(人教版)初一数学导学案
人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)
实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
部编RJ人教版 初一七年级数学 上册第一学期秋季(导学案)第四章 几何图形初步(全章 分课时)
第四章 几何图形初步. .根据已有的数学经验,我们能否把它们进行分类?你的标准是什么?要点归纳2. 观察小茗的房间,说说你能看到哪些立体图形.探究点3:平面图形观察与思考:说一说下面这些几何图形又有什么共同特点?画一画A. ①⑤①B. ①C. ①⑤⑥D. ⑤⑥4. 月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,形状类似圆柱的有6. 图中的各立体图形的表面包含哪些平面图形?试指出这些平面图形在立体图形中的 位置.第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第2课时 从不同的方向看立体图形和立体图形的展开图学习目标:1. 了解立体图形与平面图形之间的联系.2. 能画出简单立体图形从不同方向看得到的平面图形.3. 了解研究立体图形的方法,体会一个立体图形按照不同方式展开可得到不 同的平面展开图.4. 通过展开与折叠,了解棱柱、棱锥、圆柱、圆锥、长方体、正方体的表面 展开图或根据展开图判断立体图形.重点:了解立体图形从不同方向看能够得到平面图形,了解基本几何体与其展开图的关 系,体会一个立体图形可以有多种展开图.难点:会画简单立体图形从不同方向看得到的平面图形,能够画出简单立体图形的展开 图,或根据展开图判断立体图形.二、要点探究探究点1:从不同的方向看立体图形 合作探究:画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看得到的平面图形.这些展开图有没有什么规律?哪些展开图可以分为一类,为什么?2. “坚”在下,“就”在后,“胜”和“利”在哪里?3. 下面图形是一些多面体的表面展开图二、课堂小结常见几何体的展开图:1. 下图所示的从正面、上面看到的图形对应的是 ( )2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )3. 下图是由一些相同的小正方体构成的几何体的从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个4. 下列的三幅平面图是三棱柱的表面展开图的有(多选) ( )5. 如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,求:a= ;b= ;c= .第四章几何图形初步..包,线和线相交的地方是.这可以说成点动成线. 类如下图,围成这些立体图形的各个面中,哪些面是平的?哪些面是曲的?请把下图中的平面图形与其绕轴旋转一周后得到的立体图形连接起来.,宽为2cm的长方形,绕其一边进行旋转得到一几何体.这个几何体是什么?4.2 直线、射线、线段第1课时 直线、射线、线段.. ..将你联想到的图形填在图形下边的横线上(填._________________ _______________ ________________ 2.自己动手,分别画一条直线、射线和线段. A ,B 可以画几条直线? .简称:两点确定一条直线.. 并使其不能转动,至少需要几个钉子?你知道这样做 .A.B相交于点O4.2 直线、射线、线段第1课时 直线、射线、线段... ....AB )等于已知线段(a )的作法: AC 上截取AB=a.,CD 的长短.AB 、CD 的长度,再进行比较:几何语言:∵ M 是线段 AB第3题图第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,2.连接两点间的线段的,叫做这两点的距离.两个村庄,如图,现在要在公路l上建一个汽两村庄的距离之和最小,请在图中画出汽车站的位置第2题图4.3 角4.3.1 角.... ._______组成的图形,叫做角.这个公共端点叫做角的叫做角的两条边.四、我的疑惑______________________________________________________________________________________________________________________________________________________六、要点探究探究点1:角的概念及表示方法问题1 有哪些方式可以表示如图所示的角?问题2 下图中有哪些角?如何表示?还能用∠O 表示∠AOB 吗?要点归纳:角的表示方法:①用一个大写字母表示,该大写字母表示的点为顶点;②用三个大写字母表示;③用一个数字或一个小写希腊字母表示.注意:①当两个或两个以上的角共同一个顶点时,不能用一个大写字母表示;②当用三个大写字母表示角时,必须把顶点字母放在中间;③用数字或希腊字母表示角时,一定要在图形中用角弧标出.