,则截面的形状就较经济合理。

图示3种截面的高度均为h ,请从AW的角度考虑哪种截面形状更经济合理?思考题5-5图答 (c)5-6 受力相同的梁,其横截面可能有图示4种形式。

若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答 (b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)5-7 弯曲切应力公式*S zz F S I bτ=的右段各项数值如何确定?答 为整个横截面上剪力;为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;为横截面上距中性轴为y (所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。

S F z I *z S5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形? 答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。

第五章习题答案

第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。

设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。

已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。

解:作梁的弯矩图如图所示。

梁的最大弯矩发生在固定端截面上。

22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。

若[]160MPa σ=,试求许可载荷F 。

解:(1)求支座反力。

选整个梁为研究对象,受力分析如图所示。

列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。

由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。

5.8 压板的尺寸和载荷情况如图所示。

材料为45钢,380s MPa σ=,取安全因数1.5n =。

试校核压板的强度。

解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

⼯程⼒学--材料⼒学(北京科⼤、东北⼤学版)第4版第五章习题答案第五章习题5-1⼀矩形截⾯梁如图所⽰,试计算I-I截⾯A、B、C、D各点的正应⼒,并指明是拉应⼒还是压应⼒。

5-2⼀外伸梁如图所⽰,梁为16a号槽刚所⽀撑,试求梁的最⼤拉应⼒和最⼤压应⼒,并指明其所作⽤的界⾯和位置。

5-3⼀矩形截⾯梁如图所⽰,已知P=2KN,横截⾯的⾼宽⽐h/b=3;材料为松⽊,其许⽤应⼒为。

试选择横截⾯的尺⼨。

5-4⼀圆轴如图所⽰,其外伸部分为空⼼管状,试做弯矩图,并求轴内的最⼤正应⼒。

5-5 ⼀矿车车轴如图所⽰。

已知 a=0.6cm,p=5KN,材料的许⽤应⼒,试选择车轴轴径。

5-6 ⼀受均布载荷的外伸刚梁,已知q=12KN/m,材料的许⽤⽤⼒。

试选择此量的⼯字钢的号码.5-7 图⽰的空⽓泵的操纵杆右端受⼒为8.5KN,截⾯I-I和II-II位矩形,其⾼宽⽐为h/b=3,材料的许⽤应⼒。

试求此⼆截⾯的尺⼨。

5-8 图⽰为以铸造⽤的钢⽔包。

试按其⽿轴的正应⼒强度确定充满钢⽔所允许的总重量,已知材料的许⽤应⼒,d=200mm.5-9 求以下各图形对形⼼轴的z的惯性矩。

5-10 横梁受⼒如图所试。

已知P=97KN,许⽤应⼒。

校核其强度。

5-11 铸铁抽承架尺⼨如图所⽰,受⼒P=16KN。

材料的许⽤拉应⼒。

许⽤压应⼒。

校核截⾯A-A的强度,并化出其正应⼒分布图。

5-12 铸铁T形截⾯如图所⽰。

设材料的许⽤应⼒与许⽤压应⼒之⽐为,试确定翼缘的合理跨度b.5-13 试求题5-1中截⾯I-I上A、B、C、D各点处的切应⼒。

5-14 制动装置的杠杆,在B处⽤直径d=30mm的销钉⽀承。

若杠杆的许⽤应⼒,销钉的,试求许可载荷和。

5-15 有⼯字钢制成的外伸梁如图所⽰。

设材料的弯曲许⽤应⼒,许⽤且应⼒,试选择⼯字钢的型号。

5-16 ⼀单梁吊车由40a号⼯字钢制成,在梁中段的上下翼缘上各加焊⼀块的盖板,如图所⽰。

已知梁跨长=8m,=5.2m,材料的弯曲许⽤应⼒,许⽤且应⼒。

2第五章 弯曲应力

2第五章 弯曲应力



(3)计算 M max
(4)计算 Wzn Beams)
解:(1)计算简图
(2)绘弯矩图
(3)根据
max

M max Wz


计算
(6.7 50) 103 9.5
Wz

M max


4 140106
962106 m3 962cm3
M B 4kN m
-
+
B截面
4kN
t max M B y1 27.2MPa [ t]
80
Iz
z y1
20
120
y2
20
cmax M B y2 46.2MPa [ c]
Iz
C截面
t max

