浅谈概率论在生活中的应用
概率论在生活中的实际运用
概率论在生活中的实际运用Last updated on the afternoon of January 3, 2021概率论在日常生活中的应用概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,的概率正面朝上,的概率反面朝上,这就是概率论嘛。
学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。
其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。
概率,简单地说,就是一件事发生的可能性的大小。
比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。
但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。
大部分人认为一件事概率为0即为不可能事件,这是不对的。
比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。
1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。
这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。
这说明概率为0的事件也是有可能发生的。
不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。
在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。
不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。
在令人心动的彩票摇奖中,概率也同样指导着我们的实践。
继股票之后,彩票也成了城乡居民经济生活中的一个热点。
据统计,全国100个人中就有3个彩民。
生活中的概率论
生活中的概率论
生活中处处充满了不确定性和变数,而概率论正是一门研究不确定性的数学分支。
在我们日常生活中,概率论也扮演着重要的角色,影响着我们的决策和行为。
首先,我们可以从日常生活中的抉择开始说起。
无论是选择买彩票还是投资股票,我们都需要考虑到不确定性和风险。
概率论可以帮助我们计算出每种选择的可能性,从而帮助我们做出更加明智的决策。
比如,当我们考虑是否要买彩票时,我们可以用概率论来计算中奖的可能性,从而决定是否值得投入资金。
其次,概率论也可以帮助我们理解生活中的偶然事件。
比如,当我们在街上走路时,突然下起了大雨,这种偶然事件就可以用概率论来解释。
我们可以计算出下雨的可能性,从而在未来的行程中做出相应的安排。
另外,概率论还可以帮助我们理解生活中的风险和机会。
在面对风险时,我们可以用概率论来评估风险的大小,从而采取相应的措施来降低风险。
而在面对机会时,我们也可以用概率论来评估机会的大小,从而更好地把握机会,取得成功。
总之,生活中的概率论无处不在,它可以帮助我们理解不确定性和变数,从而更加理性地面对生活中的抉择、偶然事件、风险和机会。
因此,了解和运用概率论对我们的生活至关重要。
概率在生活中的应用
概率在生活中的应用概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。
正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。
在日常生活中,同样不难发现,周围的许多事物都和概率有着千丝万缕的联系,下面将说明概率统计在生活中的应用。
一、数学期望在求解最大利润问题中的应用如何获取最大利润不但成为商界追求的目标,同时也为越来越多的人所关注,许多数学模型也从概率角度利用期望求解最大利润问题,为问题的解决提供新的思路。
下面就是一道应用期望探讨利润的问题。
例1、五一期间,某鲜花店某种鲜花的进货价为每束2.5元,销售价为每束5元。
若在五一期间内没有售完,则在五一期间营业结束后以每束1.5元的价格处理。
据前5年的有关资料统计,五一期间这种鲜花的需求量为20束、30束、40束和50束的概率分别为0.20、0.35、0.30和0.15。
问该鲜花店今年春节前应进该鲜花为多少束为宜?分析售出一束鲜花能获得利润5-2.5=2.5元,处理一束鲜花将亏损1元。
由于量少不够卖,量多卖不完,即鲜花的需求量是随机变量。
因此,需通过计算在不同进货量时对应的利润期望值E和损失风险R的大小决定进货量。
若进货量为20,则无论销售量是20、30、40和50时,利润均为(5-2.5)*20=50(元);若进货量为30时,利润为(5-2.5)*20-(2.5-1.5)。
10=40(元),当销量是30、40和50时,利润为(5-2.5)*30=75(元);同理,可计算进货量为40和50时的利润数。
因此,当进货量为20时,利润的期望值El=50*.(0 20+0.35+0.30+0.15)=50(元);当进货量为30时,利润的期望值为E2=40*0.20+75*(0.35+0.30+0.15)=68(元);当进货量为40时,利润的期望值E3=30*0.20+65*0.35+100*(0.30+0.15)=73.75(元);当进货量为50时,利润的期望值E4=20*0.20+55*0.35+90*0.30+125"0.15=69(元)。
概率论在生活中的应用举例
概率论在生活中的应用举例
概率论是一门统计学的分支,它研究了事件发生的可能性以及其结果的分布情况。
概率论在生活中有许多应用,下面是一些例子:
金融市场风险分析:投资者在进行投资决策时,可以使用概率论来分析市场风险,从而决定是否进行投资。
保险业:保险公司使用概率论来评估保险事故发生的概率,并使用这些信息来设计保险计划和计算保费。
医学研究:医学研究人员常常使用概率论来研究患病概率和疾病治愈概率,以及药物治疗的有效性和安全性。
电视节目播出时间安排:电视台会使用概率论来分析不同节目播出时间对收视率的影响,并安排节目播出时间以达到最佳效果。
游戏设计:游戏开发商会使用概率论来设计游戏的随机事件,例如转轮游戏中的转轮转动结果。
工厂生产过程控制:工厂管理人员可以使用概率论来分析生产过程中可能出现的故障概率,并采取预防措施来保证生产过程的顺畅进行。
这些只是概率论在生活中的应用的一小部分例子,实际上概率论在许多领域都有广泛的应用。