思考:角也可以看做由一条射线绕着它的端点旋转所形成的图形. 如图,射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,形成什么角?继续旋转,OB 和OA 重合时,又形成什么角?1.用一个大写字母表示:∠_____2.用三个大写字母表示:∠_____或∠_____3.用一个小写希腊字母或数字表示:∠_____图中的角有___________________________________ ____________________________________________. ___________(填“能”或不能)用∠O 表示∠AOB.下列说法正确的是平角是一条直线填写下表,将图中的角用不同方法表示出来.°.1°=′;针对训练1.计算:(1)5°=(3)36″=当堂检测5.如图所示:-1) 条呢?4.3 角4.3.2 角的比较与运算....针对训练如图所示:(1) ∠AOC是哪两个角的和?(2) ∠AOB是哪两个角的差?(3) 如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?(1) 如图①,若∠AOC=35°,∠BOC=40°,则∠AOB=度.(2) 如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC=度.(3) 若∠AOB=60°,∠AOC=30°,则∠BOC=度.易错提醒:在计算角的度数时,若无图,一定要注意分类讨论.试一试:如图,借助一副三角尺可以画出15°和75°的角,你还能画出哪些度数的角?例2计算(1)120°-38°41′;(2)67°31′+48°49′.的角的射线,叫做这个角的平分线..4.3.3 余角和补角... . 1+∠2= °, 图① 90°(直角),就说这两个角互为______ (简称为两个角______ ). 是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.180°(平角),就说这两个角互为______ (简称为两个角______). 是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.的补角探究点3:方位角八大方位 正东: 正南: 正西: 正北: 西北方向: 西南方向: 东北方向: 东南方向:例4 如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北 (即北偏西45°)方向上又分别发现了客轮B ,货轮C 和海岛D . 仿照表示灯塔方位的方法画出表示客轮B ,货轮C 和海岛D 方向的射线.针对训练1. 如图,说出下列方位(1) 射线 OA 表示的方向为 . (2) 射线 OB 表示的方向为 .(3) 射线 OC 表示的方向为 . . (4) 射线 OD 表示的方向为 .2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?的北偏东60°的方向上,那么点A在点C。
(完整版)新人教版七年级上册数学导学案(全册)
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
七年级数学上册导学案(人教版)
七年级数学上册导学案(人教版)
目标
本导学案旨在帮助学生在研究七年级数学上册时掌握以下知识和技能:
1. 了解整数、分数和小数的概念和性质;
2. 研究整数、分数和小数的四则运算;
3. 掌握解一元一次方程和一元一次不等式的方法;
4. 理解平行线、垂直线和夹角的概念以及相关性质;
5. 研究解简单的平面图形的计算问题。
导学内容
单元一:整数与小数
1. 整数的概念和性质;
2. 整数之间的比较和排序方法;
3. 小数的概念和性质;
4. 小数的读法和写法。
单元二:分数
1. 分数的概念和性质;
2. 分数的读法和写法;
3. 分数的比较和排序方法;
4. 分数的四则运算。
单元三:线段和角
1. 线段的概念和性质;
2. 线段的比较和排序方法;
3. 角的概念和性质;
4. 角的比较和分类方法。
单元四:平面图形
1. 二维图形的概念和性质;
2. 四边形、三角形和正方形的特征和性质;
3. 二维图形的计算问题。
研究建议
1. 认真阅读教材中的知识点,理解概念和性质;
2. 勤做练题,巩固知识和技能;
3. 积极参与课堂讨论和活动,提出问题并解答问题;
4. 及时向老师请教,解决研究中的困惑。
附加资源
- 人教版七年级数学上册教材
- 题册和练题集
- 网上数学研究资源
祝研究顺利!。
人教版七年级数学下册-7.2.1 用坐标表示地理位置(导学案)
