【精华篇】初中数学九年级培优教程整理(全)

合集下载

九年级-数学培优教学教案整理篇(全~)

九年级-数学培优教学教案整理篇(全~)
演练巩固·反馈提高
01.若 m 40 4 ,则估计 m 的值所在的范围是(
A.1<m<2 B.2<m<3
C.3<m<4
) D.4<m<5
02.(绵阳)已知 12 n 是正整数,则实数 n 的最大值为( )
A.12
B.11
C.8
D.3
03.(黄石)下列根式中,不.是.最简二次根式的是( )
A. 7
=2003 的正整数对(x,y)的个数是( )
A.1
B.2
C.3
D.4
【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.
解:可化为 xy( x y) 2003( x y) 2003( xy 2003) 0 ,
A.x>3
B.x≥3
C.x>4 D.x≥3 且 x≠4
5.(怀化) a 2 b 3 (c 4)2 0 ,则 a-b-c=________.
【例3】下列二次根式中,与 24 是同类二次根式的是( )
A. 18
B. 30
C. 48
D. 54
【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一
D.1
【解法指导】对条件等式作类似于因式分解的变形,找出 a、b 的关系,再代入求值.
解:∵ (x x2 2008)( y y2 2008) 2008,
|
∴ (x x2 2008)
2008
y y2 2008 ,
y y2 2008
( y y2 2008)
2008
x x2 2008 ,由以上两式可得 x=y.
2 1
3 2
4 3
中找出规律,并利用这一规律计算:

九年级数学培优教程整理篇(全)之欧阳引擎创编

九年级数学培优教程整理篇(全)之欧阳引擎创编

第1讲二次根式的性质和运算欧阳引擎(2021.01.01)考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程480x-=,当y>0时,m 的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2+=,则xy的值(0y是__________.32=+,则x-y的值为()x y()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2--=,则a-b-c=________.2(4)0a c【例3】下列二次根式中,与是同类二次根式的是()DAA.=;B.不能化简;C.=;D==.故本题应选D.【变式题组】6.如果最简二次根式是同类二次根式,则a =________.7.在下列各组根式中,是同类二次根式的是( )A.和 B.和.D.和8.已知最简二次根式ba =_______,b =______.【例4】下列计算正确的是( )A=4=C= D.(11+-=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;④0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D.2(111=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( )A.= B=C3= D 3=-10.计算:200720074)(4⋅-=_____________11.22-=_____________12.(济宁)已知a )A .aB .-aC .-1D .013.已知a >b >0,a +b =的值为( )A .2 B .2C D .12【例5】已知xy >0,化简二次根式的正确结果为( )A .C .D . 【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --+_______.15.观察下列分母有理化的计算:=,=,=,算果中找出规律,并利用这一规律计算:1)2006+⋅=_________.16.已知,则0<x <1,则=_________. 【例6】(辽宁)⑴先化简吗,再求值:11()b a b b a a b ++++,其中12a =,12b =.⑵已知x =,y =值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-. 【变式题组】 17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =--2b =.18.(黄石)已知a 是4-的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=,求的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502.(绵阳)已知n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2, c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A ...092x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a = 13.(广州)先化简,再求值:((6)a a a a +--,其中12a =.培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足+是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设a =,则5432322a a a a a a a+---+=-________. 04.(全国竞赛)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =,2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D 08.(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛) )A .5-.1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23 D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式. 经典·考题·赏板【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x +表示或化简变形. 解:两边平方得,124x x ++=,12x x += ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式11【变式题组】1.若14aa +=(0<a <1=________2.= )A .1a a -B .1a a -C .1a a+D .不能确定【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=,∴0=∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0,且=,求的值.1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x=移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++, 222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a ++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =,1n =-,且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数(0)y x x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则,CF,所以,点A 、C 的坐标为(aa )、(2a +bb),所以2(2)a b =+=a b ⎧=⎪⎨=⎪⎩因此,点D 的坐标为(,0) 【变式题组】6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简: ()()()13131313131313131322-=+-+=+-=+-=+; (四) (1)请你用不同的方法化简352+; ①参照(三)试得:352+=_____________________________;(要有简化过程) ②参照(四)试得:352+=_____________________________;(要有简化过程) (22n +++【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,有一个三角形的三边长分别为,.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF =b ,连结EF 、FB 、EB ,则BF=EF=,BE =,从而知△BEF 就是题设的三角形,而S △BEF =S 长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad )【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U =演练巩固·反馈提高01.已知x =,y =,那么代数式值为__________02.设1a =,则32312612a a a +--=( )A .24B .25C .10D .1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n 满足430m n +-==__________ 06.(河南竞赛)若1x =,则32(2(15x x x -++-的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =b =,c =a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x =培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________025==__________03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(全国联赛)7x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y +=__________06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当12x +=时,代数式32003(420052001)x x --的值是( ) A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=成立,则29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2 (34947++ (4)10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b ---b 的形式.11.已知21(0)a x aa +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足等式0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

初三数学培优教材(培训学校专用)

初三数学培优教材(培训学校专用)

2016年初二升初三暑期培优教材(数学)第一讲 一元二次方程【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。

2、了解一元二次方程的解或近似解。

3、增进对方程解的认识,发展估算意识和能力。

【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 、为常数,0a ≠)的形式,这样的方程叫做一元二次方程。

(1)定义解释:①一元二次方程是一个整式方程;②只含有一个未知数;③并且未知数的最高次数是2。

这三个条件必须同时满足,缺一不可。

(2)02=++c bx ax (a 、b 、c 、为常数,0a ≠)叫一元二次方程的一般形式,也叫标准形式。

(3)在02=++c bx ax (0a ≠)中,a ,b ,c 通常表示已知数。

2、一元二次方程的解:当某一x 的取值使得这个方程中的c bx ax ++2的值为0,x 的值即是一元二次方程02=++c bx ax 的解。

3、一元二次方程解的估算:当某一x 的取值使得这个方程中的c bx ax ++2的值无限接近0时,x的值即可看做一元二次方程02=++c bx ax 的解。

【经典例题】例1、下列方程中,是一元二次方程的是 ①042=-y y ; ②0322=--x x ; ③312=x ; ④bx ax =2;⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ;⑨22=-x x ;⑩)0(2≠=a bx ax 例2、(1)关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.(2)如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a__________.(3)关于x 的方程135)32(12=+-++x x m m m 是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二次项系数,一次项系数及常数项。