MC y2 Iz

28.8MPa

[ t]
( Stresses in Beams)
F1≤19200N=19.2kN
2. 由c,max ≤[c] 确定[F]。
c,max

(F
/ 2 2m)(134103m) 5493 10-8m4

90106 Pa
F2≤36893N=36.893kN
[F]=19.2kN,可见梁的强度由拉应力确定。
( Stresses in Beams)
最大正应力等于: max

M max Wz

Fl 1 bh2

6Fl bh2
6
( Stresses in Beams)
练习
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm,a 0.267m,b 0.16m,F 62.5kN,

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

工程力学2第五章 弯曲应力

工程力学2第五章 弯曲应力

max
M max ymax M max IZ WZ
目录
§5-3 横力弯曲时的正应力
弯曲正应力强度条件
σmax
M
max
y max
Iz

M
max
WZ
σ
1.等截面梁弯矩最大的截面上 2.离中性轴最远处 3.变截面梁要综合考虑 M 与 I z 4.脆性材料抗拉和抗压性能不同,两方面都要考虑
FS 90kN

M
-
x 90kN
I Z 5.832 10-5 m4 1 M EI
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 -5 C MC 60 103 194.4m

x
目录
21
§5-3 横力弯曲时的正应力
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M FS
目录
? ?
§5–1 引言
(Introduction)
4 103 8810-3 c,max 7.6410-6 46 .1106 Pa 46 .1MPa c
目录
§5-3 横力弯曲时的正应力
(3)作弯矩图
(4)B截面校核
2 .5kN.m
t ,max 27.2MPa t
c,max 46.1MPa c
目录
§5-3 横力弯曲时的正应力

第五章弯曲应力

第五章弯曲应力


的材料(例铸铁),宜采用截面不对称于中性轴。
z
z
2.变截面梁与等强度梁
等截面梁:Wz = 常数,
等强度梁是一种变截面梁,即各截面上的最大正应力都相 等,且等于许用应力:
3. 梁的合理受力 ① 合理布置载荷
P
Wz = 常数,降低 P
(+)
(+)
P
(+)
q=P/l
(+)
(+)
② 合理布置支座位置
型钢的Iz 和Wz 可查型钢表。
B
y
(中性轴)
z
q=60kN/m
【例】简支梁如图所示,
A
B 试求:梁内的最大正应力。
3m
解:画弯矩图,求最大弯矩
120
180
z
y
M
Mmax
+
x
【例】 求图示梁的最大弯曲正应力,d = 60mm。
d
z
解:
(-)
【例】 求图示梁中央截面上的最大拉应力和 最大压应力以及 G点的正应力,梁由10号槽钢制成。
x
§5–2 对称弯曲正应力
M 纵向对称面
M 一、变形及基本假设
中性层 中性轴 横向线ab变形后仍为直
线,但相对于原来的位置
aa bb
旋转了一个角度;纵向线 弯成弧线(M>0,上缩下伸 ;M<0,上伸下缩),横向
M
M 线与变形后的纵向线仍保
aa
b
b
持垂直。 平面假设
中性层和中性轴
由梁的变形规律,可知梁内必有一层纤维既不伸长也不缩短 ,此层纤维称为中性层。中性层与横截面的交线称为中性轴。 中性轴通过截面形心且垂直于外力作用平面。
M 6kN·m

