洛伦兹变换的推导[1]

合集下载

简单推导洛伦兹变换(狭义相对论)

简单推导洛伦兹变换(狭义相对论)

简单推导洛伦兹变换(狭义相对论)洛伦兹变换是狭义相对论的基本公式,从中我们可以进一步得到尺度缩减、时钟慢度、质能转换等奇妙有趣的推论。

值得一提的是,虽然洛伦兹变换最早是由洛伦兹得到的,但他并没有赋予这组变换方程组以相对论的内涵,他只是编造了一个数学观点来纠正错误的以太时空。

所以作者认为洛伦兹变换的结果应该还是属于爱因斯坦的。

1. 先导知识:波速取决于介质的速度,而不是波源的速度或许你听说过,光即是粒子又是波。

没错,但这个“粒子”已经不是我们日常理解的小微粒了,一定不能将发射一束光想象成手枪发射子弹。

许多困扰可能就来自于此,把光想象成子弹你可能永远也想不明白相对论的奇妙变换。

为了方便思考我们需要把光理解成波,发射光就像在水面触发一个涟漪。

我们先看看机械波,建立起对波的正确看法发射一波和发射一颗子弹有什么区别?根本区别在于,触发机械波实际上并不发射任何物理粒子,而是触发介质的传播振动,所以波速完全取决于介质,而不是波源的速度。

站在地上观察时,跑步时说话不会改变声音传播的速度,蜻蜓高速掠过水面也不会改变波纹扩散的速度,只会造成多普勒效应(仔细观察图1中最外层波纹的速度是否受波源速度影响)。

相反,考虑谈话的例子。

如果你站着不动,风在动,声速就会变。

比如逆风说话,声速会增加,逆风说话,声速会变慢。

仔细理解这里的区别,跑步不会改变波的传播速度,但空气运动会。

图1:一个运动的波源并不会导致波速的变化(观察最外层涟漪的速度)现在我们来考虑光的一个例子一列以速度v前进的火车在经过你的时候突然向前进方向发出了一个闪光,光是电磁波,不同于手枪发射子弹,不管这个光源运动情况怎么样,在你看来,这个闪光就像在水面上激起的一个涟漪,以不变的速度c前行。

(但是这里说的不变速度c还不是相对论说的光速不变,只是说光速与光源速度无关)2.光在真空中是通过什么介质传播的?从上面的分析我们看到波的速度,甚至波的性质似乎完全都取决于传递波的介质,波的行为似乎只与介质有关,完全由介质定义,完全由介质约束,波源在触发波之后好像就没有什么关系了。

洛伦兹变换的严格推导

洛伦兹变换的严格推导

洛仑兹变换的严格推导此推导过程从狭义相对性原理及光速不变原理出发,进行严格推导。

设事件P在S系中坐标为()t z yx,,,,在'S系中坐标为()',',','t zyx,'S系以速度u沿'S系的x轴正方向匀速运动。

设真空中光速为c。

洛仑兹变换推导过程如下:因洛仑兹变换为伽利略变换中速度u接近光速c时的数学形式,当速度u 远远小于光速c时洛仑兹变换应能退化为伽利略变换。

所以参照伽利略变换,洛仑兹变换形式可设为:⎪⎩⎪⎨⎧+=+=+=gfedbagtfzzetdyybtaxxλλλλλλ'''⎪⎩⎪⎨⎧+=+=+=gfedbatgzfzt eydyt bxax''''''''''''''''''λλλλλλ1.讨论',xx之间的数学关系:当'',0utxx-==时,有:ba t buta'''')'('0λλ+-=,即baa t btua'''''')('0λλλ+-='t为齐次型aaa t btuaba'''''')('0,''λλλλλ+-==∴若等式成立,有:aaabubua'''',')('λλ-=--=-u-的正负性与aab'''λ-无关且有意义1''==∴baλλ则''bua-=-,有:''''utaxax+=当utxx==,0'时,有:ba btutaλλ+=)(0,即baa bttauλλλ+=t为齐次型aaa bttaubaλλλλλ+==∴0,若等式成立,有:aaabubauλλ-=-=,u 的正负性与aabλ-无关且有意义 1==∴b a λλ则b au -=,有:aut ax x -='。