初中数学培优教程

初中数学培优教程

初中数学培优教程初中数学培优教程前言•介绍初中数学培优的重要性和意义第一部分:数学基础知识1. 数的概念和计数•什么是数•自然数、整数、有理数、无理数的概念•基本计数方法和技巧2. 分数与小数•分数的定义和运算•小数的定义和运算•分数与小数的互相转换3. 平方根和立方根•平方根和立方根的概念•求平方根和立方根的方法4. 百分数和比例•百分数的概念和运算•比例的概念和求解方法•百分数与比例的应用第二部分:代数与方程1. 代数表达式与多项式•代数表达式的定义和运算•多项式的定义和运算•多项式的因式分解和乘法公式2. 一元一次方程•一元一次方程的定义和解法•方程的实际应用案例3. 一元一次不等式•一元一次不等式的定义和解法•不等式的实际应用案例4. 平面直角坐标系与图形•平面直角坐标系的概念与性质•图形的概念和基本特征•根据坐标确定图形方程第三部分:几何与测量1. 图形的基本性质与分类•三角形、四边形、多边形的基本性质与分类•同位角、对位角的定义和性质2. 平行线与相交线•平行线和相交线的概念与判定•平行线与相交线的性质和关系3. 圆的基本性质•圆的定义和性质•利用圆的性质解决几何问题4. 空间几何与立体图形•空间几何的基本概念和性质•立体图形的种类和特征•空间几何与立体图形的关系第四部分:统计与概率1. 统计数据的整理与分析•数据的收集、整理和表示方法•统计指标的计算与解读2. 概率的概念与计算•概率的基本定义和性质•概率计算的常用方法和技巧3. 事件与样本空间•事件的定义和性质•样本空间的概念和意义4. 排列与组合•排列和组合的定义和计算方法•排列和组合在实际问题中的应用第五部分:解题方法与应用1. 解题思路与策略•解题思维的培养方法和技巧•解题策略的掌握与应用2. 实际问题的数学建模•实际问题中数学模型的建立方法•利用数学模型解决实际问题的步骤3. 常见题型的解法与技巧•常见题型的解题思路和解法•解题中需要注意的技巧和要点结语•总结初中数学培优教程的重点知识和学习方法•鼓励学生继续深入学习和探索数学的魅力。

九年级数学培优教程整理篇(全)之欧阳数创编

九年级数学培优教程整理篇(全)之欧阳数创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()根式是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程x-=,当y>0480时,m的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m =0.化为y=2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2y-=,则xy(0的值是__________.3.(荆门)若2=+,则x-y的值为x y()()A.- 1 B.1C.2 D.3有意义的x的取值范围是4.(鄂州)使代数式4x-()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2--=,则a-b-c=a c2(4)0________.是同类二次根式的是( )AD【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A.=; B.不能化简;C.=;D==.故本题应选D.【变式题组】6.如果最简二次根式与是同类二次根式,则a =________.7.在下列各组根式中,是同类二次根式的是( ) A.和8.已知最简二次根式b和是同类二次根式,则a =_______,b =______.【例4】下列计算正确的是( ) A-=4= C= D.(11+-=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;④0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D.2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( ) A .= B =C3= D 3=-10.计算:200720074)(4⋅=_____________11.22-=_____________12.(济宁)已知a ) A .a B .-a C .-1 D .013.已知a >b >0,a +b =6,则的值为( )A .2B .2CD .12【例5】已知xy >0,化简二次根式的正确结果为( )AC .D .【解法指导】先要判断出y <0,再根据xy >0知x <0.故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --+_______.15.观察下列分母有理化的计算:=,=,=,算果中找出规律,并利用这一规律计算:1)2006+++⋅=_________.16.已知,则0<x <1,则=_________.【例6】(辽宁)⑴先化简吗,再求值:11()b a b b a a b ++++,其中a =b =⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a bab a b ab a b ab+++++==++,当a =b =ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-.【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =--2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=,求的值.演练巩固·反馈提高 01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <5 02n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2,c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c<a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A..09.(徐州)如果式子2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0 10.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x+6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设a =,则5432322a a a a a a a+---+=-________. 04.(全国竞赛)设x =,a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =-,a =,2a =-,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D .-08.(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛) )A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9-a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式. 经典·考题·赏板【例1】(河北竞赛)已知2=,那么__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形.解:两边平方得,124x x ++=,12x x += ,两边同乘以x得,212x x+= ,∵2315x x x++=,29111x x x++=,∴原式【变式题组】1.若14aa +=(0<a <1=________2.=)A .1a a-B .1a a-C .1a a+D .不能确定【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=,∴0=∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B . 【变式题组】3.若a >0,b >0,且=,求的值.【例3】(四川)已知:1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x=方,移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a=++,∴12x a a-=+,2221442x x a a -+=++, 222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a++-+-=++--【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =,1n =,且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数0)y x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则a ,CF,所以,点A 、C 的坐标为(a)、(2a +b,b ),所以2(2)a b =+=,a b ⎧=⎪⎨=⎪⎩ 因此,点D 的坐标为(,0)【变式题组】6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一)36333232=⨯⨯=;(二)()()()131313132132-=-+-⨯=+; (三)以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程) ②参照(四)试得:352+=_____________________________;(要有简化过程) (22n +++【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,有一个三角形的三边长分别为.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F,使DF =b ,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF就是题设的三角形,而S △BEF =S长方形ABCD+S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad )【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U演练巩固·反馈提高01.已知x =,y =,那么代数式__________02.设1a =,则32312612a a a +--=( )A .24B .25C .10D .1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________05.(北京竞赛)正数m 、n 满足430m n +-==__________06.(河南竞赛)若1x =,则32(2(15x x x -++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =,则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x =,化简 培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________025==__________03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________047x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y xx y+=__________06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当x =时,代数式32003(420052001)x x --的值是( )A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(34947++(4)10.已知实数a 、b 满足条件1ba ba-=<,化简代数式11()(1)a b a b---,将结果表示成不含b 的形式.11.已知21(0)a x a a +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足等式0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