浅谈概率论与数理统计在生活中的应用
浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用一、引言概率论与数理统计是数学的重要分支,它们在生活中扮演着至关重要的角色。
概率论研究的是随机现象的规律性,而数理统计则通过对已知数据进行推理和分析来得出结论。
这两个学科的知识可以帮助我们更好地理解生活中的各种现象,并能够提供科学的决策依据。
本文将从多个角度探讨概率论与数理统计在生活中的应用。
二、金融投资中的风险控制金融投资是人们追求财富增值的一种方式,而风险控制是成功投资的关键。
概率论与数理统计的方法可以帮助投资者在制定投资策略时更全面地考虑风险因素。
例如,通过分析历史股价数据,可以使用统计模型来预测未来股价的波动情况,从而做出相应的投资决策。
此外,概率论还可以帮助投资者评估不同投资组合的风险和回报,选择最优的投资标的。
三、医学诊断中的准确判断在医学诊断中,准确判断患者的病情和预测疾病发展趋势对患者的治疗和康复至关重要。
概率论与数理统计的方法可以提供科学的依据来辅助医生进行准确判断。
例如,在进行疾病筛查时,可以通过统计模型计算出患病的概率,进而指导医生进行深入的检查和诊断。
此外,根据大量病例数据的统计分析,可以找到某种疾病的高危因素,并在早期进行预防和干预。
四、市场调查与产品开发市场调查和产品开发是企业决策的重要环节。
概率论与数理统计的方法可以帮助企业分析市场需求、预测产品销售量,并评估产品的风险与效益。
例如,通过抽样调查与统计分析,可以了解消费者对某种产品的需求状况,进而指导企业进行产品定位和市场营销策略的制定。
此外,概率论与数理统计还可以帮助企业评估产品的质量与可靠性,确保产品符合市场需求。
五、社会决策与公共政策制定社会决策和公共政策制定时需要考虑到各种不确定因素和风险。
概率论与数理统计的方法可以为决策者提供客观、科学的参考。
例如,在社会福利政策制定中,可以通过模型推断分析不同政策方案对于受益人的影响,从而选择最优的政策方案。
概率论在实际生活中的应用
概率论在实际生活中的应用概率统计主要是对随机现象以及统计方面的学习和研究。
生活中很多事件的发生都有一定的随机性。
当我们开始留意这些随机现象时,你会发现,它出现在我们生活中的方方面面。
因此,学好这门学科,并将其应用到实践中必然会对我们产生巨大的帮助。
关键词:概率;生活;应用The application of probability and statistics in real lifeAbstract:Probability theory is the study of random phenomena and statistical rule.In all aspects we can all see the application of probability statistics.Probability and,therefore,learn to study the probability and statistics is applied to practice will produce a great help to us. Keywords:Probability;Life;Application引言:概率论作为数学中的一门重要学科,在各个领域中都用着不同的应用。
本文将从不同的方面,举出一些实例,例如保险行业盈利亏本,彩票的中奖概率,经济决策中的投资,股票买卖,抽查产品次品率,以及在军事中的着弹点问题等方面,作出一些阐述。
一.概率统计在小概率事件中的应用小概率事件是指概率很小,但有有可能发生的事件。
一个事件必然发生的概率是1,一定不会发生的概率是0,那么小概率事件就是概率接近于0的事件。
多小的概率值是小概率呢?这个没有具体数值,具体情况,具体分析。
1.概率统计在保险业中的应用平时,我们也会经常看到或者听到各种保险的宣传和推销。
大多数人应该不知道保险公司是如何赚钱的,下面举一个例子来解答这个疑惑。
概率论在生活中的实际运用
概率论在生活中的实际运用概率论是数学的一个分支,研究随机事件的发生概率及其统计规律。
概率论的概念和方法在日常生活中有着广泛的应用,涉及到众多领域,包括统计学、经济学、物理学、生物学等。
下面将重点介绍概率论在生活中的实际运用。
首先,概率论在统计学中有着重要的应用。
统计学是研究收集、整理、分析数据,并从数据中得出结论的科学。
概率论为统计学提供了强大的工具,用于描述和分析不确定性。
在进行调查和抽样时,我们可以利用概率论中的抽样方法来获得可靠的数据样本。
概率论也可用于判断统计推断的可靠程度,例如在假设检验中确定一个结果是否显著。
统计推断的可靠性与概率密切相关,概率论让统计学家能够量化不确定性,并制定适当的决策。
其次,概率论在金融学领域也有广泛应用。
金融市场中存在着很多不确定性和风险,概率论为金融学家提供了衡量风险的工具。
股票市场的涨跌、商品价格的波动、货币兑换的汇率等都是随机事件,而概率论可以用来预测和计算这些事件发生的概率。
投资者可以利用概率论帮助他们作出更明智的投资决策,合理分配资金,降低投资风险。
概率论也在游戏和赌博中有着重要的应用。
赌博是一个充满不确定性的活动,而概率论可以用来计算赌博的胜率和期望收益。
赌徒通过了解赌局的概率分布和赔率,可以做出更明智的决策。
例如,他们可以计算在不同的赌局中的期望收益,并在概率较高的情况下选择参与赌局。
概率论也可以用来分析各种不同的游戏策略,寻找最优的策略。
此外,概率论在保险和风险管理中也有广泛应用。
保险公司通过概率统计来确定保险费的收取方式,计算不同风险事件发生的概率和赔偿金额,从而给出合理的保险费率。
概率论也可以帮助保险公司评估风险,制定风险管理策略。
例如,概率论可以用于预测自然灾害发生的概率,从而确定相应的保险政策。
概率论还广泛应用于医学和生物学研究中。
在医学诊断中,概率论可以帮助医生评估疾病患者的概率,制定治疗方案和预测疗效。
在生物学研究中,概率论可以用于描述和分析基因突变、遗传变异等随机事件,为生物学家提供理论指导和实验设计。
概率论与数理统计在生活中的应用(1)
概率论与数理统计在生活中的应用(1)
概率论与数理统计在生活中的应用
概率论和数理统计是数学中的重要分支。
随着科技、生产力、资源等
各方面的发展,概率论和数理统计已经渗透到了我们的生活中。
1. 保险业
概率论和数理统计在保险业中有着重要的应用。
在保险业中,保险公
