初二数学下册期末复习试题华师大版
【华东师大版】八年级数学下期末试题带答案
一、选择题1.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数2.下表为某校八年级72位女生在规定时间内的立定投篮数统计, 投进的个数 5 6 7 8 9 10 11 12 13 14 15 人数37610118137142若投篮投进个数的中位数为a ,众数为b ,则+a b 的值为( ) A .20 B .21C .22D .233.若a 、b 、c 这三个数的平均数为2,方差为S 2,则a+2,b+2,c+2的平均数和方差分别是( ) A .2,S 2B .4,S 2C .2,S 2+2D .4,S 2+44.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.25.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.下列图象中,不表示y是x的函数的是()A.B.C.D.7.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④8.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112A.3 B.﹣5 C.6 D.不存在9.如图,将长方形纸片沿对角线折叠,重叠部分为BDE,则图中全等三角形共有()A .0对B .1对C .2对D .3对10.下列命题是假命题的是( ) A .全等三角形的周长相等B .5-与20是同类二次根式C .若实数a 0<,b 0<,则ab 0>D .如果x y 0+=,那么x y 0+= 11.顺次连接矩形ABCD 各边的中点,所得四边形是( ) A .平行四边形B .正方形C .矩形D .菱形12.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 二、填空题13.若一组数据3、4、5、x 、6的平均数是5,则这组数据的方差为_____ 14.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.15.已知y +3与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为______________________.16.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BECCEFSS<中,一定成立的是_________.(请填序号)18.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.19.己知0a ≥时,2a a =.请你根据这个结论直接填空: (1)9=______;(2)若22120202021x +=+,则21x +=______20.如图是放在地面上的一个长方体盒子,其中AB =24cm ,BC =12cm ,BF =7cm ,点M 在棱AB 上,且AM =6cm ,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为_______.三、解答题21.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x≤<,:90100D x≤≤,对得分进行整理分析,给出了下面部分信息:初一的测试成绩在C组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:学部平均数中位数最高分众数初一88a9898初二8886100ba=(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?22.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数 100 170 250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为多少?(结果取整数) (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的多少倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s 12,5月11日至20日的厨余垃圾分出量的方差为s 22,5月21日至30日的厨余垃圾分出量的方差为s 32.直接写出s 12,s 22,s 32的大小关系.23.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.24.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 分别为OB ,OD 的中点,连接AM 并延长至点E ,使EM AM =,连接CE ,CN . (1)求证:ABM CDN ≌;(2)当AB 与AC 满足什么数量关系时,四边形MECN 是矩形?请说明理由;(3)连接AN ,EN .当ANE 满足什么条件时,四边形MECN 是正方形?请说明理由.25.(1)计算:14051010-+; (2)计算:2(21)(32)(32)+++-; (3)用适当的方法解方程组:3,43 5.x y x y -=⎧⎨+=⎩26.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上.①求AE的长.②DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【分析】根据中位数与众数的求法,分别求出投中个数的中位数与众数再相加即可解答.【详解】第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.4.D解析:D 【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差. 【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-=故选D 【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.A解析:A 【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可. 【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小, ∴k<0, ∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限, 故选:A . 【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.6.A解析:A 【分析】依据函数的定义,x 取一个值,y 有唯一值对应,可直接得出答案. 【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A . 【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.7.D解析:D 【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案. 【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确; 隧道长是:45×30−150=1200(米),故④正确. 故选D . 【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.8.C解析:C【分析】设y=ax+b,把x=0,y=-1和x=1,y=1代入求出a与b的值,即可求出所求.【详解】解:设y=ax+b,把x=0,y=-1和x=1,y=1代入得:11a bb+=⎧⎨=-⎩,解得:21 ab=⎧⎨=-⎩,∴2x﹣1=11,解得:x=6.故选:C.【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.9.C解析:C【分析】因为图形对折,所以首先△CDB≌△ABD,由于四边形是长方形,进而可得△ABE≌△CDE,如此答案可得.【详解】解:∵△BDC是将长方形纸片ABCD沿BD折叠得到的,∴CD=AB,AD=BC,∵BD=BD,∴△CDB≌△ABD(SSS),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.10.D解析:D【分析】根据全等三角形的性质、同类二次根式的定义、实数的乘法法则、二次根式被开方数的非负性进行判断即可.【详解】解:A 、全等三角形的对应边相等,所以周长也相等,此选项正确,不符合题意; B 、由于2025=,25与﹣5是同类二次根式,此选项正确,不符合题意; C 、若实数a 0<,b 0<,则ab 0>,此选项正确,不符合题意;D 、令x=1,y=﹣1,满足x+y=0,但y 无意义,此选项错误,符号题意,故选:D .【点睛】本题考查命题的真假判断,熟练掌握全等三角形的性质、、同类二次根式的定义、实数的乘法法则、二次根式被开方数的非负性是解答的关键.11.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD 各边的中点依次为E ,F ,G ,H ,∴EF ,FG ,GH ,HE 分别是△ABC ,△BCD ,△CDA ,△DAB 的中位线,∴EF=12AC ,FG=12BD ,GH=12AC ,EH=12BD , ∵四边形ABCD 是矩形,∴AC=BD ,∴EF=FG=GH=HE ,∴四边形EFGH 是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.12.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题13.2【分析】先根据平均数的定义求出x 然后运用方程公式求解即可【详解】解:根据题意得(3+4+5+x+6)=5×5解得:x =7则这组数据为34576的平均数为5所以这组数据的为s2=(3﹣5)2+(4﹣解析:2【分析】先根据平均数的定义求出x ,然后运用方程公式求解即可.【详解】解:根据题意得(3+4+5+x +6)=5×5,解得:x =7,则这组数据为3,4,5,7,6的平均数为5,所以这组数据的为s 2=15[(3﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(6﹣5)2]=2. 故答案为:2.【点睛】本题考查了平均数的定义和方差公式,解答本题的关键是理解平均数的定义和掌握求方差的方法. 14.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12. 点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.15.【分析】根据题意设把x =2时y =7代入求出k 的值即可求解【详解】解:根据题意可得把x =2时y =7代入可得解得∴故答案为:【点睛】本题考查正比例函数的定义根据题意求出k 的值是解题的关键解析:53y x =-【分析】根据题意设3y kx ,把x =2时,y =7代入求出k 的值,即可求解. 【详解】解:根据题意可得3y kx , 把x =2时,y =7代入可得732k +=,解得5k =,∴53y x =-,故答案为:53y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键. 16.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160800153÷=; 25分~35分的速度:(800500)1030-÷=; 45分~50分的速度:5005100÷=; ∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.17.②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 19.4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x =2020×4042再利用平方差公式可计算出2x +1=40412然后根据二次根式的性质计算【详解】(1);故答案为:解析:4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x =2020×4042,再利用平方差公式可计算出2x +1=40412,然后根据二次根式的性质计算.【详解】(1=3=;故答案为:3;(2)∵x +1=20202+20212,∴x =20202+20212−1=20202+(2021+1)(2021−1)=2020×(2020+2022)=2020×4042,∴2x +1=2×2020×4042+1=4040×4042+1=(4041−1)(4041+1)+1=40412−1+1=40412, ∴4041=.故答案为:4041.【点睛】本题考查了二次根式的性质与化简:利用二次根式的基本性质进行化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简.20.cm 【分析】利用平面展开图有两种情况画出图形利用勾股定理求出MN 的长即可【详解】解:如图1∵AB=24cmAM =6cm ∴BM=18cm ∵BC=GF=12cm 点N 是FG 的中点∴FN=6cm ∵BF=7c【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN 的长即可.【详解】解:如图1,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴FN=6cm,∵BF=7cm,∴BN=7+6=13cm,∴MN=22+=493cm;1813如图2,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴BP=FN=6cm,∴MP=18+6=24cm,∵PN= BF=7cm,∴22+==cm.24762525∵49325,∴蚂蚁沿长方体表面爬到N493.493.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.三、解答题21.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】 本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.22.(1)173;(2)2.9;(3)222123s s s >>【分析】(1)结合表格,利用加权平均数的定义列式计算可得;(2)结合(1)所求结果计算即可得出答案;(3)由图a 知第1个10天的分出量最分散、第3个10天分出量最为集中,根据方差的意义可得答案.【详解】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为10010170102501017330⨯+⨯+⨯≈(千克),故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的173 2.960≈(倍), 故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知:第1个10天的分出量最分散、第3个10天分出量最为集中,222123s s s ∴>>. 【点睛】本题主要考查方差和加权平均数,解题的关键是掌握方差的意义和加权平均数的定义. 23.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.24.(1)见解析;(2)AC=2AB ,理由见解析;(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形.【分析】(1)根据SAS 证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM ,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABM=∠CDN ,∵点M ,N 分别为OB ,OD 的中点, ∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵四边形ABCD 是平行四边形,∴AC=2OA ,∵AC=2AB ,∴AB=OA ,∵M 是OB 的中点,∴AM ⊥OB ,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN 是矩形.(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形; 理由如下:连接AN 、EN∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵EM AM =,∠ENA=90°∴MN=EM ,∴平行四边形EMNC 是菱形,∵AN=EN ,AM=EM∴∠NME=90°,∴四边形EMNC 是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(15102)222+;(3)21x y =⎧⎨=-⎩【分析】(1)先化简二次根式,再合并同类项即可解答;(2)先利用完全平方公式、平方差公式运算,再合并同类项即可解答;(3)根据加减消元法解二元一次方程组即可.【详解】(1)解:原式10210510=+1010102=+ 510= (2)解:原式222134=++-222=+(3)3,43 5.x y x y -=⎧⎨+=⎩①② 解:3⨯+①②,得714x =,解得2x =,把2x =代入①,得23y -=,解得1y =-,所以方程组的解为21x y =⎧⎨=-⎩. 【点睛】本题考查二次根式的混合运算、完全平方公式、平方差公式、解二元一次方程组,熟记公式,掌握二次根式的性质和二元一次方程组的解法是解答的关键.26.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm ,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB ,∴∠AED=90°设DE=DB=x ,则AD=AB-BD=8-x在Rt △ADE 中,222AD AE DE =+∴222(8)4x x -=+解得,x=3∴DE=3cm .故答案为:3cm .【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.。