九年级数学培优教程整理篇(全)之欧阳理创编

九年级数学培优教程整理篇(全)之欧阳理创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()次根式是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程480x-=,当y>0时,m的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y -m=0.化为y=2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2y=,则(0xy的值是__________.3.(荆门)若2-=+,则x-y的值为x y()()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2--=,则a-b-c=2(4)0a c________.【例3】下列二次根式中,与是同类二次根式的是()AD一样. A.=;B.不能化简;C.=;D==.故本题应选D.【变式题组】是同类二次根6.如果最简二次根式式,则a=________.7.在下列各组根式中,是同类二次根式的是()和B.和C.和A.8.已知最简二次根式b是同类二次根式,则a=_______,b=______.【例4】下列计算正确的是()A==4C= D.(11-=【解法指导】正确运用二次根式的性质①2(0)a a=≥;②(0)0(0)(0)a aa aa a⎧⎪===⎨⎪-⎩><;③0,0)a b=≥≥;④0,0)b a=≥>进行化简计算,并能运用乘法公式进行计算.A、B中的项不能合并.D.2(111+-=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是()A.= B=C3= D3=-10.计算:200720074)(4⋅-=_____________ 11.22-=_____________ 12.(济宁)已知a)A.a B.-a C.-1 D.013.已知a>b>0,a+b=6的值为()A.2B.2CD.12【例5】已知xy>0,化简二次根式的正确结果为()AC.D.【解法指导】先要判断出y <0,再根据xy >0知x<0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --的结果是_______.15=,=,=,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x <1,则=_________.【例6】(辽宁)⑴先化简吗,再求值:11()b a b b a a b ++++,其中12a =,12b =.⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a bab a b ab a b ab+++++==++,当12a =,12b =时,ab =1,a +b ⑵由题意得:xy =1,x +y =10, 原式=10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a+b)-3a 2,其中2a =-2b =.18.(黄石)已知a 是4-的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=,的值.演练巩固·反馈提高 01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502.(绵阳)已知n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )A.05.下列二次根式中,是最简二次根式的是( )A.06.(常德)设a =20, b =(-3)2, c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A..09.(徐州)如果式子2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0 10.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设12a =,则5432322a a a a a a a+---+=-________. 04.(全国竞赛)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =,2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D 08.(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛) ) A .5-.1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23D .3411.已知152a b c +-=-,求a +b+c 的值.12.已知9+9a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式. 经典·考题·赏板【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x += ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式【变式题组】1.若14aa +=(0<a <1=________2.= )A .1a a -B .1a a -C .1a a+D .不能确定 【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=, ∴0=∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0=,的值. 【例3】(四川)已知:1)a=<<,求代数式22632x x x x x x +-+÷--. 【解法指导】视x -2,x 2-4x=平方,移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++,222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a ++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =,1n =,且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数0)y x x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a,BF=b ,则a ,CF,所以,点A 、C 的坐标为(aa )、(2a +b,b ),所以2(2)a b =+=,解a b ⎧=⎪⎨=⎪⎩ 因此,点D的坐标为(,0)【变式题组】 6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简: ()()()13131313131313131322-=+-+=+-=+-=+; (四) (1)请你用不同的方法化简352+; ①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2)化简:2n +++ 【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,有一个三角形的三边长分别为,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF =b ,连结EF 、FB 、EB ,则BF=,EF=,BE ,从而知△BEF 就是题设的三角形,而S △BEF =S长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad )【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U演练巩固·反馈提高01.已知x =,y =,那么代数式值为__________02.设1a =,则32312612a a a +--=( )A .24B .25C.10D .1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n 满足430m n +-=,则=__________ 06.(河南竞赛)若1x =,则32(2(15x x x -+++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =,则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x =培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________025==__________ 03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(全国联赛)7x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y +=__________06.(武汉选拔赛)如果a b +=,a b -,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当x =时,代数式32003(420052001)x x --的值是( )A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=成立,则29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2 (34947++ (4)10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b ---b 的形式.11.已知21(0)a x aa +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足等0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

九年级数学培优满分讲义内容(23专题23个word文档150多页)

九年级数学培优满分讲义内容(23专题23个word文档150多页)
12直角三角形中的比例线… 13圆的对称性 14与圆有关的角
15直线与圆的位置关系一 16直线与圆的位置关系二 17与圆相关的比例线段
18圆与圆的位置关系 19平面几何的定值问题 20平面几何的最值问题
21分而治之 22数形结合 23顺思逆想
内容截图:
15直线与圆的位置关系一16直线与圆的位置关系二17与圆相关的比例线段
九年级数学培优满分讲义内容(23专题23个word文档150多页)
1、转化与化归一般
5、最优化 6、是偶然还是必然 7、三角函数 8、旋转变换
9、平行线分线段成比例 10、从全等到相似 11、相似三角形的性质