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学刘鸿文第六版最新课件第五章 弯曲应力

材料力学刘鸿文第六版最新课件第五章 弯曲应力

:
FN2
M
dM Iz
A1 y1dA
pp1 : dFs' 'bdx
§5-4 弯曲切应力
X方向合力为0
X 0, M dM
Iz
M A1 y1dA Iz
A1 y1dA 'bdx 0
m m1
FN1
p p1
n
τ’ q τ
z
y q1 y1
dx n1
σdA
y FN2
' dM ( 1 )
dx Izb
腹板上的剪力FS1=(0.95~0.97)FS
§5-4 弯曲切应力
三、圆形截面* Izb
在中性轴上,切应力最大,此时b=2R,
max
4Fs
3 R2
IZ
d 4
64
§5-4 弯曲切应力
细长梁的控制因素通常是弯曲正应力,但是有些情况必须 考虑弯曲切应力
梁的跨度较短(l / h < 5); 在支座附近作用较大载荷(载荷靠近支座); 铆接或焊接的工字形或箱形等截面梁(腹板、焊缝、
M
max
Mymax IZ
WZ
IZ ymax
抗弯截面系数
max
M WZ
*******注意拉应力和压应力的区分。
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ ※ IZ y2dA A
Wz
IZ ymax
圆截面
IZ
d 4
64
Wz
d3
32
矩形截面
IZ
bh3 12
Wz
bh2 6
空心圆截面
空心矩形截面
§5-4 弯曲切应力
q=3.6kN/m
A

第五章 弯曲应力1

第五章 弯曲应力1

§5–4 弯曲切应力
一、梁横截面上的切应力
1、矩形截面梁
(1)两个假设 (a)切应力与剪力平行 (b)切应力沿截面宽度均匀分布
(2)分析方法
F1 F2 m n
q(x)
z
m
n
mn
x
dx
h yo
A1
B1
x
z
y
x
A
B
A1
B1
y bm
n
dx
FN1
A
ym
B
FN2
n
z
z
m
n
y
x
A1 dFS’
B1
FN1
A
B FN2
查型钢表中,20a号工字钢,有
Iz
S
* z
max

17.2cm
d=7mm
F
AC
B
5m
FSmax
据此校核梁的切应力强度
*
F S F Smax z ,max
max
I d ( I )d z
Smax z
+
S* z ,max

30 103
24.9MPa [ ] 以上两方面的强度条件都满
D
z
4
1
1
22
a1
Wz3

bh2 6

4a13 6

1.67Wz1
合理放置截面
bh2 WZ 左 6
WZ 右

hb2 6
三、采用等强度梁
梁各横截面上的最大正应力都相等,并均达到材料的许用应力,
则称为等强度梁. 例如,宽度b保持不变而高度可变化的矩形截面简支梁,若设

材料力学作业

材料力学作业

材料力学作业Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章 绪论1. 试求图示结构m-m 和n-n 两截面上的内力,并指出AB 和BC 两杆的变形属于何类基本变形。

2. 拉伸试样上A ,B 两点的距离l 称为标距。

受拉力作用后,用变形仪量出两点距离的增量为mm l 2105-⨯=∆。

若l 的原长为l =100mm ,试求A 与B 两点间的平均应变m ε。

第二章 轴向拉伸和压缩与剪切 一、选择题1.等直杆受力如图,其横截面面积A=1002mm ,则横截面mk上的正应力为( )。

(A)50MPa(压应力); (B)40MPa(压应力); (C)90MPa(压应力); (D)90MPa(拉应力)。

2.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高( ): (A)强度极限; (B)比例极限;(C)断面收缩率; (D)伸长率(延伸率)。

3.图示等直杆,杆长为3a ,材料的抗拉刚度为EA ,受力如图。

杆中点横截面的铅垂位移为( )。

(A)0;(B)Pa/(EA);(C)2 Pa/(EA);(D)3 Pa/(EA)。

4.图示铆钉联接,铆钉的挤压应力bs σ是( )。

(A )2P/(2d π); (B )P/2dt;(C)P/2bt; (D)4p/(2d π)。

5.铆钉受力如图,其压力的计算有( )(A )bs σ=p/(td);(B)bs σ=p/(dt/2);(C)bs σ=p/(πdt/2);(D)bs σ=p/(πdt/4)。

6.图示A 和B 的直径都为d,则两面三刀者中最大剪应力为( )(A)4bp/(2d απ); (B)4(αb +)P/(2d απ); (C)4(a b +)P/(2b d π); (D)4αP/(2b d π). 7.图示两木杆(I 和II )连接接头,承受轴向拉力作用,错误的是( ).(A )1-1截面偏心受拉; (B )2-2为受剪面;(C )3-3为挤压面; (D )4-4为挤压面。