2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)
2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。
华东师大版八年级下册数学期末练习试题(有答案)
2020-2021学年华东师大新版八年级下册数学期末练习试题一.选择题(共10小题,满分40分,每小题4分)1.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)2.化简的结果是()A.﹣x B.x C.x﹣1D.x+13.如图,▱AB CD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.28cm B.18cm C.10cm D.8cm4.分式方程=的解是()A.x=9B.x=7C.x=5D.x=﹣15.关于菱形,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.四条边相等D.对角线相等6.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4C.2D.27.已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是()A.m≤﹣B.m≥﹣C.m<﹣D.m>8.如图,在▱ABC D中,E是CD上一点,BE=BC.若∠A:∠ADC=1:2,则∠ABE的度数是()A.70°B.65°C.60°D.55°9.如图,直线y=2x+1和y=kx+3相交于点A(m,),则不等式关于x的不等式kx+3≤2x+1的解集为()A.x≥B.x≥C.x≤D.x≤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C、D,若点D的横坐标为1,BE=3DE.则k的值为()A.B.3C.D.5二.填空题(共6小题,满分24分,每小题4分)11.当x=时,分式无意义.12.自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为.13.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表,则这四人中发挥最稳定的是.选手甲乙丙丁方差(S2)0.0200.0190.0210.02214.如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.15.如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.16.如图,平面直角坐标系xOy中,正方形ABCO的顶点A,C分别在x轴和y轴的正半轴上,反比例函数y=(x>0)的图象分别与边BC,AB交于点D和点E,连接OD,EF ∥OD交OA于点F,若OF=2FA,且OD=k,则k的值为.三.解答题(共9小题,满分86分)17.计算:2﹣1+﹣(3﹣)0+||.18.先化简:,再从2,﹣2,3,﹣3中选一个合适的数作为a的值代入求值.19.某校九年级举行了主题为“珍惜海洋资源”的知识竞赛活动,为了了解全年级500名学生此次参加竞赛的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.组别分数(分)频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018(1)求a的值;(2)所抽取的参赛学生成绩的中位数落在哪个组别?(3)估计该校九年级竞赛成绩达到80分及以上的学生有多少人?20.甲、乙两人做某种机械零件.(1)已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.(2)已知甲计划做零件60个,乙计划做零件100个,甲、乙的速度比为3:4,结果甲比乙提前20分钟完成任务,则甲每小时做零件个,乙每小时做零件个.21.如图,▱AB CD的对角线AC,BD相交于点O,且AB=13,AC=24,BD=10.求证:▱ABC D是菱形.22.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.23.在正方形ABCD中,点P是射线CB上一个动点.连接PA,PD,点M,N分别为BC,AP的中点,连接MN交PD于点Q.(1)如图1,当点P在线段CB的延长线上时,请判断△QPM的形状,并说明理由.(2)如图2,正方形的边长为4,点P'与点P关于直线AB对称,且点P'在线段BC上.连接AP',若点Q恰好在直线AP'上,求P'M的长.24.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)学校共有几种租车方案?最少租车费用是多少?25.如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.2.解:原式===x,故选:B.3.解:∵▱ABC D的周长是36cm,∴AB+AD=18m,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)﹣(AB+AC)=28﹣18=10(cm).故选:C.4.解:去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.5.解:∵菱形的性质有四边相等,对角线互相垂直平分,∴对角线相等不是菱形的性质,故选:D.6.解:如图,∵矩形ABCD的对角线AC,BD交于点O,AC=4,∴OA=OB=AC=2,又∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=2.∴在直角△ABC中,∠ABC=90°,AB=2,AC=4,∴BC===2故选:C.7.解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<﹣.故选:C.8.解:∵四边形ABCD是平行四边形,∴∠A+∠ADC=180°,∠A=∠C,∵∠A:∠ADC=1:2,∴∠A=60°,∠ADC=120°,∴∠C=60°,∵BE=BC,∴△BCE是等边三角形,∴∠BEC=60°,∵DC∥AB,∴∠BEC=∠ABE,∴∠ABE=60°,故选:C.9.解:∵直线y=2x+1和y=kx+3相交于点A(m,),∴=2m+1,解得m=,∴A(,),由函数图象可知,当x≥时,直线y=2x+1的图象不在直线y=kx+3的图象的下方,∵当x≥时,kx+3≤2x+1.故选:B.10.解:过点D作DF⊥BC于F,∵AD⊥y轴,四边形ABCD是菱形,∴AD∥BC,DC=BC,∴四边形BEDF是矩形,∴DF=BE,BF=DE=1,∵BE=3DE,∴DF=BE=3,设CD=CB=a,∴CF=a﹣1,∵CD2=DF2+CF2,∴a2=32+(a﹣1)2,∴a=5设点C(5,m),点D(1,m+3)∵反比例函数y=图象过点C,D∴5m=1×(m+3)∴m=,∴点C(5,)∴k=5×=故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:由题意得,2x+5=0,解得,x=﹣,故答案为:﹣.12.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.13.解:∵这四人中乙的方差最小,∴这四人中发挥最稳定的是乙,故答案为:乙.14.解:如图,DB与CE交于点O,∵把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,∴CE⊥BF,∴∠COD=90°,∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,AB=DC=2,∴∠DCE+∠CDB=∠DCE+∠ECB=90°,∴∠CDB=∠ECB,∴△DCB∽△CBE,∴,设CB=x,∵E是AB的中点,∴BE=1,∴,∴x=(负值舍去),故答案为:.15.解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.16.解:FA=a,则OF=2a,则正方形ABCO的边长为3a,∴点B的坐标为(3a,3a),则CD==,故点D的坐标为(,3a),设直线OD的表达式为y=mx,则3a=m,解得m=,故直线OD的表达式为y=x,∵EF∥OD且直线EF过点F(2a,0),则直线EF的表达式为y=(x﹣2a),则当x=3a时,y=(x﹣2a)=,故点E的坐标为(3a,),∵点E、D均在函数图象上,∴k=×3a=3a×,解得k=,故答案为.三.解答题(共9小题,满分86分)17.解:2﹣1+﹣(3﹣)0+||=+4﹣1+=3+.18.解:原式=÷(﹣)=•=﹣,∵a﹣2≠0,a﹣3≠0,a+3≠0,∴a≠2,a≠±3,∴当a=﹣2时,原式=﹣=﹣.19.解:(1)本次调查一共随机抽取的学生有18÷36%=50(人),则a=50×16%=8;(2)所抽取的学生成绩按从小到大的顺序排列,第25、26个数据都在C组,则中位数落在C组;(3)500×=320(人),所以该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.20.解:(1)设乙每小时做x个,则甲每小时做(x+6)个,甲做90个所用的时间为,乙做60个所用的时间为;根据题意列方程为:,解得:x=12,经检验:x=12是原分式方程的解,且符合题意,则x+6=18.答:甲每小时做18个,乙每小时做12个.(2)设甲每小时做3x个零件,则乙每小时做4x个零件,根据题意得,,解得:x=15,经检验:x=15是原分式方程的解,且符合题意,则3×15=45,4×15=60.答:甲每小时做45个,乙每小时做60个,故答案为:45;6021.证明:∵四边形ABCD是平行四边形,∴OA=AC=12,OB=BD=5,∵OA2+OB2=122+52=169,AB2=132=169,∴OA2+OB2=AB2,∴∠AOB=90°,∴AC⊥BD,∴▱A BCD是菱形.22.解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.23.解:(1)△QPM是等腰三角形,理由如下:延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,∴CP=BE,∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,在△DCP和△ABE中,∴△DCP≌△ABE(SAS)∴∠DPC=∠AEB,∵M是BC的中点,∴MB=MC,∴MB+BP=MC+CE,∴MP=ME,∴M是PE的中点,又∵N是AP的中点,∴MN∥AE,∴∠PMN=∠AEB,∴∠PMN=∠DPC,∴QP=QM,∴△QPM是等腰三角形;(2)延长BC至E,使CE=BP,连接AE,∵M是BC的中点,BC=4,∴BM=CM=2,又∵BP=CE,∴BM+BP=CM+CE,即PM=ME,∴M是PE的中点,且点N是AP中点,∵QM∥AE,∴,又∵AD∥BC,∴△PQP′∽△DQA,∴,∴,设BP=BP′=CE=x,P′M=2﹣x,ME=2+x即:解之得:(舍去)则24.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:,答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:,∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.25.解:(1)连接BE,由已知:在Rt△ADC中,AC=,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴,即,∴PE=;(2)如图1,当△PAB≌△PEB时,∴PA=PE,∵AP=m,则PC=5﹣m,由(1)得:△ACD∽△PCE,∴,∴PE=,由PA=PE,即,解得:m=,∴EC=,∴BE=,∴△PAB与△PEB不全等,∴不能使得△PAB≌△PEB;(3)如图2,延长EP交AB于G,∵BP⊥PF,∴∠BPF=90°,∴∠EPF+∠BPG=90°,∵EG⊥AB,∴∠PGB=90°,∴∠BPG+∠PBG=90°,∴∠PBG=∠EPF,∵∠PEF=∠PGB=90°,∴△BPG∽△PFE,∴,由(1)得:△PCE∽△ACD,PE=,∴,即,∴EC=,∴BG=EC=,∴,∴5m+4n=16.。
2013华师大版初中数学八年级下册期末测试题1
黄泥乡初中2012年八年级下质量检测数 学 试 题(5)姓名___________班级__________学号__________分数__________百川东到海,何时复西归?少壮不努力,老大徒伤悲一,精心选一选,相信自己的判断!(每小题3分,共60分)1、代数式ay x x y x x 1,87,,1,4,232-++--π中是分式的有( )A 、1个B 、2个C 、3个D 、4个 2. 在把分式xx y+中,把x 、y 的值都扩大到原来8倍,则分式的值( ) A .扩大到原来的8倍 B .扩大到原来的16倍 C .不变 D .缩小到原来的183.下列分式的运算,计算正确的是( )A .112a b ab +=B .323()a a a = c .22a b a b a b+=++ D. 231693a a a a -=-+-4.下 列四个点,在正比例函数x y 52-=的图像上的点是( ) A .(2,5) B .(5,2) C .(2,-5) D .(5,-2)5.函数12-+=x x y 中自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠1 C .x ≠1 D .x ≥-2或x ≠1 6.下列各命题中,其逆命题是真命题的是( )A .如果a 、b 都是正数,那么它们的积ab 也是正数; B.等边三角形是等腰三角形 C .全等三角形的面积相等;D .线段垂直平分线上的点到这条线段两端点的距离相等 重复是学习之母。
——狄慈根7..定义一种运算☆,其规则为a ☆b =a 1-b1,根据这个规则解方程: (x -1)☆(1-x )=32的解为( )A. x =-1B. 无解C. x =1D. x =48. 一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,若ab ≠0则直线y=ax+b,双曲线y=abx在同一坐标系内的图象可能是( )10. 在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1)11.8年级2班的柏迎峰乘车从黄泥到遂宁,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )12.已知如图,A 是反比例函数xky的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积 是3,则k 的值是( )A.3B.-3C.6D.-6·第12题13.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①和②去14.如图,在△ABC 中,AB=AC ,AD ⊥BC ,E,F 分别为DB 、DC 的中点,则图中全等三角形共有( ) A 、 1对 B 、2对 C 、3对 D 、4对15.如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为: ( )A :3 cmB :6 cmC :9 cmD :12 cm16.成人体内成熟的红细胞的平均直径一般为0.000007245m 保留三个有效数字的近似数,可以用科学记数法表示为( )A .57.2510m -⨯ B .67.2510m ⨯ C .67.2510m -⨯ D .67.2410m -⨯17.已知一次函数y 1=kx+b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )A .x <﹣1或0<x <3B .﹣1<x <0或x >3C .﹣1<x <0D .x >3 18.如图,已知MB =ND,∠MBA =∠NDC,下列不能判定△ABM ≌△CDN 的条件 是( )当你还不能对自己说今天学到了什幺东西时,你就不要去睡觉。
华东师大版八年级数学下册第18章 平行四边形 期末复习单元练习题卷(无答案)