7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置一、新课导入1.导入课题:不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大的方便.你知道怎样用坐标表示地理位置吗?这就是我们本节课要学习的内容.2.学习目标:(1)会运用平面直角坐标系来确定一个点或某地的地理位置.(2)会运用方位角和距离表示平面内物体的位置.(3)能根据实际问题和背景建立恰当的坐标系来描述某地的地理位置.3.学习重、难点:用坐标表示地理位置.二、分层学习1.自学指导:(1)自学范围:课本P73至P74“归纳”为止的内容.(2)自学时间:8分钟.(3)自学要求:边看课本,边动手画图.(4)自学参考提纲:①a.课本P73探究题中,以学校所在的位置为原点,分别以正东方向为x轴正方向,以正北方向为y轴的正方向建立直角坐标系,规定一个单位长度代表1m长,若出校门向东走1500m,再向北走2000m是小刚家,则小刚家的位置记作(1500,2000).b.出校门向西走2000m,再向北走3500m,最后向东走500m是小强家,则小强家的位置应记作(-1500,3500).c.出校门向南走1000m,再向东走3000m,最后向南走750m是小敏家,则小敏家的位置应记作(3000,-1750).d.在课本P74图7.2-2中标出小强、小敏家的位置.②若平面直角坐标系的建立方式不变,但规定一个单位长度代表100m长,则小刚、小强、小敏家的位置的坐标分别为(15,20),(-15,35),(30,-17.5).③以学校为原点建立坐标系,有何优点?④试归纳:利用平面直角坐标系绘制区域内一些地点分布情况平面图的具体步骤.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和在认知方法、过程、结果方面存在的问题.②差异指导:对个别学习有困难的学生进行点拨引导.(2)生助生:小组内学生之间相互展示和交流.4.强化:(1)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程:①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度并在坐标轴上标出来;③在坐标平面内画出这些点,写出各点的坐标和相应地点的名称.(2)练习:课本P75“练习”第1题.1.自学指导:(1)自学内容:课本P74“归纳”以下至P75“练习”之前的内容.(2)自学时间:5分钟.(3)自学要求:按题目条件,结合方位图进行分析.(4)自学参考提纲:①在课本P74“思考”中,已知救生船B在遇险船A的北偏东60°的方向上,那么反过来,遇险船A在救生船B的南偏西60°的方向上,又已知两船相距35n mile,所以若以遇险船A为参照点,则救生船B的位置就可用北偏东60°,35n mile来表示;若以救生船B为参照点,则遇险船A的位置就可用南偏西60°,35n mile来表示.②在航海中要表示物体的位置,除了用经纬度表示以外,还可以用方位角和距离来表示.③练习:课本P75“练习”第2题.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况,关注学生会不会画方位图,并根据图形回答物体或点的方位.②差异指导:对个别学习有困难的学生进行点拨引导.(2)生助生:小组内学生之间相互展示和交流.4.强化:用方位角和距离表示平面内物体的位置的方法.三、评价1.学生的自我评价:各小组长汇报本组的学习收获和不足之处.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的设计是从学生感兴趣的生活实例入手,遵循学生的认知规律,在学生自主探究,讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性.以实际问题为载体,在探究解决问题策略的过程中,让学生体会平面直角坐标系在生活中的作用,感悟到数形结合的方法,增强应用数学的意识,提高数学建模的能力;同时还丰富了学生数学活动的经验,让学生学会探索,学会学习.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)边长为300米的正方形广场四个顶点有四家商场,如果商场A 的坐标是(150,150),商场C的坐标是C(-150,-150),那么商场B、D的坐标分别是(150,-150)或(-150,150).2.(15分)如图,请建立适当的平面直角坐标系,写出各地点的坐标.解:如图,以学校A为原点,AB所在直线为x轴,垂直于x轴于点A的直线为y轴,表格中1小格代表1个单位长度.A(0,0),B(5,0),C(8,0),D(2,3), E(-2,4),F(-7,0),G(-1,-2),H(3,-3).3.(15分)如图,在一次活动中,位于A处的1班准备前往相距5km的B处与2班会合,如何用方向和距离描述2班相对于1班的位置?反过来,如何用方向和距离描述1班相对于2班的位置?解:若以1班为参照点,则2班的位置为南偏西40°,5km;若以2班为参照点,则1班的位置为北偏东40°,5km.4.