关于基坑监测方案26496

合集下载

基坑监测方案

基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。

为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。

本文将就基坑监测方案进行详细介绍。

二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。

监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。

2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。

3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。

4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。

三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。

本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。

(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。

(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。

(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。

2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。

(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。

四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。

基坑监测方案

基坑监测方案

基坑监测方案一、方案背景近年来,随着城市建设的快速发展和人口的增加,基坑工程在城市建设中扮演着重要的角色。

然而,由于基坑工程涉及地下水位变化、土壤压力、地下结构稳定性等复杂问题,如果不加强监测和控制,可能会导致严重的工程事故。

因此,本文将介绍一套基坑监测方案,旨在确保基坑工程的安全和顺利进行。

二、监测内容1. 地下水位监测:地下水位是基坑工程中重要的监测指标之一。

通过安装水位传感器,实时监测地下水位的变化情况。

如果地下水位超过安全范围,及时采取措施进行处理,以保证工程的安全运行。

2. 土壤位移监测:土壤位移是评估基坑工程稳定性的重要参数。

通过安装位移传感器,监测土壤体的水平和垂直位移。

一旦发现土壤位移过大,及时采取加固措施,以避免地质灾害的发生。

3. 地下结构变形监测:基坑工程通常涉及地下结构的建设,如地下车库、地下室等。

为了保证地下结构的稳定性,需要进行相应的变形监测。

通过安装变形传感器,实时记录地下结构的变形情况,及时发现并修复变形问题,以确保地下结构的安全运行。

4. 监测数据分析与报告编制:监测数据的分析和报告编制是基坑监测的重要环节。

监测数据需要经过专业的分析和统计,生成相应的监测报告,为工程管理提供决策依据。

报告应包括监测结果、问题分析和改进措施等内容,以便工程管理人员能够及时采取相应的措施。

三、监测方法1. 传感器安装:根据监测内容,选择合适的传感器进行安装。

传感器应具有高精度、稳定性好等特点,以确保监测数据的准确性。

2. 数据采集与传输:通过数据采集系统,实时采集监测数据,并将数据传输至监测中心。

数据传输方式可以选择有线或无线传输,以确保数据的及时性和稳定性。

3. 数据分析与报告编制:利用专业的监测数据分析软件,对监测数据进行处理和分析。

根据分析结果,编制监测报告,并将报告交付给相关管理部门。

四、监测措施1. 预警机制建立:根据监测数据分析,建立相应的预警机制。

一旦监测数据超过预警指标,立即触发预警,并采取紧急措施,以确保工程的安全运行。

基坑工程监测检测方案

基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。

在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。

本文将针对基坑工程的监测检测方案进行详细的介绍。

二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。

三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。

可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。

2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。

可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。

3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。

可以采用应变计、位移计等仪器进行实时监测。

4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。

可以通过长期监测和数据分析,掌握地下水位的变化规律。

5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。

可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。

四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。

这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。

2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。

可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。

3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。

可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。

基坑工程监测方案完整版

基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。

本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。

二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。

三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。

2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。

3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。

4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。

五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。

2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。

3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。

4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。

六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。

2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。

二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。

详细介绍了监测的目的、内容、方法及实施步骤。

二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。

三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。

基坑施工监测方案

基坑施工监测方案

基坑施工监测方案为了基坑工程施工的安全,顺利按计划进行,保证工程质量,并且在施工过程中,使周围已有建筑物、市政设施、地下管线等不受损伤、少受干扰,必须对基坑工程全过程进行系统监测。

在施工过程中,随时掌握基坑围护结构的位移、沉降、受力水平及周围建筑物的动态(沉降或倾斜),以科学数据为依据,做到信息指导施工,对可能出现的工程隐患及时预报以采取相应措施,以防患于未然。

一.监测内容基坑施工监测包括周边环境监测、支护结构监测、土体变形监测,槽底回弹监测,以及包括周边建筑物、重要道路及地下管线等保护对象进行系统的监测。

本工程基坑监测内容如下:1.基坑水平位移监测;2、基坑沉降监测;3、基坑水位监测二、观测方法1.沉降观测采用精密的水准仪进行量测。

主要采用精密水准测量方法进行,沉降观测点直接设置在被观测对象(本基坑设置在压顶梁和坡顶土体上)的特征点上,并在远离基坑或稳定的位置设置基准点。

观测点应布置在具有特征点的地方。

2、水平位移观测采用精密电子经纬仪进行量测。

采用轴线投影法在两个稳定的基准点之间连线为基准线,量测差值和累计位移量。

观测点直接布置在支护桩顶、土坡坡顶。

3、水位观测:周坑周边设水位观测井进行水位观测。

4、肉眼巡检由于支护结构的施工质量、施工条件的改变、基坑边堆载的变化、施工用水不适当排放、管道渗露以及气候条件的改变,还有工程隐患如地面裂缝、支护结构的失稳、临近建筑物裂缝等都可在巡检工作中及时发现,因此巡检是十分重要和很有必要的,应由有经验的工程师按期进行巡检,巡检工作应列入观测计划,按期进行,并保持记录。