华东师大版八年级数学下册第18 章平行四边形期末复习单元练习卷一、选择题1.如图,在平行四边形ABCD 中,已知∠A=60°,则下列选项正确的是()A.∠C=60°B.∠B=60°C.∠A是∠D的同位角D.∠A是∠C的内错角2.平行四边形的一边长为6cm,则它的两条对角线长可以是()A.4cm,6cm B.5cm,6cm C.4cm,8cm D.2cm,12cm3.在平行四边形ABCD 中,对角线的垂直平分线交于点,连接CE.若平行四边形ABCD 的周长为20cm,则△CDE的周长为()A.20cm B.40cm C.15cm D.10cm4.如图,平行四边形 ABCD 的对角线 AC,BD 交于点 O,AC⊥AB,AB=2,且 AC:BD=2:3,则△OBC 的面积等于()A.B.C.D.5.如图,过▱ABCD 对角线AC 的中点O 作两条互相垂直的直线,分别交AB,BC,CD,DA 于E,F,G,H 四点,则下列说法错误的是()A.EH=HG B.AC 与EG 互相平分C.EH∥FG D.AC 平分∠DAB6.已知,四边形 ABCD 中,对角线 AC、BD 相交于 O,给出下列四个条件①AB∥CD,②OA=OC,③AD=BC,④∠A=∠C,任取两个条件,可得出四边形ABCD 是平行四边形这一结论的情况有()A .5 种B .4 种C .3 种D .2 种7.如图,在四边形 ABCD 中,对角线 AC ,BD 相交于点 O ,添加下列条件后仍不能判定四边形 ABCD 是平行四边形的是 ( )A .AD∥BC,AO =COB .AD =BC ,AO =OCC .AD =BC ,CD =ABD .S △AO D =S △COD =S △BOC8.已知△ABC (如图 1),按图 2 图 3 所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形 ABCD 是平行四边形的依据是( )A .两组对边分别平行的四边形是平行四边形B .对角线互相平分的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形9.如图,平行四边形 ABCD 中,E 、F 分别为边 AB 、DC 的中点,则图中共有平行四边形的个数是()A .3 个B .4 个C .5 个D .6 个10.如图,由 25 个点构成的 5×5 的正方形点阵中,横、纵方向相邻的两点之间的距离都是 1 个单位.定义:由点阵中的四个点为顶点的平行四边形叫做阵点平行四边形,图中以 A 、B 为顶点,面积为 4 的阵点平行四边形的个数 有 ( )A.6 个B.7 个C.9 个D.11 个二、填空题11.▱ABCD 的周长是32cm,∠ABC的平分线交AD 所在直线于点E,且AE:ED=3:2,则AB 的长为.12.如图,在▱ABCD 中,P 是CD 边上一点,且AP、BP 分别平分∠DAB、∠CBA,若AD=5,AP=6,则△APB的面积是.13.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1S2.14.平行四边形ABCD 的周长是30,AC,BD 相交于点O,△OAB的周长比△OBC的周长大3,则AB=.15.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O,AB⊥AC.若AB=12,AC=10,则BD 的长为.16.如图,在▱ABCD 中,∠ABC的平分线BE 交AD 于E,∠BCD的平分线交AD 于点F,BC=5,AB=3,则EF 长.17.如图,平行四边形的周长为 20cm,AE⊥BC于E,AF⊥CD于F,AE=2cm,AF=3cm,平行四边形 ABCD 的面积为cm2.18.如图,在平行四边形 ABCD 中,点E 在边BC 上,连结AE,EM⊥AE,垂足为 E,交 CD 于点M,AF⊥BC,垂足为 F,BH⊥AE,垂足为 H,交 AF 于点 N,若 AE=BN,AN=CE,则下列结论:①∠NBF=∠MEC;②△NBF≌△EAF;③∠BCD=150°;④AD=CM+2CE,其中正确的结论是.(填写所有正确结论的序号)19.如图,现将四根木条钉成的矩形框ABCD 变形为平行四边形木框A'BCD′,且A′D′与CD 相交于CD 边的中点E,若AB=4,则△ECD′的面积是.20.如图,四边形 ABCD 中,AB=CD,对角线 AC,BD 相交于点 O,AE⊥BD于点E,CF⊥BD于点F,连接 AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD 是平行四边形;其中正确结论的是.21.如图,四边形ABCD 中,AD∥BC,AD=3,BC=8,E 是BC 的中点,点P 以每秒1 个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2 个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t=秒时,以点P,Q,E,D 为顶点的四边形是平行四边形.22.如图,在四边形ABCD 中,AD=12,对角线AC,BD 交于点O,∠ADB=90°,OD=OB=5,AC=26,则四边形ABCD 的面积为.三、解答题23.如图,在平行四边形 AFCE 中,D,B 分别是 EC,AF 的中点.求证:BC=AD.24.如图,在平行四边形 ABCD 中,点 E、F 分别在 AB、CD 上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB.(2)若∠A=30°,∠DEB=45°,DA=5,求 DF 的长.25.如图,在平行四边形 ABCD 中,点 E 在 AD 上,连接 BE、CE,EB 平分∠AEC.(1)如图 1,判断△BCE 的形状,并说明理由;(2)如图 2,∠A=90°,BC=5,AE=1,求线段 BE 的长.26.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,以 AC 为斜边的等腰直角三角形 AEC 的边CE,与 AD 交于点 F,连接 OE,使得 OE=OD.在 AD 上截取 AH=CD,连接 EH,ED.(1)判断四边形 ABCD 的形状,并说明理由;(2)若 AB=1,BC=3,求 EH 的长.27.如图,请在由 32 个边长为 1 的小正三角形组成的网格中,按下列要求作图.且所画图形的顶点都在网格顶点上.(1)在图①中画出一个斜边为 2 的直角三角形;(2)在图②中画出一个面积的菱形;(3)在图②中画出一个面积的平行四边形,28.如图,四边形 ABCD 的对角线 AC、BD 相交于点 O,BO=DO,点 E、F 分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形 ABCD 为平行四边形.29.如图,已知△ABC 是等边三角形,E 为AC 上一点,连接 BE.将 AC 绕点E 旋转,使点 C 落在BC 上的点 D 处,点A 落在BC 上方的点 F 处,连接AF.求证:四边形 ABDF 是平行四边形.30.已知如图,点 C、D 在线段 AF 上,AD=CD=CF,∠ABC=∠DEF=90°,AB∥EF.(1)若,求BD 的长;(2)求证:四边形 BCED 是平行四边形.31.如图,等边△ABC 的边长为 8,动点 M 从点B 出发,沿B→A→C→B的方向以每秒 3 个单位长度的速度运动,动点N 从点C 出发,沿C→A→B﹣C 的方向以每秒 2 个单位长度的速度运动.(1)若动点 M、N 同时出发,经过几秒第一次相遇?(2)若动点 M、N 同时出发,且其中一点到达终点时,另一点即停止运动.在△ABC 的边上是否存在一点 D,使得以点 A、M、N、D 为顶点的四边形为平行四边形?若存在,求此时运动的时间 t 及点D 的具体位置;若不存在,请说明理由.32.如图,△ABC中,D、E、F 分别在边 BC、AB、AC 上,且DE∥AC,DE=AF,延长 FD 到G,使 DG=DF.求证:AG 和DE 互相平分.33.如图,平行四边形 ABCD 中,点 E、F 分别为 BC、AD 的中点,连接 AE、CF、DE.(1)求证:四边形 AECF 为平行四边形;(2)若 DE 平分∠AEC,请直接写出图中线段的长度等于 2BE 的线段.34.已知,如图,在▱ABCD 中,延长 AB 到点E,延长 CD 到点F,使得 BE=DF,连接 EF,分别交 BC,AD 于点M,N,连接 AM,CN.(1)求证:△BEM≌△DFN;(2)求证:四边形 AMCN 是平行四边形.35.如图,D 是△ABC 的边 AB 上一点,CE∥AB,DE 交 AC 于点 F,若 FA=FC.(1)求证:四边形 ADCE 是平行四边形;(2)若AE⊥EC,EF=EC=5,求四边形 ADCE 的面积.36.在▱ABCD 中,点 E 在 CD 边上,连接 AE、BE,点 F 在 AB 边上,连接 CF、DF,且∠DAE=∠BCF.(1)如图 1,求证:四边形 DFBE 是平行四边形;(2)如图 2,若 E 是CD 边的中点,连接 GH,在不添加任何字母和辅助线的情况下,请直接写出图中以 GH 为边或以GH 为对角线的所有平行四边形.。
最新华师大版八年级下册数学期末试题
2017~2018学年八年级数学下册期末试卷命题人:朱晓伟(试卷总分120分 考试时间120分钟)一、选择题(每小题3分,共30分) 1.下列有理式3544157,,,,,,3425527x a a x a y xx y b π-+---+中,分式有( )个A、1 B、2 C、3 D、42.函数y = )A、2x ≥ B、3x ≤ C、23x ≤≤ D、3x ≥或2x ≤ 3.如果分式xx y+中的X和Y都扩大为原来的3倍,那么分式的值( )A、扩大为原来的3倍 B、不变 C、缩小为原来的13D、缩小为原来的164.如果22110xx -+=,那么31()x的值为( ) A、18- B、18C、-1 D、15.点P(m,1-2m )在第四象限,则m 的取值范围是 ( ) A、102m << B、102m -<< C、0m < D、12m > 6.若a 为非零实数,则直线y ax a =-一定经过( )A、第一、二象限 B、第二、三象限 C、第三、四象限 D、第一、四象限 7.如图,O 是坐标原点,菱形OABC 的顶点A,4),顶点C 在x 轴的负半轴上,函数x <0)的图象经过顶点B ,则k 的值为()A .﹣12B . ﹣27C . ﹣32D . ﹣368.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数y=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k=( )A .B .C .D .129.物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论中,错误的是( )A、快递车从甲地到乙地的速度为100千米/小时;B、甲、乙两地之间的距离为120千米; C、图中点B 的坐标为3(3,75)4;D、快递车从乙地返回时的速度为90千米/小时10.关于x 的方程2222x m x x ++=--的解为正数,且关于y 的不等式组22(2)y my m m -≥⎧⎨-≤+⎩有解,则符合题意的整数m 有( )个A .4B .5C .6D .7二、填空题(每小题3分,共18分)11.用科学记数法表示0.0000031,结果为 ;12.如图,在平行四边形ABCD中,对角线AC=21cm,BE⊥AC,垂足为点E,且BE=5cm ,AD=7cm ,则AD和BC之间的距离为 ;第12题 第13题第14题13.如图,菱形ABCD 的边长为2,∠DAB=60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 .14.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积是 ;15.如图在坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为B 1,B 2,B 3,…,则B 2018的坐标为 .三、解答题.(本大题含8个小题共72分.解答应写出文字说明、证明过程或验算步骤)16.计算:201()1(3)2π---+--+-17.计算:(1)2()(2)(2)(2)a b a a b a b a b ---++-(2)2286911m m m m m m -+⎛⎫--÷ ⎪++⎝⎭18.解方程:23133x x-=--19.如图,AD是∠BAC的平分线,AD的垂直平分线交AB于点E,交AC于点F。
华师大版数学八年级下册期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
2012年华师大版初二下学期期末初二数学试题(2)[1]
初二下数学期末练习(2)班级________姓名_____________号数________一、选择题(每小题3分,共21分) 1.分式21+x 有意义,则x 的取值范围是( ) A . 2≠x ; B .2-≠x ; C . 2=x ; D .2-=x .2.在平面直角坐标系中,点(2,3)关于x 轴对称的点的坐标是( )A .(2,3);B .(-2,3);C .(2,-3);D .(-2,-3).3.为筹备班级的“五·一”联欢会,班长对全班同学爱吃哪几种水果作民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) A . 众数; B . 中位数; C . 极差; D . 平均数. 4.下列命题中假命题...的是( ) A .有一组邻边相等的平行四边形是菱形; B .有一个角是直角的菱形是正方形; C .对角线相等的四边形是矩形; D .同一底边上的两个角相等的梯形是等腰梯形.5.如图,点P 在反比例函数2y x=的图象上,过P 点作PA ⊥x 轴于A 点,作PB ⊥y 轴于B 点,矩形OAPB 的面积为( ) A .1; B .2; C .4; D .8.6.如图,AB=AC ,E 、F 分别是AB 、AC 的中点,BF 与CE 相交 于O 点,则图中全等三角形的对数共有( ) A .2对; B .3对; C .4对; D .5对. 7.如右图,在四边形ABCD 中,动点P 从点A B C D 的路径匀速前进到D 个过程中,△APD 的面积S 随时间t 图象表示正确的是( )二、填空题(每小题4分,共40分)8.某种感冒病毒的直径是0.00000012米,用科学记数法表示为_____________ 米. 9.六位学生的鞋号是:25,23,23,24,26,22,则这组数据的极差是 .10.六名学生的年龄依次为:14,14,15,15,15,16,则这组数据的中位数是 .11.计算:=⋅abb a 2 . 12.将直线x y 3=向下平移2个单位,得到直线 .13.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差=2甲S 4,乙同学成绩的方差=2乙S 3.1,则 的成绩较稳定.14.一次函数x y 3=+1的图象不经过第 象限. .15.写出命题“全等三角形的对应边相等”的逆命题 . 16.如下图,矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则CF 的长为 .17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,… 分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1)B 2(3,2) .(1)直线A 1 A 2的解析式是______________. (2)点B 8的坐标是____ _____.ABCCDA三、解答题(共89分)18.(9分)计算:10)21(|3|)13(---+-.19.(9分)先化简,再求值: 11)111(2+-÷+-+x x x x x ,其中x=2010.20.(9分)解方程 :12112-=-x x21.(9分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:请你通过计算回答:小东和小华的学期总评成绩谁较高?22.(9分)如图,点A 、E 、B 、D 在同一直线上, AE=BD ,AC ∥DF ,AC=DF . 求证:⊿ABC ≌⊿DEF .23.(9分)如图,在平行四边形ABCD 中,E 、F 分别是对边AB 和CD 上的两点,且BE=DF ,求证:四边形BFDE 是平行四边形.24.(9分)已知反比例函数xky = (k 为常数,0≠k )的图象经过点P (3,3),O 为坐标原点.(1)求k 的值;(2)过点P 作PM ⊥x 轴于M,若点Q 在反比例函数图象上,并且S△QOM=6,试求Q 点的坐标.F25.(13分)泉州火车站有甲种货物60吨,乙种货物90吨,现计划用30节A、B两种型号的车厢将这批货物运出.设30节车厢中有A型车厢a节,(1)请用含a的代数式表示30节车厢中有B型车厢的节数;(2)如果甲种货物全部用A型车厢运送,乙种货物全部用B型车厢运送,则A型、B 型车厢平均每节运送的货物吨数刚好相同,请求出a的值;(3)在(2)的条件下,已知每节A型车厢的运费是x万元,每节B型车厢的运费比每节A型车厢的运费少1万元,设总运费为y万元,求y与x之间的函数关系式.如果已知每节A型车厢的运费不超过5万元,而每节B型车厢的运费又不低于3万元,求总运费y的取值范围.]26.(13分)如图①,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,3OA =,5OC =,D 为OA 上的一点,若把COD ∆沿CD 对折,点O 会落在AB 边上的点E .(1) 请你直接写出图中一对全等的三角形及点B 的坐标; (2) 试求BE 、AD 的长;(3) 在图①的基础上,连接OB ,设OB 与CD 相交于点F ,如图②所示,现将COD ∆沿CD 对折,再连接FE ,并沿FE 把矩形纸片剪成两部分,将这两部分都展开得到两张小纸片,请你求出其中那张凸多边形小纸片(即四边形OAEF )的面积.图①1已.知正n边形的周长为60,边长为a⑴当n=3时,请直接写出a的值;⑵把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b。
2022-2023学年度华师大版八年级下册数学期末复习卷(含答案)