材料力学练习册5-6详细答案

材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。

试求金属丝内的最大正应变与最大正应力。

已知材料的弹性模量为E。

解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。

试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。

已知钢的弹性模量E =200GPa ,a =1m 。

解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。

若[]MPa 160=σ,试求许可载荷F 。

5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。

如已知AB 梁高为1h ,CD 梁高为2h 。

欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。

已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。

5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。

设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。

=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。

试校核梁的强度。

解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。

第五章 弯曲应力

第五章 弯曲应力


2 、措施
提高弯曲强度的措施
1)减小M(合理按排梁的受力情况):支座

2 、措施
提高弯曲强度的措施
1)减小M(合理按排梁的受力情况):布载

2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):矩形

2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):工字形、槽形、矩形、
圆形比较(W/A值)
习题讨论课
2)不同材料
组合截面梁
c
Ac
hc
sc
∑Fx=0
σt=Ety/ρ σc=Ecy/ρ
t
s d A = F
A
N
At
ht
t
st
FN=0
c
中性轴?
At
s dA s
Ac
dA = 0
习题讨论课
2)不同材料
c
Ac
hc
组合截面梁
sc
∑My=0
At
ht
t
st
( E ) zdA = 0
例(书例5-1)
★ 横力弯曲时的正应力
※ 弯曲强度特点
1)危险面往往有几处 2)同一截面危险点往往不只一个
★ 横力弯曲时的正应力
※ 有些材料 s t s c 拉压强度要分别校核
s t max
M s t = W t z max
M s c = W c z max

2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):注意和思考 a) 工艺成
本(如空心截面) b) 考虑材质(如铸铁T形梁等)

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第五章习题5-1一矩形截面梁如图所示,试计算I-I截面A、B、C、D各点的正应力,并指明是拉应力还是压应力。

5-2一外伸梁如图所示,梁为16a号槽刚所支撑,试求梁的最大拉应力和最大压应力,并指明其所作用的界面和位置。

5-3一矩形截面梁如图所示,已知P=2KN,横截面的高宽比h/b=3;材料为松木,其许用应力为。

试选择横截面的尺寸。

5-4一圆轴如图所示,其外伸部分为空心管状,试做弯矩图,并求轴内的最大正应力。

5-5 一矿车车轴如图所示。

已知 a=,p=5KN,材料的许用应力,试选择车轴轴径。

5-6 一受均布载荷的外伸刚梁,已知q=12KN/m,材料的许用用力。

试选择此量的工字钢的号码.5-7 图示的空气泵的操纵杆右端受力为,截面I-I和II-II位矩形,其高宽比为h/b=3,材料的许用应力。

试求此二截面的尺寸。

5-8 图示为以铸造用的钢水包。

试按其耳轴的正应力强度确定充满钢水所允许的总重量,已知材料的许用应力,d=200mm.5-9 求以下各图形对形心轴的z的惯性矩。

5-10 横梁受力如图所试。

已知P=97KN,许用应力。

校核其强度。

5-11 铸铁抽承架尺寸如图所示,受力P=16KN。

材料的许用拉应力。

许用压应力。

校核截面A-A的强度,并化出其正应力分布图。

5-12 铸铁T形截面如图所示。

设材料的许用应力与许用压应力之比为,试确定翼缘的合理跨度b.5-13 试求题5-1中截面I-I上A、B、C、D各点处的切应力。

5-14 制动装置的杠杆,在B处用直径d=30mm的销钉支承。

若杠杆的许用应力,销钉的,试求许可载荷和。

5-15 有工字钢制成的外伸梁如图所示。

设材料的弯曲许用应力,许用且应力,试选择工字钢的型号。

5-16 一单梁吊车由40a号工字钢制成,在梁中段的上下翼缘上各加焊一块的盖板,如图所示。

材料力学第五章弯曲应力

材料力学第五章弯曲应力

注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max=⨯⨯⨯==-σ6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