九年级数学培优教程整理篇(全)之欧阳体创编

九年级数学培优教程整理篇(全)之欧阳体创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程x-=,当y>0时,m480的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2y=,则xy的值(0是__________.32=+,则x-y的值为()x y()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2a c--=,则a-b-c=________.2(4)0是同类二次根式的是【例3】下列二次根式中,与()ADA= B=;D==.故本题应选D.【变式题组】6是同类二次根式,则a =________.7.在下列各组根式中,是同类二次根式的是( ) A.和 B.和C.D.和8.已知最简二次根式b是同类二次根式,则a =_______,b =______.【例4】下列计算正确的是( ) A=4= C= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;④0,0)b a =≥>进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D.2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( ) A.= B=C3= D .3=-10.计算:200720074)(4⋅=_____________11.22-=_____________12.(济宁)已知a ) A .a B .-a C .-1 D .013.已知a >b >0,a +b =的值为( )A .2B .2C .12【例5】已知xy >0,化简二次根式的正确结果为( )AC .D .【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.观察下列分母有理化的计算:=,=,=,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x <1,则=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a bab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-.【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =-2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =, ∴(x =y =(y =x =,由以上两式可得x=y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=,求的值.演练巩固·反馈提高 01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <5 02.(绵阳)已知是正整数,则实数n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2,c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D .53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A..09.(徐州)如果式子2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0 10.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设12a =,则5432322a a a a a a a+---+=-________. 04.(全国竞赛)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D .-08.(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛) ) A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式. 经典·考题·赏板【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形.解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x+= ,∵2315x x x++=,29111x x x++=,∴原式-511- 【变式题组】1.若14aa +=(0<a <1=________2.=)A .1a a -B .1a a -C .1a a+D .不能确定 【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=, ∴0= ∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0,且=,求的值.1)a=<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x=移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++,222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a ++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =+,1n =-,且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C.-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数0)y x =>的图像上,点B 、D 都在x 轴上,且使得△OAB、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则a ,CF,所以,点A 、C的坐标为(aa )、(2a +b),所以2(2)a b =+=a b ⎧=⎪⎨=⎪⎩因此,点D 的坐标为() 【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四) (1)请你用不同的方法化简352+; ①参照(三)试得:352+=_____________________________;(要有简化过程) ②参照(四)试得:352+=_____________________________;(要有简化过程) (22n ++ 【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,有一个三角形的三边长分别为,.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F,使DF=b ,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF 就是题设的三角形,而S △BEF =S长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad ) 【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a+b =2,求U =演练巩固·反馈提高01.已知x =,y =值为__________02.设1a =-,则32312612a a a +--=( )A .24B .25C.10D .12 03.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n满足430mn +-==__________ 06.(河南竞赛)若1x =,则32(2(15x x x -+++-的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =,则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x = 培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________025==__________03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(全国联赛)7x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y+=__________06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当12x +=时,代数式32003(420052001)x x --的值是( ) A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(34947+ (4)10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b ---b 的形式.11.已知21(0)a x aa +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足等式0=,求x +y +z 的值.第3讲一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

九年级数学培优教程整理篇(全)之欧阳治创编

九年级数学培优教程整理篇(全)之欧阳治创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()简二次根式是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程x-=,当y480>0时,m的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y=2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y满足2y=,则xy的值是__________.(03.(荆门)若2()=+,则x-y的x y值为()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2--=,则a-b-c=a c2(4)0________.是同类二次【例3】下列二次根式中,与根式的是()A【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A=;B.C.=;D.=,而=.故本题应选D.【变式题组】与是同类二6.如果最简二次根式次根式,则a=________.7.在下列各组根式中,是同类二次根式的是()和B.和C.和A.8.已知最简二次根式b次根式,则a =_______,b =______.【例4】下列计算正确的是( )A-=4= C= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;④0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D.2(111-=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( )A.= B=C3= D.3=- 10.计算:200720074)(4⋅-=_____________11.22-=_____________12.(济宁)已知a)A .aB .-aC .-1D .013.已知a >b >0,a +b =6的值为( )A .2 B .2C D .12【例5】已知xy >0,化简二次根式的正确结果为( )AC .D . 【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --+_______.15.观察下列分母有理化的计算:=,=,=,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x <1,则=_________. 【例6】(辽宁)⑴先化简吗,再求值:11()b a b b a a b ++++,其中12a =,12b =.⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值. 【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当a =,b =时,ab =1,a +b =,原式=⑵由题意得:xy =1,x +y =10, 原式=10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =-2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =, ∴(x =y =(y =x =,由以上两式可得x =y . ∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2,c =, 11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d07.(十堰)下列运算正确的是()A==C.2=-D.531)31=-08.如果把式子(1a-根号外的因式移入根号内,化简的结果为()..Ax-化简的结果2为2x-3,则x的取值范围是()A.x≤1B.x≥2C.1≤x≤2D.x>0 10.(怀化)函数y=中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a,b,定义一种运算a※b==.那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设12a =,则5432322a a a a a a a +---+=-________. 04.(全国竞赛)设x =,a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =,2a =-,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D .-08.(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛)等于( )A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( ) A .13B .12C .23 D .34 11.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏板 【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x +表示或化简变形. 解:两边平方得,124x x ++=,12x x += ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式-【变式题组】1.若14aa +=(0<a <1=________2.= )A .1a a -B .1a a -C .1a a+D .不能确定 【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=, ∴0= ∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0,且=的值. 【例3】(四川)已知:1)a=<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x 为整体,把=a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a-+=++, 222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =+1n =22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数0)y x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则AE=a ,CF=b ,所以,点A 、C 的坐标为(a)、(2a +b,b ),所以2(2)a b =+=,解得a b ⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0)【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=;(二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()131********313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程) (2)化简:2n +++【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a<b ,c <d ,bc >ad ,有一个三角形的三边长分,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F,使DF =b ,连结EF 、FB 、EB ,则BF=,EF=,BE =,从而知△BEF 就是题设的三角形,而S △BEF =S长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad ) 【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U演练巩固·反馈提高01.已知x =,y =,那么代数式__________02.设1a =,则32312612a a a +--=( )A .24B .25C .10D .12 03.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n 满足430m n +-=,则=__________ 06.(河南竞赛)若1x =+,则32(2(15x x x -++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b 09.已知1x =,化简培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________ 02.已知5=,则=__________03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(全国联赛)7x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y+=__________ 06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当12x =时,代数式32003(420052001)x x --的值是( )A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(3)4947+++ (4)10.已知实数a 、b 满足条件1b a b a-=<,化简代数式11()(1)a b a b ---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