学校 班级 姓名 考号 考试时间◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆2022-2023学年度八年级数学期末复习卷本试卷共印11个班:初二全年级, 命题人:数学组 时间:2023-06-4一、选择题(30分):1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为( )A .B .C .D .2.在平面直角坐标系中,点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平行四边形ABCD 中,若,,则平行四边形ABCD 的周长为( )A .12B .15C .20D .244.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的( )A .平均数B .众数C .中位数D .方差5.关于矩形的性质,以下说法不正确的是( )A .邻边相互垂直B .对角线相互垂直C .是中心对称图形D .对边相等6.若关于x 的方程无解,则a 的值为( )A .1B .2C .1或2D .0或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为( )A .B .C .D .8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是( )A .220,220 B .210,215 C .210,210D .220,2159.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是( )A .B .C .D .10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为二、填空题(15分):11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)15.如图为6个边长相等的正方形的组合图形,则__.三、解答题(75分):16.先化简,再求值:,其中x217.计算下列各题:(1);(2)解方程:.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.21.2023年是爱国卫生运动开展71周年,2023年4月也是第35个爱国卫生月,为了倡导文明健康绿色环保生活方式,某市决定开展“爱国卫生行动,从我开始行动”主题演讲比赛.该市某中学将参加本校选拔赛的选手的成绩(满分为100分,得分为正整数)分成六组,并绘制了如下不完整的统计图表.请根据以下信息,回答下列问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.频数分布表.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.求卫龙辣条和普通辣条每包的进价分别是多少元?该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获,若分式的值为因为,所以关于+=分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:+==的方程+=.求的值.期末模拟卷答案版一、单选题1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为()A.B.C.D.【答案】C2.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B3.在平行四边形ABCD中,若,,则平行四边形ABCD的周长为()A.12B.15C.20D.24【答案】D4.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的()A.平均数B.众数C.中位数D.方差【答案】C5.关于矩形的性质,以下说法不正确的是( )A.邻边相互垂直B.对角线相互垂直C.是中心对称图形D.对边相等【答案】B6.若关于x的方程无解,则a的值为( )A.1B.2C.1或2D.0或2【答案】C【详解】方程去分母得解得由题意,分以下两种情况:(1)当,即时,整式方程无解,分式方程无解(2)当时,当时,分母为0,分式方程无解,即解得综上,a的值为1或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为()A.B.C.D.【答案】B【详解】解:∵点在反比例函数的图像上,∴,即,∴,在中,,∴,即,,∴,,∵将沿翻折,∴,即,,如图所示,过点作轴于点,∴,在中,,,∴,,∴,,∵点在反比例函数的图像上,∴,∴,8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是()A.220,220B.210,215C.210,210D.220,215【答案】B【详解】解:数据210出现了4次,最多,故众数为210,共10辆车,排序后位于第5和第6位的数分别为210,220,故中位数为.故选:B.9.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是()A.B.C.D.【答案】D【详解】解:菱形的周长为,,,为等边三角形,为中点,是的中点,10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为【答案】B【详解】解:由函数图象可知:当物距为时,像距为,故选项A说法正确;由函数图象可知:当像距为时,物距为,放大率为,故选项B说法错误;由函数图象可知:物距越大,像距越小,故选项C说法正确;由题意可知:当透镜的放大率为1时,物距和像距均为,故选项D说法正确,二、填空题11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)【答案】甲12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)【详解】解:∵一次函数y随x的增大而减小,∴,不妨设,故答案为:(答案不唯一).13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.【详解】解:∴∴,故答案为:.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)【详解】解:如图,过点D作交延长线于点H,∵四边形为正方形,∴,∴,∴,∵,∴,∴,,∴阴影部分的面积.故答案为:3015.如图为6个边长相等的正方形的组合图形,则__.【详解】解:标注字母,如图所示,在和中,,∴(),∴,∵,∴,又∵,∴.故答案为:.三、解答题16.先化简,再求值:,其中x2【详解】解:=[],当x2时,原式.17.计算下列各题:(1);(2)解方程:.【详解】解:(1)原式==﹣.(2)方程两边同乘(x+3)(x﹣3),得x﹣3+2x+6=12,解得,x=3,当x=3时,(x+3)(x﹣3)=0,所以x=3不是原方程的解,所以原方程无解.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.【详解】证明:∵四边形ABCD为正方形,∴AB=BC=CD,∠ABE=∠BCF=90°,又∵CE=DF,∴CE+BC=DF+CD即BE=CF,在△BCF和△ABE中,∴(SAS),∴AE=BF.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【详解】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.【详解】(1)∵在上,∴.反比例函数的解析式为∵点在上,∴.∴.经过,,解得,∴一次函数的解析式为.(2)C是直线AB与x轴的交点,当时,.∴点,∴.∴.(3)反比例函数值大于一次函数值x取值范围为问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.【详解】(1)解:组人数所占的百分比为:,组的人数所占的百分比为:,∴参加学校选拔赛的总人数为:(人);故答案为:;(2)解:,,补全频数分布直方图如图.(3)不一定正确.理由:将50名选手的成绩从低到高排列,第25名与第26名的成绩都在分数段中,但它们的平均数不一定是87分.22.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.【详解】(1)设普通辣条进价为元,则卫龙辣条的进价为元,∴,解得:,经检验,是方程的解,∴普通辣条的进价为元,卫龙辣条的进价为元.(2)设购买卫龙辣条包,则普通辣条:包,∵普通辣条的数量不超过卫龙辣条数量的倍,∴,解得:,设购进的辣条全部出售后获得的总利润为,∴,,,∵,∴随的增大而减小,∴当时,最大,答:购进卫龙辣条包时,每个月的总获利最大..对于两个不等的非零实数,若分式的值为因为,所以关于+=分别为x1=a,x2=b.+=的方程+=.求的值.)应用上面的结论,x1=-2=∵∴∴∴或∴或∵∴∴。
华师大版八年级下册数学期末复习试题
华师大版八年级下册数学期末复习测试题姓名: ,成绩: ;一、选择题(12个题,共48分)1、有理式11249,(),,,,23313x x x yx y x m x x ++--中,分式有( )个 A、1 B、2 C、3 D、42、分式22x x -+有意义的条件是( )A、2x ≠ B、2x ≠- C、2x ≠± D、2x >- 3、点(-4,1)关于原点的对称点是( )A、(-4,1) B、(-4,-1) C、(4,1) D(4,-1)4、已知点(-1,m )和点(0.5,n )都在直线23y x b =-+上,则m 、n 的大小关系是( )A、m n < B、m n > C、m n = D、无法判断 5、点(0,-2)在(B )A、X轴上 B、Y轴上 C、第三象限 D、第四象限 6、下列判断正确的是( )A、平行四边形是轴对称图形 B、矩形的对角线垂直平分 C、菱形的对角线相等 D、正方形的对角线互相平分 7、关于x 的分式方程232x mx +=-的解是正数,则m 可能是( ) A 、4-B 、5-C 、6-D 、7-8、顺次连接平行四边形各边中点所得到的四边形是( )A、平行四边形 B、矩形 B、菱形 D、正方形9、下列说法正确的是( )A .一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.01,乙组数据的方差S 2乙=0.1,则乙组数据比甲组数据稳定10、平行四边形ABCD中,∠ADC的平分线与AB交于点E,若AE、EB是方程组32414113x y x y -=⎧⎪⎨+=⎪⎩的解,则平行四边形ABCD的周长为( )A、16 B、17 C、17或16 D、5.511、有10名同学参加百科知识竞赛,记分时以90分为基准将他们的成绩记录如下:0,1,﹣2,4,﹣1,0,0,﹣2,5,0,请问这10名同学参加竞赛的平均分是 _________12、从甲、乙、丙三个厂家生产的同一种产品中,各抽出8种产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12三个厂家在广告中都称该产品使用寿命为8年,根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数中哪一个集中趋势的特征数 甲: _________,乙: _________丙: _________二、填空题(6个题,共24分)13、已知空气的单位体积质量是0.001239克每立方厘米,用科学记数法表示该数为 ;14、计算:23-= ,01()3= ,3223()()a ab --= ,15、已知132a a -=,则221a a+= ,16、用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致。
华师大版数学八年级下册《期末试卷》(3套版附答案)
3题号一二三总分161718192021222324得分得分 评卷人一、选择题(每小题 3 分,共 18 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.x + 11. 若分式x -1有意义,则 x 的取值范围是( )A .x =-1B .x =1C .x ≠-1D .x ≠11 2. 分别以下列四组数为一个三角形的三边长:(1) ,3 1 , 1;(2)3,4,5;(3)1, 2, ; 4 5(4)4,5,6.其中一定能构成直角三角形的有 ()A .1 组B .2 组C .3 组D .4 组a +b 3. 在分式ab中,把 a 、b 的值分别变为原来的 2 倍,则分式的值()A .不变B .变为原来的 2 倍1 C. 变为原来的2D. 变为原来的 4 倍4. 如图是小敏同学 6 次数学测验的成绩统计图,则该同学 6次成绩的中位数是 ()A .85 分B .80 分C .75 分D .70 分5. 在函数 y =- k(k 是常数,且 k >0)的图像上有三点(-3,学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……xy1)、(-1,y2)、(2,y3),则y1、y2、y3 的大小关系是( )(第4 题)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 16. 如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为 10cm ,正方形 A 的边长为 6cm 、B 的边长为 5cm 、C 的边长为 5cm ,则正方形 D 的边长为 ( ) A .3cm得分 评卷人二、填空题(每小题 3 分,共 27 分) x 2 -1 7. 当 x =时,分式x -1的值为 0.D .4cm(第 6 题)8.计算:(2x -3y 4)2·3x 2y -3= .9. 某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条,其价格和销售数量如下表:价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)13967316642下次进货时,你建议该商店应多进价格为 元的水晶项链. 10. 在四边形 ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA的中点,要使四边形 EFGH 为菱形,则四边形 ABCD 的对角线应满足的条件是 .11. 已知 E 、F 分别是正方形 ABCD 两边 AB 、BC 的中点,AF 、CE 交于点 G ,若正方形 ABCD 的面积等于 4,则四边形 AGCD 的面积为 .12.在 Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边(第 11 题)AC 的长为 .13. 已知梯形的上、下底长分别为 6,8,一腰长为 7,则梯形另一腰长 a 的取值范围是 . 14. 如图,菱形 ABCD 的两条对角线长分别为 6 和 8,点 P 是对角线 AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点则 PM +PN 的最小值是 .x + a(第 14 题)15. 已知关于 x 的方程x - 2= -1 有解且大于 0,则 a 的取值范围是.C . 15cm B . 14cm三、解答题(本题共9 个小题,满分75 分)得分评卷人16.(7 分)先化简( 的值.1-x -11) ÷x +1x2x2 -2, 然后选择一个你喜欢的x 的值代入求原式得分评卷人17.(7 分)“玉树地震,情牵国人”,某厂计划加工1500 顶帐篷支援灾区人民,在加工了300 顶帐篷后,由于救灾需要,工作效率提高到原来的1.5 倍,结果比原计划提前4 天完成了任务.求原计划每天加工多少顶帐篷?得分评卷人18.(8 分)如图,在□ABCD 中,分别以AD、BC 为边向内作等边△ADE 和等边△BCF,连结BE、DF.求证:四边形BEDF 是平行四边形.得分评卷人19.(8 分)一次数学活动课中,甲、乙两组学生各自对学校的旗杆进行了5 次测量,所得的数据如下表所示:旗杆高度(m) 11.90 11.95 12.00 12.05甲组测得次数1022乙组测得次数0212得分评卷人20.(8 分)为了预防流感,某学校在星期天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据以上信息解答下列问题:(1)求药物释放完毕后,y 与x 之间的函数关系式并写出自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25 毫克以下时,学生方可进入教室,那么,从星期天下午5:00 开始对某教室释放药物进行消毒,到星期一早上7:00 时学生能否进入教室?m 得分 评卷人21.(9 分)将矩形纸片 ABCD 按如图方式折叠,使点 D 与点 B 重合,点 C 落到 C ′处,折痕为 EF .若 AD =9AB =6,求折痕 EF 的长.得分 评卷人22.(9 分)如图,一次函数 y =kx +b 与反比例函数 y =的图象交于A (-4,n ),B (2,x-4)两点.(1) 求反比例函数和一次函数的解析式;(2) 求直线 AB 与 x 轴的交点 C 的坐标及△AOB 的面积; (3) 根据图象直接写出关于 x 的方程 kx + b -m = 0 的解及x不等式 kx + b - m x< 0 的解集.得分评卷人23.(9 分)如图,在梯形ABCD 中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC 到E,使CE=AD.(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究:当梯形ABCD 的高DF 等于多少时,对角线AC 与BD 互相垂直?