洛仑兹变换的新推导

洛仑兹变换的新推导

洛仑兹变换的新推导
洛伦兹变换是数学中一种重要的变换,是求解常微分方程的一个重要
工具。

它把问题转化为求解一组数值的问题,从而使得求解对应的常
微分方程的问题变得简单。

下面是洛伦兹变换的推导:
1. 首先,将常微分方程转化为逆变换公式;
2. 根据Laplace变换的性质,计算出逆变换的解析解表达式;
3. 将洛伦兹变换的解析解表达式代入,得出原常微分方程的解;
4. 根据洛伦兹变换的性质,寻找对此解析解表达式及其导数进行洛伦
兹变换的常微分方程;
5. 根据确定性条件,计算洛伦兹变换的数值解;
6. 根据求解的数值,得出洛伦兹变换的原常微分方程的数值解。

洛伦兹变换是现代数学中一种非常有用的变换,它结合了数学分析和
计算,可以用来求解复杂的常微分方程。

上述是洛伦兹变换的新推导,希望能为大家解决常微分方程的问题提供便利。

洛伦兹坐标变换公式推导

洛伦兹坐标变换公式推导

洛伦兹坐标变换公式推导洛伦兹变换是描述时空间随参考系的运动而发生变化的重要理论,它在爱因斯坦的狭义相对论中起到了关键的作用。

本文将从推导的角度来介绍洛伦兹变换的公式。

首先,我们来考虑一个参考系S和一个相对于S以速度v沿着x轴方向运动的参考系S'。

假设S'参考系的原点在S参考系中的x轴上的位置为x',两个参考系的时间原点重合。

现在我们要推导出洛伦兹变换的坐标公式。

在S参考系中,假设有一个事件P,它的空间坐标为(x,y,z),时间坐标为t。

在S'参考系中,事件P的空间坐标为(x',y',z'),时间坐标为t'。

根据狭义相对论原理,我们可以得到以下两个假设:1.时间的间隔在不同参考系中是一致的,即∆t=∆t'。

2.空间的间隔在不同参考系中也是一致的,即∆s^2=(c∆t)^2-(∆x)^2=∆s'^2=(c∆t')^2-(∆x')^2,其中c是光速。

我们将事件P的坐标代入上述的两个假设中,可以得到:(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x')^2-(∆y')^2-(∆z')^2其中,∆x=x2-x1,∆y=y2-y1,∆z=z2-z1,∆x'=x'2-x'1,∆y'=y'2-y'1,∆z'=z'2-z'1接下来,我们假设S'参考系相对于S参考系的速度为v,那么∆x'、∆y'和∆z'可以表示为:∆x'=∆x-v∆t∆y'=∆y∆z'=∆z将上述的式子带入原方程中,我们可以得到:(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x')^2-(∆y')^2-(∆z')^2(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x-v∆t)^2-(∆y)^2-(∆z)^2提取引入速度v的项并进行整理,得到:(c∆t)^2-(∆x-v∆t)^2=(c∆t')^2展开括号可以得到:(c∆t)^2-(∆x^2-2v∆x∆t+v^2∆t^2)=(c∆t')^2继续整理得到:(c^2∆t^2-∆x^2)+2v∆x∆t-v^2∆t^2=(c^2∆t'^2)由于洛伦兹变换要保持事件之间的间隔不变,我们可以进一步简化上述方程:(c^2-v^2)∆t^2-∆x^2=(c^2-v^2)∆t'^2为了使得公式的形式更加简洁,我们可以引入一个名为γ的参数来表示:γ=1/√(1-v^2/c^2)其中,c是光速,γ被称为洛伦兹因子。

(完整版)洛伦兹变换的详细推导

(完整版)洛伦兹变换的详细推导

第三节 洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓; 重点难点:狭义相对论时空观的主要结论。

基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。

1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。

对于任意事件P 在S 系和S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。

在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。

因此x =x '+v t '。

在任意的一个空间点上,可以设:x =k (x '+v t '),k 是—比例常数。

同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系和S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。