(20分)体操表演时,甲、乙、丙的位置如图所示,甲说:“我的位置用(-1,1)表示.”那么乙、丙的位置该怎样表示呢?解:由题意可得,可建立如图所示的平面直角坐标系.乙(-3,-1),丙(1,2).二、综合运用(20分)5.从A点出发,向南走100米,再向西走300米到M;从B出发,向南走200米,再向西走200米也到M,那么A在B的什么方向?B在M的什么方向?解:由题意可得:A在B的南偏东45°,1002米处,B在M北偏东45°,2002米处.三、拓展延伸(20分)6.如图,在三角形AOB中,A,B两点的坐标分别为(2,4),(6,2),求三角形AOB的面积.解:过点A作x轴的平行线交y轴于点C,过点B作y轴的平行线交x轴于点D,交CA的延长线于点E,∴E(6,4).∴S△AOB =S长方形ODEC -S△OBD-S△OAC-S△ABE=4×6-12×6×2-12×2×4-12×2×4=10.。
七年级数学下册全册导学案(新版人教版)
七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。
初一上册数学全册导学案(新版人教版)
初一上册数学全册导学案(新版人教版)4.3.2角的比较与运算【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。
【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。
【导学指导】一、知识链接回顾线段大小的比较,,怎样比较图中线段AB、BC、CA 的长短?(8)度量法;(2)叠合法。
AB<AC<BC那么怎样比较∠A、∠B、∠C的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。
(2)叠合法:把两个角叠合在一起比较大小。
教师演示:(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。
2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AOB、∠AOC、∠BOC。
它们的关系是:∠AOC=∠AOB+∠BOC;∠BOC=∠AOC-∠AOB;∠AOB=∠AOC-∠BOC3、用三角板拼角探究:借助三角尺画出150,750的角。
一副三角板的各个角分别是多少度?_________学生尝试画角。
你还能画出哪些角?有什么规律吗?还能画出________________________规律是:凡是的倍数的角都能画出。
4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。
类似地,还有角的三等分线等。
如图(2)中的OB、OC。
OB是∠AOC的一平分线,可以记作:∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC=。
5、例题学习例1 如图,O是直线AB上一点,∠AOC=53017′,求∠BOC的度数。
例2 把一个周角7等分,每一份是多少度的角(精确到分)【课堂练习】:课本140-141页1、2、3。
秋七年级(人教版)集体备课导学案13有理数的加减法(2)——编号05数学人教版7年级上
1.3有理数的加减法第10学时学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC ,半夜又降了9ºC ,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?请问这8袋被检奶粉的总净含量是多少? 4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:。
第一章第6课时绝对值导学案教案[人教版初中数学七年级初一上册]
第6课时绝对值小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离相同.10到原点的距离是10 ,—10到原点的距离也是10到原点的距离等于10的数有 2 个,它们的关系是一对相反数.1.绝对值的概念典例探究答案:【例1】(1)-5.7与原点的距离是5.7 ;(2)2 |-2|练1.(1)× (2)√【例2】3,-3,-5.2, , ,200,0的绝对值分别是:3,3,5.2,, ,200,0. 练2.(1)正确;(2)不正确;(3)不正确【例3】C练3.B练4.√【例4】解:由绝对值的非负性知|3a-1|≥0,|b-2|≥0,所以只有当|3a-1|和|b-2|都为0时,它们的和才为0,否则它们的和大于0.所以|3a-1|=0,且|b-2|=0时,|3a-1|+|b-2|=0才成立,解得a= ,b=2. 所以a+b=2.练5.解:根据绝对值的非负性,可得x-2=0,y-3=0,解得x=2,y=3课后小测答案:1.A.解析:根据一个负数的绝对值等于这个数的相反数,直接得出答案.2.C.解析:根据绝对值的几何意义可知绝对值等于5即表示到原点的距离为5,所以有是5或-5.3.C.解析:a 与1互为相反数,所以a=-1,即.4.C.解析:因为绝对值表示的一个数到原点的距离,所以任何数的绝对值都大于或等于0,由此可知C 错.837-1583715131311-=5.8, |-8|.解析:根据一个负数的绝对值是它的相反数可知-8的绝对值是8,表示一个数的绝对值时用绝对值符号“| |”并把数写在里面.6.-4.解析:绝对值里面不管有多少正负号,化简完之后一定不含有任何正负号.7.根据绝对值的定义一一进行求解,各数的绝对值依次是:6.3,8,2.5,10.8.根据绝对值的非负性,可得x=,y=7,所以y-x=3423163。