司主要通过概率论和数理统计来评估和管理风险。
通过大数据分析和
概率论的统计分析,保险公司可以确定产品定价、理赔、赔偿比例等
重要策略,从而保证自身的利益和风险防范。
2. 股票交易
股票市场是一个充满风险和不确定性的领域。
而概率论在股票交易中
扮演着重要的角色。
投资者通常通过概率分析来评估个股的发展趋势、风险和投资收益率,从而制定出相应的股票投资策略。
3. 金融保障
概率论和数理统计在金融领域的应用十分广泛。
在金融保障领域中,
银行、证券公司和投资机构等机构经常使用概率和统计分析方法,来
评价和管理理财产品和组合,以寻求更高的收益率和更少的风险。
4. 生活中的风险管理
在生活中,我们都会面对各种各样的风险。
概率论的应用可以帮助我
们理性的预估和管理这些风险。
例如,在购房时,我们可以通过概率分析来确定房价的涨跌趋势,从而制定出最合适的购房策略;在购买保险时,我们可以通过概率分析来确定个人的风险水平,选择最适合自己的保险产品。
总之,概率论与数理统计的应用与我们生活息息相关,这一领域的发展将不断为我们的生活带来便利和保障,促使我们从更客观和理性的角度看待和管理各种风险。
浅谈概率论与数理统计在生活中的应用
浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用随着社会的进步和科学技术的发展,概率论与数理统计在人们的日常生活中扮演着越来越重要的角色。
它们不仅是科学研究的重要工具,也是人们进行决策和判断的重要依据。
在本文中,我将以生活中的一些实际例子为基础,浅谈概率论与数理统计在我们日常生活中的应用。
首先,概率论与数理统计在我们的生活中广泛应用于风险评估和决策分析。
在我们面临各种决策时,例如购买保险、投资、制定健康计划等,通过运用概率论与数理统计的知识,我们可以对风险进行评估和分析,从而做出更明智的决策。
比如,在购买保险时,我们可以利用统计数据来计算出某一险种的风险事件发生的概率,从而选择适合自己的保险产品,减少潜在的经济损失。
此外,对于投资决策,我们可以通过统计分析历史数据,计算收益率、风险等指标,并进行风险和收益的权衡,以选择最优的投资组合。
其次,概率论与数理统计在医学领域也有着广泛的应用。
在医疗诊断和治疗方案制定中,概率论与数理统计的方法可以帮助医生进行疾病的风险评估和治疗效果分析。
以癌症筛查为例,医生可以通过统计分析大量的临床数据,计算出癌症的概率,并将高风险人群进行进一步检查。
同时,在制定治疗方案时,医生可以结合临床试验数据和概率论与数理统计的方法,评估各种治疗方案的效果和风险,并选择最合适的方案。
此外,概率论与数理统计还可以帮助医生进行药物疗效评估和不良反应的监测,从而提高治疗效果和减少不良事件的发生。
另外,概率论与数理统计在金融领域也有着重要的应用。
金融市场的波动和风险是不可避免的,而概率论与数理统计的方法可以帮助我们理解金融市场的规律,并进行风险管理。
例如,在股票和期货市场中,我们可以运用概率论与数理统计的方法来分析股价和期货价格的波动规律,计算风险价值和预期收益,从而制定合理的投资策略。
此外,概率论与数理统计还可以应用于金融风险评估、信用评级、衍生品定价等方面,对金融机构和投资者进行风险控制和决策支持。
概率论在生活中的运用
概率论在生活中的运用概率论与数理统计是一门十分有用的学科。
之所以说它有用是因为它与我们的生活息息相关。
我们在生活中经常要用到概率论与数理统计的知识来解决问题。
这一点从它的起源就能看出来。
概率论的诞生就与生活运用有着十分密切的联系。
概率论的起源与赌博问题有关。
16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。
17世纪中叶,有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。
他们对这个问题进行了认真的讨论,花费了3年的考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。
20世纪以来,由于物理学、生物学、工程技术、农业技术和军事技术发展的推动,概率论飞速发展,理论课题不断扩大与深入,应用范围大大拓宽。
在最近几十年中,概率论的方法被引入各个工程技术学科和社会学科。
目前,概率论在近代物理、自动控制、地震预报和气象预报、工厂产品质量控制、农业试验和公用事业等方面都得到了重要应用。
有越来越多的概率论方法被引入导经济、金融和管理科学,概率论成为它们的有力工具。
既然说到在生活中的运用,我们就不能只说概率论对于科学发展的重大作用,接下来我就举几个例子说明一下概率论在我们普通人平常生活中的作用吧。
首先说说与我们同学们息息相关的考试吧。
到了大学很多同学失去了高中时的勤奋,开始放纵自己。
但是无论怎么玩,考试还是必须得过。
我们身边就不乏那种平时不学,但坚信自己运气很好地家伙,认为自己靠运气也能通过考试,那么对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。
难度,包括听力、语法结构、阅读理解、填空、写作等。
除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。
概率论在实际生活中的应用举例
概率论在实际生活中的应用举例《概率论在实际生活中的应用举例》嘿,小伙伴们!你们知道概率论吗?这玩意儿可神奇啦,在咱们的日常生活里到处都有它的影子呢!就比如说抽奖吧,每次看到商场里那种大大的抽奖箱,我心里就直痒痒。
你想啊,那么多人都想抽到大奖,可大奖就那么几个,这可不就是概率论在起作用嘛!每次抽奖,我都会在心里默默算,我中奖的概率到底有多大呢?是像天上掉馅饼那么难,还是有那么一点点希望?还有买彩票,哇塞,那简直就是概率的大舞台!那么多彩票,就那么几个头奖,这概率小得就像在大海里找一颗特别的小沙子。
我经常听到有人说:“说不定我就是那个幸运儿呢!”可我就在想,这得多难呀?这概率低得吓人,难道真能轮到自己?再说说玩游戏,像扔骰子。
扔出个六的概率是六分之一,有时候我就盼着能扔出个六,可它就是不出现,急得我直跺脚,心里喊着:“怎么就这么难呀!”还有哦,比如考试的时候。
老师说这次考试会出一些难题,那我就得琢磨琢磨,遇到难题的概率有多大?我会不会正好碰上那些我不会的?哎呀,想想就紧张!我有一次和小伙伴们一起玩猜硬币正反面的游戏。
大家都瞪大眼睛,紧张地盯着那枚硬币。