五种洛仑兹变换的推导方法

五种洛仑兹变换的推导方法
五种洛仑兹变换的推导方法
一、首先来看看爱因斯坦在《狭义与广义相对论浅说》中的推导方法。 有两个坐标系 K 和 K' ,各坐标系内的事件分 别由坐标(x,y,z,t)和(x' ,y',z' ,t')表示。 我们把问题分成几部分,首先只考虑 x 轴上 发生的事件。任何一个这样的事件, 对于坐标系 K 是由横坐标 x 和时间 t 来表示, 对于坐标系 K'则由 横坐标 x' 和时间 t'来表示。当给定 x 和 t 时,我们 要求出 x' 和 t'。 约定 t=0 时刻 O 和 O' 重合, K' 有沿 x 正方向 的速度 v。 假设沿着 x 轴正方向有一束光信号从 t=t'=0 时刻射出,则光信号在 K 系中满足
⎧ x ' = ax + bt ⎨ ⎩t ' = dx + et
为了使(5)式满足于(3)式,要求
(5)
x 2 − c 2 t 2 = x ' 2 −c 2t ' 2
于是, (5)式应具有下列形式:
(6)
⎧ x ' = xchθ − ctshθ ⎨ ⎩ct ' = − xshθ + ctchθ
其中,θ为常量,shθ和 chθ为双曲函数,即
x − vt ⎧ ⎪ x' = v2 ⎪ 1− 2 c ⎪ ⎪ y' = y ⎪ ⎨z' = z ⎪ v ⎪ t− 2 x ⎪t ' = c ⎪ v2 1− 2 ⎪ c ⎩
进一步得逆变换式为
x'+vt ' ⎧ ⎪x = v2 ⎪ 1− 2 c ⎪ ⎪ y = y' ⎪ ⎨z = z' ⎪ ⎪ t ' + v x' ⎪t = c2 ⎪ v2 1− 2 ⎪ c ⎩

洛伦兹变换的推导

洛伦兹变换的推导

一、间隔不变原理1、事件:一件事情发生可以用地点和时间来标识。

在一个参考系如S 中可以记作(,,,),x y z t 另一参考系'S 中可以记作''''(,,,),x y z t 两件事情发生,分别在两参考系中可以记为22222221212121()()()()s x x y y z z c t t ∆=-+-+---这两事件的间隔在'S 参考系中定义为'2''2''2''22''221212121()()()()s x x y y z z c t t ∆=-+-+---注意两事件的间隔只能在同一惯性参考系才有意义,2s ∆是一种整体记法,就表示两事件在S 系中的惯性,计算方法如下,22222221212121()()()()s x x y y z z c t t ∆=-+-+---不表示两间隔之差,这种写法22221s s s ∆=-是错误的。

由光速不变原理可以推出间隔不变:任何两事件的间隔,从一个惯性参考系变换到另一惯性参考系保持不变。

2'2s s ∆=∆ 二、洛伦兹变换设惯性参考系'S 相对于惯性参考系S 以速度v 运动,选取两个参考系的坐标轴相互平行,x 轴方向沿速度v 方向,且0t =时两坐标原点重合。

在这种情况下有'',y y z z ==考虑两个事件,事件1在0t =时刻发生在两惯性参考系的原点,事件2在S 系中发生t 时刻,两事件在两个惯性参考系S 和'S 分别记为 由两事件在两惯性参考系中间隔相等可以得到'2'2'22'222222x y z c t x y z c t ++-=++- (1)由于从一个惯性参考系到另一个惯性参考系的变换为线性变换,所以有'1112'2122x a x a ct ct a x a ct=+=+ (2)将(2)式代入(1)式再结合'',y y z z ==可以得到2222222221112212222222111221222222222222222111112122121222222222221121111221221222()()()()(2(2)(1)(22)(a x a ct y z a x a ct x y z c t a x a ct a x a ct x c t a x ca a xt a c t a x ca a xt a c t x c ta a x ca a ca a xt a c a c c +++-+=++-+-+=-++-++=---+-+-+22)0t =上式在任何情况下成立,所以只有相应的系数为零。