【最新】人教版七年级数学上册导学案:有理数乘法(2)
授课 课 主 新授 时间 型 备 1、 体会有理数 乘法的实际 意义; 一自学达标(学生自主完成) 2、 掌握有理数的乘 法法则 1.计算: 和符号法则, 灵活地运算. 有理数乘法(2)
1、经历探索多个有理数相乘 的符号确定法则. 2、会进行有理数的乘法运算
班 级 师
学生姓名 生 活 动
第( )课时 总第 ( )课时
授课人
审 核
科 目
数学
札 记
三、课堂检测: (学生自主完成) 一、选择 1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理 数的积( ) A.一定为正 可能为负 B. 一定为负 C.为零 D. 可能为正,也
(教师二次备课或学生课堂 记录)
教 学 目 标
过程 与 方法 情感 态度 价值 观
5 8 1 2 ( ) ( ) 3 2) 、 12 15 2 5 8 3 2 (1) ( ) ( ) 0 (1) 4 15 2 3 3)
1 1 1 1 1 1 1 1 1 1 1 1 3、 2 3 4 5 6 7 ;
通过对问题的探索,培养 观察、 分析和概括的能力. 积 的符号的确定 体会有理数乘法的实际意 义;
2.若干个不等于 0 的有理数相乘,积的符号( A.由因数的个数决定 归纳:(1)几个不是 0 的数相乘,负因数的个数是_____时,积是正数; 负因数的个数是__________时,积是负数.乘积的绝对值等于各 乘数绝对值的___. (2)几个数相乘,如果其中有因数为 0,积等于_______. 二导学达标(小组活动) 例题: 计算 1) 、—5×8×(—7 )×(—0.25) C.由负因数的个数决定 3.下列运算结果为负值的是( A.(-7)× (-6) 二、计算 B .(-6)+(-4);
新人教版七年级数学(下册)导学案及参考答案
新人教版七年级数学(下册)第九章导学案第九章不等式与不等式组课题 9.1.1不等式及其解集【学习目标】了解不等式的解、解集的概念,会在数轴上表示出不等式的解集.【学习重点】不等式的解集的概念及在数轴上表示不等式的解集的方法。
【学习难点】不等式的解集的概念。
【导学指导】一、知识链接1、什么叫等式?2、什么叫方程?什么叫方程的解?3.问题1:一辆匀速行驶的汽车在11:20时距离A地50千米。
(1)要在12:00时刚好驶过A地,车速应为多少?(2)要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?二、自主探究阅读课本114-115页,回答下面的问题1.不等式:_____________________________________2.不等式的解:___________________________________________3.思考:判断下列数中哪些是不等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?4.不等式的解集:_____________________________________5.解不等式:_____________________________________6、不等式的解集在数轴上的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115页练习1、2、32.下列式子中哪些是不等式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不等式的是____________,属于一元一次不等式的是__________(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于3的非负整数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中,正确的是( ) A . 不是负数,则 B . 是大于0的数,则C .不小于-1,则D .是负数,则3、用数轴表示不等式x<34的解集正确的是( )ABCD4.在数轴上表示下列不等式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性质 (1)【学习目标】掌握不等式的性质;会根据“不等式性质”解简单的一元一次不等式,并能在数轴上表示其解集;【学习重点】 理解并掌握不等式的性质并运用它正确地解一元一次不等式。