我心里嘀咕着:“这次该是正面了吧?”结果一连好几次都猜错,我那个郁闷呀!这不就是概率在捉弄人嘛!我跟爸爸聊天的时候,说到这些,爸爸笑着说:“孩子,生活中到处都是概率,就像走路会遇到不同的风景一样。
”妈妈也凑过来说:“是呀,比如天气预报说下雨的概率是多少,咱们就得决定要不要带伞。
”你看,概率论是不是就在我们身边,影响着我们的每一个决定和每一次期待呢?它就像一个神秘的魔法师,悄悄地掌控着一些事情的可能性。
所以啊,小伙伴们,咱们可得好好学学概率论,这样才能在生活中做出更明智的选择,不被那些不确定的事情弄得晕头转向!你们说是不是呀?。
数学概率论在实际生活中的应用
数学概率论在实际生活中的应用数学概率论是一门利用数学方法研究随机现象的学科。
虽然初看起来,概率论只是一些抽象的概念,但事实上,概率论在实际生活中有着广泛的应用。
从商业到科学,从医学到保险,这些应用令我们感受到数学的实际价值。
以下是一些数学概率论在实际应用中的例子。
1. 统计分析当你接受一次体检时,你的医生会告诉你,你的胆固醇水平超过正常范围的几率有多大。
这个几率其实是一个基于统计方法掌握的概率值。
医生和研究人员利用数学概率论进行统计分析,来推断大量的生物统计和医学研究数据。
很多药物在开发过程中也需要利用概率论方法进行实验和研究。
通过概率分析和科学调查,研究员可以确保药物的有效性和安全性,以满足FDA的监管要求。
2. 金融交易金融市场是充满不确定性的,但概率论可以帮助我们预测这些不确定性。
基金经理使用概率论来帮助管理投资组合,并根据他们的投资目标调整投资组合。
其他类型的交易员利用概率论来控制风险和增加收益。
在投资交易中,概率分析可以用来评估股票、期货和其他金融产品的风险、回报和波动。
3. 保险业保险公司用概率论来评估风险和确定保险费。
公司根据客户可能发生的损失,根据概率模型来合理定价。
例如,一个车险公司会通过评估历史事故数据来计算车主的保险费率。
这种方法通常会考虑到车主的年龄、驾驶记录,车辆的类型等因素,以尽量减少客户和保险公司的风险。
4. 质量管理概率论还可以用于质量管理。
生产商可以利用概率分布推断生产率并进行质量控制。
例如,当生产线上的产品数量多,而复杂性适中,生产商可以使用概率论方法来测定该生产过程的质量。
这可降低废品率并最大化生产率。
5. 运输和物流数学概率论在运输和物流分配中的应用无处不在。
物流公司可以使用概率统计方法来估计出料时间。
汽车、货车和船只可根据其最佳时间、距离和载重计算出实际的利润空间。
公司可以利用数据和概率分布来确定最佳路径、优化功率和提高安全等级。
总体来说,数学概率论在实际生活中有多种应用。
概率论在生活中的应用
概率论在生活中的应用
概率论是一门比较重要的数学理论,在实际生活中有着广泛的应用。
概率论可以帮助我们对不确定事件的发生概率和结果进行分析与评估,从而使我们能够做出更科学、合理的决策。
概率论在现实生活中的应用是很多的,其中包括:
一、在金融领域
概率论在金融领域有着重要的应用。
例如,假设投资者想要投资一家上市公司,但他不知道这家公司未来的走势。
此时,就可以使用概率论来对这家公司的未来走势进行概率分析,从而帮助投资者做出明智的决定。
二、在保险领域
概率论在保险领域也有着重要的应用。
保险公司通过概率论来计算投保人的风险程度,从而为投保人设定相应的保费标准。
此外,为了招揽更多的投保人,保险公司还会根据概率论开发出各种保险产品,从而满足不同投保人的需求。
三、在医学领域
概率论在一般的医学研究中也有着广泛的应用。
例如,科学家可以通过概率论来研究某种疾病患病的概率,或者研究某种药物的疗效等。
此外,概率论还可以帮助医
生更好地评估患者的病情,从而为患者提供更为合理的治疗方案。
四、在气象预报领域
概率论在气象预报中也有着重要的应用。
气象预报人员会根据当前的气象情况和历史数据,使用概率论来分析未来的天气趋势,从而为公众提供准确的天气预报。
总之,概率论在现实生活中有着广泛的应用,它可以帮助我们分析不确定事件的发生概率和结果,从而使我们能够做出更科学、合理的决策。
浅谈概率论在生活中的应用---毕业论文
【标题】浅谈概率论在生活中的应用【作者】秦挺【关键词】起源和发展运用总结【指导老师】宋安超【专业】数学与应用数学【正文】1引言概率论是通过大量的同类型随机现象的研究,从中揭示出某种确定的规律,而这种规律性又是许多客观事物所具有的,因此,概率论有着极其广泛的应用。
概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。
直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。
根据概率论中用投针试验估计值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。
借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中起着重要的作用。
概率论作为理论严谨,应用广泛的数学分支正日益受到人们的重视,并将随着科学技术的发展而得到发展。
2 预备知识2.1概率论的起源三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现点至点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为与点数之和为,哪种情况出现的可能性较大?世纪中叶,法国有一位热衷于掷骰子游戏的贵族德?梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德?梅耳问题。
又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得局便算赢家。
如果在一个人赢局,另一人赢局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
浅谈概率在生活中的应用
浅谈概率在生活中的应用概率论是数学的一个分支,讨论的是随机事件发生的可能性。
概率的概念常常被用于生活中的各种决策,例如保险投资、选举预测、药物疗效评估等等。
本文将介绍概率在生活中的应用,并讨论其优点和不足之处。
1. 保险投资保险公司使用概率来计算各种风险的发生概率,这样可以为客户提供不同的保险政策。
例如,一个人购买汽车保险,他支付的保费取决于保险公司估计的发生事故的概率。
如果事故率高,保费就会高。
因此,保险公司需要评估各种因素,包括车主的年龄、性别、驾驶记录等,以计算他们发生事故的概率。