5、观测精度沉降观测中水准仪i角≤±10"每测站基辅读数高差≤0.3mm,水准路线闭合差≤±0.3(n)l∕2o三、观测点设置1.测距点在距基坑20〜30米相对稳定地方(如基坑四周的原有建筑物上台基坑边线延长方向设置,共设置3个,并用水泥桩固定;2、搅拌桩水平位移观测点在桩顶上适当上布设,测点间距10〜15米,点位用水泥钉固定;3、土体沉降观测标志在基坑内侧沿基坑高度5〜6米分层设置,水平间距10~15米,用水准仪进行观测。

基坑监测方案

基坑监测方案

基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。

本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。

一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。

具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。

二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。

2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。

3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。

4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。

三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。

具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。

2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。

四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。

一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。

1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。

2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。

总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。

基坑监测监控方案

基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。

通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。

一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。

基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。

2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。

混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。

此后可每周观测一次至回填土完工。

3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。

4、当有危险事故征兆时,应连续监测。

二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。

2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。

4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。

基坑监测技术方案

基坑监测技术方案

基坑监测技术方案1.监测目标:基坑监测技术方案的首要目标是对基坑周围环境、土体变形、地下水位等进行全面监测,以确保基坑施工过程中所处位置的稳定性和可靠性。

2.监测手段:(1)GPS监测:利用全球定位系统(GPS)技术,对基坑及周围环境的位置进行准确的测量。

通过与基准点相连,可以监测基坑位置是否发生变化。

(2)建筑物监测:利用激光测距仪、倾斜仪等设备,对周围建筑物的变形和位移进行实时监测,以避免施工活动对建筑物造成不可逆的损坏。

(3)地下水位监测:通过设置水位观测井,利用水位传感器测量地下水位的变化情况,及时掌握基坑附近地下水的动态变化,并采取相应的措施。

(4)地面沉降监测:通过安装变形传感器,测量地面的沉降情况,及时发现和解决可能导致严重后果的地面沉降问题。

(5)土体应力监测:通过安装应力应变传感器,对基坑周围土体的应力情况进行实时监测,以及时采取支护措施。

3.监测频率和方式:(1)预施工监测:在基坑施工前进行一次全面的预施工监测,确定施工前的各种数据,作为后续施工的参考依据。

(2)施工过程监测:在基坑施工过程中,周期性地对基坑及周围的环境进行监测,频率根据工程的大小和特点而定,以及时掌握施工过程中的变化情况。

(3)施工结束后监测:施工完成后,对基坑及周围环境进行最后一次全面监测,评估工程施工的效果和影响以及后续治理等工作。

4.监测数据处理和分析:监测到的数据需要进行处理和分析,以判断是否出现危险情况。

可以使用数据处理软件和数学模型来辅助分析,对数据进行图形展示、数据统计和挖掘,以辅助决策和预测。

5.信息报告和预警机制:基于监测数据的分析结果,及时编制监测报告,对施工过程中出现的问题进行详细描述,并提出改进建议和预警措施。

报告内容包括监测数据的整理和分析、监测过程中出现的问题和解决方案等。

综上所述,基坑监测技术方案是确保基坑施工安全和质量的重要手段,通过多种监测手段对基坑及周围环境的变化进行实时监测和分析处理,并及时采取相应的措施,以确保基坑施工过程的安全可靠性。