爱因斯坦洛伦兹变换公式推导

爱因斯坦洛伦兹变换公式推导

爱因斯坦洛伦兹变换公式推导
(1)正常相对论
按照正常相对论,任意两个相互运动的观察者之间事件及物体的最终位置可以描述为Lorentz变换。

设原系的坐标(t,x,y,z),相对系的坐标(τ, x’, y’, z’),两者要求关系式
τ=γ(t-vx/c^2) (1)
x‘=γ(x-vt) (2)
其中,γ=(1−v2/c2)−1/2 为Lorentz因子,v被称为相对速度,根据一般变换性质:
原系中物体的能量E0,相对系中为E’,要求能量守恒,即E=E’
两个框架也要求守恒物质数量,即N=N’,分别为原系和相对系中相应刚量的数量。

根据德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vp0) (3)
故有:N’ =γ(N0-vN0) (4)
得出E0的表达式
E0=γE’+γvN’ (5)
(2)拓展相对论
拓展相对论,现在有5个变量t,x,y,z,φ,φ为未知量。

设原系坐标t,x,y,z,φ,相对系坐标为τ,x’,y’,z’,φ’,两者要求关系式
τ=γ(t-v/c^2*φ) (6)
x’=γ(x-vφ) (7)
同样采用德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vφ0) (8)
两个框架要求守恒物质数量,即N=N’,分别为原系和相对系中相应刚量的数量。

根据德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vφ0) (9)
故有:N’ =γ(N0-vN0) (10)
得出E0的表达式
E0=γE’+γv(N’+φ)(11)
由此,可以得出拓展相对论的爱因斯坦洛伦兹变换公式。

写出洛伦兹变换及其逆变换的形式。

写出洛伦兹变换及其逆变换的形式。

洛伦兹变换及其逆变换是狭义相对论中的重要概念,它描述了当两个惯性系之间相对运动时,时间和空间的变化规律。

本文将从以下几个方面展开讨论:一、洛伦兹变换的推导1.1 介绍洛伦兹变换的背景狭义相对论是爱因斯坦在19世纪初提出的一种理论,它颠覆了牛顿力学的观念,重新定义了时间和空间的概念。

在狭义相对论中,运动状态并不是绝对的,而是相对于观察者的。

当两个惯性系相对运动时,时间和空间的观测数值会发生变化,而这种变化规律由洛伦兹变换来描述。

1.2 推导洛伦兹变换的数学表达式根据狭义相对论的基本原理和洛伦兹对称性,可以推导出洛伦兹变换的数学表达式。

假设有两个惯性系S和S',它们之间以速度v相对运动。

假设在S系中有事件的时空坐标为(x, y, z, t),在S'系中的时空坐标为(x', y', z', t'),那么洛伦兹变换的数学表达式可以表示为:\[x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}, y'=y, z'=z, t'=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}}.\]其中c为光速。

1.3 推导出洛伦兹变换的矩阵形式将洛伦兹变换的以上数学表达式整理成矩阵形式,并引入矩阵运算的概念,可以得到洛伦兹变换的矩阵形式如下:\[ \begin{bmatrix} x' \\ y' \\ z' \\ t' \end{bmatrix}= \begin{bmatrix} \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} 0 0 -\frac{v}{c^2}\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \\ 0 1 0 0 \\ 0 0 1 0 \\ -\frac{v}{c^2}\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} 0 0\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}.\]二、洛伦兹变换的逆变换形式2.1 介绍洛伦兹变换的逆变换洛伦兹变换的逆变换即是将事件的时空坐标从S'系变换到S系的坐标变换规律。

洛伦兹变换的详细推导

洛伦兹变换的详细推导

精心整理第三节洛伦兹变换式教学内容:1.洛伦兹变换式的推导;2.狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓;重点难点:狭义相对论时空观的主要结论。

基本要求:1.了解洛伦兹坐标变换和速度变换的推导;2.了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3.理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211cvcvxttzzyycvvtxx据狭义相对论的两个1.时空坐标间的变换关系作为一条公设,我们认为时间的,因此时空对于任意的时空坐标(x,y,z,t)、(x',S以平行于x轴的速度v作,z'=z。