人教版七年级全册数学导学案两篇
人教版七年级全册数学导学案两篇第 1 条七年级数学 (上册 )指南案例第一章有理数 1.1 正负数 (1)[ 学习目标 ]1、掌握正数和负数的概念;2、区分两个含义不同的量,并使用符号表示正数和负数。
3、体验数学的发展是生活的实际需要,激发学生学习数学的兴趣。
[指南]一、1、你在小学学了什么数字?请写下来、、。
2、阅读课本 P1 和 P2 三幅图 (重点是三个例子,阅读和思考 ) 回答下面的问题3、生活中,只有整数和分数就足够了吗?有小于0 的数字吗?如果是这样的话,它被称为 2 、自主学习是多少1、正负数的产生 (1)、生活中意义相反的数量,如运入 5 吨,运出 3 吨;向上 7 米,向下 8 米;东 50 米和西 47 米是生命中遇到的相反意义的数量。
也请举一个相反意义的量的例子。
(2)负数的产生也是2、正数和负数的生活和生产需要的表现。
(1)一般来说,我们设置上升、移入、上移、收入、向前移动、上升,等等。
为正,而规则的金额相反,如下跌、移出、减、支出、移回、跌破等。
,都是负面的。
正数用小学时学过的数字来表示,有时前面会放一个”“符号,比如前面的 5 、7 、50;负数的数量是通过在小学学过的数字前面加上一个”符“号 (发音为负数 )来表示的,例如上面的3、8、47。
(2)活动中的两个学生在一个小组里。
一个学生任意说出两个含义相反的量。
另一个学生用正数和负数来表示 .(3)在 P3 练习前阅读内容。
3、正数、负数。
1)大于 0 的数字被调用,小于 0 的数字被调用。
2)正数是大于 0 的数字,负数是数字, 0 既不是正数也不是负数。
[ 课堂练习 ] 1.P3 是负数。
[ 拓展训练 ] 1。
零下 15℃意味着 _______,温度比 0℃低 4℃意味着 _______。
2.地图显示,甲地高度为30 米,乙地高度为20 米,丙地高度为 -5 米,最高点 _______和最低点 _______。
人教版七年级数学上册 1 2 3相反数 导学案(无答案)
课题:1.2.3相反数导案(5)班别: 姓名: 学号: 自评:第一部分 预习导案一、学习目标1.了解相反数的概念,理解数轴上的点与数的对应关系;2.掌握求已知数的相反数的方法,会根据相反数的意义化简符号。
二、学习重难点重点:会求一个数的相反数。
难点:根据相反数的意义化简符号。
三、知识链接数轴的三要素是 、 、 。
四、预习导学(一)阅读课本P9和P10, 完成下列问题:1.如果向前为正,则“向前走4步”记作: ,“向后走4步”记作: 。
2.在数轴上,找出与原点的距离为2的点,有 个,这些数各表示 。
3.设a 是一个整数,数轴上与原点的距离等于a 的点有 个,把这些数表示出来: 、 。
4.a 的相反数为 ,a 与—a 互为 ;若a,b 互为相反数,则a +b= 。
总结: 的两个数叫做互为相反数。
(二)阅读课本P10,完成下列问题:1.写出9,7 ,0.2的相反数:2.写出-2.4,-1.7,-1的相反数:3.写出0的相反数:4.a 是一个数,-a 一定是负数吗?总结:正数的相反数是 ;负数的相反数是 ;0的相反数是 。
五、预习检测完成P10练习六、预习过程中我的疑惑:________________________________________________第二部分 课堂导学七、合作探究(一)组内探究我的预习疑惑。
(二)组内探究下列问题:1.化简下列各数中的符号:(1)⎪⎭⎫ ⎝⎛--312 (2)()5+- (3)()[]7--- (4)[]{})3(+-+-()[]{}3+-+-2.如果5-a 与a 互为相反数,求a .八、总结反思本节课学习了哪些内容?你有哪些收获?ba 课堂检测 班别: 姓名: 学号: 等级:1.若a 的相反数是b ,则下列结论错误的是( )A .a=-bB .a+b=0;C .a 和b 都是正数D .无法确定a ,b 的值2.一个数的相反数大于它本身,这个数是( )A .有理数B .正数C .负数D .非负数3.a -b 的相反数是( )A .a+bB .-(a+b )C .b -aD .-a -b4.若x 的相反数是-3,则x= ;若-x 的相反数是-5.7,则x= .5.如图所示,有理数a ,b 的位置,比较下列各数大小。
人教版七年级下册数学全册导学案