初中数学九年级培优教程整理

初中数学九年级培优教程整理

第一章:有理数的运算本章主要介绍有理数的概念和运算。

包括正数、负数、零、绝对值等基本概念的引入,有理数加减乘除的四则运算规则等内容。

通过本章学习,学生能够掌握有理数的基本性质和运算规则,为后续章节的学习打下坚实的基础。

第二章:代数式及其运算本章主要介绍代数式及其运算。

包括代数式的定义,同类项的合并与分解,多项式的加减乘除等内容。

通过本章学习,学生能够掌握代数式的基本概念和运算规则,能够进行代数式的加减乘除运算,并能够应用代数式解决实际问题。

第三章:方程与不等式本章主要介绍方程与不等式。

包括一元一次方程与一元一次不等式的解法,二元一次方程组的解法,二次方程与一元二次不等式的解法等内容。

通过本章学习,学生能够掌握解一元一次方程、不等式和二元一次方程组的方法,能够应用这些知识解决实际问题。

第四章:函数本章主要介绍函数的概念与性质。

包括函数的定义,函数的图像与性质,函数的表示和函数的运算等内容。

通过本章学习,学生能够掌握函数的基本概念和性质,能够进行函数的图像描绘和函数的运算,能够应用函数解决实际问题。

第五章:图形的初步认识本章主要介绍平面图形的初步认识。

包括点、线、面的性质和分类,三角形、四边形、多边形等常见图形的性质和分类等内容。

通过本章学习,学生能够掌握平面图形的基本概念和性质,能够进行平面图形的分类和判断,能够应用图形的知识解决实际问题。

第六章:相似与全等本章主要介绍相似与全等的概念与性质。

包括相似三角形的判定与性质,全等三角形的判定与性质等内容。

通过本章学习,学生能够掌握相似和全等的基本概念和性质,能够应用这些知识解决实际问题。

第七章:三角形的性质本章主要介绍三角形的性质与判定。

包括三角形内角和的性质,三角形外角和的性质,三角形边长关系等内容。

通过本章学习,学生能够掌握三角形的基本性质和判定方法,能够应用这些知识解决实际问题。

第八章:数列本章主要介绍数列的概念和性质。

包括等差数列和等比数列的定义与性质,数列的通项公式和部分和的计算等内容。

九年级数学培优知识点总结

九年级数学培优知识点总结

九年级数学培优知识点总结在九年级数学学习过程中,我们接触到了许多重要的知识点,这些知识点对我们今后的学习和生活都有着重要的帮助。

下面,我将对九年级数学培优的知识点进行总结。

一、整式与分式整式是由常数项和各种代数项相加、相减而得到的代数和,如3x²+5xy-2y³。

分式是整式的比,由分子和分母组成,如(2x+3y)/(4x-5y)。

二、方程与不等式方程是用字母表示的等式,解方程就是求出使方程成立的未知数的值。

不等式是用不等号连接的式子,解不等式就是求出使不等式成立的未知数的值。

三、图形的表示与性质我们学习了各种图形的表示方法,如平面直角坐标系、数轴等。

并了解了平面图形的性质,如线段的长度、角的度量等。

四、函数与图像函数是一种特殊关系,它以一组确定的规则将自变量和因变量相对应。

我们学习了函数的表示方法、性质以及函数图像的绘制方法。

五、平面与立体几何我们学习了平面几何中的各种基本概念和性质,如相交线、平行线、三角形的分类等;同时也学习了立体几何中的一些基本概念和性质,如平行四边形、正方体等。

六、数据统计与概率我们学习了如何对一组数据进行整理、分析和呈现,如频数表、频率表、直方图等;同时也学习了概率的基本概念和计算方法。

七、三角函数与相似我们学习了三角函数的定义、性质及其应用,如正弦、余弦、正切函数等;同时也学习了相似的概念和判定方法。

八、平面向量与坐标变换我们学习了平面向量的定义、运算及其性质,如向量的加法、减法、数量积、向量积等;同时也学习了坐标变换的方法和应用。

九、数列与数列的应用我们学习了数列的概念和常见的数列类型,如等差数列、等比数列等;同时也学习了数列的求和公式和应用。

以上便是九年级数学培优的知识点总结。

通过对这些知识点的深入学习和理解,我们能够更好地应对数学学习中的各种问题和挑战。

希望大家能够将这些知识点牢固掌握,并能灵活运用到实际生活与学习中。

让我们一起努力,取得更好的数学成绩!。

(整理版)九年级数学培优教程(二)一元

(整理版)九年级数学培优教程(二)一元

1、关于x 的一元二次方程kx 2-(2k-1)x+k=0有两个不相等的实根,求k 的取值范围 。

2、关于x 的方程0122
=--x k x 有实根,求k 的取值范
围: 。

3、关于x 的方程kx 2-4x+3=0有实根,那么k 的非负整数值是 。

4、方程012
=--x x 的两根为 。

5、解方程
0322
2=-+a x a x
6、设a ,b ,c 是△AB
C 三边的长,且关于x 的方程)
0(02)()(22>=--++n ax n n x c n x c 有两个相等的实数根,求证△ABC 是直角三角形。

7、关于x 的方程〔m-2〕x 2-2(m-1)x+m+1=0,当m 为何非负整数时,
〔1〕方程只有一个实数根〔2〕方程有两个相等的实根〔3〕方程有两个不相等的实根
8、求证:k 为何实数,方程〔k 2+1〕x 2-2(k-1)x-1=0一定有两个不相等的实根。

9、m ,n 为整数,关于x 的三个方程:x 2-(7-m)x+3+n=0有两个不相等的实根;x 2+(4+m)x+n+6=0
有两个相等的实根;x 2-(m-4)x+n+1=0没有实根;求m ,n 的值。