基坑监测方案范文

基坑监测方案范文

基坑监测方案范文一、背景介绍基坑工程是建设项目中常见的一种工程类型,涉及到大量的土方开挖和地下施工工作。

然而,基坑施工中存在一定的风险,如土方塌方、地下水涌入、周边建筑物沉降等问题。

为了确保基坑工程的安全和稳定,进行基坑监测是必要的措施之一、本文将提出一种基坑监测方案,以确保基坑工程施工安全。

二、监测目标和指标1.监测目标:确保基坑工程施工过程中土方开挖、支护和地下施工的稳定性和安全性。

2.监测指标:(1)土方开挖监测指标:土体变形、土压力。

(2)支护结构监测指标:支撑剪力、支护位移。

(3)周边建筑物监测指标:沉降、倾斜。

三、监测方案1.监测方法:通过传感器采集数据,在监测点位上进行监测。

传感器可以选择相应的位移传感器、压力传感器、倾斜传感器等。

2.监测网络布局:根据基坑工程的规模和布置,合理确定监测点位布局。

监测点位应包括土方开挖区域、支护结构、周边建筑物等关键部位。

3.监测频次:根据施工进度和工程变化情况,确定监测频次,一般建议每周监测一次。

对于特殊情况,如重大施工阶段或突发事件,可增加监测频次。

4.数据处理:监测数据应及时传输到监测中心,经过专业人员进行处理和分析。

监测中心应建立数据管理系统,保证数据的有效性和可追溯性,及时提供相关报告和预警信息。

5.预警机制:根据监测数据的分析结果,建立相应的预警机制。

一旦监测数据出现异常情况,预警系统应及时发出预警信号,并通知相关人员进行处理。

四、监测实施方案1.土方开挖监测:在土方开挖区域设置位移传感器和压力传感器。

通过定期监测土体的变形和土压力的变化,及时掌握土体的稳定性。

2.支护结构监测:在支撑结构上设置位移传感器和支护剪力传感器。

通过监测支护结构的变形和支撑剪力的变化,及时判断支护结构的安全性。

3.周边建筑物监测:在周边建筑物上设置测斜仪和沉降观测点。

通过监测建筑物的倾斜和沉降情况,判断基坑工程对周边建筑物的影响是否安全。

4.数据报告和预警:监测中心应及时处理监测数据,生成监测报告并及时提供给相关人员。

基坑监测方案

基坑监测方案

基坑监测方案1.1概述1、本工程基坑方案:采用自然放坡大口井降水。

2、变形监测的任务和目的为了确保在基坑开挖、降水、边坡、基础施工期间,基坑护坡、周围建筑物和在施建筑物的绝对安全,需进行基坑护坡的变形监测工作。

1)变形监测对象和监测内容基坑边坡:基坑边坡、水平位移观测;周围已有建筑物:沉降观测。

2)变形观测时间基坑边坡变形监测(水平位移观测):于基础施工完成后开始,至回填土完成前结束。

周围已有建筑物变形监测(沉降观测)工作于基坑开挖前开始,建筑物未受扰动时开始,首先取得初始值,至覆土前结束。

届时视变形是否稳定决定是否继续观测。

3)变形观测的目的和要求通过变形监测,取得精确可靠的变形(水平位移、沉降量、差异沉降量、沉降速度和沉降发展趋势等)数据,获得已有建筑物、基坑边坡及正建建筑物在各施工阶段随时间的变形规律,了解地基在不同荷载作用下随时间的变形规律,有效监测特定观测目标的稳定性,,以利及时采取预防措施,并在检查、处理有关工程质量事故等必要时,作为质量责任正确分析与判断的科学依据,从而为本工程提供有效的技术保障。

3、执行本方案的要求严格按照施测方案执行,服从监理工程师的监督检查,坚持负责人签字制度,确保观测质量,确保仪器、人员的安全。

4、执行技术标准规范《建筑变形测量规程》(JGJ8—2007)中华人民共和国行业标准。

1.2技术方案要点1、水平位移观测技术方案沉降观测、水平位移观测包括:周边建筑物的沉降观测;基坑边坡的水平位移观测;1)精度设计按照施工现场条件,同时考虑到现场无法设置强制对中观测墩的客观因素,该水平位移观测拟采用二级观测精度。