请回答并说明理由.得分评卷人24.(10 分)如图,在Rt△ABC 中,∠ABC=90°∠ACB=60°.将Rt△ABC 绕点C 顺时针方向旋转后得到△DEC(△DEC≌△ABC),点E在AC 上,再将Rt△ABC 沿着AB 所在直线翻转180°得到△ABF,连接AD.(1)求证:四边形AFCD 是菱形;(2)连接BE并延长交AD于点G,连接CG.请问:四边形ABCG 是什么特殊平行四边形?为什么?x 参考答案一、选择题(每小题 3 分,共 18 分) 1.D 2.B 3.C4.C5.A 6.B二、填空题(每小题 3 分,共 27 分) 12 y 5 7.-18. x49.50 10.AC =BD11. 82(或2 )12. 3 313.5<a <914.5 15.a <2 且 a ≠-2 三、解答题(本题共 9 个小题,满分 75 分) 16.(7 分)解:原式=(1 - x -1 1 x +1 2(x2 -1) ) x……1 分= 2(x +1) -2(x 2 -1) ……5 分x4 =x代入求值略(只要 x 不取 0,1,-1 即可).……7 分 17.(7 分)解:设原计划每天加工 x 顶帐篷.……1 分 1500 - (300 + 1200 ) = 4……3 分 x x 1.5x解这个方程,得 x =100 ……5 分经检验 x =100 是原分式方程的解. ……6 分 答:原计划每天加工 100 顶帐篷.……7 分18.(8 分)证明:∵四边形 ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2 分又∵△ADE 和△BCF 都是等边三角形∴DE =AE =AD ,BF =CF =CB ,∠DAE =∠BCF =60°. ∴DE =BF ,AE =CF . ……4 分 ∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE . ∴△DCF ≌△BAE (SAS ). ……7 分3⋅3 3 3 ∴DF =BE .∴四边形 BEDF 是平行四边形.……8 分19.(8 分)解: x 甲 = 1⨯ (11.90 +12.00 ⨯ 2 +12.05⨯ 2) = 12.00 5x 乙 = 1x (11.95⨯ 2 +12.00 +12.05⨯ 2) = 12.00 5……3 分S 2 = 1×[(11.90-12.00)2+(12.00-12.00)2+(12.00-12.00)2+(12.05- 甲512.00)2+(12.05-12.00)2]=0.003S 2 = 1×[(11.95-12.00)2+(11.95-12.00)2+(12.00-12.00)2+(12.05- 乙512.00)2+(12.05-12.00)2]=0.002 ……7 分 ∵ S 2< S 2,∴乙组测得旗杆高度比较一致.……8 分乙甲20 . 解:(1) 设药物释放完毕后 y 与 x 的函数关系式为y = k(k =/ 0).x由题意,得1.5 =k,∴ k = 3. 2∴药物释放完毕后的函数关系式为 y =. ……3 分x在 y =中,令y =3,得 x =1.x∴Q (1,3).∴在 y =中,自变量x 的取值范围为 x >1(或 x ≥1).……5 分x 3 (2) 解不等式 <0.25,得x >12. ……7 分x21.(9 分)∵从星期天下午 5:00 到星期一早上 7:00 时,共有 12-5+7=14(小时), 而 14>12,所以到星期一早上 7:00 时学生能够进入教室. ……8 分解:依题意,得:BE =DE ,∠A =90°,∠BEF =∠DEF .∵AD ∥BC ,∴∠DEF =∠BFE .42 + 62⎩⎩b ∴∠BFE =∠BEF .∴BF =BE . ……2 分在 Rt △ABE 中,设 AE =x ,则 BE =DE =9-x . 由勾股定理,得 x 2+62=(9-x )2∴ x = 5 2,即 AE = 52. ……4 分∴BE =BF =DE =AD -AE =132……5 分过 E 点作 EG ⊥BF 于 G 点,则得矩形 ABGE .…6 分EG =AB =6,BG =AE =52∴FG =BF -BG = 13 2 -5 2= 4 .……8 分EF == = 52.即折痕 EF 长为 22.(9 分)解:(1)依题意,得……9 分∴ -m= n , m= -4.∴m =-8,n =2. ……2 分 4 2∴反比例函数解析式为 y = - 8x……3 分又∵直线 y =kx +b 过 A (-4,2),B (2,-4)两点,∴⎧- 4k + b = 2, ∴⎧k = -1,⎨2k + b = -4. ⎨= -2.∴一次函数解析式为 y =-x -2……4 分(2)依题意,令-x -2=0,x =-2 即 C (-2,0)……5 分S ∆AOB =S ∆ AOC +S ∆BOC = 12⨯ 2 ⨯ 2 +12⨯ 2 ⨯ 4 = 6……6 分(3) 方程 kx + b -m = 0 的解为 x =2 或 x =-4 ……7 分 x不等式kx + b -m < 0 的解集为 x >2 或-4<x <0……9 分x23.(9 分)解:(1)△CDA ≌△DCE ,△BAD ≌△DCE .……2 分FG 2 + EG 2 52∵AD ∥BC ,∴∠ADC =∠ECD . ∵CE =DA ,DC =CD , ∴△CDA ≌△DCE . ……4 分 (2)当 DF =3 时,AC ⊥BD . ……5 分理由如下:∵AD ∥BC ,AB =CD ,∴AC =BD .∵AD ∥BC ,CE =AD ,∴四边形 ACED 为平行四边形 ∴AC =DE ,∴BD =DE .∵DF ⊥BE ,∴ BF = EF = 1 BE = 2 1 ⨯ (2 + 4) = 3 224.(10 分)∵DF =3,∴DF =BF =EF .∴∠DBF =∠BDF =45°,∠E =∠EDF =45°. ∴∠BDE =90°.∴BD ⊥DE . ∵AC ∥DE ,∴AC ⊥BD .……9 分(1) 证明:△DEC 是由 Rt △ABC 绕 C 点旋转后得到.∴AC =DC ,∠ACD =∠ACB =60°. ∴△ACD 是等边三角形, ∴AD =DC =AC .……2 分又∵Rt △ABF 是由 Rt △ABC 沿 AB 所在直线翻转 180°得到 ∴AC =AF ,∠ABF =∠ABC =90°. ∴∠FBC 是平角,∴ 点 F 、B 、C 三点共线 ∴△AFC 是等边三角形∴AF =FC =AC .……3 分∴AD =DC =FC =AF . ……4 分 ∴四边形 AFCD 是菱形.……5 分(2)四边形 ABCG 是矩形.……6 分证明:由(1)可知:△ACD 是等边三角形,∠DEC =∠ABC =90°.∴DE ⊥AC 于 E .∴AE =EC . ……7 分 ∵四边形 AFCD 是菱形,∴AG ∥BC . ∴∠EAG =∠ECB ,∠AGE =∠EBC . ∴△AEG ≌△CEB ,∴BE =EG . ……8 分 ∴四边形 ABCG 是平行四边形. ……9 分而∠ACB =90°,∴四边形 ABCG 是矩形. ……10 分学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣5 2.在下列分式中,最简分式是()A.B.C.D.﹣3.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码/cm2222.52323.52424.525销售量/双46620455A.平均数B.中位数C.众数D.方差4.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形5.若一次函数y=(m﹣1)x﹣m的图象经过第二、三、四象限,则m的取值范围是()A.m<0B.m<1C.0<m<1D.m>1 6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是()A.25°B.40°C.45°D.50°7.某工程队正在对一湿地公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.70m2B.50m2C.45m2D.40m28.如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S39.如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2B.2.4C.2.5D.4.810.如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A.18B.20C.36D.无法确定二、填空题:(本大题共6个小题,每小题3分,共18分)11.若分式的值为零,则x的值为.12.若数据1、﹣2、3、x的平均数为2,则x=.13.在菱形ABCD中,若∠A=60°,周长是16,则菱形的面积是.14.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=﹣的图象上,且y1<y2<0,则x1和x2的大小关系是.15.如图,▱ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,点E是BC的中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为cm.16.如图,△ABC为等边三角形,且点A、B的坐标分别是(﹣2,0)、B(﹣1,0),将△ABC沿x轴正半轴方向翻滚,翻滚120°为一次変换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)当a=3时,求的值.18.(8分)摩拜公司为了调查在某市投放的共享单车使用情况,对4月份第一个星期中每天摩拜单车使用情况进行统计,结果如图所示.(1)求这一个星期每天单车使用情况的众数、中位数和平均数;(2)用(1)中的结果估计4月份一共有多少万车次?(3)摩拜公司在该市共享单车项目中共投入9600万元,估计本年度共租车3200万车次,若每车次平均收入租车费0.75元,请估计本年度全年租车费收入占总投入的百分比.19.(8分)如图,在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连结BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.20.(9分)某运动鞋专卖店通过市场调研,准备销售A、B两种运动鞋,其中A种运动鞋的进价比B运动鞋的进价高20元,已知鞋店用3200元购进A运动鞋的数量与用2560元购进B运动鞋的数量相同.(1)求两种运动鞋的进价;(2)若A运动鞋的售价为250元/双,B运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m双,且90≤m≤105,要使该专卖店获得最大利润,应如何进货?21.(9分)如图,直线y1=kx+2与反比例函数y2=(x<0)相交于点A,且当x<﹣1时,y1>y2,当﹣1<x<0时,y1<y2.(1)求出y1的解析式;(2)若直线y=2x+b与x轴交于点B(3,0),与y1交于点C,求出△AOC的面积.22.(9分)如图,四边形ABCD为矩形,将矩形ABCD沿MN折叠,折痕为MN,点B的对应点B′落在AD边上,已知AB=6,AD=4.(1)若点B′与点D重合,连结DM,BN,求证:四边形BMB′N为菱形;(2)在(1)问条件下求出折痕MN的长.23.(10分)如图,在平面直角坐标系中,四边形ABCD为菱形,且点D(﹣4,0)在x轴上,点B和点C(0,3)在y轴上,反比例函数y=(k≠0)过点A,点E(﹣2,m)、点F分别是反比例函数图象上的点,其中点F在第一象限,连结OE、OF,以线段OE、OF为邻边作平行四边形OEGF.(1)写出反比例函数的解析式;(2)当点A、O、F在同一直线上时,求出点G的坐标;(3)四边形OEGF周长是否有最小值?若存在,求出这个最值,并确定此时点F的坐标,若不存在,请说明理由.24.(11分)如图,四边形ABCD为平行四边形,过点B作BE⊥AB交AD于点E,将线段BE 绕点E顺时针旋转90°到EF的位置,点M(点M不与点B重合)在直线AB上,连结EM.(1)当点M在线段AB的延长线上时,将线段EM绕点E顺时针旋转90°到EN1的位置,连结FN1,在图中画出图形,求证:FN1⊥AB;(2)当点M在线段BA的延长线上时,将线段EM绕点E顺时针旋转90°到EN2的位置,连结FN2,在图中画出图形,点N2在直线FN1上吗?请说明理由;(3)若AB=3,AD=6,DE=1,设BM=x,在(1)、(2)的条件下,试用含x的代数式表示△FMN的面积.参考答案一、选择题1.C.2.B.3.C.4.A.5.C.6.D.7.B.8.D.9.D.10.A.二、填空题11.﹣1.12. 6.13. 8.14. x1<x2.15. 4.16.(2016,0).三、解答题17.解:原式=÷=•(﹣1)=﹣,当a=3时,原式=﹣.18.解:(1)众数为8(万车次),中位数为8(万车次),平均数=(9+8+8+7.5+8+8+9+10)=8.5(万车次);(2)30×8.5=255(万车次).答:估计4月份共租车255万车次;(3)3200×0.75÷9600=25%.答:全年租车费收入占总投入的25%.19.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴BE=CD;(2)解:由BE=AB,∠BEA=60°,∴△ABE为等边三角形,∴AB=AE=4,又∵BF⊥AE,∴AF=EF=2,∴BF==2,∵∠DAE=∠E,AF=EF,∠AFD=∠CFE,∴△ADF≌△ECF,∴平行四边形ABCD的面积=△ABE的面积=×4×2=.20.解:(1)设A种运动鞋的进价为x元,,解得x=100,经检验,x=100是原分式方程的解,∴x﹣20=80,答:A运动鞋的进价价为100元/双,B运动鞋的进价是80元/双;(2)设总利润为w元,则w=(250﹣100)m+(180﹣80)(200﹣m)=50m+20000,∵50>0,w随m的增大而增大,又∵90≤m≤105,∴当m=105时,w取得最大值,200﹣m=95,答:要使该专卖店获得最大利润,此时应购进甲种运动鞋105双,购进乙种运动鞋95双.21.解:(1)∵当x<﹣1时,y1>y2,当﹣1<x<0时,y1<y2,∴点A的横坐标为﹣1,当x=﹣1时,y==3,则A(﹣1,3),把A(﹣1,3)代入y=kx+2得﹣k+2=3,解得k=﹣1,∴y1的解析式为y=﹣x+2;(2)∵y=2x+b与x轴交于点B(3,0),∴6+b=0,解得b=﹣6,∴直线BC的解析式为y=2x﹣6,解方程组得,则点C的坐标为(,),直线y=﹣x+2与y轴的交点坐标为(2,0),=×(1+)×2=.∴S△AOC22.解:(1)由折叠可得,BM=DM,∠BMN=∠DMN,∵CD∥AB,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DN=DM,∴BM=MD=DN,又∵DN∥BM,∴四边形BMDN是平行四边形,又∵BM=DM,∴四边形BMB'N为菱形;(2)设BM=x,则DM=x,AM=6﹣x,在Rt△AMB′中,由勾股定理可得,(6﹣x)2+42=x2,求解得x=,则DM==DN,如图,过点M作MQ⊥CD于点Q,则NQ==,在Rt△MNQ中,利用勾股定理可得MN==.23.解:(1)∵点D(﹣4,0)在x轴上,∴A点横坐标为:﹣4,∵点C(0,3)在y轴上,∴DC=5,∵四边形ABCD为菱形,∴AD=5,∴点A的坐标为(﹣4,﹣5),则解析式为:;(2)如图,∵x=﹣2时,y==﹣10,∴点E的坐标为(﹣2,﹣10),∵点A、O、F在同一直线上,∴A,F关于原点对称,∴点F的坐标(4,5),分别过点E、F作EN⊥x轴于点N,FM⊥GM于点M,FM也垂直于x轴,∵四边形OEGF是平行四边形,∴EO∥FG,∴∠NOE=∠3,∵∠2=∠3=∠1,∴∠1=∠NOE,在△ENO和△FMG中,∴△ENO≌△FMG(AAS),设点G的坐标为(m,n),则5﹣n=10,m﹣4=﹣2,故n=﹣5,m=2,则点G的坐标为(2,﹣5);(3)由于OE为定值,则只需求出OF的最小值即可,设点F的坐标为(a,),根据勾股定理得,,显然当.时,OF2最小,即a=2时,OF最小,OF=2,EO=2,因此,当点F的坐标为(2,2)时,四边形OEGF周长最小,最小值为:4+4.24.(1)证明:如图,∵∠BEF=∠M1EN1=90°,∴∠BEM1=∠FEN1,∵DB=DF,EM1=EN1∴△EBM1≌△EFN1,∴∠EFN1=∠EBM1,∵EB⊥AB,∴∠EBM1=90°∴∠EFN1=90°,∴四边形BEFG为矩形,∴∠FGB=90°即FN1⊥AB.(2)如图,同理可证△EBM2≌△EFN2,则∠EFN2=90°,由于∠EFN1+∠EFN2=180°,所以点N2在直线FN1上.(3)由(1)可知四边形BEFG为正方形,∵AD=6,DE=1,∴AE=5,在Rt△ABE中,BE==4,当点M1在线段AB的延长线上时,S1==,此时x>0;当点M2在线段BA的延长线上时,①当3<x<4时,S2=.②当x>4时,S3=.学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题(共9小题,每小题3分,满分27分)1.要使分式的值为0,你认为x可取得数是()A.9B.±3C.﹣3D.32.在函数y=中,自变量x的取值范围是()A.x>3B.x≥3C.x>4D.x≥3且x≠4 3.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.5×109米B.50×10﹣8米C.5×10﹣9米D.5×10﹣8米4.