2. 医学研究在医学研究中,概率被用于药物疗效评估。
医学研究通常需要比较药物治疗组和安慰剂组之间的差异。
概率可以用来计算得到这些结果的可能性。
例如,如果药物治疗组的疗效好于安慰剂组,而且不同组之间的差异足够显著,那么我们可以得出这种结果不是偶然出现的结论。
3. 投资决策在投资决策中,概率可以帮助投资者评估风险并作出决策。
例如,一个股票投资者需要决定是否买入某只股票,他可以使用概率来评估这只股票未来的价值变化。
如果这只股票的价值变化很小,投资者可以认为风险较低,可以考虑购买。
但是,如果这只股票的价值变化很大,投资者可能需要再考虑一下是否有必要购买。
4. 统计分析概率在统计分析中有广泛的应用。
例如,当我们尝试理解统计数据时,概率可以提供一系列有用的工具。
我们可以使用概率来评估数据的可靠性、评估样本数据和总体数据之间的关系等。
此外,概率还可以帮助我们在随机化试验中做出决策,以便更好地控制实验结果。
尽管概率论有许多应用,但还存在某些限制。
首先,概率只是一种预测工具,不能完全预测未来的结果。
其次,概率是基于估计值的,并且可以因误差而产生误导性结果。
此外,概率的应用通常需要复杂的计算过程,对计算机技术的要求较高。
总之,概率论在各个领域都有广泛的应用。
它可以帮助我们评估风险、作出决策和理解数据。
尽管存在一些限制,但它仍然是一个有力的工具。
浅谈概率在生活中的应用
浅谈概率在生活中的应用
概率论是一门数学分支,涉及随机现象出现和发展的规律性。
概率在现代社会中有许
多实用的应用,尤其是在风险管理、金融、医药、人口统计等方面。
首先,风险管理是一个非常关键的领域,涉及各种各样的风险,例如自然灾害、恐怖
主义、战争等。
使用概率模型可以帮助我们评估风险并制定相应策略。
例如,在保险业中,概率可以用来确定保险公司应该对客户的保险费率设定为多少,从而控制风险;在金融
领域中,概率可以用来评估投资者所承担的风险以及金融机构的资产风险;在企业管理中,概率可以用来评估公司的风险以及资产负债情况,帮助公司做出更优秀的经营决策。
其次,概率还在医药学中发挥着重要作用。
医学研究常常依赖于对有关生物样本的数
据的分析,概率统计方法可用于诊断疾病、发现疫苗的成分和疾病的传播模式。
例如,在
流行病学中,概率可以用来评估某种疾病传播的可能性,从而制定控制和防范措施。
此外,在制药过程中,概率可以用来优化生产成本。
概率的重要性还延伸到了药物安全性评价、
药物治疗效果评价等方面。
最后,概率在人口统计学中也发挥着不可替代的作用。
概率模型可以用于预测人口数量、结构和迁移趋势。
例如,在研究婴儿出生概率时,可以利用概率模型来预测每年出生
的婴儿数量;在研究人口老龄化问题时,可以利用概率模型来预测老年人口的比例增长趋势,从而更好地规划社会福利保障措施。
总之,概率可以应用于许多现实生活中的问题,帮助人们更好地理解风险、制定决策
和规划未来的发展。
掌握和应用概率理论,对个人和社会的发展都有积极意义。
论概率论在实际生活中的应用
论概率论在实际生活中的应用摘要:概率论是从数量上研究随机现象统计规律的一门数学学科,是对随机现象进行演绎和归纳的科学。
概率论的表述,能够使人们清楚直观的看清现象,理解、掌握、运用概率论知识和概率计算方法,对解决各种概率相关问题能起到促进和深化的作用,因而在人们的实际生产与生活中发挥着巨大的作用。
本文就概率论在体育,经济,博弈,保险这几个与实际生活密切相关的方面的应用进行了简单的介绍,通过一些贴近生活的例子,说明了概率论的应用为生活带来的极大便利。
关键词:概率论概率问题实际生活引言:概率论是通过人类的社会实践和生产活动发展起来并被广泛应用于各个领域, 在国民经济的生产和生活中起着重要的作用,与我们的日常生活息息相关。
正如英国逻辑学家和经济学家杰文( Jevons,1835-1882)所说: 概率论是“生活真正的领路人, 如果没有对概率的某种估计, 我们就寸步难行, 无所作为”。
在现实世界中, 不确定性现象广泛存在,概率论就是用数学的观点研究随机现象基本性质的数学知识。
概率是指随机事件发生的可能性(记为P(A))大小的数量指标,,虽然对于现实生活中的一些尚未发生的事件我们并不能准确地求出其概率,但是概率论的应用却有利于我们更好地处理各种不确定因素。
如今它已渗透到生活的方方面面, 为我们的日常生活带来各种各样的好处和便利。
下面我们就从一些具体的方面来体会概率论的实际应用,认识一下生活中的概率论。
1·概率论在体育上的应用奥运会是全世界人民共同关注的一场体育盛宴,而每四年举行的奥运会中第一天总会有射击的赛事,也是中国取得开门红的重要夺金点。
在这一激动人心的体育竞技项目里其实蕴含着概率论的智慧:在团体比赛中,为了团队的整体成绩,是选择一些爆发性较好的队员上场呢,还是选择那些稳定性更好的运动员呢?我们可以通过一个例题来思考一下这个问题。
例一:射击所用的靶子一般有十环,从靶心向外分别是10环,9环,8环,一直到1环,射中位置越靠近靶心,所得的环数就越高,同样,选手的得分就越高。
概率论在日常生活的应用
概率论在日常生活的应用概率论是研究随机性或不确信性等现象的数学,它不仅在科学研究,经济治理,技术开发中发挥着重要作用,同时也在咱们日常生活的点点滴滴中有所表达,对咱们的生活有着庞大的阻碍。
例如在理财治理,博彩赌博,交通成立,天气预测,疾病防控等诸多领域概率论都有着重要的应用。
下面我就概率论在日常生活中不同场合的应用来举例分析:一、概率论理财的应用概率论在理财中的应用相当普遍,下面我以在证券投资组合为例说明。
在长期的投资实践活动中,人们发觉,投资者手中持有多种不同风险的证券,能够减轻所遇风险带来的损失。
关于投资假设干种不同风险与收益的证券形成的证券组,称为证券投资组合,其要紧内容是在投资者为追求高的投资预期收益,并希望尽可能躲避风险的前提下,以解决如何最有效地分散组合证券风险,求得最大收益。
相关系数是反映两个随机变量之间一起变更程度的相关关系数量的表示。
对证券组合来讲,相关系数能够反映一组证券中,每两组证券之间的期望收益作同方向运动或反方向运动的程度。
相关系数的绝对值小于等于1,即-1燮p燮1。
当0<p<=1 时,称为正相关,表示两种证券的收益作同方向运动,即一种证券的收益增加或减小,另一种证券的收益也增加或减小。
p 越接近于1,一种证券收益增减值与另一种证券的收益增减值越接近。
组合期望收益在两种证券的收益之间是同一趋势波动。
那个结果意味着投资组归并非收到降低风险的成效。