九年级数学培优教程整理篇(全)之欧阳术创编

九年级数学培优教程整理篇(全)之欧阳术创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程x-=,当y>0时,m480的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2y=,则xy的值(0是__________.32=+,则x-y的值为()x y()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2a c--=,则a-b-c=________.2(4)0是同类二次根式的是【例3】下列二次根式中,与()AD=B=;D==.故本题应选D.【变式题组】6是同类二次根式,则a =________.7.在下列各组根式中,是同类二次根式的是( ) A.和 B.和C.D.和8.已知最简二次根式b是同类二次根式,则a =_______,b =______.【例4】下列计算正确的是( ) A=4= C= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;④0,0)b a =≥>进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D.2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( ) A.= B=C3= D.3=-10.计算:200720074)(4⋅=_____________11.22-=_____________12.(济宁)已知a ) A .a B .-a C .-1 D .013.已知a >b >0,a +b =的值为( )A .2B .2C .12【例5】已知xy >0,化简二次根式的正确结果为( )AC .D .【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.观察下列分母有理化的计算:=,=,=,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x <1,则=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a bab a b ab a b ab +++++==++,当a =,12b =时,ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-.【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =-2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =, ∴(x =y =(y =x =,由以上两式可得x=y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=,求的值.演练巩固·反馈提高 01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <5 02.(绵阳)已知是正整数,则实数n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2,c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D .53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A..09.(徐州)如果式子2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0 10.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b=那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =.培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设a =,则5432322a a a a a a a+---+=-________. 04.(全国竞赛)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D .-08.(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛) ) A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式. 经典·考题·赏板【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形.解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x+= ,∵2315x x x++=,29111x x x++=,∴原式-11- 【变式题组】1.若14aa +=(0<a <1=________2.=)A .1a a -B .1a a -C .1a a+D .不能确定【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=,∴0=∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0,且=,求的值.1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x=移项用含a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a-+=++, 222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a ++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值. 5.(五羊杯竞赛)已知1m =+,1n =-,且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C 都在函数(0)y x x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则a ,CF,所以,点A 、C 的坐标为(aa )、(2a +b),所以2(2)a b =+=a b ⎧=⎪⎨=⎪⎩因此,点D 的坐标为() 【变式题组】6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三)以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简: ()()()13131313131313131322-=+-+=+-=+-=+; (四) (1)请你用不同的方法化简352+; ①参照(三)试得:352+=_____________________________;(要有简化过程) ②参照(四)试得:352+=_____________________________;(要有简化过程) (22n ++ 【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,有一个三角形的三边长分别为,.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF=b ,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF 就是题设的三角形,而S △BEF =S 长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad ) 【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U =演练巩固·反馈提高01.已知x =,y =值为__________02.设1a =-,则32312612a a a +--=( )A .24B .25C .10D .12 03.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n 满足430m n +-==__________ 06.(河南竞赛)若1x =,则32(2(15x x x -+++-的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =,则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x = 培优升级·奥赛检测01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________025==__________03.(江苏竞赛)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(全国联赛)7x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y +=__________06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当x =时,代数式32003(420052001)x x --的值是( )A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(34947+ (4)10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b ---b 的形式.11.已知21(0)a x a a +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足等式0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

九年级数学培优教程整理篇(全)之欧阳法创编

九年级数学培优教程整理篇(全)之欧阳法创编

第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏板【例1】(荆州)下列根式中属最简二次根式的是()【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()简二次根式是()A.①,② B.③,④C.①,③D.①,④【例2】(黔东南)方程x-=,当y>4800时,m的取值范围是()A.0<m<1 B.m≥2C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y=2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y满足2y=,则xy的值是__________.(032=+,则x-y的值x y()为()A.- 1 B.1C.2 D.34.(鄂州)使代数式有意义的x的取值范4x-围是()A.x>3 B.x≥3C.x>4 D.x≥3且x≠45.(怀化)2a c--=,则a-b-c=2(4)0________.是同类二次根【例3】下列二次根式中,与式的是()AD=;B.不能化简;C.=;D.=,而=.故本题应选D.【变式题组】是同类二6.如果最简二次根式次根式,则a=________.7.在下列各组根式中,是同类二次根式的是()和B.和C.和A.8.已知最简二次根式b和是同类二次根式,则a=_______,b=______.【例4】下列计算正确的是()A=.4=C= D.(11 +=【解法指导】正确运用二次根式的性质①2(0)a a=≥;②(0)0(0)(0)a aa aa a⎧⎪===⎨⎪-⎩><;③0,0)a b=≥≥;④0,0)b a=≥>进行化简计算,并能运用乘法公式进行计算.A、B中的项不能合并.D.2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是()A.= B=C3= D3=-10.计算:200720074)(4⋅=_____________ 11.22-=_____________ 12.(济宁)已知a)A.a B.-a C.-1 D.013.已知a>b>0,a+b=6的值为( )A .2 B .2C D .12【例5】已知xy >0,化简二次根式的正确结果为( )AC .D . 【解法指导】先要判断出y <0,再根据xy >0知x <0. 故原式=选D.【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.观察下列分母有理化的计算:=,=,=-,算果中找出规律,并利用这一规律计算:1)2006+++⋅=_________.16.已知,则0<x <1,则=_________.【例6】(辽宁)⑴先化简吗,再求值:11()b a b b a a b ++++,其中a =b =⑵已知x =,y =,那么代数式值为________.【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值. 【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当a =,b =ab =1,a +b . ⑵由题意得:xy =1,x +y =10, 原式=10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =-2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________. 【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =, ∴(x =y =(y =x =,由以上两式可得x =y . ∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0,且=的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )04.(贺州)下列根式中,不是最简二次根式的是( )05.下列二次根式中,是最简二次根式的是( )06.(常德)设a =20, b =(-3)2,c =, 11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A==C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A..09.(徐州)如果式子2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-.那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级·奥赛检测01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国竞赛)设12a =,则5432322a a a a a a a +---+=-________. 04.(全国竞赛)设x =a 是x 的小数部分,b是x 的小数部,则a 3+b 3+3ab =________.05.(重庆竞赛)已知2y =,则x 2+y 2=________.06.(全国竞赛)已知1a =,a =,2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b 07.(武汉联赛)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A3B .3C 3D 08.(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B .0C .1D .209.(全国竞赛)等于( )A .5-.1C .5D .110.已知0(0,0)x y x y -=>>,则的值为( )A .13B .12C .23D .34 11.已知152a b c +-=-,求a +b +c 的值.12.已知99a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值.3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏板 【例1】(河北竞赛)已知2=,那么的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式511- 【变式题组】1.若14aa +=(0<a <1=________2.= )A .1a a -B .1a a -C .1a a+D .不能确定 【例2】(全国初中数学联赛)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.解:可化为0=,∴0= ∵0>,∴0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B .【变式题组】3.若a >0,b >0,且=的值. 【例3】(四川)已知:1)a=<<,求代数式22632x x x x x x +-+÷--. 【解法指导】视x -2,x 2-4x 为整体,把=a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a-+=++, 222142x x a a -=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+=2211()1()211()a a a a a a a a a a a ++-+-=++-- 【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯竞赛)已知1m =,1n =-22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国竞赛)如图,点A 、C都在函数0)y x x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则AE=a ,CFb ,所以,点A 、C 的坐标为(aa )、(2a +b,b ),所以2(2)a b =+=,解得a b ⎧=⎪⎨=⎪⎩因此,点D 的坐标为(,0)【变式题组】 6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=;(二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四) (1)请你用不同的方法化简352+; ①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程) (2)化简:2n +++【例5】(五羊杯竞赛)设a 、b 、c 、d 为正实数,a<b ,c <d ,bc >ad,有一个三角形的三边长分别为,,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF =b ,连结EF 、FB 、EB ,则BF=,EF=,BE =,从而知△BEF 就是题设的三角形,而S △BEF =S长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad ) 【变式题组】7.(北京竞赛)已知a 、b 均为正数,且a +b =2,求U 演练巩固·反馈提高01.已知x =,y =,那么代数式值为__________02.设1a =,则32312612a a a +--=( )A .24B .25C .10D .12 03.(天津)计算2001200019991)1)1)2001--+=__________04.(北京竞赛)若有理数x 、y 、z 满足1()2x y z =++,则2()x yz -=__________ 05.(北京竞赛)正数m 、n 满足430m n +-=,则=__________ 06.(河南竞赛)若1x =+,则32(2(15x x x -+++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =,b =,c =a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x = 培优升级·奥赛检测 01.(信利杯竞赛)已知1x =+,那么2111242x x x +-=+--__________ 02.已知5=,则=__________03.(江苏竞赛)已知(2002x y +=,则2234x xy y --6658x y --+=__________047x =,则x =__________05.(T 1杯联赛) 已知x =,y =,那么22y x x y+=__________ 06.(武汉选拔赛)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A ..2001C .1D .007.(绍兴竞赛)当12x +=时,代数式32003(420052001)x x --的值是( )A .0B .-1C .1D .20032-08.(全国联赛)设a 、b 、c 为有理数,且等式a +=成立,则29991001abc ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(34947++ (4)10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b ---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=> 12.(奥林匹克竞赛)已知自然数x 、y 、z 满足0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