在S系中在S'系中观察该点,x'=-v t',x'+v t'。

在任意的:x=k(x'+v t'),k是—比例常数。

同样地可得到:x'=k'(x-v t)=k'(x+(-v)t)根据相对性原理,惯性系S系和S'系等价,上面两个等式的形式就应该相同(除正、负号),所以k=k'。

2.由光速不变原理可求出常数k????设光信号在S系和S'系的原点重合的瞬时从重合点沿x轴前进,那么在任一瞬时t(或t'),光信号到达点在S系和S'系中的坐标分别是:x=c t,x'=c t',则:由此得到()22211cvvcck-=-=。

这样,就得到()21c v vt x x --=',()21c v t v x x -'+'=。

由上面二式,消去x '得到()221c v c vx t t --=';若消去x 得到()221c v c x v t t -'+'=,综合以上结果,就得到洛仑兹变换,或洛仑兹反变换可见洛仑兹变换是两条基本原理的直接结果。

洛伦兹变换的详细推导

洛伦兹变换的详细推导

第三节洛伦兹变换式教学内容:1.洛伦兹变换式的推导;2.狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓;重点难点:狭义相对论时空观的主要结论。

基本要求:1.了解洛伦兹坐标变换和速度变换的推导;2.了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3.理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导1.时空坐标间的变换关系x=0;在S'系中观察该点,x'=-v t',即x'+v t'=0。

因此x=x'+v t'。

在任意的一个空间点上,可以设:x=k(x'+v t'),k是—比例常数。

同样地可得到:x'=k'(x-v t)=k'(x+(-v)t)根据相对性原理,惯性系S系和S'系等价,上面两个等式的形式就应该相同(除正、负号),所以k=k'。

2.由光速不变原理可求出常数k设光信号在S系和S'系的原点重合的瞬时从重合点沿x轴前进,那么在任一瞬时t(或t'),光信号到达点在S系和S'系中的坐标分别是:x=c t,x'=c t',则:由此得到()22211c v vc c k -=-=。

这样,就得到()21c v vt x x --=',()21c v t v x x -'+'=。

由上面二式,消去x '因此得相对论的速度变换公式: 21c vu v u u x x x --='、()2211c vu c v u u x y y --='、()2211c vu c v u u x z z --='其逆变换为:21c u v v u u x x x '++'=、()2211c u v c v u u x y y '+-'=、()2211c u v c v u u x z z '+-'=。

物理学中的洛伦兹变换

物理学中的洛伦兹变换

物理学中的洛伦兹变换洛伦兹变换是物理学中的重要概念之一,它描述了时间和空间的相对性及其在相对论中的应用。

本文将详细介绍洛伦兹变换的基本原理、公式推导以及实际应用。

一、洛伦兹变换的基本原理洛伦兹变换是由荷兰物理学家亨德里克·洛伦兹于1904年提出的,它是为了解决经典力学中关于光速不变原理与狭义相对论之间的矛盾而引入的。

洛伦兹变换的基本原理是:物理规律在任何惯性参考系中都应该是相同的。

二、洛伦兹变换公式的推导洛伦兹变换涉及到时间、空间和速度的变换关系,其公式可以通过对时间和空间坐标的变换进行推导得到。

我们以一维空间为例进行推导。

设在一个惯性系S中,事件P的坐标为(x, t),在另一个以速度v相对于S运动的惯性系S'中,该事件的坐标为(x', t')。

根据洛伦兹变换的原理,我们可以得到如下的关系式:x' = γ(x - vt)t' = γ(t - vx/c^2)其中,γ是洛伦兹因子,定义为γ = 1 / √(1 - v^2/c^2),v为相对速度,c为光速。

通过推导可以得到洛伦兹变换的逆变换公式:x = γ(x' + vt')t = γ(t' + vx'/c^2)洛伦兹变换的公式推导可以进一步推广到三维空间的情况,但这里为了简化描述,仅以一维空间为例。