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.20.250.30.40.5家庭数(个)12241那么这组数据的众数和平均数分别是()A.0.4和0.34B.0.4和0.3C.0.25和0.34D.0.25和0.3 5.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)6.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°8.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S▱ABCD为()A.2B.3C.4D.59.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是()A.①②③④B.①②④⑤C.②③④⑤D.①③④⑤二、填空题(共6小题,每小题3分,满分18分)10.若解分式方程﹣=0时产生增根,则a=.11.若点M(k+1,k)关于原点O的对称点在第二象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.12.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).13.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.14.如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PD+PE的最小值为.15.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.三、简答题(共8小题.满分75分)16.(10分)计算:(1)(3.14﹣π)0+0.254×44﹣()﹣1(3)已知﹣=3,求的值17.(6分)解方程:.18.(9分)如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?19.(10分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.20.(10分)我们知道,假分数可以化为整数与真分数的和的形式,例如=1+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,……这样的分式是假分式;像,,……这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式,例如:==+=1+===x+2+(1)分式是分式(填“真”或“假”);(2)将分式化成整式与真分式的和的形式;(3)如果分式的值为整数,求x的整数值.21.(8分)近几年,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,我们国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班 8.5乙班 8.5 10 1.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度对甲乙两班进行分析.22.(10分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240023.(12分)如图,直线y=﹣2x+2与x轴、y轴分别相交于点A和B.(1)直接写出坐标:点A,点B;(2)以线段AB为一边在第一象限内作▱ABCD,其顶点D(3,1)在双曲线y=(x >0)上.①求证:四边形ABCD是正方形;②试探索:将正方形ABCD沿x轴向左平移多少个单位长度时,点C恰好落在双曲线y=(x>0)上.参考答案一、选择题1.D.2.D.3.C.4.A.5.C.6.A.7.D.8.D.9.B.二、填空题10.﹣8.11.一12. CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.13.x>﹣2.14. 2.15. 1.三、简答题16.解:(1)原式=1+(0.25×4)4﹣2=1+1﹣2=0;(2)由﹣=3,得到=﹣2,即a﹣b=﹣2ab,则原式====﹣.17.解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.18.(1)证明:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.19.(1)证明:∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形;(2)解:当矩形ABCD的边AD=DC,菱形CODP是正方形,理由:∵四边形ABCD是矩形,∴AO=CO,又∵AD=DC,∴DO⊥AC,∴∠DOC=90°,∴菱形CODP是正方形.20.解:(1)分子的次数小于分母的次数,所以是真分式;(2)原式==1﹣(3)原式==2(x+1)+由于该分式是整数,x是整数,所以x﹣1=±1∴x=0或x=221.解:(1)甲班的平均数是:(8.5+7.5+8+8.5+10)÷5=8.5(分);∵8.5出现了2次,出现的次数最多,∴甲的众数为:8.5分,S2= [(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7甲(分);乙的中位数是:8分;故答案为:8.5,8.5,0.7,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样高;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.22.解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵50﹣m≥0,∴m≤50,∴16≤m≤50∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.23.解:(1)∵令x=0,则y=2;令y=0,则x=1,∴A(1,0),B(0,2).故答案为:(1,0),(0,2);(2)①过点D作DE⊥x轴于点E,∵A(1,0),B(0,2),D(3,1),∴AE=OB=2,OA=DE=1,在△AOB与△DEA中,,∴△AOB≌△DEA(SAS),∴AB=AD,设直线AD的解析式为y=kx+b(k≠0),∴,解得,∵(﹣2)×=﹣1,∴AB⊥AD,∴四边形ABCD是正方形;②过点C作CF⊥y轴,∵△AOB≌△DEA,∴同理可得出:△AOB≌△BFC,∴OB=CF=2∵C点纵坐标为:3,代入y=,∴x=1,∴应该将正方形ABCD沿X轴向左平移2﹣1=1个单位长度时,点C的对应点恰好落在(1)中的双曲线上.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
华师大版八年级下册数学期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
华东师大版八年级下册数学期末综合复习培优卷
期末综合复习培优卷姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠3 D.x≠﹣32.在平面直角坐标系中,若P(m﹣2,m+1)在第三象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣13.小颖和其他10位同学一起参加“我爱读书”演讲比赛他们的分数互不相同,并取6位同学进人决赛,小颖知道了自己的分数后,要想知道自己是否进人决赛,还需要知道此次演讲比赛成绩的()A..平均数B.方差C.中位数D.最低分4.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直5.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为()A.33元B.36元C.40元D.42元6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BO的长为()A.5 B.8 C.10 D.117.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2B.4C.D.38.在同一平面直角坐标系中,函数y=x﹣1与函数y=的图象可能是()A.B.C.D.9.如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是()A.B.1+C.D.210.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上,则点C 2020的纵坐标是( )A .22020B .22019C .22020﹣1D .22019﹣1第Ⅱ卷(非选择题)二.填空题11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.12.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为万元较为合适.13.如图,点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,分别与函数y=(x>0)的图象交于点A、B,则△AOB的面积为.14.如图,已知菱形ABCD的边长是10,点O是对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形一条对角线长为12,则图中阴影部分的面积为.15.如图,在平面直角坐标系中,直线y=x﹣1与函数y=(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为.16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG 、BG 、BD 、DG ,下列结论:①BC =DF ,②∠DGF =135°;③BG ⊥DG ,④若3AD =4AB ,则4S △BDG =25S △DGF ;正确的是 (只填番号).三.解答题17.先化简,再求值:(m +2+)÷,其中m =﹣1.18.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处,对离开园区的游客进行调查,其中在A 出口调查所得的数据整理后绘成如下图所示统计图: 表一:出口BC人均购买饮料数量(瓶)32(1)在A 出口的被调查游客中,购买瓶装饮料的数量的中位数是 瓶、众数是 瓶、平均数是 瓶;(2)已知A 、B 、C 三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.19.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.20.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,作∠ADC和∠ABC的平分线,分别交AC于点G,H,延长DG交AB于点E,延长BH交CD于点F.(1)求证:△ADG≌△CBH;(2)若BD平分∠CDE,则四边形DEBF是什么特殊四边形?请说明理由.21.如图,已知一次函数y=kx+b的图象交反比例函数y=的图象于点A(2,﹣4)和点B(h,﹣2),交x轴于点C.(1)求这两个函数的解析式;(2)连接OA、OB.求△AOB的面积;(3)请直接写出不等式kx+b>的解集.22.如图,在四边形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF.(1)若∠ADC=80°,求∠ECF;(2)求证:∠ECF=∠CEF.23.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?24.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y 轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=6.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO =S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.参考答案一.选择题1.解:根据分式有意义的条件,得x﹣3≠0解得x≠3.故选:C.2.解:由题意知,解得:m<﹣1,故选:A.3.解:因为6位同学的成绩一定是10位同学中最高的,而且不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否能参加决赛了.故选:C.4.解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.5.解:当行驶里程x≥8时,设y=kx+b,将(8,12)、(11,18)代入,得:,解得:,∴y=2x﹣4,当x=22时,y=2×22﹣4=40,∴如果小明某次打车行驶里程为22千米,则他的打车费用为40元;故选:C.6.解:∵四边形ABCD是平行四边形,∴AO=CO=AC=3,∵AB⊥AC,AB=4,∴BO===5,故选:A.7.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选:B.8.解:在同一平面直角坐标系中,函数y=x﹣1与函数y=的图象可能是,故选:C.9.解:延长DC交EF于G,如图所示:则CG⊥EF,∴∠CGF=∠CGE=90°,∵四边形ABCD是正方形,四边形BEFC是菱形,∴∠FCG=∠ACD=45°,CD=BC=CF=EF=1,∴△CFG是等腰直角三角形,∴CG=FG=CF=,∴DG =CD +CG =1+,GE =EF ﹣FG =1﹣,在Rt △DEG 中,由勾股定理得:DE ===; 故选:C .10.解:当x =0时,y =x +1=1,∴点A 1的坐标为(0,1).∵四边形A 1B 1C 1A 2为正方形,∴点C 1的纵坐标为1,当x =1时,y =x +1=2,∴点A 2的坐标为(1,2).∵A 2B 2C 2A 3为正方形,∴点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.∴点∁n 的纵坐标为2n ﹣1∴点C 2020的纵坐标为22019.故选:B .二.填空题(共6小题)11.解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.12.解:想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适. 因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标;故答案为:18.13.解:作AD ⊥x 轴于D ,设PB ⊥x 轴于E ,∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,∴设P(m,),则A(5m,),B(m,),∵点A、B在函数y=(x>0)的图象上,∴S△OBE =S△OAD,∵S△AOB =S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,∴S△AOB=(+)(5m﹣m)=24,故答案为24.14.解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形≌四边形ONCG,四边形OEDM≌四边形OFBN,∵菱形ABCD的边长是10,菱形一条对角线长为12,∴可得菱形的另一对角线长为:16,∴阴影部分的面积=S菱形ABCD=××12×16=48.故答案为:48.15.解:y=x﹣1与x轴交于点B,与y轴交于点C,∴B(1,0),C(0,﹣1),设A(m,n),∵点B为AC的中点,∴m=2,n=1,∴k=2,故答案为2;16.解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠F=∠FAD,∴AD=DF,∴BC=DF,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形,∵点G为EF的中点,∴CG=EG,∠FCG=45°,CG⊥AG,∴∠BEG=∠DCG=135°,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS).∴∠BGE=∠DGC,BG=DG,∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°,∵∠CGF=90°,∴∠DGF<135°,故②错误;∵∠BGE=∠DGC,∴∠BGE+∠DGA=∠DGC+∠DGA,∴∠CGA=∠DGB=90°,∴BG⊥DG,故③正确;过点G作GH⊥CD于H,∵3AD=4AB,∴设AD=4x=DF,AB=3x,∴CF=CE=x,BD==5x,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=x,DG=GB=x,∴S△DGF =×DF×HG=x2,S△DGB=DG×GB=x2,∴4S△BDG =25S△DGF;故④正确;故答案为①③④.三.解答题(共8小题)17.解:(m+2+)÷,=(﹣),=,=,=﹣2(m+3),=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.18.解:(1)在A出口的被调查游客中,购买瓶装饮料的数量的中位数是2瓶、众数是1瓶、平均数是=2瓶;故答案为:2,1,2;(2)设A、B、C三个出口的游客量为2a,2a,a,∴50×=120万瓶饮料,答:这一天购买的饮料的总数是120万瓶;(3)120×0.5=60万元,答:该日需要花费60万元钱处理这些饮料瓶;建议:希望游客不要乱扔饮料瓶,保护环境.19.