用于基准网监测和对变形观测点的观测。

具体精度指标如下:观测点坐标中误差≤±3.0mm测角中误差为±2.0"(DJ2级仪器方向法观测1测回(一测回2C互差≤13")。

2)建筑物沉降观测的精度设计根据《建筑变形测量规程》的规定,本项目拟采用一级沉降观测精度。

基坑监测专项方案

基坑监测专项方案

基坑监测专项方案一、背景随着城市化进程的加快,高层建筑、地铁、桥梁等工程广泛建设。

其中基坑挖掘是建筑工程中的一个重要环节,也是一个复杂的施工过程。

基坑施工一旦出现问题,不仅会影响工程质量,还可能导致人身和财产安全事故的发生。

因此,对基坑施工过程进行监测是非常必要的。

二、目的本方案的目的是确保基坑施工过程的安全、稳定进行,并及时掌握施工现场情况,以便及时处理出现的问题,为工程顺利进行提供保障。

三、监测内容1.土壤变形监测:通过设置相应的监测点,采集土壤变形数据,分析土壤的承载能力和稳定性,及时发现并处理可能引发的地质灾害。

监测点应设置在基坑的各个重要部位,如边坡、土体削弱区和地下水位差较大处。

2.围护结构监测:针对基坑围护结构的变形情况进行监测,包括混凝土柱、螺栓、支撑等。

通过监测数据分析,及时发现并处理构件变形、变形速度过快等问题,确保围护结构的稳定性。

3.地下水位监测:设置地下水位监测仪器,对基坑周边地下水位进行实时监测。

通过分析地下水位数据,判断是否存在地下水涌入、渗漏等问题,及时采取相应的措施,保证基坑施工过程中的水平衡。

4.物体移动监测:监测基坑周边的建筑物、道路和地下管线等的移动情况,及时发现并处理可能引发的安全隐患。

四、监测方法1.土壤变形监测:采用精确的位移监测仪器和测量技术,如全站仪、GNSS等,定期对监测点进行测量。

数据采集后,进行数据处理与分析,得出土壤变形的结果。

2.围护结构监测:使用变形监测仪器,如倾斜仪、十字测级仪等,对围护结构进行实时监测。

监测数据通过无线传输至监测中心,进行数据分析与处理。

3.地下水位监测:采用水声波测量仪、水位计等设备,对地下水位进行实时监测。

监测数据通过数据传输系统上传至监测中心,进行数据分析与处理。

4.物体移动监测:通过精密测量仪器,如全站仪、激光测距仪等,对建筑物、道路和地下管线等进行监测。

监测数据通过无线传输系统上传至监测中心,进行数据分析与处理。

基坑监测方案范文

基坑监测方案范文

基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。

因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。

二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。

如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。

2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。

如若超出,需要采取相应的排水措施,控制地下水的涌入。

3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。

通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。

4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。

三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。

它能够实时监测土层的变形情况,并通过数据分析给出预警。

2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。

通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。

3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。

4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。

四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

基坑监测方案

基坑监测方案

基坑监测方案一、工程概述本次基坑工程位于具体地点,周边环境较为复杂,有相邻建筑物、道路、地下管线等情况。

基坑开挖深度为具体深度,面积约为具体面积。

二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。

2、为优化设计和施工方案提供依据,实现信息化施工。

3、对可能发生的危险情况进行预警,提前采取防范措施。

三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。

2、围护结构竖向位移监测使用水准仪对围护结构顶部的监测点进行竖向位移观测。

3、深层水平位移监测在围护结构内埋设测斜管,通过测斜仪测量深层水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。

5、地下水位监测在基坑周边设置水位观测井,使用水位计测量地下水位的变化。

6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别采用水准仪和全站仪进行观测。

7、周边道路及地下管线沉降监测在道路和地下管线上设置监测点,使用水准仪进行沉降观测。

四、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔具体间距布置一个监测点。

2、深层水平位移监测点在基坑的关键部位,如阳角、阴角等,每隔具体间距布置一个测斜管。

3、支撑轴力监测点选择受力较大的支撑构件,每隔具体间距布置一个轴力计。

4、地下水位监测点在基坑周边每隔具体间距布置一个水位观测井。

5、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每具体间距布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

6、周边道路及地下管线沉降监测点根据道路和地下管线的走向,每隔具体间距布置一个监测点。

五、监测频率1、基坑开挖期间,每天监测 1 次。

2、底板浇筑完成后,每 2-3 天监测 1 次。

3、主体结构施工期间,每周监测 1-2 次。

4、当监测数据变化较大或遇暴雨等恶劣天气时,应加密监测频率。

六、监测报警值1、围护结构水平位移和竖向位移报警值累计位移达到具体数值或单日位移达到具体数值。

基坑监测方案

基坑监测方案

基坑监测方案1、监测目的1)通过对监测数据分析,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,从而切实实现信息化施工;2)通过监测,及时掌握和提供基坑、围(支)护系统、地表的变化信息和工作状态,确保本工程基坑开挖期间周边道路、管线正常运行;3)通过监测及时发现基坑施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建筑物及管线影响的目的;4)通过监测及时调整支撑系统的受力均衡问题,使得整个基坑开挖过程能始终处于安全、可控的范畴内;5)及时发现险情,以便采取措施,防止事故发生;6、通过跟踪监测,在支撑拆除阶段,施工科学有序,保障基坑始终处于安全运行状态;2、监测方的确定因基坑开挖深度比较深,建设单位必须委托专业监测单位(第三方)对基坑围护结构和周边环境进行监测;施工单位自行检测。

3、第三方基坑监测1)监测内容根据设计要求本工程须进行监测项目有:支护结构的水平位移及裂缝;基坑周围24米范围内地面的裂缝;基坑周围24米范围内市政设施的变位和破损;基坑周围地面超载情况及基坑渗水状况。