【精华篇】初中数学九年级培优教程整理(全)

【精华篇】初中数学九年级培优教程整理(全)

初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98)第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)每天进步一点点!坚持就是胜利!第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】(荆州)下列根式中属最简二次根式的是()A.【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C、D含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()A.A.①,②B.③,④C.①,③D.①,④x-=,当y>0时,m的取值范围是()A.0<m<1 B.m≥2 C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x-8=0,x-y-m=0.化为y=2-m,则2-m>0,故选C.【变式题组】2.(宁波)若实数x、y2(0y-=,则xy的值是__________.3.2=+,则x-y的值为()x y()A.-1 B.1 C.2 D.3有意义的x的取值范围是()4.(鄂州)使代数式x-4A.x>3 B.x≥3 C.x>4 D.x≥3且x≠45.(怀化)2--=,则a-b-c=________.a c2(4)0是同类二次根式的是()A B C D【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A=;B不能化简;=D==故本题应选D.【变式题组】6a=________.7.在下列各组根式中,是同类二次根式的是()A B C D8.已知最简二次根式b a=_______,b=______.【例4】下列计算正确的是()A=B4=+-=【解法指导】正确运用二次根式的性质①2(0)a a=≥;②(0)0(0)(0)a aa aa a⎧⎪===⎨⎪-⎩><;③0,0)a b=≥≥0,0)b a=≥>进行化简计算,并能运用乘法公式进行计算.A、B中的项不能合并.D. 2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是()A.=B=C3=D3=-10.计算:200720074)(4⋅-=_____________11.22-=_____________12.(济宁)已知a)A.a B.-a C.-1 D.013.已知a>b>0,a+b=的值为()A.2B.2 CD.12【例5】已知xy>0,化简二次根式)ABC.D.【解法指导】先要判断出y<0,再根据xy>0知x<0.故原式=选D.【变式题组】14.已知a、b、c为△AB C三边的长,则化简a b c--+_______.15.===,算果中找出规律,并利用这一规律计算:1)++⋅=L _________.16.已知,则0<x <1=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中a =b =⑵已知x =,y =________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当a =b =ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =--2b =.18.(黄石)已知a 是4-那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =+(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0=的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502.n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )A.04.(贺州)下列根式中,不是最简二次根式的是( )A.05.下列二次根式中,是最简二次根式的是( )A.06.(常德)设a =20, b =(-3)2, c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A =B =C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .B C .D .09.2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >010.(怀化)函数y =________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a +--,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国)设a =,则5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b07.(武汉)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A 3B .3C 3D08.(全国)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( ) A .-1B .0C .1D .209.(全国) )A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>的值为( )A .13 B .12C .23 D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9-a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】2=的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x++=,12x x += ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式【变式题组】1.若14aa +=(0<a <1)=________2=) A .1a a-B .1a a-C .1a a+D .不能确定【例2】(全国)满足等式=2003的正整数对(x,y)的个数是()A.1 B.2 C.3 D.4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>0=,则xy=2003,且2003是质数,∴正整数对(x,y)的个数有2对,应选B.【变式题组】3.若a>0,b>0=的值.【例3】1)a=<<,求代数式22632x x xx x x+-+÷-.【解法指导】视x-2,x2-4x为整体,=移项用含a的代数式表示x-2,x2-4x,注意0<a<1的制约.解:平方得,12x aa=++,∴12x aa-=+,2221442x x aa-+=++,222142x x aa-=+-,∴化简原式=(3)(2)(2)3x x x xx x+--+g=2211()1()211()a aa aa aa a aa a++-+-=++--【变式题组】4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯)已知1m =1n =且22(714)(367)8m m a n n -+--=,则a 的值等于( )A .-5B .5C .-9D .9【例4】(全国)如图,点A 、C都在函数(0)y x x=>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD 都是等边三角形,则点D 的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a ,BF=b ,则,CFb ,所以,点A 、C 的坐标为(a)、(2a +bb ),所以2(2)a b =+=a b ⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0) 【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+;(四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2++L【例5】(五羊杯)设a 、b 、c 、d 为正实数,a <b ,c <d ,bc >ad ,.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a 、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长DC 至F ,使DF =b ,连结EF 、FB 、EB ,则BFEFBE ,从而知△BEF 就是题设的三角形,而S △BEF =S 长方形ABCD +S △BCF +S △ABE -S △DEF =(b -a )c +12(d -c )(b -a )-12bd =12(bc -ad )【变式题组】7.(北京)已知a 、b 均为正数,且a +b =2,求U演练巩固·反馈提高01.已知x =,y =值为__________02.设1a =-,则32312612a a a +--=( )A . 24B .25C .10D .1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x 、y 、z 1()2x y z =++,则2()x yz -=__________05.(北京)正数m 、n 满足430m n +-=,=__________06.(河南)若1x =,则32(2(15x x x -+++的值是( )A .2B .4C .6D .807.已知实数a 满足2000a a -=,那么22000a -的值是( )A .1999B .2000C .2001D .200208.设a =b =c =则a 、b 、c 之间的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b09.已知1x =培优升级01.(信利)已知1x =+2111242x x x +-=+--__________025==__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.7x =,则x =__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A .B .2001C .1D .007.(绍兴)当12x +=时,代数式32003(420052001)x x --的值是( ) A .0 B .-1C .1D .20032-08.(全国)设a 、b 、c 为有理数,且等式a +=成立,则29991001a b c ++的值是( )A .1999B .2000C .2001D .不能确定09.计算:(1(2(3+L(410.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()a b-b 的形式.11.已知21(0)a x aa +=>12.已知自然数x 、y 、z 0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程; 3.会应用一元二次方程解实际应用题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不能合并.D. (1 2)(1 2) 1 ( 2)2 1.故本题应选 C.
【变式题组】
9. (聊城)下列计算正确的是( )
A. 2 3 4 2 6 5
B. 8 4 2
C. 27 3 3
D. (3)2 3
10.计算: ( 15 4)2007 (4 15)2007 _____________
y x2 的正确结果为(