三、洛伦兹变换的实际应用洛伦兹变换在相对论物理学中有着广泛的应用。

其中最重要的应用之一是描述时间和空间的相对性,特别是在高速物体运动和光的传播中。

在高速物体运动中,洛伦兹变换可以用来描述时间的膨胀效应和长度的收缩效应。

根据洛伦兹变换的公式,当物体接近光速时,时间伸缩和长度收缩都会发生,使得物理现象在高速运动时与低速运动时有所差异。

另外,洛伦兹变换也被广泛应用于描述光的传播。

根据洛伦兹变换的公式,光速是不变的,在不同惯性系中光的传播速度始终保持不变。

这一观点是狭义相对论的核心内容之一,同时也为后续爱因斯坦相对论的发展奠定了基础。

洛伦兹变换的详细推导

洛伦兹变换的详细推导

第三节 洛伦兹变换式教学内容:1、 洛伦兹变换式的推导;2、 狭义相对论的时空观:同时性的相对性、长度的收缩与时间的延缓; 重点难点:狭义相对论时空观的主要结论。

基本要求:1、 了解洛伦兹坐标变换与速度变换的推导;2、 了解狭义相对论中同时性的相对性以及长度收缩与时间延缓概念;3、 理解牛顿力学中的时空观与狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。

1、 时空坐标间的变换关系作为一条公设,我们认为时间与空间都就是均匀的,因此时空坐标间的变换必须就是线性的。

对于任意事件P 在S 系与S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。

在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。

因此x =x '+v t '。

在任意的一个空间点上,可以设:x =k (x '+v t '),k 就是—比例常数。

同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系与S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。

(精编资料推荐)洛伦兹变换的详细推导

(精编资料推荐)洛伦兹变换的详细推导

第三节 洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓; 重点难点:狭义相对论时空观的主要结论。

基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。

1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。

对于任意事件P 在S 系和S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。

在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。

因此x =x '+v t '。

在任意的一个空间点上,可以设:x =k (x '+v t '),k 是—比例常数。

同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系和S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。

洛伦兹变换详细推导

洛伦兹变换详细推导

洛伦兹变换详细推导洛伦兹变换是相对论中的一个重要概念,它在描述两个不同参考系之间的变换关系时起着关键作用。

在本篇文章中,我们将详细推导洛伦兹变换,并探讨其在不同参考系下的应用。

文章的结构将分为以下几个部分:一、洛伦兹变换的背景与基本原理1.牛顿力学中的变换关系在牛顿力学中,我们通常研究物体在某一惯性参考系下的运动状态。

当我们将研究对象转移到另一个惯性参考系时,物体的运动状态会发生改变。

例如,一个静止在地面上的物体,在观测者看来是静止的,而在另一个以匀速直线运动的参考系中,该物体的位置将发生改变。

2.相对论的基本原理相对论提出了两个基本原理:(1)洛伦兹不变性:在任何惯性参考系中,物理定律的形式都是相同的。

(2)光速不变原理:真空中光的速度对于所有惯性参考系都是常数,约为299,792,458米/秒。

二、洛伦兹变换的推导1.坐标变换假设有一个惯性参考系S,另一个惯性参考系S',两个参考系在t=t'=0时重合,在x轴和y轴上分别以相对速度vx和vy相对移动。

我们需要推导出在S'系中观测到的物体位置、速度与在S系中的关系。

2.变换公式设物体在S系中的坐标为(x,y,t),在S'系中的坐标为(x',y',t')。

根据坐标变换公式,我们可以得到:x' =γ(x -vx * t)y' =γ(y -vy * t)t' =γ(t -(vx * x + vy * y) / c²)其中,γ表示洛伦兹因子,定义为:γ=1 /√(1 -(vx²+ vy²) / c²)3.洛伦兹变换的推导根据上述坐标变换公式,我们可以将t'表示为:t' =γ* t -γ* vx * x / c²-γ* vy * y / c²将x'和t'的表达式代入y'的表达式,可以得到:y' =γ* (y -vy * t)将t'的表达式代入y'的表达式,可以得到:y' =γ* (y -vy * (γ* t -γ* vx * x /c²-γ* vy * y / c²))化简后,我们可以得到洛伦兹变换的基本形式:x' =γ* (x -vx * t)y' =γ* (y -vy * t)t' =γ* t -(vx * x + vy * y) / c²三、洛伦兹变换的应用1.电磁现象的研究在相对论中,电磁现象的规律也满足洛伦兹不变性。