2)监测设备3)监测要求a.须请有资质的单位、人员进行监测,基坑开挖须做好监测方案和观测点的布置、埋设,具体位置和数量由监测单位自定。

b.观测基准点不少于3个,设在影响范围以外。

c.基坑开挖期间每2天观测1次,在开挖卸荷急剧阶段和不良天气时,应加密至1天1次。

基坑开挖完成后每3天一次,位移趋于稳定则5天观测1次。

d.监测点的保护:基坑施工阶段每次完成监测工作后必须对监测点进行覆盖,并设专人看护,以保护监测点。

e.观测资料应在24小时内整理提交监理和甲方、总承包方。

4)监测预警值4施工单位的自我监测1)监测内容除根据设计要求需要监测的项目,施工单位还需对:土方开挖过程中土层分布是否与勘察报告相符及土质变化;支承柱的隆起与沉降进行监测;密切关注观测井的水位变化;观察灌注桩冠梁、环梁及混凝土支撑系统是否出现裂缝;并应密切关注路面是否有裂缝、关注其发展及变化;2)监测要求基坑开挖施工前,施工单位会同建设单位、监理单位共同对基坑四周24m范围内的建筑物、地貌进行检测,确定观测点留有原始检测记录,填入正式的表格;并留有影像资料经三方签字确认;基坑支护监测点的布置按照间隔6m进行,观测变型情况;基坑周围的多层住宅楼按照每个转角进行布置,观测垂直、沉降情况;单层住宅按照每个转角及中间位置进行布置;基坑施工期间,施工单位每天对基坑周边的地貌进行巡视;每3天对基坑周边的观测点进行复测,每周将观测数值与第三方检测单位的数值进行对比;当观测值大于警戒值时,缩短观测时间改为每天进行观测;及时与建设单位联系采取有效措施;紧急情况下立即停止施工,启动应急预案,采取相应措施,并报甲方、设计、监理情况,共同研究处理方案。

基坑监测专项方案

基坑监测专项方案

基坑监测专项方案(一)基坑围护的施工监测内容l、监测内容及项目根据围护设计图纸要求,结合本工程实际情况,在基坑开挖过程中开展以下几方面监测内容:(1)具体项目主要用于观测围护结构、邻近建筑物及道路的水平位移及沉降。

1)基坑周边的沉降、裂缝观测。

2)沿基坑周边道路沉降观测点,沉降观测点布置4个。

3)在泵车停放处及大门出入口挖土及底板结构施工期间增设沉降观测点,每天观测。

2、巡视检查基坑工程整个施工期内,每天均应进行巡视检查。

基坑工程巡视检查宜包括以下内容:(1)支护结构土体有无裂缝出现;(2) 周边环境1)周边建筑有无新增裂缝出现;2)周边道路(地面)有无裂缝、沉陷;(二)监测点的设置1、为坑外土体沉降观测点,布置于坡顶。

2、施工期间应加强已有道路、建(构)筑物监测工作。

3、监测点、后视点、水准基点应设置在基坑施工影响范围外。

坑外土体水平位移、沉降,地下水位变化;周边道路的沉降,周边建筑物沉降等。

4、地表开裂,宜采用标记法进行观察和比较,有裂缝时,先测量其宽度并做好记录,然后用水泥浆灌实抹平,必要时可拍照留存。

(三)监测次数及方法1、工程开工前进行一次全面监测记录。

2、在基坑开挖期间,每天监测次数一次为宜,特殊情况下每天二到三次,雨天和雨后或当位移出现发展趋势或接近预警值时,应加大监测的频率。

3、地下室底板完工后可减少监测次数,地下室侧墙完工后停止监测。

4、雨天和雨后应加强监测,并对各种可能危及土体安全的水害来源进行仔细观察。

(四)监测设备1、全站仪1套2、DS2水准仪1台(五)基坑的监测时间、监测频率1、原始数据采集;基坑开挖前对各观测点进行2回次的有效观测,取2次有效观测数据的平均值为初始读数。

2、表层挖土时,每天观测一次;3、挖土深度接近坑底设计标高时,或监测过程中发现某监测点变形数据接近警戒值时,增加监测频率;4、当监测点变形值超警戒值每天监测次数不少于三次;5、垫层浇筑完毕,若各监测点变形情况基本稳定,监测频率可降至二天一次;6、监测周期直至地下室全部完成。

基坑监测方案

基坑监测方案

基坑监测方案
为保证基坑支护结构在开挖及基础施工期间的安全与稳定,确保建筑物的安全。

要进行土钉抗拔试验,土钉长度均为5米,直径100mm,杂填土及全风化岩中均设3根,施工14天后进行拔出破坏试验。

另外,在基坑边坡坡顶设置水平及沉降观测点观测建筑物的倾斜。

在每层开挖爆破均进行观测,同时注意基坑四周的裂缝观察。

(14)边坡变形观测方案
1)边坡位移
边坡位移采用全站仪进行监控:
①坐标法
首先在施工现场附近布置好测量控制网,每次都精密测出各位移观测点的坐标,根据每次测得的坐标差值求得位移值。

②方向观测法
根据该工程位移观测点基本处在同一直线的特点,在该直线附近或直线上埋一基准点,并标定好起始方向,精确测定各测点的方向值,然后,每次位移观测都精确放样出各位移观测点所在位置的方向,用钢尺量出偏离值,每次所量得的偏离值差值即为位移值。