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.20.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∠ADC=∠ABC,∴∠DAG=∠BCH,∵DE,BF分别是∠ADC和∠ABC的平分线,∴,∴∠ADG=∠CBH,在△ADG和△CBH中,,∴△ADG≌△CBH(ASA);(2)解:四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,AB∥CD,∠DAB=∠BCD,在△CBF和△ADE中,,∴△CBF≌△ADE(ASA),∴AE=CF,∴AB﹣AE=CD﹣CF,即EB=DF,又∵AB∥CD,∴四边形DEBF是平行四边形,∵BD平分∠CDE,∴∠CDB=∠BDE,又∵AB∥CD,∴∠CDB=∠DBA,∴∠BDE=∠DBA,∴ED=EB,∴平行四边形DEBF是菱形.21.解:(1)把A(2,﹣4)的坐标代入y=得:m=﹣8,∴反比例函数的解析式是y=﹣;把B(h,﹣2)的坐标代入y=﹣得:﹣2=﹣,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b,得:,解得:,∴一次函数解析式为y=x﹣6;(2)∵y=x﹣6,∴当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×6×4﹣×6×2=12﹣6=6;(3)由图象知,kx+b>的解集为0<x<2或x>4.22.解:(1)∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF=(180°﹣80°)=50°,∵CE⊥AB,∴CE⊥CD,∴∠DCE=90°,∴∠ECF=90°﹣50°=40°;(2)如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EM=FE,∴∠ECF=∠CEF.23.解:(1)设A种品牌的口罩每个的进价为x元,根据题意得:,解得x=1.8,经检验x=1.8是原方程的解,x+1.8=2.5(元),答:A种品牌的口罩每个的进价为1.8元,B种品牌的口罩每个的进价为2.5元.(2)设购进B种品牌的口罩m个,根据题意得,(2.1﹣1.8)(8000﹣m)+(3﹣2.5)m≥3000,解得m≥3000,∵m为整数,∴m的最小值为3000.答:最少购进种品牌的口罩3000个.24.解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m ﹣6,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣6)n,∴m=9.∵OC:CD=5:3,∴n:(m﹣6)=5:3,∴n=5,∴k=mn=×9×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO =S四边形OABC,∴OA•y P=OA•OC,∴y P=OC=4.①当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(9,0),点B的坐标为(9,5),∵y P=4,y A+y B=5,∴y P≠,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(9﹣t)2+(4﹣0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,4).又∵P1Q1=AB=5,∴点Q1的坐标为(6,9);(ii)当BP=AB时,(9﹣t)2+(5﹣4)2=52,解得:t3=9﹣2,t4=9+2(舍去),∴点P2的坐标为(9﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(9﹣2,﹣1).综上所述:点Q的坐标为(6,9)或(9﹣2,﹣1).。
【华师大版八(下)数学期末模拟测试题】
ABCD二、填空题:11.函数y =13x -自变量x 的取值范围是_________。
=+-+3932a a a __________。
12、已知y 与3-x 成正比例,当4=x 时,1-=y ;那么当4-=x 时,=y 。
13.约分:22)(y x xy x ++= .若0414=----xx x m 无解,则m 的值是 __________。
14、已知样本x , 99,100,101,y 的平均数为100,方差是2,则x = ,y = .15、如图,已知OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.16.观察图①至⑤中,小黑点的摆放规律,并按这样的规律继续摆放,记第n 个图中的小黑点个数为y.解答下列问题:⑴填表:(右上)⑵当n=8时,y= (3)写出y 与n 的函数关系式为:_________________________.17.如图,已知双曲线()011>=x x y ,()032>=x xy ,点P 为双曲线x y 32=上的一点,且PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA 、PB 分别交双曲线xy 11=于D 、C 两点,则△PCD 的面积为18、如图,正方形ABCD ,点P 是对角线AC 上一点,连接BP ,过P 作PQ BP ⊥,PQ 交CD 与Q ,若22AP =,CQ =5,则正方形ABCD 的面积为________三、解答题:19. 计算:9)21(364)2012(130----+--||π 20、解方程: xxx --=+-2132121、如图,在ABC ∆中,E 是AC 上一点,且,//AE BC AD BC =,AED CBE ∠=∠。
求证:AD EC =。
n 1 2 3 4 5 … y 1 3 7 13 …AB OP C Dxy11y x=y 2=x3 第17题图26.地铁开通后,为响应市政府家住沙区的小王上班由自驾车上班改为乘坐地铁.他用乘地铁的方式平均每小时行驶的路程比他用自驾车的方式平均每千米,他从家出发到达上班地点,乘地铁所用时间是自驾车方式所用.小王用自驾车方式上班平均每小时行驶多少千米?的图象=252)501041(350=+-⨯(人) 答:估计有252人体能达标. : (1)将B (-2,-4)代入y =x8图象上,∴a =2 即点A 坐标为(2)设直线与x 轴相交于点C ,则21⨯=+=S S S。
新华师大版八年级数学下期末考试试题及其参考答案
新华东师大版数学八年级下册期末模拟测试数学试题2本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分48分)注意事项:1.答第Ⅰ卷前,考生务必将自已的姓名、考号、考试科目用铅笔涂写在答题卡上;2.1-16小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第Ⅰ卷的机读卡和第Ⅱ卷的答题卡一并收回。
一、选择题(本大题16个小题,每小题3分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限2、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´3、下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()A.平均数B.中位数C.众数D.方差5、点P(3,2)关于x轴的对称点'P的坐标是()A.(3,-2) B.(-3,2) C.(-3,-2) D.(3,2)6、以三角形的三个顶点及三边中点为顶点的平行四边形共有:()(A )1个 (B )2个 (C )3个 (D )4个 7、如图,已知P 、Q 是ABC ∆的BC 边上的两点,且BP PQ QC AP AQ ====,则BAC ∠的大小为( )A .120B .110C .100D .908、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为( )A. 6B. 4C. 3D. 29、 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2ky x=-的图象上,若点A 的坐标为 (-2,-2),则k 的值为( )A.4 B.-4 C.8 D.—810、如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论: ①EC=2DG ;②GDH GHD ∠=∠;③CDGDHGE SS =四边形;④图中有8个等腰三角形。
【华东师大版】初二数学下期末试卷(带答案)(1)
一、选择题1.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③2.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )年龄13141516人数2341A.15,15 B.14,15 C.14,14.5 D.15,14.53.样本数据4,m,5,n,9的平均数是6,众数是9,则这组数据的中位数是( )A.3 B.4 C.5 D.94.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:捐款金额/元20305090人数2431则下列说法正确的是( ) A .10名学生是总体的一个样本 B .中位数是40 C .众数是90 D .方差是4005.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( )A .B .C .D .6.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定7.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限8.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出9.下列计算正确的是( )A .3236362⨯==B .164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .()25235410-⨯+⨯++=10.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .411.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( ) ①BDF 是等腰三角形 ②12DE BC = ③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .412.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺二、填空题13.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______.14.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________ ①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.15.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.16.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.17.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.18.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.19.化简()3750a b b >=________.20.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.三、解答题21.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数 1770 480 220 180 120 90 人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.22.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是 、众数是 和中位数是 ;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少? 24.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线. (1)15ABE ∠=︒,40BAD ∠=︒,求 BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到BC 边的距离为多少.25.先阅读,后回答问题:x ()x x 3- 解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得0 30? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩, 解得x 3≥或x 0≤,即当x 3≥或()x 0x x 3≤-时,有意义. 体会解题思想后,解答:x 为何值时,x 23x 1-+有意义? 26.已知:如图,AB =12cm ,AD =13cm ,CD =4cm ,BC =3cm ,∠C =90°.求△ABD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据折线统计图的数据,逐一分析即可. 【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确; ③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确. ∴正确的有:②③. 故答案为:C. 【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.2.D解析:D 【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15; 10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5. 故选:D . 【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.4.D解析:D 【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案. 【详解】A 、10名学生的捐款数是总体的一个样本,故本选项错误;B 、中位数是30,故本选项错误;C 、众数是30,故本选项错误;D 、平均数是:(20×2+30×4+50×3+90)÷10=40(元), 则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确, 故选D . 【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.5.C解析:C 【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决. 【详解】解:∵a ++0>,ab==10-<,∴该函数的图象经过第一、三、四象限, 故选:C . 【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.6.B解析:B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可. 【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱. 故选:B . 【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.7.D解析:D 【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可. 【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意. 故选:D . 【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.8.D解析:D 【分析】根据题意和函数图象可知每分钟的进水量和出水量,继而即可求解 【详解】 解:由题意可得,每分钟的进水量为:20÷4=5(L ),A 说法正确,不符合题意; ∴OB 的解析式为y =5x (0≤x≤4);C 说法正确,不符合题意;每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L ),B 说法正确,不符合题意; 30÷3.75=8(min ),8+12=20(min ),∴当x =20时水全部排出.D 说法错误,符合题意; 故选:D . 【点睛】本题考查一次函数的应用,解题的关键是明确题意和解读函数,找出所求问题需要的条件,利用数形结合的思想.9.D解析:D 【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断. 【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D.【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键.10.A解析:A【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【详解】解:如图连接AF、EC.