洛伦兹变换的推导

洛伦兹变换的推导

洛伦兹变换的推导洛伦兹变换是描述物理学中相对论性质的基本工具之一。

它描述了时间、空间和运动之间的关系,并告诉我们在不同惯性参考系中看到的真实时间和空间是如何变化的。

下面我们将会介绍洛伦兹变换的推导过程。

推导过程:假设我们有一个以速度为v运动在x轴上的物体,用伽利略变换我们可以知道它在不同惯性参考系上的位置变化。

但是在相对论中,物体运动状态的描述需要使用洛伦兹变换。

为了简化问题,我们将考虑一个事件的发生,即在一个参考系中一个粒子在时间t0,位置x0处发生了一个事件。

现在我们要求在另一个相对这个参考系以速度v运动的参考系S'中,这个事件的时间和位置分别是多少。

首先,我们需要定义两个参考系之间的相对速度和时间的概念。

两个参考系S和S'之间相对速度的定义为在S参考系中测量的S'参考系的速度v。

时间差也需要考虑,即两个参考系的时间零点并不一定相同。

我们假设两个参考系之间有一把尺子,这样我们可以用一个数来表示两个事件的时间和空间间隔。

在S参考系中,事件的时间和位置可以分别表示为t0和x0。

在S'参考系中,我们要求时间t'和空间位置x'。

我们现在将要根据下列的公式来推导洛伦兹变换:x' = γ(x-vt)t' = γ(t-xv/c²)其中γ是一个常数,它被称为洛伦兹因子,定义为γ=1/√(1-v²/c²),其中c表示光速。

现在我们需要利用尺子和两个参考系之间的速度来计算x'和t'。

首先,我们需要确定在S'系统中事件的位置。

假设我们在S系统中看到一个长度为L0的物体在移动,那么在S'系统中这个物体的长度将会是L'=L0/γ。

这个长度补偿称为“同时错误”,因为S'系统与S系统看到的时间可能不同,所以用S系统的时间去测量S'系统的物体长度时,会出现长度感缩小的情况,需要使用修正后的长度L'。

洛伦兹变换的推导[1]

洛伦兹变换的推导[1]

x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
x vt
x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
7
6
x vt
在v << c的情况下,洛伦兹变换过渡到伽利略变换。
从洛伦兹变换中可以看到,x 和t 都必须是实数, 所以速率v必须满足
v 1 2 0 c
或者
2
vc
我们得到了一个十分重要的结论,这就是一切物 体的运动速度都不能超过真空中的光速 c,或者说 真空中的光速c 是物体运动的极限速度。
洛伦兹变换的推导
1
三、狭义相对论的基本原理 1. 狭义相对论的基本原理 (1)相对性原理:基本物理定律在所有惯性系中 都保持相同形式的数学表达式,一切惯性系都是等 价的; (2)光速不变原理:在一切惯性系中,光在真空 中的传播的速率都等于c,与光源的运动状态无关。 这两条原理非常简明,但意义深远。它们是狭义相 对论的基础,其正确性要由它们所导出的结果和实验 事实来判定。
P
r
x
x
y = y
z = z
3
(2)时间变换 将 x = k( x v t ) 代入 x = k(x + vt ) ,得
x k ( x vt ) kvt
2
解出
1 k 2 t kt ( )x kv
当两个坐标系的原点重合时,t = t = 0。这时,如 果在原点处有一点光源发出一光脉冲,S系和S 系都 将观察到光脉冲以速率c向各个方向传播。
2
2. 洛伦兹变换