2)测点及基准点布置
为了能准确、及时地反映边坡变形情况,测点布置在基坑顶周边,测点距离=1.5m×基坑深度。

3)沉降观测
利用已预埋好的测点,首先在施工现场稳定。

通视地段预埋好水准基点,采用自动安平水准仪进行施测,根据每次测得的高程差值求得沉降值。

基坑沉降监测方案

基坑沉降监测方案

基坑沉降监测方案篇一:基坑沉降监测方案(2495字)一、监测意义:在基坑开挖期间,随着取土的深入,支护结构由于受到土压力和道路动载的作用,会产生比较明显的变形,如果超过一定范围,甚至会出现失稳情况,引起周围道路和建筑物的破坏。

因此,应配备高精度的施工监测队伍,及时提供变形数据,指导施工的顺利进行,保证施工的安全。

二、监测内容:几何变形监测部分:1)周围管线位移监测2)支护结构顶部水平位移3)支护桩桩体位移(倾斜)监测应力监测部分:4)支护桩桩体应力监测5)人字梁(3-3、4-4、4’-4’剖面)应力监测6)水平支撑5-5剖面轴力监测地下水位监测部分:7)水位监测三、监测实施方案:1)周围管线位移监测:在基坑北侧的蒸汽凝水管和蒸汽管上,每隔约12米布设一个监测点,进行水平位移和沉降(竖向位移)监测。

自基坑开挖时起,每隔1~2天监测一次,在挖土高峰期,若位移速率变化异常或位移量过大可适当加密周期,增加监测次数。

当大规模取土期过后且位移基本稳定,则监测周期可视位移速率的大小合理安排,直至主体施工至±0为止,监测约20次。

沉降监测采用二等精密水准测量,其基本思想为:在施工区域外建立基准点,基准点必须牢固稳定,基准点布设以三个点为宜,且构成一个基准网,通过对基准网的定期检测可得知各基准点的稳定情况,从而对不稳定的基准点剔除或进行修正。

每次监测时,通过精密水准测量将基准点的高程采用闭合水准测量引测到各监测点上,从而得到各监测点的绝对高程,根据监测点两次所测得高程之差即可得知监测点在这两次期间的沉降量。

监测过程中的限差要求、测量步骤、手簿记录和计算均按照国家二等水准测量规范的规定进行。

在基坑开挖前布设监测点并进行首次监测,挖土期每隔1~2天监测一次,若沉降速率变化异常或沉降量过大可适当加密周期,增加监测次数。

当大规模取土期过后且沉降基本稳定,则监测周期可视沉降速率的大小合理安排,直至主体施工至±0为止,监测约20次。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基坑监测方案编制:校对:审核:泰州市房城建筑质量评估事务有限公司目录1、工程概况2、建设场地岩土工程条件及基坑周边环境状况3、监测目的和依据4、监测内容及项目5、基准点、监测点的布设与保护6、监测方法及精度7、监测期和监测频率8、监测报警及异常情况下的监测措施9、监测数据处理与信息反馈10、监测人员的配备11、监测仪器设备及检定要求12、作业安全及其他管理制度泰州市****基坑监测方案1、工程概况根本项目建设地点:泰州市(新328国道以北,经一路以东)总用地面积:75753 平方米本单位建筑占地面积:777.4平方米总建筑面积:5378.8平方米建筑层数(地上):7层地下:2层建筑高度:20.90工程使用年限:50年建筑物的抗震设防烈度:7度主要结构类型:框架剪力墙结构据工程实际情况,按《建筑基坑工程监测技术规范》 GB50497-2009第4.2.1表1基坑工程类别中规定该基坑为二级基坑。

2、建设场地岩土工程条件及基坑周边环境状况场地岩土工程条件:土质第1层为表土,工程性质差,第2层为粉土,工程性质一般,第3层为粉砂,工程性质良好,第4层为粉质粘土,工程性质良好,第5层为粘土,工程性质良好,第6层为粉质粘土,工程性质一般,第6-1层为粉土,工程性质一般,第7层为粉质粘土,工程性质良好,第8层为粉土夹粉质粘土,工程性质一般,第9层为粉土夹粉砂,工程性质一般,第10层为粉细砂,工程性质良好,第11层为粉质粘土,工程性质良好。

该基坑支护东侧采用双排钻孔灌注桩的支护形式;北侧采用放坡;其余两面采用钻孔灌注桩+预应力锚索支护形式;基坑周边采用三轴搅拌桩全封闭止水帷幕。

周边环境现场查勘状况:基坑的东侧为青年南路,南侧为济川路。

3、监测目的和依据3.1、监测目的3.1.1根据监测结果,发现可能发生危险的先兆,判断工程的安全性,防止工程破坏事故的发生,采取必要的工程措施;3.1.2以基坑监测的结果指导现场施工,进行信息化反馈优化设计,使设计达到优质、安全、经济合理、施工快捷;3.1.3为设计人员提供准确的现场监测结果使之与理论预测值相比较,用反分析法求得更准确的设计参数,修正理论公式,不断地修改和完善原有的设计方案,以指导下阶段的施工,确保地下施工的安全顺利进行,同时也能为其它工程的设计施工提供参考。