∵BC=4CF,S△ABC=24,∴S△ACF= 1×24=6,4∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=6,∴S阴=6.故选:A.【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.11.C解析:C【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.【详解】解:①∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,又∵△ADE≌△FDE,∴∠ADE=∠EDF,AD=FD,AE=CE,∴∠B=∠BFD,∴△BDF是等腰三角形,故①正确;同理可证,△CEF是等腰三角形,∴BD=FD=AD,CE=FE=AE,∴DE是△ABC的中位线,∴DE=1BC,故②正确;2∵∠B=∠BFD,∠C=∠CFE,又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,∴∠BDF+∠FEC=2∠A,故④正确.而无法证明四边形ADFE是菱形,故③错误.所以一定正确的结论个数有3个,故选:C.【点睛】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.12.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.二、填空题13.【分析】根据平均数求出a再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案.【详解】∵数据4,a ,7,8,3的平均是5,∴5547833a =⨯----=,∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225, 故答案为:225. 【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 14.①②④【解析】【分析】根据统计图中的数据可以得到一共多少人然后根据平均数中位数和众数的定义即可求得这组数据的平均数中位数和众数【详解】由统计图可知锻炼9小时的有6人锻炼10小时的有9人锻炼11小时的 解析:①②④【解析】【分析】根据统计图中的数据可以得到一共多少人,然后根据平均数、中位数和众数的定义即可求得这组数据的平均数、中位数和众数.【详解】由统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,故该班学生共有6+9+10+8+7=40人,因此①错误;从统计图可以看出,该班一周锻炼时间为11小时的学生最多,因此②错误; 该班学生一周锻炼时间的中位数是11小时,故③正确; 该班学生一周锻炼的平均时间为69+910+1110+128+137=11.02540⨯⨯⨯⨯⨯小时,故④错误.故错误的有①②④【点睛】题考查折线统计图、平均数、中位数和众数的定义,解答本题的关键是明确中位数的定义,利用数形结合的思想解答. 15.(00)或(0)【分析】由OA 的长度确定A 点坐标代入解析式求得b 的值然后求得B 点坐标分情况讨论结合勾股定理列方程求解【详解】解:∵OA =2∴A 点坐标为(-20)将(-20)代入y =x +b 中×(-2)解析:(0,0)或(12,0) 【分析】 由OA 的长度确定A 点坐标,代入解析式求得b 的值,然后求得B 点坐标,分情况讨论结合勾股定理列方程求解.【详解】解:∵OA =2,∴A 点坐标为(-2,0)将(-2,0)代入y =12x +b 中,12×(-2)+b=0,解得:b=1 ∴B 点坐标为(0,1),OB=1设C 点坐标为(x ,0)当∠ACB=90°时,点C 的坐标为(0,0)当∠ABC=90°时,22(2)AC x =+,2225AB AO BO =+=,2221BC x =+∴22(2)51x =+x ++,解得:12x =∴点C 的坐标为(12,0) 综上,△ABC 是直角三角形,满足这样条件的点C 的坐标是(0,0)或(12,0).【点睛】本题考查一次函数的应用及勾股定理,掌握相关性质定理,运用数形结合和分类讨论思想解题是关键.16.【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时此时两车间距离减少求得乙车的速度为由经过时两车相遇求得甲车的速度再求得甲车到达B 地时所用时间即可求解【详解】甲车开车半小时后 解析:80【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时1h ,此时两车间距离减少80km ,求得乙车的速度为80/km h ,由经过3h 时,两车相遇,求得甲车的速度,再求得甲车到达B 地时,所用时间,即可求解.【详解】甲车开车半小时后返回再到达出发点A 地共用时1h ,而此时两车间距离减少48040080-=(km ),则乙车的速度为80/km h ,3h 时,两车距离为0,即两车相遇,()31803480v -+⨯=甲,解得:120v =甲(/km h ),∴甲车到达B 地时,共用时48015120t =+=(h ), 此时,乙车行驶了580400⨯=(km ),则乙车离A 地的路程为48040080-=(km ),故答案为:80.【点睛】本题考查了函数图象的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x 和y 表示的数量关系.17.【分析】先判定△ADF ≌△ECF 即可得到AF=EF 依据平行线的性质以及角平分线的定义即可得出AF ⊥DM ;再根据等腰三角形的性质即可得到DN=MN=3最后依据勾股定理即可得到AN 与NE 的长进而得出DE解析:【分析】先判定△ADF ≌△ECF ,即可得到AF=EF ,依据平行线的性质以及角平分线的定义,即可得出AF ⊥DM ;再根据等腰三角形的性质,即可得到DN=MN=3,最后依据勾股定理即可得到AN 与NE 的长,进而得出DE 的长.【详解】解:∵点F 为边DC 的中点,∴DF=CF=12CD=12AB=5, ∵AD ∥BC ,∴∠ADF=∠ECF ,∵∠AFD=∠EFC ,∴△ADF ≌△ECF (ASA ),∴AF=EF ,∵CD ∥AB ,∴∠ADC+∠DAB=180°,又∵AF 平分∠BAD ,DM 平分∠ADC ,∴∠ADN+∠DAN=90°,∴AF ⊥DM ,∵AF 平分∠BAD ,∴∠BAF=∠DAF ,又∵DC ∥AB ,∴∠BAF=∠DFA ,∴∠DAF=∠DFA ,∴AD=DF=5,同理可得,AM=AD=5,又∵AN 平分∠BAD ,∴DN=MN=3,∴Rt △ADN 中,AN=224AD DN -=,∴AF=2AN=8,EF=8,∴NE=AE-AN=12,∴Rt △DEN 中,DE=22317DN EN +=,故答案为:317.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,判定AF ⊥DM ,利用勾股定理进行计算是解决问题的关键.18.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF 【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB=解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3,∵AM⊥CB,EF BC⊥,∴AM∥EF,∵//AE BC,∴四边形AMFE是平行四边形,∵AM⊥CB,∴四边形AMFE是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.19.【分析】根据二次根式的性质化简【详解】故答案为:【点睛】此题考查二次根式的化简掌握二次根式的性质是解题的关键解析:53ab【分析】根据二次根式的性质化简.【详解】375a b=53ab故答案为:53ab【点睛】此题考查二次根式的化简,掌握二次根式的性质是解题的关键.20.【分析】运用勾股定理可求出平面直角坐标系中AB的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC +∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键.三、解答题21.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278, 排序后位于中间位置的数为180,故中位数180,数据90出现了4次,出现次数最多,故众数为90;(2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.22.(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数, 则中位数是1111112+=(吨), 故答案为:11.6吨,11吨,11吨; (2)月平均用水量不超过12吨的户数占比为204010100%70%100++⨯=, 则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.23.(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 24.(1)55︒;(2)4.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E 作BC 边的垂线即可得:E 到BC 边的距离为EF 的长,然后过A 作BC 边的垂线AG ,再根据三角形中位线定理求解即可.【详解】解:(1)BED ∠是ABE ∆的外角, 154055BED ABE BAD ;(2)过E 作BC 边的垂线,F 为垂足,则EF 为所求的E 到BC 边的距离,过A 作BC 边的垂线AG ,AD ∴为ABC ∆的中线,5BD =,22510BC BD ∴==⨯=,ABC ∆的面积为40, ∴1402BC AG ,即110402AG ,解得8AG =,∵AD 为ABC ∆的中线, ∴11402022ABD ABC S S , 又∵BE 为ABD ∆的中线, ∴11201022EBD ABD S S , 则有:1151022BD EFEF 4EF ∴=.即E 到BC 边的距离为4.【点睛】本题考查了三角形外角的性质、三角形中位线的性质及三角形的面积公式,添加适当的辅助线是解题的关键.25.x 2≥或1x 3<-. 【分析】 根据题目信息,列出不等式组求解即可得到x 的取值范围.【详解】 解:要使该二次根式有意义,需x 23x 1-≥+0, 由乘法法则得20310x x -≥⎧⎨+>⎩或20310x x -≤⎧⎨+<⎩, 解得x 2≥或1x 3<-,即当x 2≥或1x 3<- 【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.26.230cm【分析】先利用勾股定理,求得BD=5;再利用勾股定理的逆定理,证明三角形ABD 是直角三角形,利用面积公式计算即可.【详解】4CD cm =,3BC cm =,90C ∠=︒,5BD cm ∴==,12AB cm =,13AD cm =,222BD AB AD ∴+=,90ABD ∴∠=︒, ∴211·1253022ABD S AB BD cm ∆==⨯⨯=. 【点睛】本题考查了勾股定理及其逆定理的应用,熟练掌握两个定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年初二数学下册期末复习试题(华师
大版)
八年级下期数学期末复习试题姓名
1.在代数式、、、、、中,分式有()
A、2个
B、3个
C、4个
D、5个
2.在反比例函数y=的图象上的一个点的坐标是()
A、(2,1)
B、(-2,1)
C、(2、)
D、(,2)
3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()
A、当AB=BC时,它是菱形
B、当AC⊥BD时,它是菱形
C、当∠ABC=90°时,它是矩形D、当AC=BD时,它是
正方形
4.下列每组数据中的三个数值分别为三角形的三边长,
不能构成直角三角是()
A、3、4、5
B、6、8、10
C、、2、
D、5、12、13
5.如图在正方形ABCD中,E为CD上一点,CF=CE。
则下列结论错误的是()
A.BE=DFB.BG⊥DFC.∠F+∠CEB=90°D.∠FDC+
∠ABG=90°
6.数据-3、-2、1、3.6、x、5的中位数是1,那么这组
数据的众数是()
A、2
B、1
C、3
D、-2Xkb1.
7.如图所示,在直角梯形ABCD中,AB∥DC,∠B=90°,动点P从点B出发,
沿梯形的边由B→C→D→A运动。
设点P运动的路程为x,⊿ABP的面积为y,把y
看作x的函数,函数图象如图所示,则⊿ABC的面积为()A.10B.16C.18D.32
8.如图,在等腰Rt⊿ABC中,∠C=90°,F是AB边上的中点,点D、E分别在AC、BC边运动,且保持AD=CE,
连接DE、DF、EF,在此运动变化的过程中,下列结论:
①⊿DFE是等腰直角三角形;②四边形CDFE不可为正方形;③四边形CDFE的面积保持不变;其中正确的结论是()A.①②③B.①C.①③D②③.
9.如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD
相交于点O,OE⊥BD,
交AD于点E,则△ABE的周长为()
A、4cm
B、6cm
C、8cm
D、10cm
10.将0.000702用科学记数法表示,结果为。
11.一组数据-1,0,3,5,x的极差是7,那么x的值可能有个。
它们是
12.在□ABCD中,AB,BC,CD,的三条边的长度分别是
(x-2)cm,(x+3)cm,8cm,则□ABCD的周长为cm。
13.若矩形一个内角的平分线分它的长边为两部分,长分别为2和3。
则该矩形的面积为。
14.甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10乙:7、8、9、8、8
则这两人5次射击命中的环数的平均数甲=乙=方差S2甲=S2乙=
15.若菱形一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm2,则菱形的周长为cm。
16.如图,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD
=2,
BC=6,将纸片折叠,使点B与点D重合,折痕为AE,则CE=_______.
17.已知直线交轴于点A,交轴于点B,交双曲线于点D,DC⊥轴,垂足为C,且,则=_______________.
18.函数中,自变量x的取值范围是。
分式的值为0,则
19.当m=时,函数是反比例函数,并且在同一象限内,y
随x增大而增大。
20.如下图,已知函数y=ax+b和y=kx的图象交于点D,则方程组解是。
21.如下图,有一块边长为4的正方形木板ABCD,将一块足够大的直角三角板落在A点,两直角边分别与CD交于F,与CB的延长线交于E,则四边形AECF的面积是。
22.如下图,正方形ABCD中,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为。
20题21题22题
23.(1)解方程:+=1(2)化简求值,其中x=
24.一项工程要在限期内完成,若甲队单独做,恰好在规定日期完成,若乙队单独做,超过规定日期4天完成,
如果两组合做3天后,剩下的工程由乙队单独做,正好
在规定日期内完成,问规定日期是多少天?
25.如图,∠ABC=90°,AB=BC,AE是角平分线,
CD⊥AE于D,求证:CD=AE。
26.如图A、B、C三点在同一条直线上,AB=2BC,分别以AB、BC为边作正方形ABEF和正方形BCMN。
连接FN、EC,求证:FN=EC。
27.如图所示,在梯形ABCD中,AB∥CD,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E。
(1)求证:梯形ABCD是等腰梯形。
(2)若∠BDC=30°,AD=5,求CD的长。
28.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩相同(单位:环),小宇根据他们的成绩绘制了尚不完整的统计图表,并计
算了甲成绩的平均数和方差(见小宇的作业).
甲、乙两人射箭成绩统计表
第1次第2次第3次第4次第5次
甲成绩94746
乙成绩757a7
(1)a==(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,将
被选中.
29.如图所示,已知点D在△ABC的边BC上,DE∥AC,交AB于点E,DF∥AB,交AC于点F。
(1)求证:AE=DF
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由。
30.如图,在平面直角坐标系xOy中,直线y=2x+n与x 轴、y轴分别交于点A、B,与双曲线
在第一象限内交于点C(1,m).
(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线交于点P、Q,求△APQ的面积.31.如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC
的方向以每秒2个单位长的速度运动,动点Q同时从点A 出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S 与t之间的函数关系式;(2)t为何值时,△DPQ的面积是60.(3)当t为何值时,四边形PCDQ是平行四边形?(4)当t为何值时,PD=PQ.。