A. y
B. y
C. y
D. y
【解法指导】先要判断出 y<0,再根据 xy>0 知 x<0. 故原式 x
y x2
y .选 D.
【变式题组】
可编辑
-------------精选文档-----------------
14.已知 a、b、c 为△ABC 三边的长,则化简 a b c (a b c)2 的结果是_______.
A. 18
B. 30
C. 48
D. 54
【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一
样. A. 18 3 2 ; B. 30 不能化简;C. 48 4 3 ;D. 54 3 6 ,而 24 2 6 .故本题应选 D.
【变式题组】
6.如果最简二次根式 3a 8 与 17 2a 是同类二次根式,则 a=________.
二次根式的性质和运算(P2----7) 二次根式的化简与求值(P7----12) 一元二次方程的解法(P13----16) 根的判别式及根与系数的关系(P16----22) 一元二次方程的应用(P23----26) 一元二次方程的整数根(P27----30) 旋转和旋转变换(一)(P30----38) 旋转和旋转变换(二)(P38----46) 圆的基本性质(P47----51) 圆心角和圆周角(P52----61) 直线与圆的位置关系(P62----69) 圆内等积证明及变换((P70----76) 弧长和扇形面积(P76----78) 概率初步(P78----85) 二次函数的图像和性质(P85----91) 二次函数的解析式和综合应用(P92----98) 二次函数的应用(P99----108) 相似三角形的性质 (P109----117) 相似三角形的判定(P118-----124) 相似三角形的综合应用(P124-----130)

A. 5 3 2
B. 8 2 4
C. 27 3 3
D. (1 2)(1 2) 1
【 解 法 指 导 】 正 确 运 用 二 次 根 式 的 性 质 ① ( a )2 a(a≥0) ; ②
a(a>0)
a2
a
0(a
0)
;③
a(a<0)
ቤተ መጻሕፍቲ ባይዱ
ab a b (a≥0,b≥0) ;④ b b (b≥0, a>0) 进行化简计算,并能运用乘法公式进行计算.A、B 中的项 aa
A.- 1
B.1
C.2
D.3
4.(鄂州)使代数式 x 3 有意义的 x 的取值范围是( ) x4
A.x>3
B.x≥3
C.x>4 D.x≥3 且 x≠4
5.(怀化) a 2 b 3 (c 4)2 0 ,则 a-b-c=________.
【例3】下列二次根式中,与 24 是同类二次根式的是( )
经典·考题·赏析
【例1】 (荆州)下列根式中属最简二次根式的是( )
A. a2 1
B. 1 2
C. 8
D. 27
【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可
开尽方的数或式子. B 中含分母,C、D 含开方数 4、9,故选 A.
【变式题组】
1.⑴(中山)下列根式中不是最简二次根式的是( )
A. 10
B. 8
C. 6
可编辑
D. 2
-------------精选文档-----------------
⑵① a2 b2 ;② x ;③ x2 xy ;④ 27abc ,最简二次根式是( ) 5
A.①,②
B.③,④
C.①,③ D.①,④
【例2】(黔东南)方程 4x 8 x y m 0 ,当 y>0 时,m 的取值范围是( )
7.在下列各组根式中,是同类二次根式的是( )
A. 3 和 18
B. 3 和 1 3
C. a2b 和 ab2 D. a 1 和 a 1
8.已知最简二次根式 ba 3b 和 2b a 2 是同类二次根式,则 a=_______,b=______.
可编辑
【例4】下列计算正确的是(
-------------精选文档-----------------
11. (2 3 3 2)2 (2 3 3 2)2 _____________
12.(济宁)已知 a 为实数,那么 a2 =(

A.a
B.-a
C.-1
D.0
13.已知 a>b>0,a+b=6 ab ,则 a b 的值为( ) a b
A. 2 2
B.2
C. 2
D. 1 2
【例5】已知 xy>0,化简二次根式 x
-------------精选文档-----------------
初中数学九年级培优目录
第1讲 第2讲 第3讲 第4讲 第5讲 第6讲 第7讲 第8讲 第9讲 第 10 讲 第 11 讲 第 12 讲 第 13 讲 第 14 讲 第 15 讲 第 16 讲 第 17 讲 第 18 讲 第 19 讲 第 20 讲
可编辑
-------------精选文档-----------------
每天进步一点点! 坚持就是胜利!
第 1 讲 二次根式的性质和运算
考点·方法·破译
1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;
2.掌握二次根式有关性质,并能熟练运用性质进行化简;
3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).
A.0<m<1
B.m≥2
C.m<2 D.m≤2
【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为 0 的结论.由题意得 4x-8=0,x-y-
m=0.化为 y=2-m,则 2-m>0,故选 C.
【变式题组】
2.(宁波)若实数 x、y 满足 x 2 ( y 3)2 0 ,则 xy 的值是__________. 3.(荆门)若 x 1 1 x (x y)2 ,则 x-y 的值为( )
相关文档
最新文档