3.1.4通过对基坑的现场监测,验证基坑工程保护方案的正确性,及时分析出现的问题并采取有效措施,以保证基坑工程施工的安全。

3.2、编制原则3.2.1 深基坑开挖及支护施工过程中,每个分步开挖的空间几何尺寸和开挖部分的无支撑暴露时间,与周围墙体、土体位移即三维空间的各种变化存在一定的相关性,这就反映了基坑开挖中时空效应的规律。

3.2.2 基坑开挖是基坑卸荷过程,由于卸荷而引起坑底土体产生以向上为主的位移,同时也引起围护墙在两侧压力差的作用下而产生的水平方向位移和因此产生的墙外侧土体的位移。

基坑变形包括围护墙的变形、坑底隆起及基坑周围地层移动等。

3.2.3加强监测工作可以可靠而合理地利用土体自身在基坑开挖过程中控制土体位移的潜力而达到保护环境的目的,在深基坑施工中是具有现实意义的。

3.2.4基坑施工土体变形影响范围(一般约为2倍基坑开挖深度)内的建(构)筑物、地下管线和基坑本身作为本工程监测及保护的对象。

3.3、基坑监测依据:国家相关规范、规程、标准或地方规程一览表3.4除按招标文件要求及深基坑设计图纸外,本次监测工作中涉到的技术规范标准将是国家现行标准,质量负责人将随时检查技术规范的更新情况。

4、监测内容及项目根据规范规定及业主提供的相关设计图纸资料,本基坑工程的现场监测采用仪器监测和巡视检查相结合的方法,其中仪器监测项目有圈梁顶水平、竖向位移、地下水位、桩、土体深层水平位移(各项目的监测点位布置图附后)。

4.1监测内容:①圈梁顶部水平、竖向位移的监测:从圈梁顶面基坑阳角处起西侧布设7个位移监测点,在南侧布设9个位移监测点,在东侧布设10个位移监测点,合计布设26个测点,在基坑施工期间进行变形测量,控制变形速率和累积变形量,保证基坑的安全。

②坑外地下水位监测:在止水帷幕外侧2m处,沿基坑周边布设19个水位观测孔,孔深18米,在基坑施工期间进行水位测量,控制基坑水位变化。

③土体深层水平位移监测:从基坑西侧布设5个水平位移监测点,在南侧布设5个水平位移监测点,在东侧布设6个水平位移监测点,共布设16个测点。

测斜管的长度大于围护灌注桩深度,在基坑施工期间进行土体内部水平位移观测,控制土体内部水平位移变化。

5、基准点、监测点的布设与保护5.1本工程布设的基准点必须满足本工程的要求,并能全面反映工程施工过程中基坑围护体系的变化情况,具体基准点的布设如下:(a)水平位移监测基准点:在测区外布设4个基准平面控制点,在测区内拟布设8个工作基点,工作基点可按实际情况调整。

(b)在测区外布设4个基准高程控制点,在测区内拟布设8个工作基点,工作基点可按实际情况调整。

5.1.1圈梁水平位移点的布设(a)本工程按设计要求需要在圈梁顶布设水平位移观测点,观测点标志采用道钉,用冲击电钻钻孔,将标志埋入其中,采用水泥胶浆固定。

(b)在道钉的位置标注明显的红色数字标示,周围砌设保护井,以免遭受损坏。

5.1.2竖向位移点的布设(与水平位移为共用点)(a)本工程按设计要求需要在圈梁顶布设竖向位移观测点,观测点标志采用道钉,用冲击电钻钻孔,将标志埋入其中,采用水泥胶浆固定。

(b)在道钉的位置标注明显的红色数字标示,周围砌设保护井,以免遭受损坏。

5.1.3土体深层水平位移监测点的安装监测土体深层水平位移的测斜管需要埋设于土体内,安装时应注意以下几点:(a)钻孔:孔深大于所测围护结构的深度5~10m,孔径比所选的测斜管大5~10cm。

在土质较差地层钻孔时应用泥浆护壁。

(b)接管:钻孔作业的同时,在地表将测斜管用专用束节连接好,并对接缝处进行密封处理。

(c)下管:钻孔结束后马上将测斜管沉人孔中,然后在管内充满清水,以克服浮力。

下管时一定要对好槽口。

(d)封孔:测斜管沉放到位后,在测斜管与钻孔空隙内填人细砂或水泥和膨润土拌和的灰浆,其配合比取决于土层的物理力学性能和地质情况。

刚埋设完几天内,孔内充填物会固结下沉因此要及时补充保持其高出孔口。

(e)最后检验:在监测前,应对测斜管作一次检验,检验测斜管是否有滑槽和堵管现象,管长是否满足要求。

如有堵管现象要做好记录,及时进行疏通。

如有滑槽现象,要判断是否在最后一次接管位置。

5.1.4地下水位监测:根据本工程具体情况,监测坑外地下水位的水位管需要埋设于三轴搅拌桩全封闭止水帷幕外,施工时应注意以下几点:(a)在埋设点上用钻机钻孔,达到设计深度后(大于正常水位5.Om),逐段安放水位观测管,接头处采用自攻螺丝拧紧,并用胶布密封。