第1课时:5.1.1 相交线导学案令狐采学【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质.【学习过程】一、温故知新(5分钟)各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、自主探索(15分钟)探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.自学检测一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.图1 (1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角:__;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:_____.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的性质”:.自学检测二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、当堂反馈(25分钟) 预备题: 如图,已知直线a 、b 相交。
∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°()。
∠2=180°-∠1=180°-40°=140°()。
七年级人教版数学导学案
七年级人教版数学导学案一、数学基础知识本学案将涵盖以下基础知识:1.代数基础知识:包括有理数、方程、不等式、函数等。
2.几何基础知识:包括基础几何概念、测量、图形变换等。
3.概率与统计基础知识:包括数据收集、整理、分析和解释等。
二、数学基本技能本学案将强调以下基本技能:1.运算技能:包括加减乘除、幂运算、开方等。
2.推理技能:包括逻辑推理、演绎推理、归纳推理等。
3.几何作图技能:包括图形绘制、图形识别、图形性质等。
4.数据分析技能:包括数据收集、整理、分析、解释等。
三、数学基本思想本学案将强调以下数学基本思想:1.数形结合思想:将数字与图形相结合,理解抽象的数学概念。
2.化归思想:将复杂问题转化为简单问题,寻求问题的解决方法。
3.函数思想:理解变量之间的关系,用函数描述和解释实际问题。
4.概率统计思想:理解概率与统计的基本概念和方法,解决实际问题。
四、数学基本活动经验本学案将提供以下数学活动经验:1.动手操作的经验:通过实验、观察、测量等方式,积累实际的数学经验。
2.思维活动的经验:通过探究、发现、归纳等方式,发展数学思维能力。
3.应用数学的经验的经验:通过解决实际问题,体验数学的实用价值。
五、数学与其他学科的联系本学案将展示以下数学与其他学科的联系:1.与物理学的联系:理解数学在物理学中的应用,如力学、电学等。
2.与化学的联系:理解数学在化学中的应用,如化学反应速率、浓度计算等。
3.与生物学的联系:理解数学在生物学中的应用,如遗传学、生态学等。
4.与信息技术的联系:理解数学与信息技术的结合,如算法、数据结构等。
六、数学与社会生活的联系本学案将强调以下数学与社会生活的联系:1.日常生活中的应用:理解数学在日常生活中无处不在,如购物优惠、行程规划等。
2.金融领域的应用:理解数学在金融领域中的应用,如利息计算、投资规划等。
3.科学计算中的应用:理解数学在科学计算中的重要性,如物理现象模拟、数据分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 我学习 我收获
★1、认真阅读教材2页的探究,根据探究的要求画出表格,并将表格填写完整。
两直线相交(画图) 所形成的角
分类(两两组合)
位置关系
大小关系
_______ ______ _______ ______
2、【形成概念】
(1)邻补角:____________________________________________。
举例:_________________。
(2)对顶角:____________________________________________。
举例:_________________。
3、【对顶角的性质】_________________________。
推导过程:法一:如图,∵∠1+∠2 = ,∠2+∠3 = 。
(邻补角定义)
∴∠1=180°- ,∠3 =180°- (等式性质) ∴∠1=∠3 (等量代换)
法二:∵∠1与∠2互补,∠3与∠2互补( ), ∴∠l=∠3( ).
由上面推理可知,对顶角的性质:对顶角 。
4、【例1解析】
解:∠2=180°-∠1=180°-40°=140°( )。
∠3=∠1=40°( )。
∠4=∠2=140°( )。
变式训练:(A.B )把例题中∠1=40°这个条件换成其他条件,其他条件不变. 变式1:把∠1=40°变为∠2是∠l 的3倍; 变式2:把∠1=40°变为∠1 :∠2=2:9
★ 学法指导
2、举例说明上表中谁和谁是邻补角,谁和谁是对顶角。
注意圈画出概念中的重点词语,以便掌握。
3、4:根据例题学会推理,会书写解题过程,并能写出理论依据。
关键点
易错点
我存在的问题: 预习疑问:
课后疑问:
二、我展示,我精彩:(没有完美的个人,只有完美的团队。
) 【合作交流】
2页探究 以及对顶角性质的推导过程(过程的书写)。
【精讲预设】
流程安排
流程一:合作交流 (5分钟); 流程二:展示汇报(30分钟); 流程三:课堂反馈(7分钟); 流程四:总结反思(3分钟)。