当p=0 时表示一种证券的期望收益的变更,对另一种证券收益丝毫不产生阻碍。
那个组合结果,意味着可能降低局部风险,也可能不能降低风险。
当-1<=p<0,称为负相关,表示两种证券的收益作反方向运动。
即一种证券的期望收益增加或减小,另一种证券的收益那么减小或增加,这种证券组合期望收益转变较为平缓。
取得了降低风险的成效。
可见,在多种证券中,要选几种证券进展组合投资,应选相关度较低的证券组合,例如说不同行业类型的证券;不同市场中的证券;不同种类的资产,等等。
浅谈概率在生活中的应用
浅谈概率在生活中的应用概率是研究随机事件发生的可能性的数学分支。
它涉及到了数学、统计学和逻辑学等学科,同时也被广泛应用于生活中。
生活中的概率应用非常广泛,下面我们来简单谈一下:1. 保险业保险业是概率论的应用之一。
在保险业,保险公司用到概率论,通过对客户的历史和统计学数据的分析,来估算未来的风险和保险赔偿金额。
2. 股票市场股票市场的价格也是受到概率的影响。
投资者在进行交易时,也会根据历史数据和市场信息,来估算未来的股票价格并决策是否买入或卖出。
3. 体育赛事在体育赛事中,概率同样是不可避免的。
运动员在比赛中的表现往往是不确定的,而概率的应用可以帮助我们预测谁有更高的获胜概率。
4. 投资风险评估投资股票、基金、债券等金融产品时,风险评估也需要用到概率。
通过历史市场和公司数据的统计和分析,可以预测未来的投资风险,从而帮助投资者做出正确的决策。
5. 医学研究医学研究中也需要用到概率论。
例如在临床试验中,需要算出病人的治疗成功率和不良反应率,这些都需要用到概率计算。
以上仅是生活中概率应用的一部分,实际上概率还延伸到了其他领域,比如信用评级、犯罪预测等等。
可以说,概率在我们的日常生活中无处不在。
但是需要注意的是,概率只是一种估算事件发生的可能性的方法,并不能预测未来的具体结果。
在应用概率时,需要充分考虑不确定性和偏差,以及数据分析的可靠性和准确性。
总之,概率论不仅仅是在大学数学课堂上学习的知识,它在各个领域中都有广泛的应用。
熟练掌握概率论的应用,可以帮助我们做出更明智的决策,避免风险,提高成功率。
浅谈概率在生活中的应用
浅谈概率在生活中的应用【摘要】概率是一种描述事件发生可能性的数学工具,在生活中有着广泛的应用。
天气预报利用概率来预测雨天和晴天的可能性,帮助人们选择出行方式。
赌博游戏中的胜负也是基于概率计算的,玩家可以根据概率来制定策略。
在医疗诊断中,概率可以帮助医生评估疾病的风险和治疗效果。
交通规划中的概率分析可以帮助决策者优化交通流量和减少拥堵。
金融投资领域也广泛应用概率模型来评估投资风险和收益。
概率在生活中的应用非常广泛,帮助人们做出更明智的决策和规划。
【关键词】概率、生活、天气预报、赌博游戏、医疗诊断、交通规划、金融投资、广泛应用1. 引言1.1 浅谈概率在生活中的应用概率在我们的生活中无处不在,它在决定我们的日常活动中发挥着重要作用。
无论是天气预报、赌博游戏、医疗诊断、交通规划还是金融投资,概率都扮演着不可或缺的角色。
通过对不确定事件的量化分析,我们可以更好地做出决策,提高我们的生活质量。
在天气预报中,概率用来预测不同天气现象发生的可能性,帮助人们合理安排出行计划。
在赌博游戏中,概率被用来计算赌局的胜率,帮助玩家做出下注决策。
在医疗诊断中,概率被用来评估疾病出现的风险,指导医生制定治疗方案。
在交通规划中,概率被用来预测交通拥堵的可能性,帮助城市规划者制定交通管理政策。
在金融投资中,概率被用来评估投资风险和回报,帮助投资者做出理性的投资决策。
概率的应用使我们的生活更加便利、高效和可靠。
通过深入理解概率在生活中的应用,我们可以更好地把握未知事件的发展趋势,提高我们的决策水平,实现个人和社会的长期发展和稳定。
结束。
2. 正文2.1 概率在天气预报中的应用天气预报是我们日常生活中经常需要依赖的信息之一,而概率就是天气预报中不可或缺的一部分。
天气预报的准确性往往受到许多因素的影响,其中就包括概率的运用。
天气预报中使用概率可以帮助我们更好地理解不确定性。
天气现象往往受到多种因素的影响,包括气候、风向、气压等等,这些因素的变化会导致天气预报的不确定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位代码:分类号: X X 大学题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学学生:学生学号:指导教师:毕业时间:浅谈概率论在生活中的应用摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用.关键词:随机现象;概率;日常生活;应用分析Discuss the application in life probabilityAbstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis目录引言 (1)1 概率在博彩领域中的应用 (1)1.1概率与赌博问题............................................................ 错误!未定义书签。
1.2彩票中奖问题 .............................................................. 错误!未定义书签。
1.2.1 哪种血型的人更容易奖? ....................................... 错误!未定义书签。
1.2.2 叫什么名字更容易奖? (2)1.2.3 什么更容易奖? ..................................................... 错误!未定义书签。
2 概率在工作、学习中的应用 ................................................. 错误!未定义书签。
2.1面试通过的概率 (2)2.2选择题瞎猜问题 .......................................................... 错误!未定义书签。
3 概率在体育学中的应用........................................................ 错误!未定义书签。
3.1概率在乒乓球比赛中的应用 (5)3.2足球点球大战的方案.................................................... 错误!未定义书签。