安放完毕后用中粗沙和碎石子回填,直到钻孔孔隙密实为止并用混凝土封口。

(b)水位管采用外径53mm,内壁50mmPVC水位观测管,管底密封,底部一节按螺旋方向交错开直径为5mm的圆孔,圆孔间距为60mm,底部一节采用80目的尼龙网封孔,以便于地下水的渗入,进行地下水位监测。

在布设时建立初始读数,在基坑开挖当日起实施监测。

5.2观测标志保护在施工期间,为保证监测数据的准确无误,现场观测点标志的保护也是一个重要环节。

除监测单位采取相应的保护措施外,也请业主协调施工单位在施工期间协助监测单位保证监测点标志完好,观测点标志破坏后能及时恢复,使监测工作不受影响。

6、监测方法及精度6.1监测方法6.1.1水平位移监测:(a)利用测区内的8个工作基点,测定特定方向上的水平位移时,可采用视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时,可视监测点的分布情况,采用前方交会法、后方交会法、极坐标法等;当测点与基准点无法通视或距离较远时,可采用GPS测量法或三角、三边、边角测量与基准线法相结合的综合测量方法;本次采用小角度法进行测量。

(b)其测量方法如下:利用精密经纬仪精确地测出基准线与置镜点到观测点视线之间所夹得微小角度αi,并测量测站点与置镜点间的距离Si,按下式计算偏移值:li=αi.Si/ρ式中Si为端点A到观测点Pi的距离,ρ=206265;6.1.2顶点、道路、管线及建筑物竖向位移监测:(a)利用测区外的4个基准高程控制点及测区内的8个工作基点,对各段的监测点采用几何水准的方法进行监测。

(b)其测量方法如下:采用苏州一光DSZ2精密水准仪及配套的2M铟瓦水准尺,观测路线要求闭合,以保证测试数据的精确;观测点测站高差中误差±0.5mm。

6.1.3土体深层水平位移监测:测斜管应在开挖前的3~5天内复测2~3次.待判明测斜管已处于稳定状态后,取其平均值作为初始值,开始正式测试工作:(a)首先在预定位置埋设足够深铅直的测斜管,管内有互成90。

的四个导槽,使其中一对互成180。

的导槽与土体变形方向一致(与基坑边垂直)。

(b)放入带有导轮的测斜仪沿导槽滑动,由于测斜仪能反应出测管与重力线之间的倾角,因而能测出测斜仪所在位置测管在土体作用下的倾斜度θi,换算成该位置测斜仪上下导轮间(或分段长度)的位置偏差△d:△d=Lsinθi 式中,L为量测点的分段长度。

自下而上累加可知各点处的水平位置: d=∑Lsinθi 与初次位置测值相减即为各点本次量测的水平位移。

测斜仪原理图6.1.4地下水位监测:(a)地下水位测量是采用水位计测量地下水和测水管管口的距离,即水深;水位计一端接有探头,另一端接有指示表,两者通过钢尺连接,钢尺上有长度尺寸,当探头接触到水时指示表会有变化,可以从钢尺上可以读出尺寸,即水深。

(b)监测地下水位量测精度不宜低于10mm,水位管在基坑开始降水前至少1周埋设,且宜逐日连续观测水位并取得稳定初始值。

6.2监测精度6.2.1本次监测精度按二级变形测量等级要求执行,其精度指标要求如下表:变形测量级别沉降观测位移观测观测点测站高差中误差(mm) 观测点坐标中误差(mm)二级±0.5 ±3.06.2.2水准测量的有关技术要求如下:7.1根据委托方要求,拟订监测阶段为:从基坑工程施工前一周开始,直至地下工程完成为止。

7.2开挖期间:该工程拟采取分段施工,按每段的施工进度,当开挖≤5m时,每3-5天监测一次;当开挖>5m~浇好底板时,每1-2天监测1次;当浇好底板后14d 内,每3-5天监测1次;浇好底板14d后,每5~10d监测1次。

7.3观测次数:按日历天220天计算基坑监测合计观测50次。

若发现异常及甲方要求,可临时加密量测次数并增加相应台班数。

7.6监测频率可在上述基本次数基础上按监测结果及工程要求进行协调。

7.7基坑开挖施工阶段深基坑支护安全监测随着施工的进展,各时段对围护结构和周边环境影响的程度不一,其监测要求亦不同。

相关文档
最新文档