五章节弯曲应力

五章节弯曲应力

整理M 后(得x ) d M (x ) M (x ) F S (x )x d q (x )x d d 2 x 0
几何意义为:弯矩图d上Md某x(点x)处的F切S(线x)斜率等于该点处剪力的大小。
由上两式可以得到
d2M(x) q(x)
dx2
第四章 弯曲应力
常见荷载下FS,M图的一些特征
Mmax

Fab l
第四章 弯曲应力
例题5-4 图a所示简支梁受集中荷载F 作用。试作梁的
剪力图和弯矩图。
x
F
A
aC
b
B
FRA
l
FRB

解:1. 求约束力
b FRA l F
FRB

a l
F
(b) FS图
2. 列剪力方程和弯矩方程
此梁上的集中荷载将梁分隔成AC和CB两段,两段内任意
横截面同一侧梁段上的外力显然不同,可见这两段梁的剪
l
l
第四章 弯曲应力
3. 作剪力图和弯矩图
FSxFl b0xa
FSxFl aaxl
(b)
MxFb x 0xa
l
M (x)Fa lx axl
l
(c)
如图b及图c。由图可见,在b > a的情况下,AC段梁在
0<x<a的范围内任一横截面上的剪力值最大,FS,max 集中荷载作用处( x=a)横截面上的弯矩值最大,Mmax
FSxM le 0xl M x Me x
l
0 x a Mx Me l x
l
a x l
第四章 弯曲应力
第四章 弯曲应力
如图可见,两支座之间
所有横截面上剪力相同,均
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 弯曲应力习题
一、单项选择题
1、梁纯弯曲时,梁横截面上产生的应力为( ) A 、正应力 B 、拉应力 C 、压应力 D 、切应力
二、填空题
1、对于圆形截面的梁,其对圆心的极惯性矩I p = ;截面对过圆心的Z 轴的惯性矩I z = ;截面的抗扭截面系数W p = ;截面的抗弯截面系数W z =
2、在梁弯曲变形时
1
Z
M
EI ρ
=
,式中ρ 表示梁中性层的曲率半径,M 表示梁横截面上的 ,I z 表示梁横截面的 ,EI z 称为梁的抗弯 。

3、梁纯弯曲时,梁纯弯曲时,横截面上的正应力沿高度方向呈 分布,横截面上距中性轴愈远的点处应力的绝对值 ,中性轴上的各点应力为 . 4、根据梁弯曲的平面假设,梁上其间存在一层既不伸长也不缩短的纤维,这一层纤维称为 。

该层与梁横截面的交线称为 。

~
三、计算题
1、由50a 号工字钢制成的简支梁如图所示,q =30kN/m ,a =3m ,50a 号工字钢的抗弯截面系数W z =1860×10-6m 3,大梁材料的许用应力[σ]=160Mpa ,试校核梁的强度。

'
2、如图所示矩形截面悬臂梁,外载荷F =3kN ,梁长l =300mm ,其高宽比为h /b =3,材料的许用应力[σ]=160Mpa ,试按梁的弯曲强度条件设计该矩形截面梁的尺寸。

图5.3.1
3、如图所示的简支梁,梁横截面为圆形,直径D =25mm
,P =60N ,m =180N •m, a =2m ,圆形截面梁材料的许用应力[σ]=140Mpa ,试校核梁的强度。

{
4、如图所示悬臂梁,外伸部分长度为l ,截面为b ×4b 的矩形,自由端作用力为P 。

拟用图(a )和图(b )两种方式搁置,试求图(a )情形下梁横截面上的最大拉应力(σmax ) 和
图(b )情形下梁横截面上的最大拉应力(σmax )。

图中力的单位为(N ),尺寸单位为(mm )。

(
(a)

5、如图一单梁吊车,其跨度l =10m ,吊车大梁由45a 号工字钢制成,45a 号工字钢的抗弯截面系数W z =1430×10-6m 3,大梁材料的许用应力[σ]=140Mpa ,电葫芦自重G =15kN ,最大起重量Q=55kN ,试校核大梁的强度。