3.3棒球界“三成击球员”的安打概率............................... 错误!未定义书签。
4 概率在猜拳游戏中的应用 .................................................... 错误!未定义书签。
4.1猜拳必胜的方法 ........................................................... 错误!未定义书签。
4.1.1 规定起始拳 .......................................................... 错误!未定义书签。
4.1.2 不规定起始拳 ...................................................... 错误!未定义书签。
4.2猜拳多少回合可以决出胜负? ........................................ 错误!未定义书签。
5 生日概率问题 (6)6 降水概率问题...................................................................... 错误!未定义书签。
7 用概率的方法证明谚语........................................................ 错误!未定义书签。
7.1三个臭皮匠抵个诸亮 .................................................... 错误!未定义书签。
7.2一根筷子容易折一把筷子坚如铁................................. 错误!未定义书签。
7.3吃剩下的东西有福气.................................................... 错误!未定义书签。
结束语 (7)参考文献 (8)辞 (8)引言概率论与数理统计是研究随机现象统计规律的一门学科,简单地说,就是一件事发生的可能性的大小.这门学科在社会生产和生活中起着非常重要的作用,概率统计几乎遍及所有的科学技术领域,工农业生产国民经济及日常生活各个方面,,比如:,在研究最大经济利润中寻求最佳生产方案,在检验生产产品合格率,在面试通过方面,在公交站台的侯车时间,打时间长短分配,在各种比赛赛制问题上,在生日概率问题上,以下通过具体的例子讨论概率论在生活中的应用。
1 概率在最大经济利润中寻求最佳生产方案中的应用如何获得最大利润是永远追求的目标,随机函数期望的应用为此问题的解决提供了思路,例如;某公司要销售一批货物,根据历史经验,这批货物的市场需求量为x(单位;吨),服从(30,50)上的均匀分布,每售出一吨该货物,公司可获利15千元,如积压1吨,则公司就会亏损5千元,问该公司应该组织多少货源可获利最大?分析;该问题的解决需建立利润与需求量的函数,然后求利润的期望关于货源的函数,最后利用求极值的方法得到答案。
解;设公司组织货物a吨,则有3050≤a,又记y为a吨货物的条件下的≤利润函数、即、y=g(X).由题设条件有、当x≥a时、此a吨货物全部售出共获利15a.当x<a时、则售出x吨货物(获利15x)、且还有(a-x)吨积压、所以总利润为15x-5(a-x)由此得Y=g(x)={)3(15)5030(520≤≤-x a x a x 从而得E(y)=⎰+∞∞-g(x)p(x)dx=dx x g ⎰503020001)(=dx a x a ⎰-3020001)520(+⎰503020001dx =)300900(2000122-+-a a 由上述计算表面E(y)是a 的二次函数、用通常求极值的方法可以得a=45吨时能获得利润的最大值。
.2概率在检验生产产品合格率方面的应用概率在生产产品合格率、产品的废品率方面应用也比较广泛,例如;在一批产品中80%的合格品,验收这批产品时规定,先从中任取一个,若是合格的就放回去,然后再取一个若仍为合格品,则接受这批产品,否则拒收。
求(1)验收第一个产品为合格品且第二个产品为次品的概率?(2)这批产品被拒收的概率?解;设事件A i =第i 个产品合格(i=1.2.…)又A 1.A 2相互独立(1) p(A 1.2A )=0.80×(1-0.80)=0.80×0.20)=.16(2) P(A 12A ⋃)=p(21A A )=1-P(A 1A 2)=1-0.80=0.363概率在公交站台候车时间应用在公交站台候车时间长短乘客很关注,例如公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车时间不超过3分钟的概率解;以x 表示乘客候车时间、则X 为随机变量、令F(x)=⎰≤≤51050其他x则f(x)为密度函数事实上(1)f(x)≥1(2)1)05(515151)(5050=-===⎰⎰⎰+∞∞-dx dx dx x f ∴f(x)为密度函数故乘客候车时间不超过3分钟的可以表示为03≤≤X故所求的概率为p(≤0X 3≤)=6.0535151)(303030====⎰⎰⎰dx dx dx x f 所以乘客候车时间不超过3分钟的概率为0.694概率在公共亭顾客打时间方面的应用在公共亭顾客打时间分配,打几次所用时间的概率如何去解决例如某公共亭、顾客打一次所用时间x 分钟服从参数λ(λ>0)指数分布,且打一次平均所用的时间为5分钟,求(1)任打一次所用时间在5-10分钟的概率?(2)任打三次中至少有一次所用时间为5-10分钟的概率解;由=)(x f ﹛)0()0(0 x x e x λλ-≤51=λ P(A)=P(x x e dx e dx x f x 515110510551)()105(---===≤≤⎰⎰|105=2325.011122≈-=-e e e e P(B)=1-[1-P(A) ]3=1-[1-211e e +]3-21e 5481.0≈由此可以求出问题的结论概率在面试通过方面的应用刚从学校毕业即将步入社会的年轻人都希望找一份合适的工-作.可是,目前的经济情况一直不景气,找个工作都很难,很多公司的面试通过率也很低,年轻人该怎么办呢?其实,年轻的朋友不必灰心丧气.从概率学的角度讲,只要坚持不懈地努力,成功的概率就会不断提高.一件成功概率为50%的事情.只要我们反复做5次,就可以把成功概率提高至97%.