洛仑兹变化推导

洛仑兹变化推导

洛仑兹变化推导洛仑兹变换是描述物体在相对论运动中空间和时间的变换关系的理论,由德国物理学家洛仑兹提出。

洛仑兹变换是狭义相对论的核心内容之一,具有广泛的应用价值,例如在高能物理、粒子物理、天体物理等领域中的研究。

本文将从推导洛仑兹变换的基本原理、洛仑兹变换的定义和性质等三个方面进行说明。

一、推导洛仑兹变换基本原理在狭义相对论中,时间和空间是相对的,即不同惯性系之间的时间和空间是互相关联的。

为了描述不同惯性系之间的联系,洛仑兹提出了洛仑兹变换。

其基本原理可以从一个简单的假设开始:在任何惯性系中,光速都是不变的。

我们知道,根据相对论原理,不存在绝对地球参照系。

因此,在任何一台移动的汽车或飞机上,我们看到的物理现象都与地球上的参考系有所不同。

为了测量物体的速度,我们需要以某个参考物(如地球)作为基准。

然而,我们不能简单地通过测量物体在地球上的速度就来计算物体在汽车或飞机上的速度,因为这两个惯性系之间的速度是互相独立的。

假设我们在车上,想要测量路边的电缆杆的长度。

我们发现,当车辆在高速运动时,电缆杆的长度似乎变短了,这意味着它受到了空间的压缩。

此外,如果我们同时测量车内的钟和地面上的钟,我们会发现车内的钟似乎比地面上的钟走得快。

这也表明时间受到了影响。

这些现象都表明了空间和时间的相对性。

根据光速不变原理,我们可以首先假设在一个固定惯性系中,某个光源发出一束光线,随后在两段时间内,该光线在恒定速度的情况下通过了同一距离的空间。

假设一个物体A与该光源静止在该固定惯性系中,不难发现,光线传输的速度在A的观察中也是不变的,可以用光速C表示。

此后,如果我们假设一个物体B相对物体A在同一惯性系中做匀速直线运动,我们可以通过比较两个观察者的观点,来描述空间和时间的相对性。

二、洛仑兹变换的定义和性质根据洛仑兹变换的定义,如果在x 和t 的坐标系中,物体B与A关于x'轴做速率为v 的匀速运动,那么B在A所定义的坐标系中的4个坐标应该从$(ct',x')$ 转换到$(ct,x)$ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛伦兹变换的推导
1
三、狭义相对论的基本原理 1. 狭义相对论的基本原理 (1)相对性原理:基本物理定律在所有惯性系中 都保持相同形式的数学表达式,一切惯性系都是等 价的; (2)光速不变原理:在一切惯性系中,光在真空 中的传播的速率都等于c,与光源的运动状态无关。 这两条原理非常简明,但意义深远。它们是狭义相 对论的基础,其正确性要由它们所导出的结果和实验 事实来判定。
2
2. 洛伦兹变换
(1)坐标变换
假设 x = k( x v t ) k 是比例系数,与x和t 都无关。 y
按照狭义相对论第一条基本原 理, S系和S 系除了作相对运动 外别无差异,考虑运动的相对性, 应有: x = k(x + vt ) 另外两个坐标的变换容易写出
S
y
r
o
o
v
S
4
在S系有 在S 系有
x = ct x = ct
y
y
S
S
x
x
将两式分别代入
x = k( x v t ) 和 x = k(x + vt )

ct k (c v)t
ct k (c v)t
消去t 和t 后,可解得
k
1 1 v / c
2 2
5
将k 代入坐标和时间变换式中,得到洛伦兹变换 的最终形式: 逆变换 正变换
x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
x vt
x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
6
x vt
在v << c的情况下,洛伦兹变换过渡到伽利略变换。
从洛伦兹变换中可以看到,x 和t 都必须是实数, 所以速率v必须满足
v 1 2 0 c
或者2ຫໍສະໝຸດ vc我们得到了一个十分重要的结论,这就是一切物 体的运动速度都不能超过真空中的光速 c,或者说 真空中的光速c 是物体运动的极限速度。
7
P
r
x
x
y = y
z = z
3
(2)时间变换 将 x = k( x v t ) 代入 x = k(x + vt ) ,得
x k ( x vt ) kvt
2
解出
1 k 2 t kt ( )x kv
当两个坐标系的原点重合时,t = t = 0。这时,如 果在原点处有一点光源发出一光脉冲,S系和S 系都 将观察到光脉冲以速率c向各个方向传播。
相关文档
最新文档