(大梁自重暂不考虑。


图5.3.2
图 5.3.3
图 5.3.4
图5.3.5。

6、如图一空气泵的操纵杆,右端受力为,截面I -I 为矩形,其高宽比为h / b =3,
材料的许用应力[σ]=50Mpa ,试求该横截面的尺寸。

图中尺寸单位为mm 。

7、悬臂梁受均布载荷作用如图所示,已知梁的跨度=1m l ,均布载荷集度=6kN/m q ;梁由10号槽钢制成,截面有关尺寸如图所示,横截面的惯性矩44
z =25.610mm I 。

试求此梁的最大拉应力和最大压应力。

|
8、矿车车轴受力如图所示,已知a = 0.6m ,F =5kN ,材料的许用应力[]=80MPa σ,试选择车轴直径。

图5.3.6
图 5.3.7
?
9、一吊车梁受力如图,跨度l 为8m ,梁由20a 工字钢制成,抗弯截面系数W z =237cm 3, 材料许用应力为 [σ]=200Mpa ,求该梁可能承载的最大起重量。

10、一矩形截面木梁受力如图所示,已知=10kN P ,=1m a ;木材的许用应力
[]=10MPa σ。

设梁横截面的高宽比为h/b =,试选择梁的截面尺寸。


11、一吊车梁受力如图,若起重量F 为20kN ,跨度l 为8m ,梁由20a 工字钢制成,抗弯截面系数W z =237cm 3, 材料许用应力为 [σ]=200Mpa ,校核梁的强度。

12、一矩形截面木梁受力如图所示,已知=10kN F ,=1.2m a ;木材的许用应力
[]=10MPa σ。

设梁横截面的高宽比为h/b =2,试选择梁的截面尺寸。

第五章弯曲应力习题答案
一、单项选择题
1、A
图 5.3.8
二、填空题
1、
4
433
d d d d 32
641632
{
2、弯矩 惯性矩 刚度
3、线性 愈大 零
4、中性层 中性轴
三、 计算题
1、 解:
max M 270kN m =⋅
[]3max -6z 827010σ1860101.4510pa
=145Mpa <σ160Mpa
M W ⨯==
⨯=⨯=
故梁的强度足够。

.
2、
解:
max M 900N m =⋅
[]3max 3
z
90010σσ160Mpa 96
M b W ⨯==≤= 15.5mm 46.5mm b h ≥≥
— 3、 解:
故梁的强度足够。

4、
解:
[]max 33
Z 3max Z M 160N m W 0.11562.5mm M 16010σ102.4Mpa <σ140Mpa
W 1562.5
d =⋅==⨯====
Fl=
()(Mpa)8b 3Pl (4b)b 6Pl W M σ3
2Z a max =⨯==

()
(Mpa)2b 3Pl b 4b 6Pl W M σ3
2Z b
max =⨯==
5、
解:M=1/2(G + Q )×l /2 = 1/2(55+15)×10/2 ×106 =175×106 (N mm ⋅)
[]6
6917510122.4Mpa <140Mpa 14301010
Z M W σσ-⨯====⨯⨯ 故大梁的强度足够。

6、 解:
M=×103×(720-80)=5440×103(N mm ⋅)
()
[]3
2
6544010503Z M Mpa W b b σσ⨯⨯==≤=⨯ 解得: b≥41.7mm; h=125.1 mm 7、 解:(1)求最大弯矩 梁在固定端横截面上的弯矩最大,其值为2
max
2600013000N m 2
2
ql M
⨯=
=
=⋅
(2)求最大应力
因危险截面上的弯矩为负,故截面上边缘受最大拉应力,
6max max 18
6max max 28
30000.015217810Pa 178MPa
25.61030000.032838510Pa 385MPa
25.610t z c z
M y I M y I σσ--=⋅=⨯=⨯=⨯=
⋅=
⨯=⨯=⨯
8、 解:
36max 3
max
max 6
max 510600310N mm 0.1[]310[]8072.5mm
Z Z
Z M Fa W d M W M W d σσσ==⨯⨯=⨯⋅==
≤⨯≥=
≥。

相关文档
最新文档