如果5家公司的面试率都是50%,那么我们去这5家公司面试时至少可以通过一家公司面试的概率也为97%.将每家公司面试不合格的概率相乘,就可以得出去5家公司面试都不合格的概率,即50.5=0.03(约3%)用1减去都不合格的概率,得出的便是至少可以通过一家公司面试的概率:1- 0.03=0.97(97%)同样,如果面试的通过率都为30%,面试5家,至少可以通过1家面试的概率为83%.如果面试的通过率仅为10%,连续面试10家,至少可以通过1家面试的概率为65%.如果连续面试20家,至少通过1家面试的概率则高达88%.此外,如果几家公司的面试通过率各不相同,分别是10%、20%、30%、40%和50%,那么参加这几家公司的面试后,至少能通过1家面试的概率该如何计算呢?即使各个公司的面试通过率各不相同,同样可以利用前面的方法进行计算.首先将各个公司面试的不合格的概率相乘,就可以得到去任何一家公司面试都不合格的概率,再用1减去这一概率,便得到至少能通过一家公司面试的概率.因此1-(0.9×0.8×0.7×0.6×0.5)=约0.85也就是说,至少通过1家公司面试的概率为85%..3.1 概率在乒乓球比赛中的应用大家打球中经常会遇到半机会球,这样的球许多业余爱好者通常会全力冲之,不是你死就是我亡,力求一板解决战斗,而职业运动员通常只会用七八成力而寻求连续攻击,显然后者的处理球方式更为合理.以下用高等数学中的概率知识加以解释: 问题:对半机会球一板打中和多板连续打中的得分概率比较假设前提:1、进攻方和其对手均不变,即双方攻防技术水平确定不变2、方法一:一板死的打法,如打中,则对方回击失误(即我方得分)概率为90%,如被对方防回,则进攻方失分,没有第三板可言.3、方法二:连续攻打法(只讨论攻两板的情况,攻多板可类推),如第一板打中,对方回击失误概率为80%,如被对方防回,由于没有全力发力,因此假设连续的第二板攻击打中并且仍能使对方回击失误概率保持在80%.比较:上述两种方法的总体得分概率P方法一:P =90%+(1-90%)×0=90%方法二:P =80%+(1-80%)×80%=96%可以依次类推:连续第三板的P =80%+(1-80%)×80%+(1-80%)×(1-80%)×80%=99.2% ……连续第n 板的P =80%+(1-80%)×80%+……(()1180%n --×80%=……实际上这是一个等比数列求和,当n 趋向于无穷大时,该等比数列和为1,即此时得分率为100%,正好与事实验证.结论:最凶的未必是最好的,半机会的情况下,连续的杀伤力更大.5 生日概率问题小时侯看《少年科学》,记得一个问题,就是在一群人中,你很有可能找到相同生日的人.而且你找到生日相同的人的可能性超过找不到生日相同的人的可能性,对这群人数的数字要求,可能并不像你想象中的那样高.一个班有五十个人,我赌班上肯定有生日相同的一对同学.《少年科学》讲,胜算非常大.一直记不清人数达到多少时,有生日相同的人的可能性会超过百分之五十.终于看到答案:23人.我们来看一个经典的生日概率问题.以1年365天计(不考虑闰年因素),你如果肯定在某人群中至少要有两人生日相同,那么需要多少人?大家不难得到结果,366人,只要人数超过365人,必然会有人生日相同.但如果一个班有50个人,他们中间有人生日相同的概率是多少?你可能想,大概20%~30%,错,有97%的可能!它的计算方式是这样的:a、50个人可能的生日组合是365×365×365×……×365(共50个)个;b、50个人生日都不重复的组合是365×364×363×……×316(共50个)个;c、50个人生日有重复的概率是1-b a .这里,50个人生日全不相同的概率是ba=0.03,因此50个人生日有重复的概率是1-0.03=0.97,即97%.根据概率公式计算,只要有23人在一起,其中两人生日相同的概率就达到51%!但是,如果换一个角度,要求你遇到的人中至少有一人和你生日相同的概率大于50%,你最少要遇到253人才成.结束语虽然在现实生活中我们不能准确预测未来或一些尚未发生的事件,但概率论的应用有利于更好地处理各种不确定因素.概率论渗透到生活的方方面面,从而为我们的日常生活带来方便. 有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”,电视节目的预告中,每个节目旁都会写上“可视度概率”.另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等等.又由于概率是等可能性的表现,从某种意义上说是与平等的体现,因此,社会生活中的很多竞争机制都能用概率来解释其公平合理性.总之,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、对待.由于随机现象在现实世界量存在,概率必将越来越显示出它巨大的威力.参考文献⑴盛骤、式千、承毅,概率论与数理统计教程,高等教育,2000.8[1] 程依明.概率论与数理统计教程[M].:高等教育,2004:1-4.[2] 宗舒.概率论与数理统计教程[M].:高等教育出版[7] 罗浩源.生活的数学[M].:远东,2001.[8] 长波.生活中的概率问题举例[J].师大学学报,2007,25(4):531-533.[9] 玉红.浅谈概率在生活中的应用[J].经济研究导刊,2010,(18):203-205辞走的最快的总是时间,来不及感叹,大学生活已近尾声,四年多的努力与付出,随着本次论文的完成,将要划下完美的句号.本论文设计在盈老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,论文初稿与定稿无不凝聚着老师的心血和汗水.在我的毕业设计期间,盈老师为我提供了种种专业知识上的指导和一些富于创造性的建议,老师一丝不苟的作风,严谨的态度使我深受感动,没有这样的帮助和关怀和熏,我不会这么顺利的完成毕业设计.在此向老师表示深深的感和崇高的敬意!在临近毕业之际,我还要借此机会向在这四年中给予我诸多教诲和帮助的各位老师表示由衷的意,感他们四年来的辛勤栽培.不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文.同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示意.我还要感同组的各位同学以及我的各位室友,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感!。